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CURVATURE AND SMOOTH TOPOLOGY
IN DIMENSION FOUR

by

Claude LeBrun

Abstract. — Seiberg-Witten theory leads to a delicate interplay between Riemannian
geometry and smooth topology in dimension four. In particular, the scalar curvature
of any metric must satisfy certain non-trivial estimates if the manifold in question
has a non-trivial Seiberg-Witten invariant. However, it has recently been discovered
[26, 27] that similar statements also apply to other parts of the curvature tensor.
This article presents the most salient aspects of these curvature estimates in a self-
contained manner, and shows how they can be applied to the theory of Einstein
manifolds. We then probe the issue of whether the known estimates are optimal by
relating this question to a certain conjecture in Kähler geometry.

Résumé (Courbure et topologie lisse en dimension 4). — La théorie de Seiberg-Witten
révèle des liens étonnants entre la géométrie riemannienne et la topologie lisse en di-
mension 4. En particulier, sur une variété compacte dont un invariant Seiberg-Witten
ne s’annule pas, la norme de la courbure scalaire est minorée, d’une manière uniforme
et non triviale, pour toute métrique riemannienne. Cependant, on a récemment dé-
montré [26, 27] des estimées analogues à l’égard de la courbure de Weyl. Dans cet
article, nous rendrons compte de ces estimées de courbure, y compris leurs consé-
quences pour la théorie des variétés d’Einstein. Nous finissons par un examen du
problème d’optimalité des estimées actuelles, en reliant cette question à une conjec-
ture en géométrie kählérienne.

1. Introduction

In 1994, Witten [39] shocked the mathematical world by announcing that the
differential-topological invariants of Donaldson [9] are intimately tied to the scalar
curvature of Riemannian 4-manifolds. His central discovery was a new family of 4-
manifold invariants, now called the Seiberg-Witten invariants, obtained by counting
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180 C. LEBRUN

solutions of a non-linear Dirac equation [8, 10, 12, 22, 36]. When a 4-manifold has
a non-zero Seiberg-Witten invariant, a Weitzenböck argument shows that it cannot
admit metrics of positive scalar curvature; and as a consequence, there are many
simply connected, non-spin 4-manifolds which do not admit positive-scalar-curvature
metrics. Since this last assertion stands in stark opposition to results concerning
manifolds of higher dimension [14, 34], one can only conclude that dimension four
must be treated as sui generis.

In fact, the idiosyncratic nature of four-dimensional geometry largely stems from
a single Lie-group-theoretic fluke: the four-dimensional rotation group SO(4) isn’t

simple. Indeed, the decomposition

so(4) ∼= so(3) ⊕ so(3)

induces an invariant decomposition

(1) Λ2 = Λ+ ⊕ Λ−

of the bundle of 2-forms on any oriented Riemannian 4-manifold (M, g). The rank-3
bundles Λ± are in fact exactly the eigenspaces of the Hodge (star) duality operator

� : Λ2 −→ Λ2,

the eigenvalues of which are ±1; sections of Λ+ are therefore called self-dual 2-forms,
whereas sections of Λ− are called anti-self-dual 2-forms. Since � is unchanged on
middle-dimensional forms if g is multiplied by a smooth positive function, the decom-
position (1) really only depends on the conformal class γ = [g] rather than on the
Riemannian metric g itself.

Now this, in turn, has some peculiarly four-dimensional consequences for the
Riemann curvature tensor R. Indeed, since R may be identified with a linear map
Λ2 → Λ2, there is an induced decomposition [32]

R =




W+ +
s

12
◦
r

◦
r W− +

s

12




into simpler pieces. Here the self-dual and anti-self-dual Weyl curvatures W± are
defined to be the trace-free pieces of the appropriate blocks. The scalar curvature s is
understood to act by scalar multiplication, and

◦
r can be identified with the trace-free

part r − s
4g of the Ricci curvature.

Witten’s remarkable discoveries include the fact that the Seiberg-Witten equations
(cf. §2 below) give a lower bound for the L2 norm of the scalar curvature [23, 24, 39].
As will be explained in this article, however, they also imply estimates [26, 27] which
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CURVATURE AND SMOOTH TOPOLOGY IN DIMENSION FOUR 181

involve the L2 norms of both s and W+. The importance of this is enhanced by the
fact that the L2 norms of the four pieces of the curvature tensor R are interrelated
by two formulæ of Gauss-Bonnet type, so that the L2 norms of s and W+ actually
determine the L2 norms of W− and

◦
r, too.

To clarify this last point, observe that the intersection form

�: H2(M,R) ×H2(M,R) −→ R

( [φ] , [ψ] ) 	−→
∫

M

φ ∧ ψ

may be diagonalized(1) as


1
. . .

1︸ ︷︷ ︸
b+(M)

b−(M)




−1
. . .

−1




by choosing a suitable basis for the de Rham cohomology H2(M,R). The numbers
b±(M) are independent of the choice of basis, and so are oriented homotopy invariants
of M . Their difference

τ(M) = b+(M) − b−(M),

is called the signature of M . The Hirzebruch signature theorem [16] asserts that this
invariant is expressible as a curvature integral, which may be put in the explicit form
[32]

(2) τ(M) =
1

12π2

∫
M

(
|W+|2 − |W−|2

)
dµ.

Here the curvatures, norms |·|, and volume form dµ are, of course, those of a particular
Riemannian metric g, but the entire point is that the answer is independent of which
metric we use. Thus the L2 norms of W+ and W− determine one another, once the
signature τ is known.

A second such relation is given by the 4-dimensional case of the generalized Gauss-
Bonnet theorem [1]. This asserts that the Euler characteristic

χ(M) = 2 − 2b1(M) + b2(M)

(1)over R, of course; the story over Z is a great deal more complicated!
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182 C. LEBRUN

is also given by a curvature integral, which can be put in the explicit form [32]

(3) χ(M) =
1

8π2

∫
M

(
|W+|2 + |W−|2 +

s2

24
− | ◦

r |2
2

)
dµ.

In conjunction with (2), this allows one to deduce the L2 norm of
◦
r from those of s

and W+, assuming that χ and τ are both known.
For this reason, Seiberg-Witten theory is able to shed light on all four parts of

the curvature tensor R. In particular, we will see in §3 that these ideas naturally
lead to subtle obstructions [25, 19, 26, 27] to the existence of Einstein metrics on
4-manifolds. Then, in §4, we will derive some new results regarding the optimality
of the estimates of §2. It will turn out that this issue bears decisively on a conjec-
ture regarding the existence of constant-scalar-curvature Kähler metrics on complex
surfaces of general type.

2. Seiberg-Witten Theory

Let (M, g) be a compact oriented Riemannian 4-manifold. On any contractible
open subset U ⊂ M , one can define Hermitian vector bundles

C
2 → S±|U

↓
U ⊂ M

called spin bundles, with two characteristic properties: their determinant line bundles
∧2S± are canonically trivial, and their projectivizations

CP1 → P(S±)
↓
M

are exactly the unit 2-sphere bundles S(Λ±). As one passes between open subset U
and U ′, however, the corresponding locally-defined spin bundles are not quite canon-
ically isomorphic; instead, there are two equally ‘canonical’ isomorphisms, differing
by a sign. Because of this, one cannot generally define the bundles S± globally on
M ; manifolds on which this can be done are called spin, and are characterized by the
vanishing of the Stiefel-Whitney class w2 = w2(TM) ∈ H2(M,Z2). However, one can
always find Hermitian complex line bundles L → M with first Chern class c1 = c1(L)
satisfying

(4) c1 ≡ w2 mod 2.

Given such a line bundle, one can then construct Hermitian vector bundles V± with

P(V±) = S(Λ±)
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CURVATURE AND SMOOTH TOPOLOGY IN DIMENSION FOUR 183

by formally setting
V± = S± ⊗ L1/2,

because the sign problems encountered in consistently defining the transition functions
of S± are exactly canceled by those associated with trying to find consistent square-
roots of the transition functions of L.

The isomorphism class c of such a choice of V± is called a spinc structure on M .
The cohomology group H2(M,Z) acts freely and transitively on the spinc structures
by tensoring V± with complex line bundles. Each spinc structure has a first Chern
class c1 := c1(L) = c1(V±) ∈ H2(M,Z) satisfying (4), and the H2(M,Z)-action on
spinc structures induces the action

c1 	−→ c1 + 2α,

α ∈ H2(M,Z), on first Chern classes. Thus, if H2(M,Z) has trivial 2-torsion —
as will be true, for example, if M is simply connected — then the spinc structures
are precisely in one-to-one correspondence with the set of cohomology classes c1 ∈
H2(M,Z) satisfying (4).

To make this discussion more concrete, suppose that M admits an almost-complex
structure. Any given almost-complex structure can be deformed to an almost complex
structure J which is compatible with g in the sense that J∗g = g. Choose such a J ,
and consider the rank-2 complex vector bundles

V+ = Λ0,0 ⊕ Λ0,2(5)

V− = Λ0,1.

These are precisely the twisted spinor bundles of the spinc structure obtained by
taking L to be the anti-canonical line bundle Λ0,2 of the almost-complex structure. A
spinc structure c arising in this way will be said to be of almost-complex type. These
are exactly the spinc structures for which

c21 = (2χ+ 3τ)(M).

On a spin manifold, the spin bundles S± carry natural connections induced by
the Levi-Civita connection of the given Riemannian metric g. On a spinc manifold,
however, there is not a natural unique choice of connections on V±. Nonetheless,
since we formally have V± = S± ⊗ L1/2, every Hermitian connection A on L induces
associated Hermitian connections ∇A on V±.

On the other hand, there is a canonical isomorphism Λ1 ⊗ C = Hom (S+, S−), so
that Λ1 ⊗ C ∼= Hom (V+,V−) for any spinc structure, and this induces a canonical
homomorphism

Cliff : Λ1 ⊗ V+ −→ V−

called Clifford multiplication. Composing these operations allows us to define a so-
called twisted Dirac operator

DA : Γ(V+) −→ Γ(V−)
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184 C. LEBRUN

by DAΦ = Cliff (∇AΦ).
For any spinc structure, we have already noted that there is a canonical diffeo-

morphism P(V+) �→ S(Λ+). In polar coordinates, we now use this to define the
angular part of a unique continuous map

σ : V+ −→ Λ+

with radial part specified by

|σ(Φ)| =
1

2
√

2
|Φ|2.

This map is actually real-quadratic on each fiber of V+; indeed, assuming our spinc

structure is induced by a complex structure J , then, in terms of (5), σ is explicitly
given by

σ(f, φ) = (|f |2 − |φ|2)ω
4

+ �m(f̄φ),

where f ∈ Λ0,0, φ ∈ Λ0,2, and where ω(·, ·) = g(J ·, ·) is the associated 2-form of
(M, g, J). On a deeper level, σ directly arises from the fact that V+ = S+ ⊗ L1/2,
while Λ+ ⊗ C = �2S+. For this reason, σ is invariant under parallel transport.

We are now in a position to introduce the Seiberg-Witten equations

DAΦ = 0(6)

F+A = iσ(Φ),(7)

where the unknowns are a Hermitian connection A on L and a section Φ of V+. Here
F+A is the self-dual part of the curvature of A, and so is a purely imaginary 2-form.

For many 4-manifolds, it turns out that there is a solution of the Seiberg-Witten
equations for each metric. Let us introduce some convenient terminology [21] to
describe this situation.

Definition 1. — Let M be a smooth compact oriented 4-manifold with b+ ≥ 2, and
suppose that M carries a spinc structure c for which the Seiberg-Witten equations
(6–7) have a solution for every Riemannian metric g on M . Then the first Chern class
c1 ∈ H2(M,Z) of c will be called a monopole class.

This definition is useful in practice primarily because there are mapping degree
arguments which lead to the existence of solutions the Seiberg-Witten equations. For
example [8, 30, 39], if c is a spinc structure of almost-complex type, then the Seiberg-
Witten invariant SWc(M) can be defined as the number of solutions, modulo gauge
transformations and counted with orientations, of a generic perturbation

DAΦ = 0

iF+A + σ(Φ) = φ

of (6–7), where φ is a smooth self-dual 2-form. If b+(M) ≥ 2, this integer is inde-
pendent of the metric g; and if it is non-zero, the first Chern class c1 of c is then a

SÉMINAIRES & CONGRÈS 4



CURVATURE AND SMOOTH TOPOLOGY IN DIMENSION FOUR 185

monopole class. Similar things are also true when b+(M) = 1, although the story
[12] becomes rather more complicated.

Now, via the Hodge theorem, every Riemannian metric g on M determines a direct
sum decomposition

H2(M,R) = H+g ⊕H−
g ,

where H+g (respectively, H−
g ) consists of those cohomology classes for which the har-

monic representative is self-dual (respectively, anti-self-dual). Because the restriction
of the intersection form to H+g (respectively, H−

g ) is positive (respectively, negative)
definite, and because these subspaces are mutually orthogonal with respect to the in-
tersection pairing, the dimensions of these spaces are exactly the invariants b± defined
in §1. If the first Chern class c1 of the spinc structure c is now decomposed as

c1 = c+1 + c−1 ,

where c±1 ∈ H±
g , we get the important inequality

(8)
∫

M

|Φ|4dµ ≥ 32π2(c+1 )2

because (7) tells us that 2πc+1 is the harmonic part of −σ(Φ).
Many of the most remarkable consequences of Seiberg-Witten theory stem [8, 22,

30] from the fact that the equations (6–7) imply the Weitzenböck formula

(9) 0 = 4∇∗∇Φ + sΦ + |Φ|2Φ,

where s denotes the scalar curvature of g, and where we have introduced the abbre-
viation ∇A = ∇. Taking the inner product with Φ, it follows that

(10) 0 = 2∆|Φ|2 + 4|∇Φ|2 + s|Φ|2 + |Φ|4.

If we multiply (10) by |Φ|2 and integrate, we have

0 =
∫

M

[
2
∣∣ d|Φ|2

∣∣2 + 4|Φ|2|∇Φ|2 + s|Φ|4 + |Φ|6
]
dµg,

so that

(11)
∫

(−s)|Φ|4dµ ≥ 4
∫

|Φ|2|∇Φ|2dµ +
∫

|Φ|6dµ.

This leads [27] to the following curvature estimate:

Theorem 2. — Let M be a smooth compact oriented 4-manifold with monopole class
c1. Then every Riemannian metric g on M satisfies

(12)
∫

M

(
2
3
s− 2

√
2
3
|W+|

)2
dµ ≥ 32π2(c+1 )2,

where c+1 is the self-dual part of c1 with respect to g.
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186 C. LEBRUN

Proof. — The first step is to prove the inequality

(13) V 1/3


∫

M

∣∣∣∣∣23sg − 2

√
2
3
|W+|

∣∣∣∣∣
3

dµ


2/3 ≥ 32π2(c+1 )2,

where V = Vol(M, g) =
∫

M dµg is the total volume of (M, g).
Any self-dual 2-form ψ on any oriented 4-manifold satisfies the Weitzenböck formula

[6]
(d + d∗)2ψ = ∇∗∇ψ − 2W+(ψ, ·) +

s

3
ψ.

It follows that ∫
M

(−2W+)(ψ, ψ)dµ ≥
∫

M

(−s

3
)|ψ|2 dµ−

∫
M

|∇ψ|2 dµ.

However,

|W+|g|ψ|2 ≥ −
√

3
2
W+(ψ, ψ)

simply because W+ is trace-free. Thus∫
M

2

√
2
3
|W+||ψ|2dµ ≥

∫
M

(−s

3
)|ψ|2 dµ−

∫
M

|∇ψ|2 dµ,

and hence

−
∫

M

(
2
3
s− 2

√
2
3
|W+|)|ψ|2dµ ≥

∫
M

(−s)|ψ|2 dµ−
∫

M

|∇ψ|2 dµ.

On the other hand, the particular self-dual 2-form ϕ = σ(Φ) = −iF+A satisfies

|ϕ|2 =
1
8
|Φ|4,

|∇ϕ|2 ≤ 1
2
|Φ|2|∇Φ|2.

Setting ψ = ϕ, we thus have

−
∫

M

(
2
3
s− 2

√
2
3
|W+|)|Φ|4dµ ≥

∫
M

(−s)|Φ|4 dµ− 4
∫

M

|Φ|2|∇Φ|2 dµ.

But (11) tells us that∫
M

(−s)|Φ|4 dµ− 4
∫

M

|Φ|2|∇Φ|2 dµ ≥
∫

M

|Φ|6 dµ,

so we obtain

(14) −
∫

M

(
2
3
s− 2

√
2
3
|W+|)|Φ|4dµ ≥

∫
M

|Φ|6 dµ.

By the Hölder inequality, we thus have
∫ ∣∣∣∣∣23s− 2

√
2
3
|W+|

∣∣∣∣∣
3

dµ


1/3 (∫ |Φ|6dµ

)2/3
≥
∫

|Φ|6 dµ,
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Since the Hölder inequality also tells us that∫
|Φ|6 dµ ≥ V −1/2

(∫
|Φ|4dµ

)3/2
,

we thus have

V 1/3


∫

M

∣∣∣∣∣23s− 2

√
2
3
|W+|

∣∣∣∣∣
3

dµ


2/3 ≥ ∫

|Φ|4dµ ≥ 32π2(c+1 )2,

where the last inequality is exactly (8). This completes the first part of the proof.
Next, we observe that any smooth conformal γ class on any oriented 4-manifold

contains a C2 metric such that s−
√

6|W+| is constant. Indeed, as observed by Gursky
[15], this readily follows from the standard proof of the Yamabe problem. The main
point is that the curvature expression

Sg = sg −
√

6|W+|g

transforms under conformal changes g 	→ ĝ = u2g by the rule

Sĝ = u−3 (6∆g + Sg) u,

just like the ordinary scalar curvature s. We will actually use this only in the negative
case, where the proof is technically the simplest, and simply repeats(2) the arguments
of Trudinger [38].

The conformal class γ of a given metric g thus always contains a metric gγ for

which 2
3s− 2

√
2
3 |W+| is constant. But since the existence of solutions of the Seiberg-

Witten equations precludes the possibility that we might have sgγ > 0, this constant
is necessarily non-positive. We thus have

∫
M

(
2
3
sgγ − 2

√
2
3
|W+|gγ

)2
dµgγ = V 1/3gγ


∫

M

∣∣∣∣∣(2
3
sgγ − 2

√
2
3
|W+|gγ

∣∣∣∣∣
3

dµgγ


2/3 ,

so that ∫
M

(
2
3
sgγ − 2

√
2
3
|W+|gγ

)2
dµgγ ≥ 32π2(c+1 )2.

Thus we at least have the desired L2 estimate for a specific metric gγ which is con-
formally related to the given metric g.

Let us now compare the left-hand side with analogous expression for the given
metric g. To do so, we express g in the form g = u2gγ , where u is a positive C2

(2)However, since |W+| is generally only Lipschitz continuous, the minimizer generally only has

regularity C2,α in the vicinity of a zero of W+.
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function, and observe that∫
Sgu

2dµgγ =
∫

u−3
(
6∆gγu+ Sgγu

)
u2dµgγ

=
∫ (

−6u−2|du|2gγ
+ Sgγ

)
dµgγ

≤
∫

Sgγdµgγ .

Applying Cauchy-Schwarz, we thus have

−V 1/2gγ

(∫
S
2
gdµg

)1/2
= −V 1/2gγ

(∫ (
Sgu

2
)2
dµgγ

)1/2
≤

∫
M

Sgu
2dµgγ

≤
∫

M

Sgγdµgγ

= −V 1/2gγ

(∫
S
2
gγ
dµgγ

)1/2
.

Hence ∫
M

(
2
3
sg − 2

√
2
3
|W+|g

)2
dµg =

4
9

∫
S
2
gdµg

≥ 4
9

∫
S
2
gγ
dµgγ

=
∫

M

(
2
3
sgγ − 2

√
2
3
|W+|gγ

)2
dµgγ

≥ 32π2(c+1 )2,

exactly as claimed.

Notice that we can rewrite the inequality (12) as∥∥∥∥∥2
3
s− 2

√
2
3
|W+|

∥∥∥∥∥ ≥ 4
√

2π|c+1 |,

where ‖ · ‖ denotes the L2 norm with respect to g. Dividing by
√

24 and applying the
triangle inequality, we thus have

Corollary 3. — Let M be a smooth compact oriented 4-manifold with monopole class
c1. Then every Riemannian metric g on M satisfies

(15)
2
3
‖ s√

24
‖ +

1
3
‖W+‖ ≥ 2π√

3
|c+1 |.

Inequality (12) actually belongs to a family of related estimates:
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Theorem 4. — Let M be a smooth compact oriented 4-manifold with monopole class
c1, and let δ ∈ [0, 13 ] be a constant. Then every Riemannian metric g on M satisfies

(16)
∫

M

[
(1 − δ)s− δ

√
24|W+|

]2
dµ ≥ 32π2(c+1 )2,

Proof. — Inequality (11) implies

(17)
∫

(−s)|Φ|4dµ ≥
∫

|Φ|6dµ.

On the other hand, inequality (14) asserts that

−
∫

M

(
2
3
s− 2

√
2
3
|W+|)|Φ|4dµ ≥

∫
M

|Φ|6 dµ.

Now multiply (17) by 1 − 3δ, multiply (14) by 3δ, and add. The result is

(18)
∫ [

(1 − δ)s− δ
√

24|W+|
]
|Φ|4dµ ≥

∫
|Φ|6dµ.

Applying the same Hölder inequalities as before, we now obtain

V 1/3
(∫

M

∣∣∣(1 − δ)s− δ
√

24|W+|
∣∣∣3 dµ)2/3 ≥ ∫

|Φ|4dµ ≥ 32π2(c+1 )2.

Passage from this L3 estimate to the desired L2 estimate is then accomplished
by the same means as before: every conformal class contains a metric for which
(1 − δ)s− δ

√
24|W+| is constant, and this metric minimizes∫

M

[
(1 − δ)s− δ

√
24|W+|

]2
dµ

among metrics in its conformal class.

Rewriting (16) as ∥∥∥(1 − δ)s− δ
√

24|W+|
∥∥∥ ≥ 4

√
2π|c+1 |,

dividing by
√

24, and applying the triangle inequality, we thus have

Corollary 5. — Let M be a smooth compact oriented 4-manifold with monopole class
c1. Then every Riemannian metric g on M satisfies

(19) (1 − δ)‖ s√
24

‖ + δ‖W+‖ ≥ 2π√
3
|c+1 |

for every δ ∈ [0, 13 ].

The δ = 0 version of (16) is implicit in the work of Witten [39]; it was later made
explicit in [24], where it was also shown that equality holds for δ = 0 iff g is a Kähler
metric of constant, non-positive scalar curvature. But indeed, since

√
24|W+| ≡ |s|

for any Kähler manifold of real dimension 4, metrics of this kind saturate (16) for
each value of δ. Conversely:
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Proposition 6. — Let δ ∈ [0, 13 ) be a fixed constant. If g is a metric such that equality
holds in (16), then g is Kähler, and has constant scalar curvature.

Proof. — Equality in (16) implies equality in (18). However, (1−3δ) times inequality
(11) plus 3δ times inequality (14) reads∫ [

(1 − δ)s− δ
√

24|W+|
]
|Φ|4dµ ≥

∫
|Φ|6dµ + 4(1 − 3δ)

∫
|Φ|2|∇Φ|2dµ.

Equality in (16) therefore implies that

0 =
1
2

∫
|Φ|2|∇Φ|2dµ ≥

∫
|∇ϕ|2dµ,

forcing the 2-form ϕ to be parallel. If ϕ �≡ 0, we conclude that the metric is Kähler,
and the constancy of s then follows from the Yamabe portion of the argument.

On the other hand, since b+(M) ≥ 2 and c1 is a monopole class, M does not admit
metrics of positive scalar curvature. If ϕ ≡ 0 and (16) is saturated, one can therefore
show that (M, g) is K3 or T 4 with a Ricci-flat Kähler metric. The details are left as
an exercise for the interested reader.

When δ = 1
3 , the above argument breaks down. However, a metric g can saturate

(12) only if equality holds in (8), and this forces the self-dual 2-form ϕ = σ(Φ) to be
harmonic. Moreover, the relevant Hölder inequalities would also have to be saturated,
forcing ϕ to have constant length. This forces g to be almost-Kähler, in the sense that
there is an orientation-compatible orthogonal almost-complex structure for which the
associated 2-form is closed. For details, see [27].

It is reasonable to ask whether the inequalities (16) and (19) continue to hold when
δ > 1/3. This issue will be addressed in §4.

3. Einstein Metrics

Recall that a smooth Riemannian metric g is said to be Einstein if its Ricci
curvature r is a constant multiple of the metric:

r = λg.

Not every 4-manifold admits such metrics. A necessary condition for the existence
of an Einstein metric on a compact oriented 4-manifold is that the Hitchin-Thorpe
inequality 2χ(M) ≥ 3|τ(M)| must hold [37, 17, 5]. Indeed, (2) and (3) tell us that

(2χ± 3τ)(M) =
1

4π2

∫
M

(
s2

24
+ 2|W±|2 −

| ◦
r |2
2

)
dµ.

The Hitchin-Thorpe inequality follows, since the integrand is non-negative when
◦
r= 0.

This argument, however, treats the scalar and Weyl contributions as ‘junk’ terms,
about which one knows nothing except that they are non-negative. We now remedy
this by invoking the estimates of §2.
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Proposition 7. — LetM be a smooth compact oriented 4-manifold with monopole class
c1. Then every metric g on M satisfies

1
4π2

∫
M

(
s2g
24

+ 2|W+|2g

)
dµg ≥ 2

3
(c+1 )2.

If c+1 �= 0, moreover, equality can only hold if g is almost-Kähler, with almost-Kähler
class proportional to c+1 .

Proof. — We begin with inequality (15)

2
3
‖ s√

24
‖ +

1
3
‖W+‖ ≥ 2π√

3
|c+1 |,

and elect to interpret the left-hand side as the dot product

(
2
3
,

1
3
√

2
) ·
(
‖ s√

24
‖,
√

2‖W+‖
)

in R2. Applying Cauchy-Schwarz, we thus have(
(
2
3
)2 + (

1
3
√

2
)2
)1/2(

‖ s√
24

‖2 + 2‖W+‖2
)1/2

≥ 2
3
‖ s√

24
‖ +

1
3
‖W+‖.

Thus
1
2

∫
M

(
s2

24
+ 2|W+|2

)
dµ ≥

(
2
3
‖ s√

24
‖ +

1
3
‖W+‖

)2
≥ 4π2

3
(c+1 )2,

and hence
1

4π2

∫
M

(
s2g
24

+ 2|W+|2g

)
dµg ≥ 2

3
(c+1 )2,

as claimed.
In the equality case, ϕ would be a closed self-dual form of constant norm, so g

would be almost-Kähler unless ϕ ≡ 0.

To give some concrete applications, we now focus on the case of complex surfaces.

Proposition 8. — Let (X, JX) be a compact complex surface with b+ > 1, and let
(M,JM ) be the complex surface obtained from X by blowing up k > 0 points. Then
any Riemannian metric g on the 4-manifold

M = X#kCP2

satisfies

1
4π2

∫
M

(
s2g
24

+ 2|W+|2g

)
dµg >

2
3
(2χ + 3τ)(X).
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Proof. — Let c1(X) denote the first Chern class of the given complex structure JX ,
and, by a standard abuse of notation, let c1(X) also denote the pull-back class of
this class to M . If E1, . . . , Ek are the Poincaré duals of the exceptional divisors in M

introduced by blowing up, the complex structure JM has Chern class

c1(M) = c1(X) −
k∑

j=1

Ej .

By a result of Witten [39], this is a monopole class of M . However, there are self-
diffeomorphisms of M which act on H2(M) in a manner such that

c1(X) 	−→ c1(X)

Ej 	−→ ±Ej

for any choice of signs we like. Thus

c1 = c1(X) +
k∑

j=1

(±Ej)

is a monopole class on M for each choice of signs. We now fix our choice of signs so
that

[c1(X)]+ · (±Ej) ≥ 0,

for each j, with respect to the decomposition induced by the given metric g. We then
have

(c+1 )2 =


[c1(X)]+ +

k∑
j=1

(±E+j )


2

= ([c1(X)]+)2 + 2
k∑

j=1

[c1(X)]+ · (±Ej) + (
k∑

j=1

(±E+j ))2

≥ ([c1(X)]+)2

≥ (2χ+ 3τ)(X).

This shows that

1
4π2

∫
M

(
s2g
24

+ 2|W+|2g

)
dµg ≥ 2

3
(2χ + 3τ)(X).

If equality held, g would be almost-Kähler, with almost-Kähler class [ω] propor-
tional to c+1 . On the other hand, we would also have [c1(X)]+ · Ej = 0, so it would
then follow that [ω] · Ej = 0 for all j. However, the Seiberg-Witten invariant would
be non-trivial for a spinc structure with c1(L̃) = c1(L) − 2(±E1), and a celebrated
theorem of Taubes [36] would then force the homology class Ej to be represented by
a pseudo-holomorphic 2-sphere in the symplectic manifold (M,ω). But the (positive!)
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area of this sphere with respect to g would then be exactly [ω] ·Ej , contradicting the
observation that [ω] · Ej = 0.

Theorem 9. — Let (X, JX) be a compact complex surface with b+ > 1, and let (M,JM )
be obtained from X by blowing up k points. Then the smooth compact 4-manifold M
does not admit any Einstein metrics if k ≥ 1

3c
2
1(X).

Proof. — We may assume that (2χ + 3τ)(X) > 0, since otherwise the result follows
from the Hitchin-Thorpe inequality.

Now

(2χ+ 3τ)(M) =
1

4π2

∫
M

(
s2g
24

+ 2|W+|2g − | ◦
r |2
2

)
dµg

for any metric on g on M . If g is an Einstein metric, the trace-free part
◦
r of the Ricci

curvature vanishes, and we then have

(2χ+ 3τ)(X) − k = (2χ+ 3τ)(M)

=
1

4π2

∫
M

(
s2g
24

+ 2|W+|2g

)
dµg

>
2
3
(2χ+ 3τ)(X)

by Proposition 8. If M carries an Einstein metric, it therefore follows that
1
3
(2χ+ 3τ)(X) > k.

The claim thus follows by contraposition.

Example. — Let X ⊂ CP4 be the intersection of two cubic hypersurfaces in general
position. Since the canonical class on X is exactly the hyperplane class, c21(X) =
12 · 3 · 3 = 9. Theorem 9 therefore tells us that if we blow up X at 3 points, the
resulting 4-manifold

M = X#3CP2

does not admit Einstein metrics.
But now consider the Horikawa surfaceN obtained as a ramified double cover of the

blown-up projective plane CP2#CP2 branched over the (smooth) proper transform Ĉ

of the singular curve C given by

x10 + y10 + z6(x4 + y4) = 0

in the complex projective plane, where the singular point [0 : 0 : 1] of C is the point
at which we blow up CP2. By the Freedman classification of 4-manifolds [11], both
of these complex surfaces are homeomorphic to

11CP2#53CP2.
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However, N has c1 < 0, and so admits a Kähler-Einstein metric by the Aubin/Yau
theorem [3, 40]. Thus, although M and N are homeomorphic, one admits Einstein
metrics, while the other doesn’t. ♦

Example. — Let X ⊂ CP3 be a hypersurface of degree 6. Since the canonical class
on X is twice the hyperplane class, c21(X) = 22 · 6 = 24. Theorem 9 therefore tells us
that if we blow up X at 8 points, the resulting 4-manifold

M = X#8CP2

does not admit Einstein metrics.
However, the Freedman classification can be used to show that M is homeomorphic

to the Horikawa surface N obtained as a ramified double cover of CP1×CP1 branched
at a generic curve of bidegree (6, 12); indeed, both of these complex surfaces are
homeomorphic to

21CP2#93CP2.

However, this N also admits a Kähler-Einstein metric, even though the existence of
Einstein metric is obstructed on M . ♦

Example. — Let X ⊂ CP3 be a hypersurface of degree 10. Since the canonical class
on X is six times the hyperplane class, c21(X) = 62 · 10 = 360. Theorem 9 therefore
tells us that if we blow up X at 120 or more points, the resulting 4-manifold does not
admit Einstein metrics. In particular, this assertion applies to

M = X#144CP2.

Now let N be obtained from CP1 × CP1 as a ramified double cover branched at
a generic curve of bidegree (8, 58). Both M and N are then simply connected, and
have c21 = 216 and pg = 84; and both are therefore homeomorphic to

129CP2#633CP2.

But again, N has c1 < 0, and so admits a Kähler-Einstein metric, even though M

does not admit an Einstein metric of any kind whatsoever.
In most respects, this example is much like the previous ones. However, this last

choice of N is not a Horikawa surface, but instead sits well away from the Noether
line [4] of complex-surface geography. ♦

Infinitely many such examples can be constructed using the above techniques, and
the interested reader might wish to explore their geography.

It should be noted that Theorem 9 is the direct descendant of an analogous result
in [25], where scalar curvature estimates alone were used to obtain an obstruction
when k ≥ 2

3c
2
1(X). It was later pointed out by Kotschick [19] that this suffices to

imply the existence of homeomorphic pairs consisting of an Einstein manifold and
a 4-manifold which does not admit Einstein metrics. An intermediate step between
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[25] and Theorem 9 may be found in [26], where cruder Seiberg-Witten estimates of
Weyl curvature were used to obtain an obstruction for k ≥ 25

57c
2
1(X).

4. How Sharp are the Estimates?

The estimates we have described in §2 are optimal in the sense that equality is
achieved for Kähler metrics of constant negative scalar curvature, with the standard
orientation and spinc structure. In this section, we will attempt to probe the limits of
these estimates by considering metrics of precisely this type, but with non-standard
choices of orientation and spinc structure.

One interesting class of 4-manifolds which admit constant-scalar-curvature Kähler
metrics are the complex surfaces with ample canonical line bundle. In terms of
complex-surface classification [4], these are precisely those minimal surfaces of gen-
eral type which do not contain CP1’s of self-intersection −2. The ampleness of the
canonical line bundle is often written as c1 < 0, meaning that −c1 is a Kähler class.
A celebrated result of Aubin/Yau [3, 40] guarantees that there is a unique Kähler-
Einstein metric on M , compatible with the given complex structure, and with Kähler
class [ω] = −c1 = H1,1(M,R). The scalar curvature of such a metric is, of course, a
negative constant; indeed, s = − dimR M = −4.

Now if M is a compact complex manifold without holomorphic vector fields, the
set of Kähler classes which are representable by metrics of constant scalar curvature is
open [13, 28] in H1,1(M,R). On the other hand, a manifold with c1 < 0 never carries
a non-zero holomorphic vector field, so it follows that a complex surface with ample
canonical line bundle will carry lots of constant-scalar-curvature Kähler metrics which
are non-Einstein if b− = h1,1 − 1 is non-zero. However, one might actually hope to
find such metrics even in those Kähler classes which are far from the anti-canonical
class. This expectation may be codified as follows:

Conjecture 10. — Let M be any compact complex surface with c1 < 0. Then every
Kähler class [ω] ∈ H1,1(M,R) contains a unique Kähler metric of constant scalar
curvature.

The uniqueness clause was recently proved by X.-X. Chen [7], using ideas due to
Donaldson and Semmes. A direct continuity-method attack on conjecture has also
been explored by S.-R. Simanca.

Let us now narrow our discussion to a very special class of complex surfaces.

Definition 11. — A Kodaira fibration is a holomorphic submersion : : M → B from
a compact complex surface to a compact complex curve, such that the base B and
fiber Fz = :−1(z) both have genus ≥ 2. If M admits such a fibration :, we will say
that is a Kodaira-fibered surface.
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The underlying 4-manifold M of a Kodaira-fibered surface is a fiber bundle over
B, with fiber F . We thus have a long exact sequence [33]

· · · −→ πk(F ) −→ πk(M) −→ πk(B) −→ πk−1(F ) −→ · · ·

of homotopy groups, and M is therefore a K(π, 1). In particular, any 2-sphere in M is
homologically trivial, and so has self-intersection 0; in particular, the complex surface
M cannot contain any CP1’s of self-intersection −1 or −2. On the other hand, M is
of general type, so the above implies that c1(M) < 0. Kodaira-fibered surfaces thus
provide us with an interesting testing-ground for Conjecture 10.

Now the product B × F of two complex curves of genus ≥ 2 is certainly Kodaira
fibered, but such a product also admits orientation-reversing diffeomorphisms, and
so has signature τ = 0. However, as was first observed by Kodaira [18], one can
construct examples with τ > 0 by taking branched covers of products; cf. [2, 4].
For example, let B be a curve of genus 3 with a holomorphic involution ι : B → B

without fixed points; one may visualize such an involution as a 180◦ rotation of
a 3-holed doughnut about an axis which passes though the middle hole, without
meeting the doughnut. Let f : C → B be the unique 64-fold unbranched cover with
f∗[π1(C)] = ker[π1(B) → H1(B,Z2)]; thus C is a complex curve of genus 129. Let
Σ ⊂ C ×B be the union of the graphs of f and ι ◦ f . Then the homology class of Σ
is divisible by 2. We may therefore construct a ramified double cover M → B × C

branched over Σ. The projection M → B is then a Kodaira fibration, with fiber F of
genus 321. The projection M → C is also a Kodaira fibration, with fiber of genus 6.
The signature of this example is τ(M) = 256, and so coincidentally equals one-tenth
of its Euler characteristic χ(M) = 2560.

Now, more generally, let M be any Kodaira-fibered surface with τ > 0, and let
: : M → B be a Kodaira fibration. Let p denote the genus of B, and let q denote
the genus of a fiber F of :. Indulging in a standard notational abuse, let us also
use F to denote the Poincaré dual of the homology class of the fiber. Since F can
be represented in de Rham cohomology by the pull-back of an area form on B, this
(1, 1)-class is positive semi-definite. On the other hand, −c1 is a Kähler class on M ,
and so it follows that

[ωε] = 2(p− 1)F − εc1

is a Kähler class on M for any ε > 0. If Conjecture 10 is true, there must therefore
exist a Kähler metric gε on M of constant scalar curvature with Kähler class [ωε].
Let us explore the global geometric invariants of this putative metric.

The metric in question, being Kähler, would have total scalar curvature∫
sgεdµgε = 4πc1 · [ωε] = −4π(χ+ εc21)(M)

and total volume ∫
dµgε =

[ωε]2

2
=

ε

2
(2χ+ εc21)(M).
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The assumption that sgε = const would thus imply that

‖s‖2 =
∫

s2gε
dµgε =

32π2

ε

(χ + εc21)2

2χ+ εc21

= 16π2
χ

ε

[
1 + (3 +

9
2
?)ε +O(ε2)

]
,

where we have set

? =
τ(M)
χ(M)

.

Since a Kähler metric on a complex surface satisfies |W+|2 ≡ s2/24, we would also
consequently have∫

|W+|2gε
dµgε =

1
24

∫
s2gε

dµgε

=
2
3
π2

χ

ε

[
1 + (3 +

9
2
?)ε+O(ε2)

]
.

It would thus follow that

‖W−‖2 =
∫

|W−|2gε
dµgε = −12π2τ(M) +

∫
|W+|2gε

dµgε

=
2
3
π2

χ

ε

[
1 + (3 − 27

2
?)ε+O(ε2)

]
.

On the other hand, there are symplectic forms on M which are compatible with
the non-standard orientation of M ; for example, the cohomology class F + εc1 is
represented by such forms if ε is sufficiently small. A celebrated theorem of Taubes
[35] therefore tells us that the reverse-oriented version M of M has a non-trivial
Seiberg-Witten invariant [29, 31, 20]. The relevant spinc structure on M is of almost-
complex type, and its first Chern class, which we will denote by c̄1, is given by

c̄1 = c1 + 4(p− 1)F.

Of course, the conjugate almost-complex structure, with first Chern class −c̄1, is also
a monopole class of M , and M will have yet other monopole classes if, for example,
M admits more than one Kodaira fibration and τ(M) �= 0.

Now recall that (19) asserts that

(1 − δ)‖ s√
24

‖ + δ‖W+‖ ≥ 2π√
3
|c+1 |

for all δ ∈ [0, 13 ]. One would like to know whether this inequality might also hold,
quite generally, for some value of δ > 1

3 . In order to find out, we apply this inequality
to M with the above monopole class. Rewriting the inequality with respect to the
complex orientation of M , we then get

(20) (1 − δ)‖ s√
24

‖ + δ‖W−‖ ≥ 2π√
3
|c̄−1 |,

and it is this inequality we shall now use to probe the limits of the theory.
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Relative to any Kähler metric with Kähler class [ωε], one has

c̄+1 =
c̄1 · [ωε]
[ωε]2

[ωε]

=
[c1 + 4(p− 1)F ] · [2(p− 1)F − εc1]

[ωε]2
[ωε]

= − (χ+ 3ετ)
[ωε]2

[ωε],

so that

|c̄+1 |2 =
(χ + 3ετ)2

[ωε]2

=
1
ε

(χ + 3ετ)2

2χ+ εc21

=
χ

2ε

[
1 − (1 − 9

2
?)ε +O(ε2)

]
.

Now since c̄1 is the first Chern class of an almost-complex structure on M , we have

|c̄−1 |2 − |c̄+1 |2 = 2χ− 3τ,

and it follows that

|c̄−1 |2 = (2χ− 3τ) +
χ

2ε

[
1 − (1 − 9

2
?)ε+O(ε2)

]

=
χ

2
(4 − 6?) +

χ

2ε

[
1 − (1 − 9

2
?)ε+O(ε2)

]

=
χ

2ε

[
1 + (3 − 3

2
?)ε+O(ε2)

]
.

After dividing by π
√

2χ/3ε, the inequality (20) would thus read

(1 − δ)

√
1 + (3 +

9
2
?)ε +O(ε2) + δ

√
1 + (3 − 27

2
?)ε+O(ε2)

≥
√

1 + (3 − 3
2
?)ε +O(ε2).

Dropping the terms of order ε2, we would thus have

(1 − δ)
[
1 + (

3
2

+
9
4
?)ε
]

+ δ

[
1 + (

3
2
− 27

4
?)ε
]
≥ 1 + (

3
2
− 3

4
?)ε,

so that, upon collecting terms, we would obtain

3?ε ≥ 9?εδ.

Taking ? = τ/χ to be positive, and noting that ε is positive by construction, this
shows that Conjecture 10 would imply that

1
3
≥ δ,
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or in other words that (15) is optimal. We have thus proved the following result:

Theorem 12. — Either

– the estimate (15) is optimal; or else
– Conjecture 10 is false.

References

[1] C. Allendoerfer and A. Weil, The Gauss-Bonnet theorem for Riemannian poly-
hedra, Trans. Am. Math. Soc., 53 (1943), pp. 101–129.

[2] M. F. Atiyah, The signature of fibre-bundles, in Global Analysis (Papers in Honor of
K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 73–84.

[3] T. Aubin, Equations du type Monge-Ampère sur les variétés Kählériennes compactes,
C. R. Acad. Sci. Paris, 283A (1976), pp. 119–121.

[4] W. Barth, C. Peters, and A. V. de Ven, Compact Complex Surfaces, Springer-
Verlag, 1984.

[5] A. Besse, Einstein Manifolds, Springer-Verlag, 1987.

[6] J.-P. Bourguignon, Les variétés de dimension 4 à signature non nulle dont la courbure
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