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Dédié à la mémoire de Jean Leray,

un mathématicien exceptionnel et un grand homme.

Abstract. — The jump in generality made by Leray for the WKB type construction
of high frequency asymptotic solutions of linear partial differential equations has
allowed the treatment of arbitrary linear systems of partial differential equations.
It also permitted the extension to quasilinear systems, and the appearance of new
properties linked to the non linearities, in particular a distorsion of signals. The
non linearity of a differential system is also an obstruction to the existence of global
solutions of evolution problems. In the case of non linear wave equations on the
Minkowski spacetime of dimension 4 it has been discovered by Christodoulou and
Klainerman that a “null condition” satisfied by the non linearities leads to global
existence results. The equations of the fundamental field equations (standard model,
Einstein equations) are quasi linear second order partial differential equations, but
not well posed due to gauge invariance. We introduce a“polarized null condition”. We
show it is satisfied by the standard model, but not quite by the Einstein equations. We
construct for both systems asymptotic high frequency solutions with linear transport
law along the rays. In the case of Einstein equations the wave inflicts a“back reaction”
on the background metric.

Résumé(Conditions nulles polarisées). — La généralisation faite par Leray de la
méthode WKB pour la construction de solutions asymptotiques à haute fréquence
de systèmes arbitraires d’équations aux dérivées partielles linéaires a permis le trai-
tement de systémes quasilinéaires et l’apparition de propriétés nouvelles comme la
distorsion des signaux. La non linéarité est aussi une obstruction à l’existence de so-
lutions globales des systèmes d’évolution. On introduit une condition nulle polarisée,
généralisation de la condition nulle de Christodoulou-Klainerman à des systèmes mal
posés par suite de l’invariance de jauge. On montre qu’elle conduit à une équation de
transport linéaire le long des rayons d’une solution asymptotique. Elle est satisfaite
par le modèle standard, mais un terme résiduel dans le cas des équations d’Einstein
conduit à une « réaction en retour » sur la métrique de base.
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126 Y. CHOQUET-BRUHAT

1. Introduction

Leray [11], and G̊arding Kotake Leray [7] have brought a fundamental improvement

to the WKB construction of high frequency asymptotic solutions of linear partial

differential equations as functions of the form u = veiωϕ, with v a slowly varying

amplitude, ω a large parameter and ϕ a scalar function called the phase. The method

had be extended by Lax [10] to the construction of asymptotic solutions of first order

linear systems as formal series

u = eiωϕ(v0 +
1

ω
v1 + · · · ).

The jump in generality made by Leray allowed the treatment of arbitrary linear sys-

tems of partial differential equations. It also permitted the extension to quasilinear

systems [2], and the appearance of new properties linked to the non linearities in some

sense similar to shocks(1), in particular a distorsion of signals. The non linearity of a

differential system is also an obstruction to the existence of global solutions of evolu-

tion problems. In the case of non linear wave equations on the Minkowski spacetime

of dimension 4 it has been discovered by Christodoulou [6] and Klainerman [8] that

a null condition satisfied by the non linearities leads to global existence results. The

equations of the fundamental field equations (standard model, Einstein equations)

are quasi linear second order partial differential equations, but not well posed due to

gauge invariance. We introduce a polarized“null condition”. We show it is satisfied by

the standard model, but not quite by the Einstein equations. We construct for both

these systems asymptotic high frequency solutions with linear transport law along the

rays. In the case of Einstein equations the wave inflicts a “back reaction” [4] on the

background metric, as was already noticed in[3].

2. The GKL linear theory

2.1. Linear systems. — We change slightly the notations of GKL to give it the

geometrical aspects that it does possess. We write a linear differential system on a

smooth pseudo riemannian manifold V under the form

L(x,D)u = b(x)

with x a point of V of local coordinates xα, D the covariant derivative and u a field

on V . The system reads in local coordinates and index notation

(2.1) LAB(x,D)uB ≡
∑

16|a|6mB−nA

LAB,a(x)D
auB = bA(x)

(1)See for instance [1].
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POLARIZED NULL CONDITIONS 127

where LAB a linear operator of order(2) mB − nA, summation over B and a is made

and we denote as usual:

a = α1, . . . , αn, Da = D
|a|
α1···αn

, |a| = α1 + · · · + αn.

We denote by H the principal part of L, represented in coordinates by the matrix of

the terms of order mB − nA in LAB (such a term may be absent):

HA
B (x,D)uB ≡

∑

|a|=mB−nA

HA
B,a(x)D

auB.

GKL call wave any solution of the homogeneous system (b ≡ 0) associated with L.

2.2. Asymptotic waves. — Let u(r)(x, ξ), r = 0, 1, . . . be a family of smooth fields

defined on V × R. Let ω be a real parameter (called frequency by analogy with the

WKB expansions). Let ϕ be a real function on V called phase. GKL consider a

formal series on V × R of the form

(2.2) uB(x, ξ) =
∞∑

r=0

ω−mB−ruB,r(x, ξ).

For any field v on V × R it holds that:

Dα{v(x, ξ)}ξ=ωϕ(x) = {Dαv(x, ξ) + ωϕαv
′(x, ξ)}ξ=ωϕ(x)

with

v′ ≡
∂v

∂ξ
, ϕα ≡

∂ϕ

∂xα
.

Inserting this identity in the formal computation of the action of the linear operator L

on the formal series uB(x, ξ)ξ=ωϕ(x) gives a formal series in powers of ω. The first

term reads (summation in a and B, but not in A which labels the equation):

(2.3)
∑

|a|=mB−nA

ω−nAHA
B,a(x)ϕ

a
[( ∂

∂ξ

)mB−nA

uB,0(x, ξ)
]

ξ=ωϕ(x)
.

Definition 1. — A GKL asymptotic wave is a formal series of the type (2.2) such that

the formal series obtained by its insertion in (2.1) is identically zero.

Neglecting terms irrelevant in the treatment obtained by nA integrations with

respect to ξ of each equation, the annulation of the term (2.3) is deduced from the

equation

∑

|a|=mB−nA

HA
B,a(x)ϕ

aũB,0(x, ξ) = 0, ũB ≡
( ∂

∂ξ

)mB

uB,0.

(2)It can be shown that any linear system can be written under this form without modifying its

characteristic polynomial. The numbers m and n are called Leray - Volevic indices.
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128 Y. CHOQUET-BRUHAT

A necessary and sufficient condition for these equations to have a solution

ũ(0)(x, ξ) 6≡ 0 is the vanishing of the following determinant:

(2.4) ∆(ϕ) ≡ Det
( ∑

|a|=mB−nA

HA
B,a(x)ϕ

a
)

= 0,

i.e. that Dϕ be a solution of the characteristic (eikonal) equation of the operator L.

The phase ϕ being so chosen the first term u(0) of the asymptotic wave must be

such that ũ(0) belongs to the kernel of the linear homogeneous system:

(2.5)
∑

|a|=mB−nA

HA
B,a(x)ϕ

aũB,0(x, ξ) = 0.

hence, supposing that the dimension of this kernel is 1 (simple characteristic), uB,0

must be of the form

ũB,0 = U(x, ξ)hB(x)

with h a particular solution of the system (2.5), depending only on x, and U a scalar

function on V × R.

GKL show then that U must satisfy a linear propagation equation along the rays of

the phase ϕ by writing the next term in the expansion, coefficient of ω−nA−1. Indeed

the vanishing of this term reads (after nA integrations with respect to ξ, âi means

that αi has been suppressed from the sequence a)

∑

|a|=mB−nA

{
HA
B,a(x)ϕ

aũB,1(x, ξ) +HA
B,bai

(x)ϕbai

( ∂

∂ξ

)mB−1

Dαi
uB,0(x, ξ)

}

+
∑

|a|=mB−nA−1

L1,A
B,aϕ

a
( ∂

∂ξ

)mB−1

uB,0(x, ξ) = 0.

(2.6)

Since the determinant (2.4) is zero this equation can have a solution ũ(1) only if the

right hand side is orthogonal to the kernel hT (x) of the transposed linear system.

Replacing (∂/∂ξ)
mB−1

uB,0 by Û(x, ξ)h(x), with Û a primitive of U with respect to

ξ leads to an ordinary first order differential system for Û :

(2.7) hTA(x){HA
B,bai

(x)ϕbaiDαi
[(Û(x, ξ)hB(x)]+

∑

|a|=mB−nA−1

L1,A
B,aϕ

aÛ(x, ξ)hB(x)} = 0.

The identity

hTA(x)HA
B,bai

(x)ϕbaiDαi
hB(x) ≡ Dαi

∆(ϕ)

shows that the system is a propagation system for Û along the rays of the phase ϕ,

bicharacteristics of the operator L.

When U is determined, solution of (2.7), the second term u(1) is determined, up

to a solution U (1)(x, ξ)h(x), by solving the linear equation (2.6), and integration with

respect to ξ.

GKL show that an analogous procedure can be applied to annul the following terms

in the expansion, and a formal asymptotic series can be constructed, through always
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linear systems and integration. Such an asymptotic series give approximate solutions

to any order in ω, under smoothness assumptions of the coefficients.

2.3. Quasilinear systems. — The GKL construction has been extended to quasi-

linear first order systems in [2] by using a Taylor expansion of the coefficients in a

neighbourhood of a solution (background). The equation for U contains then deriva-

tives along the rays of the background and derivatives with respect to ξ. It leads to

“dispersions of signals” if the system does not satisfy the Boillat - Lax exceptionnality

condition. Due to the non linearity it is in general possible to obtain asymptotic

approximate solutions of the given system only by truncating the series at first order

in ω.

In the next sections we will consider quasilinear second order systems, with charac-

teristic determinant possibly identically zero, and apply the results to some physical

fields.

3. Quasilinear second order systems

3.1. Definitions. — We consider quasilinear second order systems with unknown

a set of tensor fields u on a C∞ manifold V . We do not write an explicit dependence

in x, though it may exist. The system reads:

(3.1) F (u,Du,D2u) ≡ G(u,Du) ·D2u+ f(u,Du) = 0.

where D is the covariant derivative in some given pseudo riemannian smooth metric

on V .

In index notations, with u ≡ (uA), A = 1, . . . , N , and xα local coordinates on V

the system reads:

FA(u,Du,D2u) ≡ GA,αβB (u,Du)D2
αβu

B + fA(u,Du)) = 0.

The system is said to be quasi diagonal if

GA,αβB (u,Du) ≡ gαβ(u,Du)δAB

with δAB the Kronecker delta. The fundamental field equations (Yang Mills, Einstein)

are not quasidiagonal if a particular gauge is not chosen.

3.2. Asymptotic solutions

3.2.1. Definitions. — A high frequency wave on V is a tensor field of the type

(3.2) u(x) = u(x) + ω−1{v(x, ξ)}ξ=ωϕ(x)

with u a tensor field on V , called background, v a tensor field of the same type as u,

but depending on a real parameter ξ ∈ R, ω a real parameter (“frequency”), and ϕ a

real function (phase).
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130 Y. CHOQUET-BRUHAT

Definition 2. — The high frequency wave u is called an asymptotic solution of the

equation F (u,Du,D2u) = 0 on W ⊂ V if it satisfies on W an equation of the form

F (u,Du,D2u) = ω−1{(R(x, ξ)}ξ=ωϕ

with |R| bounded on W × R.

An asymptotic solution satisfies approximately the equation F = 0, arbitrarily

nearly for ω large enough.

3.2.2. Fundamental ansatz. — In addition to the derivation law (2.3) the following

elementary ansatz is of fundamental importance in the non linear case: if f ′(x, ξ) ≡

(∂f/∂ξ) (x, ξ) is continuous and bounded in ξ on R there exists f(x, ξ) bounded in ξ

on R only if

(3.3) lim
Ξ=∞

1

Ξ

∫ Ξ

0

f ′(x, ξ)dξ = 0.

The condition must be a fortiori satisfied if we want f to be periodic in ξ. If T is the

period we have ∫ T

0

f ′(x, ξ)dξ = 0.

4. Construction of asymptotic solutions

4.1. Taylor expansion. — We suppose that G and f are smooth in u and Du in a

neighbourhood of some given smooth(3) u called background. We underline the value

taken at u by a quantity depending on the field u, in particular

G ≡ G(u,Du), f = f(u,Du),

The field G admits a Taylor expansion of the form:

G(u,Du) = G+ δG+
1

2
δ2G+ S

where δG, and δ2G are respectively a linear and a quadratic form in:

δu ≡ u− u, δDu ≡ D(u− u),

namely

δG ≡ G′
uδu+G′

DuδDu

and

δ2G ≡ G′′
uu(δu, δu) + 2G′′

uDu(δu, δDu) +G′′
DuDu(δDu, δDu).

The remainder S can be written:

S≡

∫ 1

0

G′′′
t (δu, δDu)dt

(3)Less restrictive conditions can be imposed on u if appropriate to the problem at hand.
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where G′′′
t denotes the third derivative of G at the point (u + tδu,Du + tDδu), i.e

G′′′
t (δu, δDu) is an homogeneous cubic polynomial in δu and δDu.

The term f(u,Du) admits a similar expansion.

4.2. Asymptotic expansion. — Using the expression (3.2) of a high frequency

wave together with the derivation formula we see that δu, δDu and δD2u are the

following fields on V :

δu(x) ≡ ω−1v(x, ξ)ξ=ωϕ(x),

and, using coordinates notation on V to make the computation more explicit

(δDαu)(x) ≡ {v′(x, ξ)ϕα(x) + ω−1Dαv(x, ξ)}ξ=ωϕ(x), ϕα ≡ Dαϕ,

while, with X(αβ) ≡ Xαβ +Xβα,

(δD2
αβu)(x) ≡ {ωv′′(x, ξ)ϕα(x)ϕβ(x) +D(βv(x, ξ)ϕα)(x) + ω−1D2

αβv(x, ξ)}ξ=ωϕ(x).

Inserting these expressions in the Taylor expansion of G and f we obtain an equality

of the form

F (u,Du,D2u)(x) ≡ {ωF (−1) + F (0) + ω−1R}(x, ξ = ωϕ(x)).

The following lemma is an immediate consequence of the definitions.

Lemma 3. — The high frequency wave u is an asymptotic solution of F = 0 if

F (−1) = 0, F (0) = 0 and |R| is bounded on V × R.

In the general quasilinear case, since δDu is of order zero in ω, the remainder of the

Taylor expansions of G will contribute to the expression of F (−1) if G′′′
DuDuDU 6= 0.

The remainders will contribute to F (0) if G′′′
uDuDu 6= 0 or if f ′′′

DuDuDu 6= 0. We suppose

therefore that G is at most linear, and f at most quadratic, in Du, with coefficients

functions of u.

A straightforward computation gives then that:

F (−1)(x, ξ) ≡
{
(Gαβ +Gαβ′Dγu

ϕγv
′)v′′ϕαϕβ

}
(x, ξ).

i.e.

FA(−1)(x, ξ) ≡
{
(GAαβB + (GAαβB )′DγuCϕγv

′C)v′′Bϕαϕβ

}
(x, ξ).

In the case of a quasidiagonal system this equation splits into v′′ = 0, which implies

v′ = 0 if we want v to be bounded on V × R, and

(gαβ + gαβ′
DγuC

ϕγϕαϕβv
′C = 0,

which implies by the ansatz (3.3), if we want v to be bounded on V × R,

gαβϕαϕβ = 0

and

(4.1) g′αβ
DγuC

ϕγϕαϕβv
C = 0.
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132 Y. CHOQUET-BRUHAT

This equation is identically verified if g depends only on u, i.e if the system is hyper-

quasilinear.

For an hyperquasilinear system, terms in F (0) could come from the remainder S

of the Taylor expansion of F if the third derivative f ′′′
DuDuDu was not zero. We will

exclude this eventuality by restricting f to be a polynomial in Du of order at most

two.

The hyperquasilinearity, as well as f ′′′
DuDuDu = 0 are satisfied by the fundamental

field equations.

5. Quasidiagonal systems

We consider hyperquasilinear quasidiagonal systems with f quadratic in Du. They

read, with q a quadratic form and a a linear one:

F (u,Du,D2u) ≡ gαβ(u)D2
αβu+ qαβ(u)(Dαu,Dβu) + aα(u)Dαu+ b(u) = 0,

that is, in coordinates:

(5.1) F (u,Du,D2u)A ≡ gαβ(u)D2
αβu

A + qA,αβBC (u)Dαu
BDβu

C

+ aA,αB (u)Dαu
B + bA(u) = 0.

with g a Lorentzian metric in the neighborhood of a given field u.

Theorem 4. — The high frequency wave

(5.2) u(x) = u(x) + ω−1{v(x, ξ)}ξ=ωϕ(x)

is an asymptotic solution of the system (5.1) in a compact domain W ⊂ V spanned by

the trajectories of the vector field `, with v′ obtained by a linear propagation equation

along these trajectories, if the following conditions are satisfied

(1) ` ≡ Dϕ is a null vector for g = g(u).

(2) The quantities F, u and ϕ satisfy the equations:

g′αβu ϕαϕβ = 0 and qαβϕαϕβ = 0.

(3) u is a solution of the system.

Proof. — Inserting the expression (5.2) in the left hand side of (5.1) we find an

expansion in powers of ω of the type (4.1) with F (−1) given by:

F (−1)(x, ξ) ≡ gαβϕαϕβv
′′(x, ξ)

The condition (1) insures that F (−1) = 0, for all ξ.

The annulation of the coefficient of ω0, F (0) = 0 reads

F (0)(x, ξ) ≡ F (x) + gaβ{2ϕαDβv
′ + v′Dαϕβ + 2qαβϕβDαuv

′ + aαϕαv
′

+ qαβϕαϕβv
′2 + g′αβu ϕαϕβvv

′′}(x, ξ) = 0,
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it reduces to a linear, non homogeneous, propagation equation for v′ along the rays

ϕα if the conditions (2) are satisfied.

Under the conditions (1) and (2) the derivative v′(x, ξ) is determined through a

linear equation F (0) = 0, a primitive v(x, ξ) is solution of the ordinary differential

system in x, along the rays,
{
gaβ(2ϕαDβv + vDαϕβ) + 2qαβϕβDαuv + aαϕαv

}
(x, ξ) + ξF (x) = 0

A solution v(x, ξ) exists for a given ξ on V , spanned by the rays, taking given initial

values on an n− submanifold S transversal to these rays, smooth if these initial values

are smooth. It is bounded for ξ ∈ R on any compact subdomain of V if it is so of

the initial values for any compact subdomain of S, and if and only if F (x) = 0. The

remainder |R(x, ξ)| is then bounded for ξ ∈ R for any compact subdomain of V .

5.1. Weak null condition. — The null condition has been introduced by

Christodoulou and Klainerman independently to prove global existence of solutions

of non linear wave equations on Minkowski spacetime. It has also been used by

Klainerman and collaborators to lower the regularity demanded of solutions. It says,

in the case of Minkowski space, that the set of zero tensors u ≡ 0 being a solution

of the system i.e., F ≡ F (0, 0, 0) = 0, the linearisation at u = 0 of the system is the

wave equation in the Minkowski metric:

δF = ηαβD2
αβδu,

while its second variation at u = 0 is such that:

δ2F ≡ F ′′(δu, δDu, δD2u) = 0

whenever δu, δDu, δD2u are replaced by the following tensors:

δu = X, δDu = Y ⊗ `, δD2u = Z ⊗ `⊗ `

with X , Y and Z arbitrary tensors and ` a covector null for the Minkowski metric.

We will extend part of this definition to an arbitrary Lorentzian manifold (V, g).

Definition 5. — The second order system (3.1) is said to satisfy the weak null condition

for u and ϕ if

(1) ϕ satisfies the eikonal equation of g:

gαβϕαϕβ = 0.

(2a) The following equations hold for all fields(4) X and Z on V :

F ′′
uD2u(X,ZDϕ⊗Dϕ) ≡ XBZAg′αβ

uBϕαϕβ = 0,

i.e.

XBg′αβ
uBϕαϕβ = 0.

(4)Of the same type as u.
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(2b)

F ′′
DuDu(Y Dϕ, Y Dϕ) ≡ qA,αβ

BC
Y CY Bϕαϕβ = 0,

i.e.

qA,αβ
BC

Y CY Bϕαϕβ = 0,

for all fields Y on V .

As an immediate consequence of this definition we have the following theorem.

Theorem 6. — The conditions (2) of the theorem 4 are satisfied if it is so of the weak

null condition for u, ϕ.

6. Non quasidiagonal systems

6.1. Polarizations. — We consider an hyperquasilinear system with f quadratic

in Du

(6.1) F (u,Du,D2u) ≡ G(u) ·D2u+ qαβ(u)(Dαu,Dβu) + aα(u)Dαu+ b(u) = 0.

and we decompose its principal part into a diagonal part and a non diagonal one

which we will call the gauge part. We write:

G(u) ·D2u ≡ gαβ(u)D2
αβu+ P (u) ·D2u

i.e.

(G(u) ·D2u)A ≡ gαβ(u)D2
αβu

A + PAαβB (u)D2
αβu

B

We suppose that g(u) is a Lorentzian metric in a neighbourhood of some smooth

tensor field u. As before we underline values taken for u ≡ u, Du ≡ Du of tensor

fields depending on u and Du.

Definition 7. — The tensor X is said to be polarized with respect to u and the vector

field ` if

(6.2) P ·X ⊗ `⊗ ` = 0, i.e. PA,αβB (u)XB`α`β = 0.

Definition 8. — The non quasi diagonal system (6.1) is said to satisfy the polarized

null condition if it holds that:

F ′′
uD2u(X,ZDϕDϕ) = 0, i.e. (GAαβB )′uCX

CZBϕαϕβ = 0

for all polarized fields X and Z on V , and:

F ′′
DuDu(Y Dϕ, Y Dϕ) = 0, i.e. qA,αβ

BC
Y CY Bϕαϕβ = 0,

for all polarized fields Y on V .
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6.2. Polarized asymptotic solution. — It is convenient in the case of non quasi

diagonal systems to introduce second order perturbations in order to find propagation

equations satisfied by the first order perturbation, and if possible eliminate gauge

terms from them. A high frequency wave will be of the form

u(x) = u(x) + {ω−1v(x, ξ) + ω−2w(x, ξ)}ξ=ωϕ(x).

It will be an asymptotic solution of the system (6.1) on W ⊂ V if its insertion in it

gives :

F (u,Du,D2u)(x) = ω−1{R(x, ξ)}ξ=ωϕ(x)

with |R| bounded on W × R.

The vanishing of the coefficient F (−1) resulting form the insertion of u reads:

F (−1)(x, ξ) ≡ gαβϕαϕβv
′′A + PA,αβB (u,Du)ϕαϕβv

′′B = 0.

We suppose, for physical applications, that ` ≡ Dϕ is a null vector for the background

metric g = g(u). The condition above reduces to the polarization of v′′ with respect

to g and Dϕ, equivalently to the polarization of v. Then v reads

vA(x, ξ) =
∑

16i6N

hA(i)(x)U(i)(x, ξ)

where the h′(i)s are a basis of the kernel of the linear operator PA,αβB (u,Du)ϕαϕβ and

the U ′
(i)s are functions on V × R, at this stage arbitrary.

The annulation of the coefficient F (0)(x, ξ) reads, since `α ≡ ϕα is a null vector

of g:

(6.3) F (0)A(x, ξ) ≡ PAαβB ϕαϕβw
′′B + LA(v′)

+ qαβ,Aϕαϕβ(v
′, v′) +GAB

αβ

uCϕαϕβv
CvB′′ + FA(x) = 0

with L a linear operator given by:

L(v′) ≡ D(v′) + P(v′)

DA(v′) ≡ 2gaβ
{
ϕαDβv

′A +
1

2
v′ADαϕβ

}
+ 2qαβ,A

B
ϕβv

′BDαu) + aα,AB ϕαv
′B

and

PA(v′) ≡ 2PAαβB ϕαDβv
′B.

Since L is linear in v′ and the first term of (6.3) linear in w′′ the equation (3.3) says

that the system (6.3) can have solutions v and w bounded for all ξ only if

lim
T=∞

1

T

∫ T

0

{{
qαβ,Aϕαϕβ(v

′, v′) +G′αβ
uCϕαϕβv

CvA′′
}

(x, ξ) + F (x)
}
dξ = 0

Sufficient (not necessary, see the case of Einstein equations section 8) conditions for

this equation to be satisfied for polarized v are:

(1) u is a solution of the system: F = 0.

(2) F satisfies the polarized null condition relative to u and ϕ.
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Supposing these conditions satisfied the necessary and sufficient condition for the

existence of w′′ is that L(v′) be orthogonal to the kernel of the dual ∗(Pαβϕαϕβ) of

the linear operator Pαβϕαϕβ . Denote by h̃(eı), ı̃ = 1, . . . , Ñ a basis of this kernel the

condition reads

h̃(eı)AL
A
( ∑

16i6N

h(i)U
′
(i)

)
= 0, ı̃ = 1, . . . , N,

A system of Ñ linear differential equations for the N unknown U ′
(i), scalar functions

on V depending on the parameter ξ.

We will not discuss the general case, but look at applications to some field equations

of physics. It turns out in these cases that the operator ∗(Pαβϕαϕβ) is injective, and

that the polarization of the field is conserved by a well chosen propagation equation

for v and associated choice of w.

7. The standard model

7.1. Fields and equations. — The fields of the standard model on a spacetime V

with given Lorentzian metric g and covariant derivative D are:

– A connection 1 form A with values in a Lie algebra G of N ×N matrices whose

curvature F is given by:

Fλµ ≡ DλAµ −DµAλ + [Aλ, Aµ]

– A scalar multiplet φ, mapping(5) V → CN and a spinor multiplet, mapping

V → CN × C4.

We denote by u ≡ (u(A) ≡ A, uφ = φ, u(ψ) = ψ) the set (A, φ, ψ).

The equations are, indices raised with g:

Y µ ≡ D̂λF
λµ − Jµ = 0,

Jµ ≡ Re{φ∗D̂φ+ iψ∗γµψ}

Φ ≡ D̂λD̂λφ−K(φ, ψ) = 0,

Ψ ≡ D̂αD̂αψ − γαD̂αH(φ, ψ) = 0

where the γα are gamma matrices, while D̂ denotes the g metric and A connection

derivative, that is

D̂λF
λµ ≡ DλF

λµ + [Aλ, F
λµ], D̂λφ ≡ Dλφ+Aλφ, D̂αψ = Dαψ +Aαψ,

hence

D̂λD̂λφ ≡ DλDλφ+ 2AλD
λφ+ (DλAλ +AλAλ)φ

(5)More general representation spaces can be considered, but they will make notations heavier with-

out changing the essential results.
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and an analogous formula for D̂λD̂λψ. The terms H and K are smooth in their

arguments.

The equations form a system of the studied type, semilinear if the metric g is given,

linear in the first derivatives of the fields, non quasidiagonal. The gauge part contains

only A and reads

DλD
µAλ.

7.2. Polarizations. — A high frequency wave with v ≡ (v(A), v(φ), v(ψ)) will be an

asymptotic solution of order zero, with Dϕ a null vector of g if

ϕλv
λ
(A) = 0.

The other components of v are unrestricted at this stage.

7.3. Transport equations

7.3.1. Yang Mills. — According to the general results the annulation of F
(0)
(A) reads

Y (0)µ ≡ −2ϕλϕ
µw′′λ

(A) + Dµ

(Y )(v
′) + Pµ(Y )(v

′) + Y µ = 0

with, using Dλϕµ = Dµϕλ, and v′λ(A)ϕλ = 0,

Dµ

(Y )(v
′) ≡ 2ϕλDλv

′µ
(A) + v′µ(A)Dλϕ

λ+?2?[v′µ(A), ϕλA
λ] − ϕµ Re{φ∗v′φ}

Pµ(Y )(v
′) ≡ −Dλv

′λϕµ − ϕµ[Aλ, v
′λ
A ]

7.3.2. Scalar multiplet. — The terms of order zero are, if v(A) is polarized, D(Φ)++Φ,

with

D(Φ) ≡ 2ϕλDλv
′
(φ) + v′(φ)Dλϕ

λ + 2Aλϕ
λv′(φ).

7.3.3. Spinor multiplet. — The terms of order zero are, if v(A) is polarized, D(Ψ) +Ψ,

with

D(Ψ) ≡ 2ϕλDλv
′
(ψ) + v′(ψ)Dλϕ

λ + 2Aλϕ
λv′(ψ) +

1

2
γαγβψ(ϕαv

′
(A)β − ϕβv

′
(A)α)

− γαϕα{H
′
φv

′
(φ) +H ′

ψv
′
(ψ)}

7.3.4. Conclusions. — The transport equations D(v′) = 0 are a linear homogeneous

system, it has a solution v′ bounded on any compact subdomain spanned by the rays,

and for all ξ ∈ R if it is so of initial data. The same is true of v and its primitive

in ξ. The polarization condition on v(A) is preserved by transport since this system

implies, using ϕµϕ
µ = 0 and ϕλDλϕµ = ϕλDµϕλ = 0,

ϕµD
µ

(Y )(v
′) ≡ 2ϕλDλ(ϕµv

′µ
(A)) + ϕµv

′µ
(A)Dλϕ

λ + 2[ϕµv
′µ
(A), ϕλA

λ] = 0.

The linear system satisfied by the 1 form w′′λ reduces to

2ϕλw
′′λ
(A) = −Dλv

′λ − [Aλ, v
′λ
A ]

it has many solutions, with w(A) bounded for all ξ if it is so of a primitive of v′.

We read on the transport equations the following theorem.
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Theorem 9. — A high frequency perturbation of the scalar multiplet generates in gen-

eral a high frequency perturbation of the Yang Mills field and of the spinor field if its

background φ is not zero.

Corollary 10. — If the background ψ is not zero a high frequency perturbation of the

Yang Mills field generates in general a high frequency perturbation of the spinor field.

8. Einstein equations

8.1. Polarizations. — The vacuum Einstein equations satisfied by a Lorentzian

metric g on a smooth manifold V of dimension n+1 are of the type (6.1). They read,V

being endowed with a smooth background metric g, and D denoting the covariant

derivative in this background (hence Dg = 0):

Ricci(g,Dg,D2g) ≡ G(g) ·D2g + q(g)(Dg,Dg) + g · Riemann(g)

with G(g) the linear operator with a diagonal and a gauge part:

(G(g) ·D2g)αβ ≡ −
1

2
gλµD2

λµgαβ + (P (g) ·D2g)αβ ,

with (indices raised with the inverse matrix of g):

(P (g) ·D2g)αβ ≡
1

2

{
DλDαgβλ +DλDβgαλ − gλµDαDβgλµ

}

while q(g)(Dg,Dg) is an homogeneous quadratic form in Dg with coefficients depend-

ing only on g.

Both G(g) and q(g) are independent of the choice of g. Both are analytic in g as

long as g is non degenerate. We set

h ≡ δg ≡ g − g, i.e. hαβ ≡ gαβ − g
αβ
.

It holds that ([12]):

δRαβ ≡ −
1

2
DλDλhαβ +

1

2

{
DλDαhβλ +DλDβhαλ − gλµDαDβhλµ

}

According to the previous definition a symmetric 2-tensor X is said to be polarized

at g for the null vector ` if it satisfies the equations (6.2) which read here

1

2
{`αpβ(X) + `βpα(X)} = 0, with pα(X) ≡ `λX

λ
α −

1

2
`αX

λ
λ .

The polarization conditions reduce therefore the n+ 1 equations:

pα(X) = 0.

Remark 11. — Elementary calculus gives g′αβgλµ
= −gαλgβµ, from which follows that

g′αβg ·X`α`β = 0

whenever X is a symmetric 2-tensor polarized for the Einstein equations, with respect

to the vector `, null for g.
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8.2. Polarized null condition. — A straightforward computation gives ([4])

δ2Rαβ ≡ −hλµ{Dλ(Dαhβµ +Dβhαµ −Dµhαβ) −DαDβhλµ}

−Dλh
λµ(Dαhβµ +Dβhαµ −Dµhαβ) +

1

2
Dβh

λµDαhλµ

+
1

2
Dλhρρ(Dαhβλ +Dβhαλ −Dλhαβ) +Dλh

µ
αD

λhβµ −Dλh
µ
αDµh

λ
β.

The various components of the second derivative of the Ricci tensor with respect to g,

Dg and D2g can be read on this formula.

The Ricci operator does not quite satisfy the polarized null condition, as was shown

in [4].

Theorem 12. — When hαβ , Dλhαβ and DλDµhαβ are replaced respectively by Xαβ,

`λYαβ and `λ`µZαβ with X, Y and Z symmetric 2-tensors polarized for `, a null

vector for g, the second derivative of the Ricci operator gives the following equalities:

{
Rαβ

}′′

gD2g
(X, `⊗ `⊗ Z) = `α`β

{
XλµZλµ −

1

2
Xλ
λZ

µ
µ

}

{Rαβ}
′′
DgDg(` ⊗ Y, `⊗ Y ) =

1

2
`α`β

{
Y λµYλµ −

1

2
Y λλ Y

µ
µ )

}
.

8.3. Transport equation and back reaction. — In agreement with the general

theory the condition F (0) = 0 reads here, when ` is a null vector of g:

R
(0)
αβ =

1

2
{ϕαpβ(w

′′) + ϕβpα(w′′) + L(v′)αβ +Nαβ(v, v
′, v′′) +Rαβ

with L the sum D + P of a linear propagation operator for v′ along the rays of Dϕ,

which reduces here to a propagation operator along the rays of the phase ϕ:

(Dv′)αβ ≡ −{ϕλDλv
′
αβ +

1

2
v′αβDλϕ

λ}

and a gauge associated linear operator which reduces here to:

Pαβ ≡
1

2
{ϕαyβ(v

′) + ϕβyα(v′)}, yα(v′) ≡ Dλv
′λ
α −

1

2
Dαv

′λ
λ.

Since the Einstein equations do not quite satisfy the null condition the non linear

term N does not vanish. For polarized v it reduces to:

Nαβ(v, v
′, v′′) ≡

1

2
ϕαϕβ{v

λµv′′λµ −
1

2
vλλv

′′µ
µ +

1

2
(v′λµv′λµ −

1

2
v′λλ v

′µ
µ )}.

Using the fact that for an arbitrary function f it holds that

ff ′′ = (ff ′)′ − f ′2

we see that the condition

lim
Ξ=∞

1

Ξ

∫ Ξ

0

{Rαβ +Nαβ}dξ = 0
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can be written

(8.1) Rαβ = Eϕαϕβ , with E ≡ lim
Ξ=∞

1

Ξ

∫ Ξ

0

Edξ

where E is the positive function of x and ξ given by

(8.2) E ≡
1

4

{
v′λµv′λµ −

1

2
v′λλ v

′µ
µ

}

One says that the wave v′ inflicts a back reaction on the background g which must

be a solution of (8.1), i.e. of Einstein equations with source a null fluid, if the high

frequency wave is to be a vacuum asymptotic solution.

We can now prove the following theorem.

Theorem 13. — The vacuum Einstein equations admit on the manifold V the high

frequency asymptotic solution with v and w of period T in ξ

g
αβ

(x) + {ω−1vαβ(x, ξ) + ω−2wαβ(x, ξ)}ξ=ωϕ(x)

if:

(1) The tensor v, periodic in ξ as well as its integral
∫ ξ
0
vdξ, satisfies the linear,

homogeneous, propagation equation on V along the rays of the phase ϕ, isotropic for

the background g:

D(v) = 0

and v satisfies the polarization conditions on a hypersurface Σ transversal to rays of

the phase ϕ which span V .

(2) The tensor v and the background metric g satisfy the following Einstein equa-

tions with source a null fluid:

(8.3) Rαβ = Eϕαϕβ .

The tensor w is a periodic solution of the linear system:

pα(w′′) = yα(v′) +
1

4
ϕα{(v

λµv′λµ − vλλv
′µ
µ )}′ +

1

2
ϕα(E − E),

with E and E given by (8.2), (8.1).

Proof. — (1) If v′ satisfies the propagation equations D(v′) = 0 on V × R and the

polarization conditions on Σ transversal to rays which span V , then it satisfies the

polarization conditions on V × R because the equations D(v′) = 0 imply the prop-

agation both of ϕαvαβ = 0 and vαα = 0, as can easily be checked. The coefficient

Ricci(−1) of ω in the asymptotic expansion of Ricci(g) is therefore zero.

(2) If D(v′) = 0 and Rαβ satisfies (8.3) then the annulation of R
(0)
αβ reduces to the

equation (8.1) This equation has a solution w′′ because the dual of the linear system

of operators pα is the linear system acting on a vector Zα which is injective, indeed:

`λZµ −
1

2
gλµZα`α = 0 implies Zα = 0.
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The tensor w′ is solution of the algebraic linear system

pα(w′) = pα(w′
0) + yα(v) +

1

8
ϕα

{
vλµvλµ − (vλλ)2

}′
+

1

2
ϕα

∫ ξ

0

(E − E)dξ,

it has also period T in ξ since the right hand side has a zero integral on ξ on the

interval 0 6 ξ 6 T . We can choose w′
0 such that the integral in ξ of w′ is also 0

on [0, T ], hence w bounded as were w′ and w′′: the remainder R is bounded for

ξ ∈ R.
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