
Séminaires & Congrès
6, 2002, p. 227–247

LECTURES ON HEIGHT ZETA FUNCTIONS
OF TORIC VARIETIES

by

Yuri Tschinkel

Abstract. — We explain the main ideas and techniques involved in recent proofs of
asymptotics of rational points of bounded height on toric varieties.

1. Introduction

Toric varieties are an ideal testing ground for conjectures: their theory is sufficiently
rich to reflect general phenomena and sufficiently rigid to allow explicit combinato-
rial computations. In these notes I explain a conjecture in arithmetic geometry and
describe its proof for toric varieties.
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1.1. Counting problems

Example 1.1.1. — Let X ⊂ Pn be a smooth hypersurface given as the zero set of a
homogeneous form f of degree d (with coefficients in Z). Let

N(X,B) = #{x | f(x) = 0, max(|xj |) � B}
(where x = (x0, . . . , xn) ∈ Zn+1/(±1) with gcd(xj) = 1) be the number of Q-rational
points on X of “height” � B. Heuristically, the probability that f represents 0 is
about B−d and the number of “events” about Bn+1. Thus we expect that

lim
B→∞

N(X,B) ∼ Bn+1−d.
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228 Y. TSCHINKEL

This can be proved by the circle method, at least when n� 2d. The above heuristic
leads to a natural trichotomy, corresponding to the possibilities when n+1−d positive,
zero or negative. In the first case we expect many rational points on X , in the third
case very few and in the intermediate case we don’t form an opinion.

Example 1.1.2. — Let X ⊂ Pn × Pn be a hypersurface given as the zero set of a
bihomogeneous diagonal form of bidegree (d1, d2):

f(x,y) =
n∑
k=0

akx
d1
k · yd2k ,

with ak ∈ Z. Each pair of positive integers L = (l1, l2) defines a counting function on
rational points X(Q) by

N(X,L,B) = #{(x,y) | f(x,y) = 0, max(|xi|)l1 · max(|yj |)l2 � B}

(where x,y ∈ Z(n+1)/(±1) with gcd(xi) = gcd(yj) = 1). Heuristics as above predict
that the asymptotic should depend on the vector

−K = (n+ 1 − d1, n+ 1 − d2)

and on the location of L with respect to −K.
An interesting open problem is, for example, the case when (d1, d2) = (1, 2), n = 3

and L = (3, 2). Notice that this variety is a compactification of the affine space. For
appropriate ak one expects ∼ B log(B) rational points of height bounded by B.

Trying to systematize such examples one is naturally lead to the following problems:

Problem 1.1.3. — Let X ⊂ Pn be an algebraic variety over a number field. Relate the
asymptotics of rational points of bounded height to geometric invariants of X .

Problem 1.1.4. — Develop analytic techniques proving such asymptotics.

1.2. Zariski density. — Obviously, not every variety is a hypersurface in a pro-
jective space or product of projective spaces. To get some systematic understanding
of the distribution of rational points we need to use ideas from classification theories
of algebraic varieties. On a very basic level (smooth projective) algebraic varieties
are distinguished according to the ampleness of the canonical class: Fano varieties
(big anticanonical class), varieties of general type (big canonical class) and varieties
of intermediate type (neither). The conjectures of Bombieri-Lang-Vojta predict that
on varieties of general type the set of rational points is not Zariski dense (see [46]).
Faltings proved this for subvarieties of abelian varieties ([16]). It is natural to ask
for a converse. As the examples of Colliot-Thélène, Swinnerton-Dyer and Skoroboga-
tov suggest (see [11]), the most optimistic possibility would be: if X does not have
finite étale covers which dominate a variety of general type then there exists a finite
extension E/F such that X(E) is Zariski dense in X . In particular, this should hold
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HEIGHT ZETA FUNCTIONS 229

for Fano varieties. I have no idea how to prove this for a general smooth quintic
hypersurface in P5. Quartic hypersurfaces in P4 are treated in [22] (see also [23]).

Clearly, we need Zariski density of rational points on X before attempting to
establish a connection between the global geometry of X and X(F ). Therefore, we
will focus on varieties birational to the projective space or possessing a large group
of automorphisms so that rational points are a priori dense, at least after a finite
extension. In addition to allowing finite field extensions we will need to restrict to
some appropriate Zariski open subsets.

Example 1.2.1. — Let X be the cubic surface x30 + x31 + x32 + x33 = 0 over Q. We
expect ∼ B(log(B))3 rational points of height max(|xj |) � B. However, on the lines
like x0 = −x1 and x2 = −x3 we already have ∼ B2 rational points. Numerical
experiments in [39] confirm the expected growth rate on the complement to the lines;
and Heath-Brown proved the upper bound O(B4/3+ε) [24]. Thus the asymptotic of
points on the whole X will be dominated by the contribution from lines, and it is
futile to try to read off geometric invariants of X from what is happening on the lines.

Such Zariski closed subvarieties will be called accumulating. Notice that this notion
may depend on the projective embedding.

1.3. Results. — Let X be a smooth projective algebraic variety over a number
field F and L a very ample line bundle on X . It defines an embedding X ↪→ Pn. Fix
a “height” on the ambient projective space. For example, we may take

H(x) :=
∏
v

max
j

(|xj |v),

where x = (x0, . . . , xn) ∈ Pn(F ) and the product is over all (normalized) valuations
of F . To highlight the choice of the height we will write L for the pair (L-embedding,
height). We get an induced (exponential) height function

HL : X(F ) −→ R>0

on the set of F -rational points X(F ) (see 4.1 for more details). The set of F -rational
points of height bounded by B > 0 is finite and we can define the counting function

N(U,L, B) := #{x ∈ U(F ) |HL(x) � B},
where U ⊂ X is a Zariski open subset.

Theorem 1.3.1. — Let X/F be one of the following varieties:
• toric variety [5];
• equivariant compactification of Gna [9];
• flag variety [18];
• equivariant compactification of G/U - horospherical variety (where G is a semi-

simple group and U ⊂G a maximal unipotent subgroup) [41];
• smooth complete intersection of small degree (for example, [6]).
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230 Y. TSCHINKEL

Let L be an appropriate height on X such that the class L ∈ Pic(X) is contained
in the interior of the cone of effective divisors.

Then there exists a dense Zariski open subset U ⊂ X and constants

a(L), b(L),Θ(U,L) > 0

such that

N(U,L, B) =
Θ(U,L)

a(L)(b(L)− 1)!
Ba(L)(log(B))b(L)−1(1 + o(1)),

as B → ∞.

Remark 1.3.2. — The constants a(L) and b(L) depend only on the class of L in Pic(X).
The constant Θ(U,L) depends, of course, not only on the geometric data (U,L) but
also on the choice of the height. It is interpreted, in a general context, in [5].

Remark 1.3.3. — Notice that with the exception of complete intersections the varieties
from Theorem 1.3.1 have a rather simple “cellular” structure. In particular, we can
parametrize all rational points in some dense Zariski open subset. The theorem is to
be understood as a statement about heights: even the torus G2

m has very nontrivial
embeddings into projective spaces and in each of these embeddings we have a different
counting problem.

1.4. Techniques. — Let G be an algebraic torus or the group Gna . The study of
height asymptotics in these cases uses harmonic analysis on the adelic points G(A):

(1) Define a height pairing

H =
∏
v

Hv : PicG(X)C ×G(A) −→ C,

(where PicG(X) is the group of isomorphism classes of G-linearized line bundles on
X) such that its restriction to L ∈ Pic(X)×G(F ) is the usual height L as before and
such that H is invariant under a standard compact subgroup K ⊂ G(A).

(2) Define the height zeta function

Z(G, s) =
∑

x∈G(F )

H(s;x)−1.

The projectivity of X implies that Z(G, s) converges for �(s) in some (shifted) open
cone in PicG(X)R.

(3) Apply the Poisson formula to obtain a representation

Z(G, s) =
∫
(G(A)/G(F )K)∗

Ĥ(s;χ)dχ,

where the integral is over the group of unitary characters χ of G(A) which are trivial
on G(F )K and dχ is an appropriate Haar measure.

(4) Compute the Fourier transforms Ĥv at almost all nonarchimedean places and
find estimates at the remaining places.
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(5) Prove a meromorphic continuation of Z(G, s) and identify the poles.
(6) Apply a Tauberian theorem.

2. Algebraic tori

For simplicity, we will always assume that T is a split algebraic torus over a number
field F , that is, a connected reductive group isomorphic to Gdm,F , where Gm,F :=
Spec(F [x, x−1]).

2.1. Adelization

Notations 2.1.1 (Fields). — Let F be a number field and disc(F ) the discriminant of
F (over Q). The set of places of F will be denoted by Val(F ). We shall write v|∞ if
v is archimedean and v � ∞ if v is nonarchimedean. For any place v of F we denote
by Fv the completion of F at v and by Ov the ring of v-adic integers (for v � ∞). Let
qv be the cardinality of the residue field Fv of Fv for nonarchimedean valuations and
put qv = e for archimedean valuations. The local absolute value | · |v on Fv is the
multiplier of the Haar measure, i.e., d(axv) = |a|vdxv for some Haar measure dxv on
Fv. We denote by A = AF =

∏′
v Fv the adele ring of F .

Notations 2.1.2 (Groups). — Let G be a connected reductive algebraic group defined
over a number field F . Denote by G(A) the adelic points of G and by

G1(A) :=
{
g ∈ G(A)

∣∣ ∏
v∈Val(F )

|m(gv)|v = 1 ∀m ∈ ĜF
}

the kernel of F -rational characters ĜF of G.

Notations 2.1.3 (Tori). — Denote byM = T̂F = Zd the group of F -rational characters
of T and by N = Hom(M,Z) the dual group (as customary in toric geometry). Put
Mv := M (resp. Nv := N) for nonarchimedean valuations and Mv := M ⊗ R for
archimedean valuations.

Write Kv ⊂ T(Fv) for the maximal compact subgroup of T(Fv) (after fixing an
integral model for T we have Kv = T(Ov) for almost all v).

Choose a Haar measure dµ =
∏
v dµv on T(A) normalized by vol(Kv) = 1 (for

nonarchimedean v the induced measure on T(Fv)/Kv is the discrete measure).

The adelic picture of a split torus T is as follows:
• T(A)/T1(A) � (Gm(A)/G1

m(A))d � Rd;
• T1(A)/T(F ) = (G1

m(A)/Gm(F ))d is compact;
• K =

∏
v∈Val(F )Kv;

• T1(A)/T(F )K is a product of a finite group and a connected compact abelian
group;

• K ∩T(F ) is a finite group of torsion elements.
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• For all v the map

logv : T(Fv)/Kv ↪−→ Nv
tv �−→ tv ∈ Nv

is an isomorphism.
For more details the reader could consult Tate’s thesis ([42]).

2.2. Hecke characters. — Let

AT := (T(A)/T(F )K)∗

be the group of (unitary) Hecke characters which are invariant under the closed sub-
group T(F )K. The local components of a character χ ∈ AT are given by

χv(tv) = χv(tv) = qi〈mv ,tv〉
v

for some mv = mv(χ) ∈ Mv (a character χv trivial on Kv is called unramified). We
have a homomorphism

AT −→MR,∞

χ �−→ m∞(χ) := (mv(χ))v|∞,

where MR,∞ := ⊕v|∞Mv. We also have an embedding

MR ↪−→ AT,

m �−→
(
t �→

∏
v∈Val(F )

ei log(|m(t)|v)
)
.

We can choose a splitting
AT =MR ⊕ UT

where
UT := (T1(A)/T(F )K)∗.

We have a decomposition
MR,∞ =MR ⊕M1

R,∞,

where M1
R,∞ contains the image of UT (under the map AT → MR,∞) as a lattice of

maximal rank. The kernel of UT →M1
R,∞ is a finite group.

2.3. Tamagawa numbers. — Let G be a connected linear algebraic group of
dimension d over F and Ω a G-invariant F -rational algebraic differential d-form. One
can use this form to define a v-adic measure ωv on G(Fv) for all v ∈ Val(F ) (see [35],
[47], Chapter 2, [37]). For almost all v we have

τv(G) :=
∫
G(Ov)

ωv =
#G(Fv)
qdv

(to make sense of G(Ov) one fixes a model of G over Spec(OS′) for some finite set of
valuations S′). One introduces a set of convergence factors to obtain a measure on
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the adelic space G(A) as follows: Choose a finite set S of valuations, including the
archimedean valuations, such that for v /∈ S,

λv := Lv(1, Ĝ) �= 0,

where Lv is the local factor of the Artin L-function associated to the Galois-module
Ĝ of characters of G (see Section 6.2). For v ∈ S put λv = 1. The measure on G(A)
associated with the set {λv} is

ω := L∗
S(1, Ĝ)−1 · |disc(F )|−d/2

∏
v∈Val(F )

λvωv,

where L∗
S(1, Ĝ) is the coefficient at the leading pole at s = 1 of the (partial) Artin

L-function attached to Ĝ (see Section 6.2). On the space G(A)/G1(A) = Rr (where
r = rk ĜF ) we have the standard Lebesgue measure dx normalized in such a way
that the covolume of the lattice ĜF ⊂ ĜF ⊗ R is equal to 1. There exists a unique
measure ω1 on G1(A) such that ω = dx · ω1. Use this measure to define

τ(G) :=
∫
G1(A)/G(F )

ω1.

Remark 2.3.1. — The adelic integral defining τ(G) converges (see [47],[33]). The
definition does not depend on the choices made (splitting field, finite set S, F -rational
differential d-form).

3. Toric varieties

3.1. Geometry. — When we say X is a (split), smooth, proper, d-dimensional
toric variety over F we mean the following collection of data:

• T = Gdm,F , M = Hom(T,Gm) = Zd and the dual N ;
• Σ - a complete regular d-dimensional fan: a collection of strictly convex poly-

hedral cones generated by vectors e1, . . . , en ∈ N such that the set of generators of
every cone σ can be extended to a basis of N .

We denote by Σ(j) the set of j-dimensional cones and by dσ the dimension of the
cone σ (Σ(1) = {e1, . . . , en}). Denote by

σ̌ = {m ∈M | 〈m,n〉 � 0 ∀n ∈ σ}
the dual cone to σ. Then

X = XΣ = ∪σ∈ΣSpec(F [M ∩ σ̌])
is the associated smooth complete toric variety over F . A toric structure on a variety
X is unique, up to automorphisms of X (this follows from the fact that maximal tori
in linear algebraic groups are conjugated; see [23], Section 2.1 for more details). The
variety X has a stratification as a disjoint union of tori Tσ = Gd−dσ

m ; in particular,
T0 = T. Denote by PicT(X) the group of isomorphism classes of T-linearized line
bundles. It is identified with the group PL of (continuous) Z-valued functions on N
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which are additive on each σ ∈ Σ. For ϕ ∈ PL we denote by Lϕ the corresponding
T-linearized line bundle on X . Since we will work with PLC it will be convenient
to introduce coordinates identifying the vector s = (s1, . . . , sn) with the function
ϕs ∈ PLC determined by ϕs(ej) = sj for j = 1, . . . , n.

Proposition 3.1.1

(3.1) 0 −→M −→ PL
ψ−→ Pic(X) −→ 0

−KX = ψ((1, . . . , 1)).

Let ϕ ∈ PL be a piecewise linear function on N and Lϕ the associated T-linearized
line bundle. The space of global sections H0(X,Lϕ) is identified with the set of lattice
points in a polytope �ϕ ⊂M :

m ∈ �ϕ ⇐⇒ ϕ(ej) � 〈m, ej〉 ∀j ∈ [1, . . . , n]

(these characters m are the weights of the representation of T on H0(X,Lϕ)).

3.2. Digression: Characters. — Dualizing the sequence (3.1) we get a map of
tori T̃ → T (where T̃ is dual to PL). Every character χ of T(A) gives rise to a
character χ̃ of T̃(A). We have

T̃ = Gnm
and every character χ̃ determines characters χj (j = 1, . . . , n) of Gm(A). This gives
an injective homomorphism

(T(A)/T(F ))∗ −→
∏n
j=1(Gm(A)/Gm(F ))∗

χ �−→ (χj)j∈[1,...,n].

4. Heights

4.1. Metrizations of line bundles

Definition 4.1.1. — Let X be an algebraic variety over F and L a line bundle on X.
A v-adic metric on L is a family (‖ · ‖x)x∈X(Fv) of v-adic Banach norms on Lx such
that for every Zariski open U ⊂ X and every section g ∈ H0(U,L) the map

U(Fv) −→ R, x �−→ ‖g‖x,

is continuous in the v-adic topology on U(Fv).

Example 4.1.2. — Assume that L is generated by global sections. Choose a basis
(gj)j∈[0,...,n] of H0(X,L) (over F ). If g is a section such that g(x) �= 0 then

‖g‖x := max
0�j�n

(∣∣∣gj
g

(x)
∣∣∣
v

)−1

,

otherwise ‖g‖x := 0. This defines a v-adic metric on L. Of course, this metric depends
on the choice of (gj)j∈[0,...,n].
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Definition 4.1.3. — Assume that L is generated by global sections. An adelic metric
on L is a collection of v-adic metrics (for every v ∈ Val(F )) such that for all but
finitely many v ∈ Val(F ) the v-adic metric on L is defined by means of some fixed
basis (gj)j∈[0,...,n] of H0(X,L).

We shall write (‖ · ‖v) for an adelic metric on L and call a pair L = (L, (‖ · ‖v))
an adelically metrized line bundle. Metrizations extend naturally to tensor products
and duals of metrized line bundles. Take an arbitrary line bundle L and represent
it as L = L1 ⊗ L−1

2 with very ample L1 and L2. Assume that L1, L2 are adelically
metrized. An adelic metrization of L is any metrization which for all but finitely
many v is induced from the metrizations on L1, L2.

Definition 4.1.4. — Let L = (L, ‖ · ‖v) be an adelically metrized line bundle on X and
g an F -rational local section of L. Let U ⊂ X be the maximal Zariski open subset of
X where g is defined and is �= 0. For all x = (xv)v ∈ U(A) we define the local

HL,g,v(xv) := ‖g‖−1
xv

and the global height function

HL,g(x) :=
∏

v∈Val(F )
HL,g,v(xv).

By the product formula, the restriction of the global height to U(F ) does not
depend on the choice of g.

4.2. Heights on toric varieties. — We need explicit formulas for heights on toric
varieties.

Definition 4.2.1. — For ϕ ∈ PL the local height pairing is given by:

Hv(ϕ; tv) := eϕ(tv) log(qv).

Globally, for ϕ ∈ PL,

H(ϕ; t) :=
∏

v∈Val(F )
Hv(ϕ; tv).

Proposition 4.2.2. — The pairing
• is invariant under Kv for all v;
• for t ∈ T(F ) descends to the complexified Picard group Pic(X)C (the value of

H(ϕ; t) depends only on ϕ mod MC);
• for ϕ ∈ PL gives a classical height (with respect to some metrization on Lϕ.

Proof. — The first part is clear. The second claim follows from the product formula.
The third claim is verified on very ample Lϕ: recall that the global sectionsH0(X,Lϕ)
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are identified with monomials whose exponents are lattice points in the polytope �ϕ.
For every tv ∈ Kv and every m ∈MΓv we have |m(tv)| = 1. Finally,

ϕ(tv) = max
m∈�ϕ

(|m(tv)|v).

For more details the reader could consult [30].

Example 4.2.3. — Let X = P1 = (x0 : x1) and PicT(X) = Z2, spanned by the classes
of 0,∞ and ϕs(e1) = s1, ϕs(e2) = s2. Then

Hv(ϕs, xv) =




∣∣∣x0
x1

∣∣∣s1
v

if
∣∣∣x0
x1

∣∣∣
v

� 1,∣∣∣x0
x1

∣∣∣−s2
v

otherwise.

The following sections are devoted to the computation of the Fourier transforms of
H with respect to characters χ ∈ AT. By definition,

Ĥ(ϕ;χ) :=
∫
T(A)

H(ϕ; t)χ(t)dµ =
∏

v∈Val(F )

∫
T(Fv)

Hv(ϕ; tv)χv(tv)dµv,

where dµ is the normalized Haar measure and χv are trivial on Kv (unramified) for
all v (see Section 2.1).

4.3. Height integrals - nonarchimedean valuations. — Let X be a smooth
d-dimensional equivariant compactification of a linear algebraic group G over F such
that the boundary is a strict normal crossing divisor consisting of (geometrically)
irreducible divisors

X 	G = ∪j∈[1,...,n]Dj .
We put D∅ =G and define for every subset J ⊂ [1, . . . , n]

DJ = ∩j∈JDj
D0
J = DJ 	 ∪J′�JDJ′ .

Choose for each v a Haar measure dgv on G(Fv) such that for almost all v∫
G(Ov)

dgv = 1.

As in Section 4.1, one can define a pairing between

DivC := CD1 ⊕ · · · ⊕ CDn

and G(A). In the above basis, we have coordinates s = (s1, . . . , sn) on DivC. Choose
an F -rational (bi-)invariant differential form d-form on G. Then it has poles along
each boundary component, and we denote by κj the corresponding multiplicities. For
all but finitely many nonarchimedean valuations v, one has (see [9] and [13])

(4.1)
∫
G(Fv)

Hv(s; gv)−1dgv = τv(G)−1
( ∑
J⊆[1,...,n]

#D0
J (Fv)
qdv

∏
j∈J

qv − 1

q
(sj−κj+1)
v − 1

)
.

SÉMINAIRES & CONGRÈS 6
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Remark 4.3.1. — Notice that for almost all v

(4.2)
∫
G(Fv)

H−KX (gv)−1dgv =
#X(Fv)
#G(Fv)

.

In particular, for some �(s) > 1 − δ (and some δ > 0)

(4.3)
∏

v∈Val(F )

∫
G(Fv)

ζF (s)−nH−KX (gv)−sdgv

is an absolutely convergent Euler product (see [9], Section 7).

For toric varieties, we can compute the integral (4.1) combinatorially.

Example 4.3.2. — Let X = P1, Hv(ϕs;xv) the local height as in Example 4.2.3 and
dµv the normalized Haar measure on Gm(Fv) as in 2.1. Then Nv = Z and

(4.4)
∫
Gm(Fv)

Hv(s;xv)−1dµv =
∑
nv∈Z

q−ϕs(nv)
v =

1
1 − q−s1v

+
1

1 − q−s2v

− 1.

If X is a split smooth (!) toric variety of dimension d then

(4.5)
∫
Gd

m(Fv)

Hv(s;xv)−1dµv =
∑
σ∈Σ

(−1)d−dσ

∏
ej∈σ

1

1 − q−sjv

.

Remark 4.3.3. — As the formula (4.5) and the Example 4.3.2 suggest, the height
integral is an alternating sum of (sums of) geometric progressions, labeled by cones
σ ∈ Σ (which are, of course, in bijection with tori forming the boundary stratification
by disjoint locally closed subvarieties). The smoothness of the toric variety is crucial
— we need to know that the set of generators of each cone can be extended to a basis
of Nv.

Proposition 4.3.4. — There exists an ε > 0 such that for all s ∈ PL with �(sj) � 1−ε
(for all j) ∫

T(Fv)

Hv(s; tv)−1χ(tv)dµv = Qv(s;χ) ·
n∏
j=1

ζF,v(sj , χj,v),

where χj is as in Section 3.2, ζv(sj , χj) is the local factor of the Hecke L-function
of F with character χj and Qv(s, χ) is a holomorphic function on PLC. Moreover,
for s in this domain the Euler product

Q(s;χ) :=
∏
v�∞
Qv(s;χv)

is absolutely and uniformly convergent and there exist positive constants C1, C2 such
that for all χ one has

C1 < |Q(s;χ)| � C2.

Proof. — This is Theorem 3.1.3. in [2].
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4.4. Height integrals - archimedean valuations. — Similarly to the combina-
torics in Example 4.3.2 one obtains

(4.6)
∫
T(Fv)/Kv

Hv(ϕ; tv)−1χv(tv)dµv =
∫

Rd

e−ϕ(n)−i〈mv,tv〉dn

=
∑
σ∈Σ(d)

∫
σ

e−ϕ(n)−i〈mv,tv〉dn,

wheremv = mv(χ) as in Section 6.1 and dn is the Lebesgue measure onNR normalized
by N . Using the regularity of the fan Σ we have

(4.7) Ĥv(−ϕs;χv) =
∑
σ∈Σ(d)

∏
ej∈σ

1
sj + i〈mv, ej〉

.

Example 4.4.1. — For P1 we get (keeping the notations of Example 4.2.3)

(4.8) Ĥv(−ϕs;χ) =
1

s1 + im
+

1
s2 − im

.

In the next section we will need to integrate
∏
v|∞ Ĥv overMR,∞. Notice that each

term in Equation (4.7) decreases as ‖mv‖−d and is not integrable. However, some
cancelations help.

Lemma 4.4.2. — For every ε > 0 and every compact K in the domain �(sj) > ε (for
all j) there exists a constant C(K) such that

|Ĥv(−ϕs;χv)| � C(K)
∑
σ∈Σ(d)

∏
ej∈σ

1
(1 + |〈mv, ej〉|)1+1/d

.

This is Proposition 2.3.2 in [2]. One uses integration by parts.

Remark 4.4.3. — In particular, Lemma 4.4.2 implies that for all m ∈MR one has∑
σ∈Σ(d)

∏
ej∈σ

1
〈m, ej〉

= 0.

5. Height zeta functions

5.1. X -functions. — Let (A,Λ) be a pair consisting of a lattice and a strictly
convex (closed) cone in AR and (Ǎ, Λ̌) the pair consisting of the dual lattice and the
dual cone. The lattice Ǎ determines the normalization of the Lebesgue measure dǎ
on ǍR (covolume =1). For a ∈ AC define

XΛ(a) :=
∫
Λ̌

e−〈a,ǎ〉dǎ.

Remark 5.1.1. — The integral converges absolutely and uniformly for �(a) in com-
pacts contained in the interior Λ◦ of Λ.
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Example 5.1.2. — Consider (Zn,Rn�0). Then

XΛ(a1, . . . , an) =
1

a1 · · ·an
,

where (aj) are the standard coordinates on Rn.

Remark 5.1.3. — The X -functions of cones appeared in the work of Köcher [28], Vin-
berg [43], and others (see [40], [1] pp. 57-78, [17]).

5.2. Iterated residues. — Let (A,Λ) be a pair as above with Λ ⊂ AR generated
by finitely many vectors in A. Such Λ are called (rational) polyhedral cones. It will
be convenient to fix a basis in A.

Remark 5.2.1. — To compute XΛ(a) explicitly one could decompose the dual cone Λ̌
into simplicial subcones and then apply Example 5.1.2. Thus there is a finite set A
such that

(5.1) XΛ(a) =
∑
α∈A

Xα · 1∏n
β=1 8

α
β(a)

,

where n = dim AR and Xα = det(8αβ) ((8αβ) are n-tuples of linearly independent linear
forms on AR with coefficients in R).

Remark 5.2.2. — Using this decomposition one can show that XΛ has simple poles
along the hyperplanes defining Λ. The terms in the sum (5.1) may have poles in the
domain �(a) ∈ Λ◦, but these must cancel (by Remark 5.1.1).

Proposition 5.2.3. — Let (A,Λ) be a pair as above and ψ : A → Ã a surjective ho-
momorphism of lattices with kernel M . Let Λ̃ = ψ(Λ) ⊂ AR be the image of Λ - it
is obtained by projecting Λ along the linear subspace MR ⊂ AR (MR ∩ Λ = 0). Let
dm be the Lebesgue measure on MR normalized by the lattice M . Then for all a with
�(a) ∈ Λ◦ one has

X
eΛ(ψ(a)) =

1
(2π)d

∫
MR

X (a+ im)dm,

where d = dim MR.

Proof. — First one verifies that XΛ(a) is integrable over iMR (and the integral de-
scends to ÃC, by the Cauchy-Riemann equations). The formula is a consequence of
Theorem 6.3.1.

Example 5.2.4. — The cone R�0 ⊂ R is the image of the cone R2
�0 ⊂ R2 under

the projection (a1, a2) �→ a1 + a2 (with kernel {(m,−m)} ⊂ R2). According to
Proposition 5.2.3 we have

1
2π

∫
R

1
(s1 + im)(s2 − im)

dm =
1

s1 + s2
.
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Example 5.2.5. — Similarly, consider

X (s) :=
1
2π

∫
R

1∏k
j=1(sj + im)

∏k′

j′=1(sj′ − im)
dm.

We can deform the contour of integration to the left or to the right. In the first case,
we get

X (s) =
k′∑
j′=1

1∏
j(sj + sj′ )

∏
j′′ �=j′(sj′′ − sj′)

.

In the second expansion,

X (s) =
k∑
j=1

1∏
j′′ �=j(sj′′ − sj)

∏
j′(sj′ + sj)

.

Of course, both formulas define the same function. The two expansions correspond
to two different subdivisions of the image cone into simplicial subcones.

Example 5.2.6. — The fan in N = Z2 spanned by the vectors

e1 = (1, 0), e2 = (1, 1), e3 = (0, 1), e4 = (−1, 0), e5 = (−1,−1), e6 = (0,−1)

defines a Del Pezzo surface X of degree 6 - a blowup of 3 (non-collinear) points in P2.
Let Λ = Λeff(X) ⊂ R4 be the cone of effective divisors of X . In the proof of our main
theorem for X we encounter an integral similar to

X (s1, . . . , s6) =
1

(2π)2

∫
MR

6∏
j=1

1
sj + i〈m, ej〉

dm.

(where MR = R2). Choosing a generic path in the space MR and shifting the contour
of integration we can reduce this integral to a sum of 1-dimensional integrals of type
5.2.5. Then we use the previous example and, finally, collect the terms. The result is

X (s1, . . . , s6) =
s1 + s2 + s3 + s4 + s5 + s6

(s1 + s4)(s2 + s5)(s3 + s6)(s1 + s3 + s5)(s2 + s4 + s6)
.

Definition 5.2.7. — Let (A,Λ) and (Ã, Λ̃) be as above. We say that a function f on
AC has Λ-poles if:

• f is holomorphic for �(a) ∈ Λ◦;
• there exist an ε > 0 and a finite set A of n-tuples of linearly independent linear

forms (8αβ)α∈A, functions fα and a constant c �= 0 such that

f(a) =
∑
α∈A

Xα · fα(a) ·
n∏
β=1

1
8αβ(a)

,

where ∑
α∈A

Xα ·
n∏
β=1

1
8αβ(a)

= XΛ(a)
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(as in 5.2.1) and for every α ∈ A the function fα is holomorphic in the domain
‖�(a)‖ < ε with fα(0) = c (compare with Remark 5.2.1).

The main technical result is

Theorem 5.2.8. — Let (A,Λ) be as above and f a function on AC with Λ-poles. As-
sume that there exists an ε > 0 such that for every compact K in the domain
‖�(a)‖ < ε there exist positive constants ε′ and C(K) such that

• for all b ∈ AR, α ∈ A and a ∈ K one has

|fα(a+ ib)| � C(K)(1 + ‖b‖)ε′;

• for a ∈ K and every subspace M ′
R ⊂MR of dimension d′∣∣∣f(a+ im′)

∏
α,β

8αβ(a)
8αβ(a) + 1

∣∣∣ � C(K)(1 + ‖m′‖)−(d′+δ)

for all m′ ∈M ′
R and some δ > 0.

Then

f̃(ψ(a)) :=
1

(2π)d

∫
MR

f(a+ im)dm

is a function on ÃC with ψ(Λ)-poles.

Proof. — Decompose the projection with respect to MR into a sequence of (appropri-
ate) 1-dimensional projections and apply the residue theorem. A refined statement
with a detailed proof is in [8], Section 3.

Corollary 5.2.9. — For f as in Theorem 5.2.8 and a ∈ Λ◦ ⊂ AR we have

lim
s→0+

f̃(sa)
X
eΛ(ψ(sa))

= lim
s→0+

f(sa)
XΛ(sa)

.

5.3. Meromorphic continuation

Proposition 5.3.1. — For �(sj) > 1 (for all j) one has

Z(s) =
∑
t∈T(F )

H(s; t)−1 =
∫
AT

Ĥ(−s;χ)dχ = (∗)
∫
MR

f(s + im)dm,

where
f(s) =

∑
χ∈UT

Ĥ(−s;χ)

and (∗) is an appropriate constant (comparison between the measures).

Proof. — Application of the general Poisson formula 6.3.1. The integrability of both
sides of the equation follows from estimates similar to 4.4.2 (see Theorem 3.2.5 in [2]).
Then we use the decomposition of characters as in Section 2.
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Now we are in the situation of Theorem 5.2.8. From the computations in Sec-
tions 4.3 and 4.4 we know that

Ĥ(−s;χ) =
∏
v|∞
Ĥv(−s;χv) ·

∏
v�∞
Qv(s;χv) ·

n∏
j=1

L(sj , χj),

where Q(s;χ) =
∏
v Qv(s;χ) is a holomorphic bounded function in the domain

�(sj) > 1 − δ (for some δ > 0). The poles of Ĥ(−s;χ) come from the poles of
the Hecke L-functions L(sj , χ) (that is from trivial characters χj and at sj = 1).
Using uniform estimates from Theorem 6.1.1 and bounds on Ĥv for v ∈ S we see that
the function

f(s)
n∏
j=1

(sj − 1)

is holomorphic for �(sj) > 1− δ (for some δ > 0) and satisfies the growth conditions
of Theorem 5.2.8. Once we know that

Θ = lim
s→1

n∏
j=1

(sj − 1) · f(s) �= 0

we can apply that theorem.

Theorem 5.3.2. — The function Z(s+KX) has Λeff(X)-poles. The 1-parameter func-
tion Z(s(−KX)) has a representation

Z(s(−KX)) =
Θ(T,−KX)
(s− 1)n−d

+
h(s)

(s− 1)n−d−1
,

where h(s) is a holomorphic function for �(s) > 1 − δ (for some δ > 0) and
Θ(T,−KX) > 0 (interpreted in [5]).

Proof (Sketch). — We need to identify Θ. First of all,

Θ = lim
s→1

(s− 1)n ·
∑
χ

Ĥ(−s1;χ),

where the summation is over all χ ∈ UT such that the corresponding components
χj are trivial for all j = 1, . . . , n. There is only one such character — the trivial
character. We obtain

Θ = lim
s→1

(s− 1)n
∫
T(A)

H(−s1; t)dµ.

The nonvanishing follows from (4.3.1).
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5.4. Digression on cones. — Let (A,Λ,−K) be a triple consisting of a (torsion
free) lattice A = Zn, a (closed) strictly convex polyhedral cone in AR generated by
finitely many vectors in A and a vector −K ⊂ Λ◦ (the interior of Λ). For L ∈ A we
define

a(Λ, L) = inf{a | aL+K ∈ Λ}

and b(Λ, L) as the codimension of the minimal face Λ(L) of Λ containing a(Λ, L)L+K.
Obviously, for L = −K we get a(Λ,−K) = 1 and b(Λ,−K) = n.

5.5. General L. — Let L be an adelically metrized line bundle of X such that L
is contained in Λ◦

eff(X). The 1-parameter height zeta function

Z(sL) =
∑
t∈T(F )

H(sL; t)−1

is absolutely convergent for �(s) > a(Λeff(X), L) and, by Theorem 5.2.8, has an
isolated pole at s = a(Λeff(X), L) of order at most b(Λeff(X), L). Denote by Σ(L) ⊂
PL the set of generators projecting onto the face Λ(L) (under ψ). Let

M ′
R := {m ∈MR | 〈m, ej〉 = 0 ∀ej /∈ Σ(L)}

andM ′ :=M ′
R∩M . ThenM ′′ =M/M ′ is torsion free. Again, we are in the situation

of Theorem 5.2.8, this time with PLR/M
′
R projecting with kernel M ′′. We need to

compute

lim
s→1

∏
ej /∈Σ(L)

(sj − 1) · f(s),

where

f(s) = (∗)
∫
M ′

R

{
∑
U ′
T

Ĥ(s + im′;χ)}dm′,

the summation is over all characters in UT such that χj = 1 if ej /∈ Σ(L) and (∗) is
an appropriate constant. We apply the Poisson formula 6.3.1 and convert f(s) into a
sum of adelic integrals of H(s, t) (up to rational factors) over the set of certain fibers
of a natural fibration induced by the exact sequence of tori

1 → T′′ → T→ T′ → 1,

where T′ := Spec(F [M ′]). The regularized adelic integrals over the fibers are Tam-
agawa type numbers similar to those encountered in Theorem 5.3.2. However, even
if X is smooth - the compactifications of these fibers need not be! This explains the
technical setup in [5].
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6. Appendix: Facts from algebra and analysis

6.1. Hecke L-functions. — Let χ : Gm(A)/Gm(F ) → S1 be an unramified (uni-
tary) character and χv its components on Gm(Fv). For all v ∈ Val(F ) there exists
an mv ∈ R such that

χv(xv) = qimv log(|xv|v)
v .

Put
χ∞ = (mv)v|∞ ∈ RVal∞(F ) and ‖χ∞‖ = max

v|∞
(|mv|).

Theorem 6.1.1. — For every ε > 0 there exist a δ > 0 and a constant c(ε) > 0 such
that for all s with �(s) > 1 − δ and all unramified Hecke characters χ which are
nontrivial on G1

m(A) one has

(6.1) |L(s, χ)| � c(ε)(1 + |$(s)| + ‖χ∞‖)ε.

For the trivial character χ = 1 one has

(6.2) |L(s, 1)| � c(ε)
∣∣∣∣1 + s
1 − s

∣∣∣∣ (1 + |$(s)|)ε

6.2. Artin L-functions. — Let E/F be a Galois extension of number fields with
Galois group Γ, M a torsion free finitely generated Γ-module and MΓ its submodule
of Γ-invariants. We have an integral representation of Γ on Aut(M). Let S ⊂ Val(F )
be a finite set including all v which ramify in E and all archimedean valuations. For
v �∈ S define

Lv(s,M) :=
1

det(Id − q−sv Φv)
,

where Φv is the image in Aut(M) of a local Frobenius element (this is well defined
since the characteristic polynomial of the matrix Φv only depends on its conjugacy
class). The partial Artin L-function is

LS(s,M) :=
∏
v �∈S
Lv(s,M).

The Euler product converges for �(s) > 1. The function LS(s,M) has a meromorphic
continuation with an isolated pole at s = 1 of order r = rkMΓ. Denote by

L∗
S(1,M) = lim

s→1
(s− 1)rLS(s,M)

the leading coefficient at this pole.

6.3. Poisson formula

Theorem 6.3.1. — Let G be a locally compact abelian group with Haar measure dg. For
f ∈ L1(G) and χ : G→ S1 a unitary character of G define the Fourier transform

f̂(χ) =
∫
G

f(g)χ(g)dg.
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Let H ⊂ G be a closed subgroup with Haar measure dh and

H⊥ = {χ : G→ S1 |χ(h) = 1 ∀h ∈ H}.

Then there exists a unique Haar measure dχ on H⊥ such that for all f ∈ L1(G) with
f̂ ∈ L1(H⊥) one has ∫

H

f(h)dh =
∫
H⊥
f̂(χ)dχ.

6.4. Convexity. — Let U ⊂ Rd be any subset. A tube domain T (U) ⊂ Cd is

T (U) := {z ∈ Cd | �(z) ⊂ U}.

Theorem 6.4.1. — Let U ⊂ Rd be a connected open subset and d � 2. Any holomophic
function in T (U) extends to a holomophic function in T (U) where U is the convex
hull of U .

Proof. — See Proposition 6, p. 122 in [31].

6.5. Tauberian theorem

Theorem 6.5.1. — Let (hn)n∈N and (cn)n∈N be two sequences of positive real numbers.
Assume that the first sequence is strictly increasing and consider

f(s) =
∞∑
n=0

cn
hsn
.

Assume further that

(1) the series defining f(s) converges for �(s) > a > 0;
(2) it admits meromorphic continuation to �(s) > a− δ > 0 (for some δ > 0) with

a unique pole at s = a of order b ∈ N;
(3) there exist a real number κ > 0 and a constant k such that∣∣∣∣f(s)(s− a)bsb

∣∣∣∣ � k(1 + $(s))κ

for �(s) > a− δ.
Then there exist a polynomial P of degree b−1 with leading coefficient 1 and a constant
δ′ > 0 such that

N(B) =
∑
hn�B

cn =
Θ

a(b− 1)!
BaP (log(B)) +O(Ba−δ

′
),

for B → ∞, where

Θ = lim
s→a

(s− a)bf(s) > 0.

This is a standard Tauberian theorem, see [12] or the Appendix to [8].
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[28] M. Köcher, Positivitätsbereiche im R
n , Amer. J. of Math. 79, (1957), 575–596.

[29] J. Kollár, Low degree polynomial equations: arithmetic, geometry and topology, Euro-
pean Congress of Mathematics, Vol. I (Budapest, 1996), 255–288, Progr. Math. 168,
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