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ON THE CALCULATION AND ESTIMATION OF

WARING NUMBER FOR FINITE FIELDS

by

Oscar Moreno & Francis N. Castro

Abstract. — In this paper we present a new method that often computes the exact

value of the Waring number or estimates it. We also improve the lower bound for the

Waring problem for large finite fields.

Résumé (Sur le calcul et l’estimation du nombre de Waring pour les corps finis)
Dans cet article, nous présentons une nouvelle méthode qui permet souvent de

calculer la valeur exacte du nombre de Waring ou d’en donner une estimation. Nous

améliorons également la borne inférieure relative au problème de Waring pour de

grands corps finis.

1. Review of some results about the divisibility of the number of

solutions of a system of polynomials over finite fields

In this section we present recent results about the divisibility of the number of

solutions of a system of polynomials equation over finite fields.

Let k be a positive integer k = a0 + a1p + a2p
2 + · · · + ampm where 0 6 ai < p.

We define the p-weight of k by σp(k) =
∑m

i=0 ai. The p-weight degree of a monomial

X
d = Xd1

1 · · ·Xdn
n is wp(X

d) = σp(d1) + · · · + σp(dn). The p-weight degree of a

polynomial F (X1, . . . , Xn) =
∑

d adX
d is wp(F ) = max

X
d, ad 6=0 wp(X

d).

Let F1, . . . , Fr be polynomials in n variables over Fq, where q = pf .

Fk(X) =

Nk
∑

i=1

aki
X

dki .
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30 O. MORENO & F.N. CASTRO

Let |N | be the number of common zeros to the r polynomials. Introduce r auxiliary

variables Y1, . . . , Yr.

qr|N | =
∑

(X1,...,Xn)∈Fq

(

∑

Y1∈Fq

(Y1F1(X1, . . . , Xn))

)

· · ·

(

∑

Yr∈Fq

(YrFr(X1, . . . , Xn))

)

=
∑

X

∑

Y

(Y1F1(X) + · · · + YrFr(X)).

We define L as follows

(1) L = min
{

∑r
k=1

∑n
j=1

∑Nk

i=1 σ(tijk)/(p − 1)
}

− rf,

where the minimum is taken over all tijk’s (0 6 tijk 6 q − 1), satisfying the following

conditions

t111 + t221 + · · · + t1N11 ≡ 0 mod q − 1,

t112 + t222 + · · · + t2N22 ≡ 0 mod q − 1,

...

t11r + t22r + · · · + tnNrr ≡ 0 mod q − 1,

d111t111 + d121t121 + · · · + d1Nrrt1Nrr ≡ 0 mod q − 1,

d211t211 + d221t221 + · · · + d2Nrrt2Nrr ≡ 0 mod q − 1,

...

dn11tn11 + dn21tn21 + · · · + dnNrrtnNrr ≡ 0 mod q − 1.

Now we are ready to state the main theorem of [15].

Theorem 1.1. — Let G be the following class of polynomials

G = {a11X
d11 + · · · + a1N1

X
d1N1 , · · · , ar1X

dr1 + · · · , arNr
X

drNr | aij ∈ Fq}.

With L as above, there are polynomials F1, . . . , Fr in G, such that |N | is divisible by

pL−fr but not divisible by pL+1−fr.

Theorem 1.1 gives a tight bound that involves the solution of a set of modular

equations which are not always easy to solve. In [15], we introduced several techniques

in order to give concrete approximate solutions.

The following result gives a dramatics improvement to Ax-Katz’s, and Moreno-

Moreno’s results for certain diagonal equations.

Theorem 1.2. — Let q = pf and let di be a divisor of qm−1 + qm−2 + · · · + 1 for

i = 1, . . . , n. Let a1X
d1

1 + · · · + anXdn
n be a polynomial over Fqml . Then pµ divides

|N |, where µ > (n − m)lf .
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ON WARING NUMBER FOR FINITE FIELDS 31

Let s be the smallest positive integer such that the equation xd
1 + · · · + xd

s = β

has at least a solution for every β ∈ Fpf . We denote this s by g(d, pf ). Let L =

{xd
1 + · · · + xd

s | x1, . . . , xs ∈ Fqf }. g(d, pf ) exists if and only if L is not a proper

subfield of Fpf (see [19]). We will suppose from now on that g(d, pf ) exists. Without

loss of generality, we are going to assume throughout the paper that d divides pf − 1.

Note that if d divides pf −1, then g(d, pf ) > 2. Hence, the minimum value of g(d, pf)

in the non-trivial case is 2. In [13], we proved the following theorem:

Theorem 1.3. — g(pj + 1, pf) = 2 whenever (pj + 1) | (pf − 1).

Remark 1.4. — In [5], Helleseth indicates that is possible to combine the Theorem of

Delsarte (see [3]) and other results to estimate the Waring number for finite fields of

characteristic 2.

2. Review of Applications of Divisibility to Covering Radius

In this section we will state the main results of [11] and [12].

In [11], we solved a question posed in [2]. The question was to give an direct proof of

the computation of the covering radius for BCH(3) (see [2]). Recall that the covering

radius of a code C is the smallest r such that the spheres Br(c) = {c′ ∈ C | d(c, c′) 6 r}

with c ∈ C cover F
n
q (n is the length of the code).

If a code C has minimum distance 2e + 1 and all the coset leaders have weight

6 e + 1 then the code is called quasi-perfect (A coset leader of a coset α + C is a

vector of smallest weight in its coset). The covering radius is the weight of a coset

leader with maximum weight (see [10]).

Theorem 2.1. — Let α be a primitive root of F2f and let C be the code of length

n = 2f − 1 with zeros α, αd over F2f , where d = 2i + 1. If (i, f) = 1, then C is a

quasi-perfect code.

Theorem 2.2. — Let α be a primitive root of F2f . The code C with zeros α, αd, αd′

and minimum distance 7, where d = 2i +1, and d′ = 2j +1, has covering radius 5 for

f > 8.

Theorem 2.2 provided an elementary proof for BCH(3), as well as the Non-BCH

triple error correcting codes of section 9.11 in [10]. Notice that the computation of

the covering radius of BCH(3) required 3 papers (see [1], [4], and [6]). The first

paper by J.A. van der Horst and T. Berger; the second paper by E.F. Assmus and

H.F. Mattson used the Delsarte’s bound, and the final paper by Helleseth invokes the

Weil-Carlitz-Uchiyama bound.

An immediate consequence of the above theorem is the calculation of the covering

radius of the Non-BCH triple correcting code of section 9.11 in [10].
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32 O. MORENO & F.N. CASTRO

Corollary 2.3. — Let f = 2t + 1 and α be a primitive root of F2f . The code C with

zeroes α, αd, αd′

, where d = 2t−1 + 1, and d′ = 2t + 1 has covering radius 5.

Let d1, d2 be distinct natural numbers. Let N(d1, d2, n, Fq) be the number of

solutions over Fq of the following system of polynomials equations:

xd1

1 + xd1

2 + xd1

3 = β1x
d1

4

xd2

1 + xd2

2 + xd2

3 = β2x
d2

4

Now we state a generalization of Theorem 2.1.

Theorem 2.4. — Let α be a primitive root of F2f and let C be the code of length

n = 2f − 1 with zeros αd1 , αd2 over F2f . We assume that the minimum distance of C

is 5. Then C is a quasi-perfect code whenever 4 divides N(d1, d2, 4, F2f ).

Theorem 2.5. — Let α be a primitive root of F22t+1 , and let C be the code of length

n = 22t+1 − 1 with zeros α2i+1, α2j+1. If C has minimum distance 5, then C is

quasi-perfect.

Corollary 2.6. — Let α be a primitive root of F2f .

(1) Let f = 2t + 1 and let C be the code of length n = 22t+1 − 1 with zeros

α2t−1+1, α2t+1 over F22t+1 , then C is a quasi-perfect code.

(2) Let C be the code of length n = 2f − 1 with zeros α, α22i−2i+1 over F2f , then

C is a quasi-perfect code whenever (i, f) = 1.

Remark 2.7. — Note that the dual of the code C with zeroes α and α22i−2i+1 over

F2f for f/(f, i) odd has three nonzero weights (Kasami code, see [7], [8]) and using

a result of Delsarte (see [10]) gives that the covering radius is 3. For the case when

f/(f, i) is even, the result of Delsarte implies that the covering radius of C is at

most 5.

3. On the Exact Value of Waring Number

In this section we introduce a new technique to compute the Waring number. This

is a criterion to decide if the Waring number is equal to 2. We also generalize Theorem

1.3. Let p be a prime number, for any integer a, define ordp(a) as follows:

ordp(a) = max{k | pk divides a}.

Let Nn(β) be the number of solutions of the equation xd
1 + xd

2 + · · ·+ xd
n−1 = βxd

n

over F
×
pf .

Lemma 3.1. — With the above notations. If σp(c(p
f −1)/d) > f(p − 1)/2 for 1 6 c 6

d − 1, then pdf/2e divide N3(β) for any β 6= 0.
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Proof. — The system of modular equations associated to xd
1 + xd

2 = βxd
3 is the fol-

lowing system:

dj1 ≡ 0 mod pf − 1

dj2 ≡ 0 mod pf − 1

dj3 ≡ 0 mod pf − 1

j1 + j2 + j3 ≡ pf − 1

(2)

(see [14, section 3] and [15, section IV]).

The solutions of the modular system of equations (2) determine the p-divisibility

of N3(β), i.e., if

µ = min
(j1,j2,j3)

is a solution of (2)

{σp(j1) + σp(j2) + σp(j3)

p − 1

}

− f,

then pµ divides N3(β). Theorem 8 in [14] implies that is enough to consider ji 6= 0

in the modular system (2). Note that the solutions of the first three equations are of

the form:

(3) ji =
c(pf − 1)

d
for 1 6 c 6 d,

since dji = c(pf − 1) where c 6 d. Note that if c = d, the ji = q − 1, hence

σp(ji) = f(p − 1). Therefore we only need to consider c’s satisfying 1 6 c 6 d − 1.

We now apply the function σp to (3) and obtain that

σp(ji) = σp

(c(pf − 1)

d

)

>
f(p − 1)

2
.

Therefore σp(j1)+σp(j2)+σp(j3) > 3f(p− 1)/2. Therefore µ >
3f
2 −f = f/2. Hence

pdf/2e divides N3(β).

Remark 3.2. — Note that if d has p-weight 2, then d satisfies hypothesis of Lemma

3.1. But there are many d’s such that σp(d) > 2 and σ2(c(p
f − 1)/d) > f(p − 1)/2

for 1 6 c 6 d − 1.

Theorem 3.3. — Let N(xd
1 +xd

2) be the number of solutions of the equation xd
1 +xd

2 = 0

over Fpf . If σp(c(p
f −1)/d) >

f(p−1)
2 for 1 6 c 6 d−1 and ordp(N(xd

1 +xd
2)) < df/2e,

then g(d, pf ) = 2.

Proof. — We need to prove that the following equation has a solution:

(4) xd
1 + xd

2 = β

for any β ∈ Fpf .

The proof consists of two steps:
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34 O. MORENO & F.N. CASTRO

Step 1. — Now we consider the homogenation of equation (4):

(5) xd
1 + xd

2 = βxd
3

By Lemma 3.1, the number of solutions of (5) is divisible by pf/2.

Step 2. — We will prove that the equation (4) has solutions with x3 6= 0. If the

equation (5) does not have solutions with x3 6= 0, then the equation

(6) xd
1 + xd

2 = 0

and equation (5) have the same number of solutions. But this is a contradiction since

pf/2 has to divide the number of solutions of (6) and ordp(N(xd
1 +xd

2)) < f/2. Hence

the equation (5) has at least one solution with x3 6= 0. Therefore the equation (4)

has at least one solution for any β ∈ Fq. Hence, we can conclude that g(d, pf ) 6 2.

We have that g(d, pf ) 6= 1 since d divides pf − 1.

Theorem 3.3 generalizes Theorem 1.3

Corollary 3.4

(1) If −1 is a dth power in Fpf , σp(c(p
f −1)/d) > f(p−1)/2 for 1 6 c 6 d−1 and

ordp(d− 1) < df/2e, then g(d, pf ) = 2. In particular, if the finite field has character-

istic 2, we have g(d, 2f ) = 2 whenever ord2(d− 1) < df/2e and = σp(c(p
f − 1)/d) >

f(p − 1)/2 for 1 6 c 6 d − 1.

(2) If σp(c(p
f − 1)/d) > f(p − 1)/2 for 1 6 c 6 d − 1, and −1 is not a dth power

in Fpf , then g(d, pf) = 2.

Proof. — In case (1) we have that xd
1 + xd

2 = 0 has (q − 1)d + 1 solutions over Fpf .

Applying Theorem 3.3, we obtain part (1) of Corollary 3.4. The proof of (2) is

similar.

Example 3.5. — Let q = 73. We are going to compute g(9, qf ) = 2. Note that

σ7(
73f−1

9 ) = 8f (this implies that 7 divide N3(β)) and −1 is a 9th power in Fqf .

Hence ord7(N(x9
1 + x9

2)) = 0 < 4f − 3f = f . Therefore g(9, qf ) = 2.

Corollary 3.6. — Let q = pf and let d be a divisor of q +1. If ordp(d− 1) < mf , then

g(d, q2m) = 2.

Proof. — Applying Corollary 3.4 and Theorem 1.2 we obtain the result.

Previous theorem gives the exact value of the Waring number for many unknown

cases.

Example 3.7. — Let q = 210. We are going to compute g(11, qf). Note that

ord2(11 − 1) = 1. Applying Corollary 3.6, we obtain that g(11, qf) = 2. Therefore

g(11, 2f) = 2 if 11 | (2f − 1) and 1 otherwise. The same argument can be applied to

d = 13, 19 and 43. Hence g(13, 212f) = 2, g(19, 218f) = 2 and g(43, 214f) = 2.
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In general we obtain the following theorem that gives a way to estimate the Waring

number:

Theorem 3.8. — Let N(xd
1 + · · · + xd

n−1) be the number of solutions of the equation

xd
1+· · ·+xd

n−1 = 0 over Fpf . Let l = min16c6d−1 σp(c·
pf−1

d ). We have g(d, pf ) 6 n−1

whenever

ordp

(

N(xd
1 + · · · + xd

n−1)
)

<
ml

p − 1
− f.

Proof. — The hypothesis of Theorem 3.8 implies that p
mt

p−1
−f divides Nn(β). If we

assume that the equation xd
1 + · · ·+xd

n−1 = β does not have a solution, then Nn(β) =

N(xd
1 + · · ·+xd

n−1). But this is a contradition to ordp

(

N(xd
1 + · · ·+xd

n−1)
)

< mt
p−1 −f .

Example 3.9. — We are going to compute g(73, 29f). Using the techniques introduced

in [15], it is easy to prove that N(x73
1 +x73

2 +x73
3 ) = 2k+1 for some natural number k.

Note that σ2((2
9f −1)/73) = 3f . Applying Theorem 3.8, we have g(73, 29f) 6 3. The

same argument can be applied to d = 23. Hence g(23, 211f) 6 3.

4. Previous Estimates for Waring Number of Large Finite Fields

I. Kaplansky made the following “outrageous conjecture” (according to C. Small in

[17]): for each fixed positive integer d, every element of every sufficiently large finite

field is a sum of two dth powers. In [17], C. Small showed that every finite field with

more than (d − 1)4 elements is sufficiently large. Now we state C. Small’s theorem:

Theorem 4.1. — Let d be a positive integer, let Fpf be a finite field, and put l =

(pf − 1, d). Assume l > (d − 1)4. Then

g(d, pf) 6 2.

In particular the conclusion holds if pf > (d − 1)4, since d > l.

Remark 4.2. — g(d, pf ) = 1 ⇐⇒ 1 = (pf − 1, d)

The following theorem is an improvement to Theorem 4.1 (see [9, Example 6.38]).

Theorem 4.3. — With above notations, we have that

g(d, pf ) 6 2 whenever pf >
1

4

(

(d − 1)(d − 2) +
√

d(d − 1)(d2 − 5d + 8)
)2

.

Theorems 4.1 and 4.3 give how large has to be Fpf to guarantee g(d, pf ) 6 2.

Let Nn be the number of solutions of the equation xd
1 +xd

2 + · · ·+xd
n−1 = βxd

n over

P
n−1(Fpf ). The following theorems provide estimates for Nn.
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Theorem 4.4(Serre Improvement of Weil’s Theorem)

|N3 − (pf + 1)| 6
(d − 1)(d − 2)

2
[2 pf/2].

Theorem 4.5(Deligne)

|Nn − (p(n−2)f + · · · + pf + 1)| 6
1

d
((d − 1)n + (−1)n(d − 1))p(n−2)f/2.

5. Calculation of Waring Number for Large Finite Fields

In [17], C. Small said that it would be interesting to know if the bound (l − 1)4

given in Theorem 4.1 is anywhere near the best possible. Motivated by this, we obtain

an improvement to the Small’s theorem.We also improved equation (1) in [19].

Remark 5.1. — Serre improvement of Weil’s theorem implies that g(d, pf ) = 2 when-

ever pf > (d − 1)( (d−2)
2 [2 pf/2] + 1). This gives a modest improvement to Theorem

4.3 (see Table 1).

g(d, p2t+1) = 2 Thm. 4.3 Remk. 5.1

g(3, p2t+1) = 2 for p2t+1 > 7 for p2t+1 > 8

g(4, p2t+1) = 2 for p2t+1 > 41 for p2t+1 > 39

g(5, p2t+1) = 2 for p2t+1 > 151 for p2t+1 > 142

g(6, p2t+1) = 2 for p2t+1 > 409 for p2t+1 > 405

g(7, p2t+1) = 2 for p2t+1 > 911 for p2t+1 > 906

g(8, p2t+1) = 2 for p2t+1 > 1777 for p2t+1 > 1750

g(9, p2t+1) = 2 for p2t+1 > 3151 for p2t+1 > 3116

g(10, p2t+1)=2 for p2t+1 > 5201 for p2t+1 > 5193

g(11, p2t+1) = 2 for p2t+1 > 8119 for p2t+1 > 8110

g(12, p2t+1) = 2 for p2t+1 > 12121 for p2t+1 > 12056

Table 1

In [17, 18, 16], C. Small considered finding the largest prime field requiring three

dth powers for d = 3, 4 and 5. Following this idea we want to find the largest prime

field such g(d, p) > 2 for d = 3, . . . , 9. Applying Remark 5.1 and the hypothesis that

d divides p − 1 we obtain Table 2

Now using the computer we calculated the largest prime field requiring at least

three dth powers to express its elements (see Table 3). We want to point out that in

[18], the cardinality of some of these prime fields can be found.
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g(3, p) = 2, p > 7 g(7, p) = 2, p > 883

g(4, p) = 2, p > 37 g(8, p) = 2, p > 1721

g(5, p) = 2, p > 131 g(9, p) = 2, pf > 3079

g(6, p) = 2, p > 397 g(10, p) = 2, p > 5171

Table 2

g(3, 7) > 2

g(4, 29) > 2

g(5, 61) > 2

g(6, 223) > 2

g(7, 127) > 2

g(8, 761) > 2

g(9, 307) > 2

Table 3. Largest Prime Fields Requiring at Least Three dth Powers

Remark 5.2. — Note that cases g(6, 223) > 2, g(8, 761) > 2 imply that the lower

bound on pf cannot be improved to (d − 1)3, since 223 > (6 − 1)3 = 125, 761 >

(8 − 1)3 > 716.

Let N4,0 be the number of solutions of the equation xd
1 +xd

2 +xd
3 = βxd

4 with x4 = 0

over P(Fpf ) and N4,1 be the number of solutions of the equation xd
1 + xd

2 + xd
3 = βxd

4

with x4 6= 0 over P(Fpf ). Now we estimate how large has to be Fpf to obtain that

g(d, pf ) 6 3.

Theorem 5.3. — g(d, pf ) 6 3 whenever p2f > (d−1)(d−2)
2 [2pf/2]+ 1

d((d−1)4+(d−1))pf .

Proof. — We need to prove that the following equation has a solution:

(7) xd
1 + xd

2 + xd
3 = β

for any β ∈ Fpf . Now consider the homogeneous of the equation (7):

(8) xd
1 + xd

2 + xd
3 = βxd

4

The proof consists of two steps:

Step 1. — By Theorem 4.5, we have that N4 satisfies

(9) |N4 − (p2f + pf + 1)| 6
1

d
((d − 1)4 + (d − 1))pf .
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Step 2. — We will prove that the equation (7) has a solution with x4 6= 0 for

p2f −
(d − 1)(d − 2)

2
[2pf/2] −

1

d
((d − 1)4 + (d − 1))pf > 0.

We have that

N4 > p2f + pf + 1 −
1

d
((d − 1)4 + (d − 1))pf .

Therefore

(10) N4,1 > p2f + pf + 1 − N4,0 −
1

d
((d − 1)4 + (d − 1))pf .

We can conclude that

p2f + pf + 1 − N4,0 −
1

d
((d − 1)4 + (d − 1))pf

> p2f −
(d − 1)(d − 2)

2
[2pf/2] −

1

d
((d − 1)4 + (d − 1))pf ,

since N4,0 6 pf + 1 + (d−1)(d−2)
2 [2pf/2]. This completes the proof.

Remark 5.4. — In Table 3, we computed the smallest prime field with g(d, p) > 2 for

i = 3, . . . , 9. Using Theorem 5.3, we have that g(d, p) 6 3 for (3, 7), (4, 29), (5, 61),

(6, 223), (8, 761). Hence we can compute the smallest prime field requiring three

d-powers (see Table 4).

g(3, 7) = 3

g(4, 29) = 3

g(5, 61) = 3

g(6, 223) = 3

g(8, 761) = 3

Table 4. Smallest Prime Fields Requiring Three dth Powers

Theorem 5.3 can be generalized to the following theorem.

Theorem 5.5. — We have that

g(d, pf) 6 n − 1

whenever

(11) dp(n−1)f/2 − ((d− 1)n +(−1)n(d− 1))pf/2 − ((d− 1)n−1 +(−1)n−1(d− 1)) > 0.
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ON WARING NUMBER FOR FINITE FIELDS 39

Remark 5.6. — Equation (14) in [19] gives the following estimate for g(d, pf ) 6 n− 1

whenever pf > (d − 1)2(n−1)/(n−2). Theorem 5.5 gives an improvement of it. Let

u = pf/2, then equation (11) becomes

dun−1 − ((d − 1)n + (−1)n(d − 1))u − ((d − 1)n−1 + (−1)n−1(d − 1) > 0.

If we evaluate this equation at u = (d − 1)(n−1)/(n−2), then

d(d − 1)(n−1)2/(n−2) − ((d − 1)n + (−1)n(d − 1))(d − 1)(n−1)/(n−2)

− ((d − 1)n−1 + (−1)n−1(d − 1)

= (d− 1)(n−1)2/(n−2) − (−1)n(d− 1)(2n−3)/(n−2) − (d− 1)n−1− (−1)n−1(d− 1) > 0

for d > 4.
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