Séminaires € Congrés
10, 2005, p. 155-162

ARC-ANALYTICITY IS AN OPEN PROPERTY

by

Krzysztof Kurdyka & Laurentiu Paunescu

Abstract — We prove that the locus of the points where a bounded continuous
subanalytic function is not arc-analytic, is a closed nowhere dense subanalytic set.
This shows that the property of being arc-analytic at a point, is an open property.

Résumé(L'arc-analyticité est une propriété ouverte). — Nous montrons que l’en-
semble de points ol une fonction sous-analytique, bornée et continue n’est pas arc-
analytique est un ensemble sous-analytique fermé. Autrement dit : la propriété d’étre
arc-analytique en un point est une propriété ouverte.

1. Introduction

Let U be an open subset of R". Following [9] we say that a map f : U — R*
is arc-analytic if for any analytic arc a : (—¢,e) — U, f o« is also analytic. In
general arc-analytic maps are very far from being analytic, in particular there are
arc-analytic functions which are not subanalytic [11], not continuous [3], with a non-
discrete singular set [12]. Hence it is natural to consider only arc-analytic maps
with subanalytic graphs. Earlier T.-C. Kuo, motivated by equisingularity problems,
introduced in [8] the notion of blow-analytic functions, i.e., functions which become
analytic after a composition with appropriate proper bimeromorphic maps (e.g. a
composition of blowings up with smooth centers). Clearly any blow-analytic mapping
is arc-analytic and subanalytic. The converse holds in a slightly weaker form [2]
(see also [16]). Blow-analytic maps have been studied by several authors (see the
survey [4]). It is known that in general subanalytic and arc-analytic functions are
continuous [9], but not necessarily (locally) Lipschitz [4], [17].

The main result of this note is Theorem 3.1, which claims that the locus of the
points at which a bounded, continuous, subanalytic function f : U — R is not arc-
analytic, is a closed subanalytic subset of U. In other words, if f is analytic on any
germ of analytic arc at a given point a € U, then f is arc-analytic in a neighbourhood
of a.
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This property is of interest if we deal with germs of arc-analytic functions. For
instance let us recall the main result of [13]. It states the following: if g is an arc-
analytic function, such that for some natural r the function f = ¢" is analytic, then g
is locally Lipschitz. Moreover, if r is less than the multiplicity of f, then g is C?.
Now, if we are interested in a local version of this result, thanks to our Theorem 3.1,
it is enough to check the arc-analyticity of g only on analytic arcs passing through a
given point.

The main tool in the proof of Theorem 3.1 is Parusiniski’s Rectilinearization of
subanalytic function [16]. We thank the referee for careful reading and valuable
remarks.

2. Definitions — Notations

2.1. Locally blow-analytic functions. — We recall some of the notions used in
this paper (for more information see for instance [3], [4], [5], [8], [11], [12], [18]).

We recall first a definition of a local blowing up. Let M be an analytic manifold
and 2 C M an open set. Assume that X is an analytic submanifold of M, closed
in 2. Then we can define the mapping 7 : Q— Q, the blowing up of Q with the
centre X, see for instance [7] or [14]. A restriction of 7 to an open subset of € is
called a local blowing up with a smooth (nowhere dense) centre. Local blowings up
have the important arc lifting property. We state it precisely below:

Lemma 2.1(Arc lifting property) . — Let M be an analytic manifold and let o : W — M
be a finite composition of local blowings up with smooth centres. Assume that
~: (—e,e) = M is an analytic arc, v((—¢,€)) C o(W). Then there exists an analytic
arc ¥ : (—e,e) —» W such that 0 oy = .

Let U be a neighbourhood of the origin of R™ and let f : U — R™ denote a map
defined on U except possibly some thin subset of U. We say that f is locally blow-
analytic via a locally finite collection of analytic modifications o, : W, — R™, if for
each o we have

i) W, is isomorphic to R™ and o, is the composition of finitely many local blowings
up with smooth nowhere dense centres, and f o o, has an analytic extension on W,,.

ii) There are subanalytic compact subsets K, C W, such that |Jo,(K,) is a
neighbourhood of U.

The notion of (locally) blow-analytic functions (or maps) is very much related to the
notion of arc-analytic functions, i.e., functions f : U — R such that f o « is analytic
for any analytic arc o : I — U, here U is an open subset of R™ and I is an open
interval. Indeed in [2], see also [16], it is proved that an arc-analytic function has
subanalytic graph if and only if it is locally blow-analytic.
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Let f : U — R be a subanalytic function defined in an open subset of R". We
will say that f is not arc-analytic at a point x € U, if there exists an analytic arc
v : (—e,e) — U such that v(0) = z and the composed function f o+ is not analytic
at t =0.

3. Main Results
Our main result is the following theorem.

Theorem 3.1 — Let f : U — R be a bounded continuous subanalytic function defined
in an open subset of R™. Then the locus of the points in U at which f is not arc-
analytic, is a closed, nowhere dense, subanalytic subset of U.

Remark 3.2 — If f is semialgebraic, then the locus of the points in U at which f is
not arc-analytic, is a closed, nowhere dense, semialgebraic subset of U.

Proof. — Let us denote
Shaa(f) = {x € U | f is not arc-analytic at x}.
Clearly the set Spaa(f) is contained in the singular set of f:
Sna(f) ={x € U | f is not analytic at x}.

It is known ([19], [10], [1]), that the set Sha(f) is subanalytic, closed and nowhere
dense in U (i.e., dim Spa(f) < n —1). However, in general, the set Sp,(f) is larger
than the set Spaa(f). Our proof follows an idea from [10] and it uses some facts on
subanalytic functions of one variable.

Lemma 3.3 — A subanalytic (and continuous) function in one variable f o -y is not
analytic at 0 € R for one of the following two reasons:

i) Puiseux expansion fo~y(t) = 3 oo ja,t"/", t > 0 contains a nonzero term with
a fractional exponent. Hence f o~(t), t > 0 cannot be extended analytically through
0 € R. Clearly, the same obstruction may come from extending of f o~(t), t <O0.

i) Both functions g+ = fo~(t), t > 0 and g = fox(t), t < 0 have analytic
extensions through 0, but the extensions of g+ and g— are not equal.

Proof. — Immediate from the existence of Puiseux expansions for g4 and g_. O

The main tool in the proof of our theorem is the Rectilinearization of subanalytic
functions due to Parusinski [16], [15]. In fact, this is a stronger version of Hironaka’s
Rectilinearization Theorem ([7], see also [1]). For the reader’s convenience we recall
it here.

Theorem 3.4Parusihski [16]). — Let f : U — R be a bounded continuous subanalytic
function defined in an open subset of R™. Then there exists a locally finite collection ¥
of real analytic morphisms ¢o : Wy — R™ such that:
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i) each W, is isomorphic to R™ and there are compact subsets K, C W, such that

Uga(Ka) =T
ii) for each a, there exists r; € Nyi=1,...,n, such that
¢a =0q© 1/)04;

where o4, @ Vo, — R™ V, isomorphic to R™, is the composition of finite sequence of
local blowings up with smooth centres and

(3.1) Yo = (e127", 80252, ..., eqay), for some g; = —1 or 1.

iii) for each o, ¢po(Wyo) C U, and f o ¢, extends from ¢ (U) on W, to one of the
following functions:

a) the function identically equal to zero,

b) a normal crossings.

iv) if oo = 0 0y € ¥ and ¢o(0) € U, then ¢o(W,) C U and for each ¥ as in
(3.1) (i.e. with all possible e;, but fized r; ), the composition o, 01 € V.

Remark 3.5 — The original statement of Theorem 2.7 in [16] contains an inaccuracy:
at (i) it is claimed that |J ¢o(K,) is a neighbourhood of U, but in fact the family
6o (K,) is only a covering of U. However the set | J 0, (K ) is actually a neighbourhood
of U. Note that, as stated in theorem 2.7 in [16], in the claim (iii) we have also the
third possibility, namely that f o ¢, extends to an inverse of normal crossing. But
this will not happen in our case since we consider only bounded functions.

We consider now a composed function g, = fo o, : 0,1 (U) — R. Let Q, be
an open quadrant in V,, = R™. Note that by (iii) in the above theorem the function
Jo = [ oo, extends analytically on @),. For simplicity we denote this extension again
by g, observe that this extension is subanalytic.

We will study the arc-analyticity of our subanalytic function g, : @, — R also at
the points of the boundary of Q.. To this end we denote by ST . (g+) the set of points

x € V,, such that there exists an analytic arc
v (_676) - Vou ’Y(O) =, 7(078) C Qou
and such that g, o v(t), ¢ > 0, cannot be extended analytically on (—¢’,¢), for any
e’ > 0.
We have the following lemma.

Lemma 3.6 — The set S;f,.(ga) is a closed subanalytic, nowhere dense, subset of V.

Proof. — Clearly S (ga) C Qo ~ Qo. We may assume that Q, is the set
{z; >0|i=1,...,n}. Recall that g, is analytic on this quadrant, hence S, ,(ga)
will be contained in its boundary.

By Theorem 3.4, there are integers r; € N, ¢ = 1,...,n, such that

(3.2) ha = galy' 257,y 2p),
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extends to an analytic function on W, = R™. Let us denote by H; the hy-
perplane {z; = 0}. Since our function g, is analytic on the first quadrant
{#; >0]i=1,...,n}, then clearly we have S, (9.) C Ui, ﬁj, where H;” =
{r € Hi;z; >0,j € {1,...,n} ~ {i}} is an open quadrant in H;. Let us consider
fixed quadrant ﬁf ={z1 =0;2; 20,5 € {2,...,n}}. Now we have a Puiseux
expansion (which follows from (3.2))

(3.3) (21,2 Zal, Tl, v,r1 €N,
for ' = (x2,...,x,) and 7 such that z; > 0,7 =1,...,n. Moreover, a, are analytic
functions in H;" such that a, (z}?,...,27") extend to analytlc functions.

Let (0,2") € H;". The following observations are immediate consequences of (3.3):

i) if there is an open (in H;") neighbourhood €2 of 2’ such that a, = 0 in €, for all
v € N\ 7N, then 2/ ¢ S, (ga), (more precisely QN S, (9a) = 9).

ii) if there exists vy € N\ 71N such that a,,(2) # 0, then g, cannot be extended,
through 271 = 0, on the arc (linear segment) x1 — (x1,2'). Therefore then (0,2') €

SrTaa( )

Observe that in the first case we may assume that Q0 = H;, since all a, are analytic
functions in Hy". So in this case H” NS, (g0) = @.
So we are left with the second case. We shall prove that

(*) Hin Srjraa(ga) =H, ﬂ@-

Note that here we are in the hyperplane H; and not in the open quadrant H;". By
i), ii) and (*) it follows that S;f,,(ga) is closed and subanalytic.

To prove (x) we denote by v the smallest v € N\ 71N such that a, #Z 0 in Hfr. Let
(0,2') € Hy , if ay, () # 0, then by ii), (0,2") € S (ga). Assume that a,,(z') = 0.
Let n(t), t € (—¢,¢) be an analytic arc in H; such that n(0) = 2’ and n(t) € H;,
ay, (n(t)) # 0 for ¢t € (0,¢). Let r be the smallest common multiple of r3,...,7,. By
(ii) of Theorem 3.4 it follows that a,(n(t")) is analytic at 0 € R, for any v € N. For
simplicity we denote again n(t") by n(t).

We are going to choose a suitable exponent N € N such that on the arc

y(t) = (Y, n(t), t>0,

the function g, cannot be analytically extended through 0. Note that, if we substract
n (3.3), all terms al,(x’)xq/” with v < v, the set S;f,,(go) remains the same (indeed
all these terms are analytic in V,,). So we may assume that in (3.3) we have only
terms for v > vy. Hence we obtain the Puiseux expansion

o0

(34) 9otV (1) = > a, ()N >0,

V=rgp

SOCIETE MATHEMATIQUE DE FRANCE 2005



160 K. KURDYKA & L. PAUNESCU

Denote by ko the order of a,,(n(t)), and take N € N such that vy N is not divisible
by r1 and

N 2 kor.
Thus, for any v > vy, the order of a, (n(t))t*V/™ is strictly greater than the order
of ay, (n(t))t"°N/™. So in the expansmn (3.4) there is a nonzero term with fractional

exponent. Hence the function g, (", 7(t)) cannot be extended analytically through 0.
This ends the proof of Lemma 3.6. O

Remark 3.7 — We proved actually that
SIJlraa( ) U H;n @aa
i€l
where T is a subset (possibly empty) of {1,...,n}.

We study now the case analogous to the case ii) of Lemma 3.3. Let g, = f oo, :
V — R, where V is an open subset of R x H;” C V,,. Assume that g, has the following
expansions (on the both sides of Hy)

(3.5) 9t = ga(z1,2 Zau V/Tl, for 1 > 0,

(3.6) 9o = Galz1, T Z by ( x1)V/™, for xy < 0.

As before al, and b, are analytic functions in H; such that for any v € N,
ay(z5?, ..., xbn) and by (x52, ..., zl) extend to analytic functions on Hj.

rn

Denote by S (ga) the set of points € H; such that there exists an analytic arc
v (_636) - Va 7(0) =T, V(t) € ‘/7 for ¢ 7é 07

and such that the analytic extension of g} o y(t), ¢ > 0, does not coincide with

9o ©(t),t <0.
Now we have the following lemma.

Lemma 3.8 — SZ_ (ga) is a closed subanalytic, nowhere dense, subset of V. More
precisely, if ST, (ga) is nonempty, then S=_ (go) =V N Hy.

Proof. — Note that, if SE(ga) is nonempty, then there exists v € N such that
a, # b,. Let vg be the smallest such a v. Put ¢,,(z') = ay,(2') — by, (2z'). Take
(0,2") € Hy, such that ¢,, (") = 0. Choose, as in the proof of Lemma 3.6, an analytic
arc n)(t), t € (—e,¢) in Hy such that n(0) = 2’ and n(t) € H1 NV, ¢y, (n(t)) # 0 for
t # 0 with a property that all a, (n(t")) and b, (n(t")) are analytic at 0 € R, for any
v € N. As in the proof of Lemma 3.6 we may assume that v > 14 in the expansions
(3.5) and (3.6).
Take an odd integer N greater than the order of ¢,,(n(¢)). Then on the arc

v(t) = (Y, 0(t), te(—ee),
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the analytic extension of gt o y(t), t > 0 does not coincide with g, o v(¢), t < 0.

Hence SZ . (ga) = V N Hy, which proves Lemma 3.8. O

In Lemma 3.8 we considered only arcs which go from a quadrant @); to a quad-
rant (o2, and where the boundaries of those quadrants have a common part of dimen-
sion n — 1 (i.e., their boundaries have a common face). Clearly the same arguments
are valid for any two arbitrary quadrants.

Hence Lemmas 3.6 and 3.8 imply:

Lemma 3.9 — The set Snaa(ga) = {z € 0,1 (U) | go is not arc-analytic at x} is a
closed subanalytic (even compact), nowhere dense, subset of V.

We are now in a position to conclude the proof of Theorem 3.1. By the arc lifting
property (c¢f. Lemma 2.1) of each o, it is clear that

Snaa(f) =UnN U Ua(Ka N Snaa(Qa))a

where K, C V, are compact subanalytic sets such that | Jo,(K,) = U, cf. Theorem
3.4 (i). So, Snaa(f) is closed in U and subanalytic as a locally finite union of images
of compact subanalytic sets by analytic mappings. O

To justify Remark 3.2 that for a semialgebraic continuous function f : U — R
the set Shaa(f) is semialgebraic, it is enough to recall that the Rectilinearization of
functions holds in the real algebraic category (see [6],[2], [16]). In fact in this case we
have global centres for blowings up.

Remark 3.10 — Note that Theorem 3.1 is no longer true if we do not assume con-
tinuity. Indeed let f(z,y) =y, x # 0, and f(0,y) = 0 otherwise. Clearly f is not
continuous in any neighbourhood of the origin (but continuous at 0), it is subanalytic
and arc-analytic at the origin, but not arc-analytic in any neighbourhood of the origin.

As an immediate consequence of Theorem 3.1, we have the following property,
namely that arc-analyticity is an open property.

Corollary 3.11 — Let U be an open neighbourhood of the origin in R™, and
f:(U,0) = (R,0) be a germ of a continuous, subanalytic function. Then f is
arc-analytic in a neighbourhood of the origin, if and only if, for any germ of analytic
arc o : ((—¢,€),0) — (U,0) foa« is analytic at the origin.

Remark 3.12 — In general the set Spaa(f) is not analytic (neither arc-symmetric
cf. [9]) it is only subanalytic and closed. Consider a continuous semialgebraic function
f :R? — R defined as follows: 2z = f(z,y) is the smallest real root of the polynomial
23+ 22yz — 2. Then

Snaa(f) = Sna(f) ={z =0,y >0},

so it is a closed half line.
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