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SHEAVES: FROM LERAY TO GROTHENDIECK AND SATO

by

Pierre Schapira

Abstract — We show how the ideas of Leray (sheaf theory), Grothendieck (derived
categories) and Sato (microlocal analysis) lead to the microlocal theory of sheaves
which allows one to reduce many problems of linear partial differential equations to
problems of microlocal geometry. Moreover, sheaves on Grothendieck topologies are
a natural tool to treat growth conditions which appear in Analysis.

Résumé(Faisceaux: de Leray a Grothendieck et Sato). — Nous montrons comment
les idées de Leray (théorie des faisceaux) Grothendieck (catégories dérivées) et Sato
(analyse microlocale) conduisent & la théorie microlocale des faisceaux qui permet
de réduire de nombreux problémes d’équations aux dérivées partielles linéaires a des
problémes de géométrie microlocale. Les faisceaux sur les topologies de Grothendieck
sont de plus un outil naturel pour traiter les conditions de croissance qui apparaissent
en Analyse.

1. Introduction

The “Scientific work” of Jean Leray has recently been published [7]. It is divided
in three volumes:

(a) Topologie et théoréme du point fixe (algebraic topology),

(b) Equations aux dérivées particlles réelles et mécanique des fluides (non linear
analysis),

(c) Fonctions de plusieurs variables complexes et équations aux dérivées partielles
holomorphes (linear analytic partial differential equations, LPDE for short).

As we shall see, (a) and (c) are in fact closely related, and even complementary,
when translated into the language of sheaves with a dose of homological algebra.
Recall that sheaf theory, as well as the essential tool of homological algebra known
under the vocable of “spectral sequences”, were introduced in the 40’s by Leray. I do
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174 P. SCHAPIRA

not intend to give an exhaustive survey of Leray’s fundamental contributions in these
areas of Mathematics. I merely want to illustrate by some examples the fact that his
ideas, combined with those of Grothendieck [1] and Sato [10], [11], lead to an algebraic
and geometric vision of linear analysis, what Sato calls “Algebraic Analysis”.

I will explain how the classical “functional spaces” treated by the analysts in the
60’s are now replaced by “functorial spaces”, that is, sheaves of generalized holomor-
phic functions on a complex manifold X or, more precisely, complexes of sheaves
RHom (G, Ox), where G is an R-constructible sheaf on the real underlying manifold
to X, the seminal example being that of Sato’s hyperfunctions [10]. I will also explain
how a general system of LPDE is now interpreted as a coherent Dx-module M, where
Dx denotes the sheaf of rings of holomorphic differential operators [3], [11].

The study of LPDE with values in a sheaf of generalized holomorphic functions is
then reduced to that of the complex RHom (G, F), where F' = RHom, (M, Ox) is
the complex of holomorphic solutions of the system M.

At this stage, one can forget that one is working on a complex manifold X and
dealing with LPDE, keeping only in mind two geometrical informations, the micro-
support of G and that of F' (see [4]), this last one being nothing but the characteristic
variety of M.

However, classical sheaf theory does not allow one to treat usual spaces of analysis,
much of which involving growth conditions which are not of local nature, and to
conclude, I will briefly explain how the use of Grothendieck topologies, in a very
special and easy situation, allows one to overcome this difficulty. References are made
to [4] and [5].

2. The Cauchy-Kowalevsky theorem, revisited

At the heart of LPDE is the Cauchy-Kowalevsky theorem (C-K theorem, for short).
Let us recall its classical formulation, and its improvement, by Schauder, Petrowsky
and finally Leray. As we shall see later, the C-K theorem, in its precise form given by
Leray, is the only analytical tool to treat LPDE. All other ingredients are of topological
or algebraic nature, sheaf theory and homological algebra.

The classical C-K theorem is as follows. Consider an open subset X of C™, with
holomorphic coordinates (z1,. .., z), and let Y denote the complex hypersurface with
equation {z; = 0}. Let P be a holomorphic differential operator of order m. Hence

P = Z aq(2)0F
le|<m
where @ = (a1 ...ay) € N® is a multi-index, |a] = a1 + -+ + ap, the a,(2)’s are
holomorphic functions on X, and 9% is a monomial in the derivations 9/9z;.
One says that Y is non-characteristic if a(,, o...,0), the coefficient of 97}, does not
vanish.
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SHEAVES: FROM LERAY TO GROTHENDIECK AND SATO 175

The Cauchy problem is formulated as follows. Given a holomorphic function g on X
and m holomorphic functions h = (hg, ..., hm—1) on Y, one looks for f holomorphic
in a neighborhood of Y in X, solution of

{Pf =9,
’YY(f) = (h)a
where vy (f) = (fly,01fly,---, 0™ " fly) is the restriction to Y of f and its (m — 1)
first derivative with respect to z1.

The C-K theorem asserts that if Y is non-characteristic with respect to P, the
Cauchy problem admits a unique solution in a neighborhood of Y. Schauder and

Petrovsky realized that the domain of existence of f depends only on X and the
principal symbol of P, and Leray gave a precised version of this theorem:

Theorem 2.1(The C-K theorem revisited by Leray). — Assume that X is relatively
compact in C"* and the coefficients an are holomorphic in a neighborhood of X.
Assume moreover that amo...0 = 1. Then there exists § > 0 such that if g is
holomorphic in a ball B(a, R) centered at a € Y and of radius R, with B(a,R) C X,
and (h) is holomorphic in B(a, R)NY, then f is holomorphic in the ball B(a,dR) of
radius O R.

This result seems purely technical, and its interest is not obvious. However it plays
a fundamental role in the study of propagation, as illustrated by Zerner’s result below.

To state it, we need to work free of coordinates. The principal symbol of P, denoted
by o(P), is defined by

a(P)(z:Q) = Y aa(2)C™
lor|=m

This is indeed a well-defined function on 77X, the complex cotangent bundle to X.
Identifying X to Xg, the real underlying manifold, there is a natural identification
of (T*X)r and the real cotangent bundle T*(Xg). The condition that Y is non-
characteristic for P may be translated by saying that o(P) does not vanish on the
conormal bundle to Y outside the zero-section, and one defines similarly the notion
of being non characteristic for a real hypersurface.

Proposition 2.2([13]). — Let Q be an open set in X with smooth boundary S (hence
S is a real hypersurface of class C' and § is locally on one side of S). Assume
that S is mnon-characteristic with respect to P. Let f be holomorphic in Q and as-
sume that Pf extends holomorphically through the boundary S. Then f extends itself
holomorphically through the boundary S.

The proof is very simple (see also [2]). Using the classical C-K theorem, we may
assume that Pf = 0. Then one solves the homogeneous Cauchy problem Pf = 0,
vy (f) = v (f), along complex hyperplanes closed to the boundary. The precised
C-K theorem tells us that the solution (which is nothing but f by the uniqueness) is
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holomorphic in a domain which “makes an angle”, hence crosses S for Y closed enough
to S.

A similar argument shows that it is possible to solve the equation Pf = g is the
space of functions holomorphic in 2 in a neighborhood of each = € 912, and with some
more work one proves

Theorem 2.3 — Assume that 0 is non-characteristic with respect to P. Then for
each k € N, P induces an isomorphism on H% _o(Ox)|aq.

3. Microsupport

The conclusion of Theorem 2.3 may be formulated in a much more general frame-
work, forgetting both PDE and complex analysis.

Let X denote a real manifold of class C*°, let k be a field, and let F' be a bounded
complex of sheaves of k-vector spaces on X (more precisely, F' is an object of D?(kx),
the bounded derived category of sheaves on X). As usual, 7% X denotes the cotangent
bundle to X.

Definition 3.1 — The microsupport SS(F') of F is the closed conic subset of T%X
defined as follows. Let U be an open subset of T*X. Then UNSS(F) = @ if and only
if for any € X and any real C*°-function ¢ : X — R such that ¢(z) = 0,dp(x) € U,
one has:

(RTy>0(F))z = 0.

In other words, F' has no cohomology supported by the closed half spaces whose
conormals do not belong to its microsupport.

Let X be a complex manifold, P a holomorphic differential operator and let Sol(P)
be the complex of holomorphic solutions of P:

Sol(P) :=0— Ox - Ox — 0,
then Theorem 2.3 reads as:
(3.1) SS(Sol(P)) C char(P).

This result can easily been extended to general systems (determined or not) of
LPDE.

Let Dx denote the sheaf of rings of holomorphic differential operators, and let
M be a left coherent Dx-module. Locally on X, M may be represented as the
cokernel of a matrix Py of differential operators acting on the right. By classical
arguments of analytic geometry (Hilbert’s syzygies theorem), one shows that M is
locally isomorphic to the cohomology of a bounded complex

M'::OHD§TH~-~—>D§1TD§D—>O.
-0
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SHEAVES: FROM LERAY TO GROTHENDIECK AND SATO 177

The complex of holomorphic solutions of M, denoted Sol(M), (or better in
the language of derived categories, RHomp (M, Ox)), is obtained by applying
Homp (-, Ox) to M*. Hence

SOl(M) =0— Ogo P_) O§1 .. OQT N 0,
o

where now Py- operates on the left.

One defines naturally the characteristic variety of M, denoted char(M), a closed
complex analytic conic subset of T*X. For example, if M has a single generator u
with relation Zu = 0, where Z is a locally finitely generated ideal of Dx, then

char(M) ={(z;¢) e T*X;0(P)(2;¢() =0 VP € T}.
Using purely algebraic arguments, one deduces from (3.1):

Theorem 3.2 — SS(Sol(M)) C char(M).

In fact, one can also prove that the inclusion above is an equality.

4. Functorial spaces

In the sixties, people used to work in various spaces of generalized functions on a
real manifold. The situation drastically changed with Sato’s definition of hyperfunc-
tions by a purely cohomological way. Recall that on a real analytic manifold M of
dimension n, the sheaf By, is defined by

By = Hy (Ox) @ orag

where X is a complexification of M and orj; denotes the orientation sheaf on M. Let
Cxnr denote the constant sheaf on M with stalk C extended by 0 on X ~ M. By
Poincaré’s duality,

RHom (Cxn,Cx) =~ orpyx[n]
where ory x =~ orys is the (relative) orientation sheaf and [n] means a shift in the

derived category of sheaves. An equivalent definition of hyperfunctions is thus given
by
(4.1) BM ZRHom(DfX(CXM,Ox)
where Dy, = RHom (-,Cx) is the duality functor.

The importance of Sato’s definition is twofold: first, it is purely algebraic (starting
with the analytic object Ox), and second it highlights the link between real and
complex geometry.

Let Ajps denote the sheaf of real analytic functions on M, that is, Ay = Cxp®0x.
We have the isomorphism

Ay ~ RHom (D'yCxn,Cx) ® Ox,
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from which we deduce the natural morphism
Ay — B

Another natural “functorial space”, or better “sheaf of generalized holomorphic
functions”, is defined as follows. Consider a closed complex hypersurface Z of the
complex manifold X and denote by U its complementary. Let j : U — X denote the
embedding. Then j,j~'Ox represents the sheaf on X of functions holomorphic on U
with possible (essential) singularities on Z. One has

(4.2) j*j_lox ZRHOW((CXU,O)(),

where Cxp is the constant sheaf on U with stalk C extended by 0 on X \ U.

Both examples (4.1) and (4.2) are described by a sheaf of the type RHom (G, Ox),
with G a constant sheaf on a (real or complex) analytic subspace, extended by zero.
However, this class of sheaves is not stable by the usual operations on sheaves, and it
is natural to consider R-constructible sheaves, that is, sheaves G such that there exists
a subanalytic stratification on which G is locally constant of finite rank. Indeed, it is
still better to consider G in D% __(Cx), the full triangulated subcategory of D*(Cx)
(the bounded derived category of sheaves of C-vector spaces) consisting of objects
with R-constructible cohomology.

Hence, our functorial space is described by the complex RHom (G,Ox) with G €
D% .(Cx), and given a system of LPDE, that is, a coherent Dx-module M, the
complex of generalized functions solution of this system is given by the complex

RHom (M, RHom (G, Ox)) ~ RHom (G, RHom (M, Ox)).
Setting F' = RHom (M, Ox), we are reduced to study the complex
RHom (G, F).

Our only information is now purely geometrical, this is the microsupport of G and
that of F' (this last one being the characteristic variety of M). Now, we can forget
that we are working on a complex manifold and that we are dealing with LPDE. We
are reduced to the microlocal study of sheaves on a real manifold [4].

Let us illustrate this point of view with two examples.

5. Application 1: ellipticity

Let us show how the classical Petrowsky regularity theorem may be obtained with
the only use of the C-K-Leray Theorem 2.1, and some sheaf theory.

The regularity theorem for sheaves is as follows. Here X is a real analytic manifold,
k is a field and a sheaf on X means an object of D®(kx ), the bounded derived category
of sheaves of k-vector spaces on X. If M is a submanifold, we denote by T3; X the
conormal bundle to M in X. In particular, 7% X denotes the zero-section, identified
with X.
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Theorem 5.1 — Let F, G be two sheaves on X . Assume that G is R-constructible and
SS(GYNSS(F) Cc TxX.
Then the natural morphism
RHom (G, kx) ® F — RHom (G, F)
is an isomorphism.

Let us come back to the situation where X is a complexification of M, and choose
k= C. Set G = D'(Cxn) and F = RHom (M, Ox). A differential operator P
on X is elliptic (with respect to M) if its principal symbol o(P) does not vanish on
the conormal bundle T3, X outside of the zero-section. More generally a coherent
Dx-module M is elliptic with respect to M if

char(M)NTy X C Ty X.
By Theorem 3.2
SS(F)NTyX c TxX.
The regularity theorem for sheaves gives the isomorphism

RHomyp, (M, Ax) — RHomp (M, Bx).

In other words, the two complexes of real analytic and hyperfunction solutions of
an elliptic system of LPDE are quasi-isomorphic (they have the same cohomologies).
This is the Petrowsky’s theorem for D-modules.

Of course, this result extends to other sheaves of generalized holomorphic func-
tions, replacing the constant sheaf Cx s with an R-constructible sheaf G. For further
developments, see [12].

6. Application 2: hyperbolicity

As it is well-known since Hadamard, the Cauchy-Kowalevsky theorem does not hold
any more in the real domain for general differential operators. One has to restrict
ourselves to a special class of operators, called hyperbolic operators. Here again,
Leray’s contribution is essential [6].

Let us show how to treat hyperbolicity (in the weak sense) using again sheaf the-
ory. The idea is as follows. First, and this is classical, one can reduce the Cauchy
problem to a question of propagation across hypersurfaces. Then we have to estimate
the directions of propagation of the sheaf of real solutions (let’s say hyperfunction so-
lutions, otherwise the general result is still unknown) of a linear differential operator,
knowing its characteristic variety, that is, the set of directions of propagation of its
holomorphic solutions. This is indeed a purely sheaf theoretical problem.

More precisely, consider a real manifold X and a submanifold M. There are natural
maps

T*M — T*TX/IX ~ TT;]_)(T*X.
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Choosing a local coordinate system (z,y) € X with M = {y = 0}, (z,y;§,n) €
T*X; (x;m) € T X, the above isomorphism is described by

(& —y) €T Ty X «— (z,y;&,m) € Try, xT™X.
If Z is a subset of a manifold X and W is a closed submanifold of X, the Whitney
normal cone Cyy (Z) of Z along W is a closed conic subset of the normal bundle Ty X .
Hence, if S is a closed conic subset of T*X, the Whitney normal cone Cr;, x (S) of

S along Ty, X is a closed biconic (for the two actions of R*) subset of Ty xT*X =~
T8 X.

Theorem 6.1 — Let F' complex of sheaves on X. Then
SS(F|M) cT*Mn CTX{)((SS(F)),

Now we assume that M is a real analytic manifold, X a complexification of M, M
a coherent Dx-module on X. Set F = RHom (M, Ox).

Definition 6.2 — One says that 6 € 7" M is hyperbolic for M if 6 ¢ Cr; x (char(M)).
Example 6.3 — Assume M = Dx /Dy - P. Then 6 is hyperbolic if and only if
o(P)(z;7v/—1n + 6) # 0 for (x;n) € Ti X.
Applying Theorems 6.1 and 3.2, we get

Theorem 6.4 — The microsupport SS(RHom (M, Bur)) of the complex of hyper-
function solutions of M is contained in the normal cone of char(M) along T3, X :

SS(RHom (M, Bur)) C Cr;, x (char(M)).

In other words, one has propagation in the hyperbolic directions.
The same result holds with By replaced with Apy.

One easily deduces from this result that the Cauchy problem is well-posed for
hyperbolic systems in the space of hyperfunctions.

7. From classical sheaves to Grothendieck topologies

Let M be a real analytic manifold. The usual topology on M does not allow one to
treat usual spaces of analysis with the tools of sheaf theory. For example, the property
of being temperate is not local, and there is no sheaf of temperate distributions. One
way to overcome this difficulty is to introduce a Grothendieck topology on M. Recall
that a Grothendieck topology is not a topology, and in fact is not defined on a space
but on a category. The objects of the category playing the role of the open subsets
of the space, it is an axiomatization of the notion of a covering. A site is a category
endowed with a Grothendieck topology.
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SHEAVES: FROM LERAY TO GROTHENDIECK AND SATO 181

We denote by Op;, the category whose objects are the open subsets of M and the
morphisms are the inclusions of open subsets. One defines a Grothendieck topology
on Op,, by deciding that a family {U;};cr of subobjects of U € Op,, is a covering of
U if it is a covering in the usual sense.

We denote by Op,,  the full subcategory of Op,, consisting of subanalytic and
relatively compact open subsets. We define a Grothendieck topology on Op,, by
deciding that a family {U;}sc of subobjects of U € Op,,, is a covering of U if there
exists a finite subset J C I such that |J;.;U; = U. We denote by M, the site so
obtained.

We shall denote by

(7.1) p: M — Mg,

the natural morphism of sites associated with the embedding Op,, < Op,,.

Definition 7.1 — Let U € Op,,, . We say that U is regular if for each x € M, there
exists an open neighborhood V of x and a topological isomorphism ¢ : V' =5 W where
W is open in some vector space E and ¢(U NV) is convex in E.

If U € Op,,, we denote by U the closure of U in M. Note that if U is regular, the
dual of the constant sheaf on U is the constant sheaf on U. In other words,

DEW(CMU ~ (CMU'

Let us denote by C37 the sheaf of rings of complex valued C*°-functions on M. Note
that if U is regular, the space I'jyr v (M;C37) of C*-functions on M with support in
M ~\ U coincides with the space of functions which vanish with all their derivatives
on U.

Proposition/Definition 7.2 — (i) There exists a unique sheaf Cy;*" on Mg, such that
L(U;Cy) ~Ce(U) for U € Opyy,., U regular.
(ii) There exists a unique sheaf Cy™" on Mga such that
D(U;CypY) = T(M;C37) /T v (M;5C37)
for U € Opy,., U regular.

Definition 7.3 — Let f € C37(U). One says that f has polynomial growth at p € M if
it satisfies the following condition. For a local coordinate system (z1, . .., ;) around p,
there exist a sufficiently small compact neighborhood K of p and a positive integer N
such that
(7.2) sup (dist(z, K U))N|f(x)| < 0.
ze KNU

It is obvious that f has polynomial growth at any point of U. We say that f is
temperate at p if all its derivatives have polynomial growth at p. We say that f is
temperate if it is temperate at any point.
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For an open subanalytic subset U of M, denote by Cy2"*(U) the subspace of C33(U)
consisting of temperate functions. Denote by Dby, the sheaf of complex valued distri-
butions on M and, for Z a closed subset of M, by I'(Dby;) the subsheaf of sections
supported by Z.

Definition 7.4 — (i) One denotes by C3"" the presheaf U — C37"*(U) on My,.

(ii) One denotes by Db'}@ip the presheaf U +— T'(M; Dbys)/T p v (M;Dbyy) on
M,.

Proposition 7.5 — (i) The presheaf C]T/[osz is a sheaf on Ms,.

(ii) The presheaf Db’;@ip is a flabby sheaf on M.

One calls ;"™ the sheaf of Whitney functions on M, Cf\/[oz the sheaf of temperate
functions on M,,, and Dbﬁ\‘fap the sheaf of temperate distributions on M,,. For more
details on these sheaves, refer to [5].

Note that Propositions 7.2 and 7.5 follow from Lojasiewicz’s inequalities [8], (see
also [9]).

Finally, denote by C3; =~ the image by p. of the sheaf C§7. We get monomorphims
of sheaves on My,

Chre = Cartt = O3, = O,
Now let X be a complex manifold and denote by X the complex conjugate manifold.

Therefore, O¢ denotes the Cauchy-Riemann system on the real underlying manifold.
For A = w, w,t,d, one defines the objects O% € D*(3Dx,,) by the formula

Oﬁ\(sa = R?—(omﬂpYsa (ﬁofsaﬂ C;(O;a)\)’

where 30x_. is the sheaf on X, associated with the presheaf U + O(U) and similarly
with ADx,,. In other words, 0% is the Dolbeault complex of C3 .
We have a chain of morphisms in D*(3Dx,,)

w W t
%.. = Ox.. 7 Ok, = Ox.,-

One can recover the sheaf of temperate distributions on Mg, by mimicking Sato’s
construction of hyperfunctions given in (4.1).

Theorem 7.6 — There is a natural isomorphism of sheaves on M,
Dby ~ RTHom (D Cxar, O% ).

(Here, RITHom denotes the derived internal Hom in the category of sheaves on the
site Xgq.)

One recovers the usual sheaf of distributions Dby, on M by the formula
Db ~ p~ Dby,

where p is given by (7.1).
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SHEAVES: FROM LERAY TO GROTHENDIECK AND SATO 183

Hence, we have obtained an algebraic and functorial construction of Schwartz’s
distributions, starting with C'°°-functions. This is an illustration of the strength of
sheaf theory, a theory invented by Leray and revisited by Grothendieck.
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