On Free Pseudo-Product Fundamental Graded Lie Algebras

Tomoaki YATSUI

Department of Mathematics, Asahikawa Medical University, Asahikawa 078-8510, Japan E-mail: yatsui@asahikawa-med.ac.jp

Received December 16, 2011, in final form June 14, 2012; Published online June 27, 2012 http://dx.doi.org/10.3842/SIGMA.2012.038

Abstract. In this paper we first state the classification of the prolongations of complex free fundamental graded Lie algebras. Next we introduce the notion of free pseudo-product fundamental graded Lie algebras and study the prolongations of complex free pseudo-product fundamental graded Lie algebras. Furthermore we investigate the automorphism group of the prolongation of complex free pseudo-product fundamental graded Lie algebras.

 $\mathit{Key\ words:}\ \mathrm{fundamental\ graded\ Lie\ algebra;}\ \mathrm{prolongation;}\ \mathrm{pseudo-product\ graded\ Lie\ algebra}$

2010 Mathematics Subject Classification: 17B70

1 Introduction

Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a graded Lie algebra over the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers, and let μ be a positive integer. The graded Lie algebra $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ is called a fundamental graded Lie algebra if the following conditions hold: (i) \mathfrak{m} is finite-dimensional; (ii) $\mathfrak{g}_{-1} \neq \{0\}$, and \mathfrak{m} is generated by \mathfrak{g}_{-1} . Moreover a fundamental graded Lie algebra $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ is said to be of the μ -th kind if $\mathfrak{g}_{-\mu} \neq \{0\}$, and $\mathfrak{g}_p = \{0\}$ for all $p < -\mu$. It is shown that every fundamental graded algebra $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ is prolonged to a graded Lie algebra $\mathfrak{g}(\mathfrak{m}) = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}(\mathfrak{m})_p$ satisfying the following conditions: (i) $\mathfrak{g}(\mathfrak{m})_p = \mathfrak{g}_p$ for all p < 0; (ii) for $X \in \mathfrak{g}(\mathfrak{m})_p = \mathbb{Z}$ ($p \geq 0$), $[X, \mathfrak{m}] = \{0\}$ implies X = 0; (iii) $\mathfrak{g}(\mathfrak{m})$ is maximum among graded Lie algebras satisfying conditions (i) and (ii) above. The graded Lie algebra $\mathfrak{g}(\mathfrak{m})$ is called the prolongation of \mathfrak{m} . Note that $\mathfrak{g}(\mathfrak{m})_0$ is the Lie algebra of all the derivations of \mathfrak{m} as a graded Lie algebra.

Let $\mathfrak{m}=\bigoplus_{p<0}\mathfrak{g}_p$ be a fundamental graded Lie algebra of the μ -th kind, where $\mu\geq 2$. The fundamental graded Lie algebra \mathfrak{m} is called a free fundamental graded Lie algebra of type (n,μ) if the following universal properties hold:

- (i) dim $\mathfrak{g}_{-1} = n$;
- (ii) Let $\mathfrak{m}' = \bigoplus_{p < 0} \mathfrak{g}'_p$ be a fundamental graded Lie algebra of the μ -th kind and let φ be a surjective linear mapping of \mathfrak{g}_{-1} onto \mathfrak{g}'_{-1} . Then φ can be extended uniquely to a graded Lie algebra epimorphism of \mathfrak{m} onto \mathfrak{m}' .

In Section 3 we see that a universal fundamental graded Lie algebra $b(V, \mu)$ of the μ -th kind introduced by N. Tanaka [11] becomes a free fundamental graded Lie algebra of type (n, μ) , where $\mu \geq 2$, and V is a vector space such that dim $V = n \geq 2$.

In [13], B. Warhurst gave the complete list of the prolongations of real free fundamental graded Lie algebras by using a Hall basis of a free Lie algebra. The complex version of his theorem has the completely same form except for the ground number field as follows:

Theorem I. Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a free fundamental graded Lie algebra of type (n, μ) over \mathbb{C} . Then the prolongation $\mathfrak{g}(\mathfrak{m}) = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}(\mathfrak{m})_p$ of \mathfrak{m} is one of the following types:

- (a) $(n, \mu) \neq (n, 2)$ $(n \ge 2)$, (2, 3). In this case, $\mathfrak{g}(\mathfrak{m})_1 = \{0\}$.
- (b) $(n,\mu)=(n,2)$ $(n\geq 3)$, (2,3). In this case, $\dim \mathfrak{g}(\mathfrak{m})<\infty$ and $\mathfrak{g}(\mathfrak{m})_1\neq \{0\}$. Furthermore $\mathfrak{g}(\mathfrak{m})$ is isomorphic to a finite-dimensional simple graded Lie algebra of type $(B_n,\{\alpha_n\})$ $(n\geq 3)$ or $(G_2,\{\alpha_1\})$ (n=2) (see [15] or Section 5 for the gradations of finite-dimensional simple graded Lie algebras over \mathbb{C}).
- (c) $(n, \mu) = (2, 2)$. In this case, $\dim \mathfrak{g}(\mathfrak{m}) = \infty$. Furthermore, $\mathfrak{g}(\mathfrak{m})$ is isomorphic to the contact algebra K(1) as a graded Lie algebra.

The first purpose of this paper is to give a proof of Theorem I by using the classification of complex irreducible transitive graded Lie algebras of finite depth (cf. [6]). Note that Warhurst's methods in [13] are available to the proof of Theorem I.

Next we introduce the notion of free pseudo-product fundamental graded Lie algebras. Let $\mathfrak{m} = \bigoplus_{p<0} \mathfrak{g}_p$ be a fundamental graded Lie algebra, and let \mathfrak{e} and \mathfrak{f} be nonzero subspaces of \mathfrak{g}_{-1} .

Then \mathfrak{m} is called a pseudo-product fundamental graded Lie algebra with pseudo-product structure $(\mathfrak{e},\mathfrak{f})$ if the following conditions hold: (i) $\mathfrak{g}_{-1}=\mathfrak{e}\oplus\mathfrak{f};$ (ii) $[\mathfrak{e},\mathfrak{e}]=[\mathfrak{f},\mathfrak{f}]=\{0\}$ (cf. [10]).

Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a pseudo-product fundamental graded Lie algebra with a pseudo-product structure $(\mathfrak{e}, \mathfrak{f})$, and let $\mathfrak{g}(\mathfrak{m}) = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}(\mathfrak{m})_p$ be the prolongation of \mathfrak{m} . Moreover let \mathfrak{g}_0 be the Lie algebra of all the derivations of \mathfrak{m} as a graded Lie algebra preserving \mathfrak{e} and \mathfrak{f} . Also for $p \geq 1$ we set $\mathfrak{g}_p = \{X \in \mathfrak{g}(\mathfrak{m})_p : [X, \mathfrak{g}_k] \subset \mathfrak{g}_{p+k} \text{ for all } k < 0\}$ inductively. Then the direct sum $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ becomes a graded subalgebra of $\mathfrak{g}(\mathfrak{m})$, which is called the prolongation of $(\mathfrak{m}; \mathfrak{e}, \mathfrak{f})$.

Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a pseudo-product fundamental graded Lie algebra of the μ -th kind with pseudo-product structure $(\mathfrak{e}, \mathfrak{f})$, where $\mu \geq 2$. The pseudo-product fundamental graded Lie algebra $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ is called a free pseudo-product fundamental graded Lie algebra of type (m, n, μ) if the following conditions hold:

- (i) dim $\mathfrak{e} = m$ and dim $\mathfrak{f} = n$;
- (ii) Let $\mathfrak{m}' = \bigoplus_{p < 0} \mathfrak{g}'_p$ be a pseudo-product fundamental graded Lie algebra of the μ -th kind with pseudo-product structure $(\mathfrak{e}', \mathfrak{f}')$ and let φ be a surjective linear mapping of \mathfrak{g}_{-1} onto \mathfrak{g}'_{-1} such that $\varphi(\mathfrak{e}) \subset \mathfrak{e}'$ and $\varphi(\mathfrak{f}) \subset \mathfrak{f}'$. Then φ can be extended uniquely to a graded Lie algebra epimorphism of \mathfrak{m} onto \mathfrak{m}' .

The main purpose of this paper is to prove the following theorem.

Theorem II. Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a free pseudo-product fundamental graded Lie algebra of type (m, n, μ) with pseudo-product structure $(\mathfrak{e}, \mathfrak{f})$ over \mathbb{C} , and let $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ be the prolongation of $(\mathfrak{m}; \mathfrak{e}, \mathfrak{f})$. If $\mathfrak{g}_1 \neq \{0\}$, then $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ is a finite-dimensional simple graded Lie algebra of type $(A_{m+n}, \{\alpha_m, \alpha_{m+1}\})$.

Let $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ be the prolongation of a free pseudo-product fundamental graded Lie algebra $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ with pseudo-product structure $(\mathfrak{e}, \mathfrak{f})$ over \mathbb{C} . We denote by $\operatorname{Aut}(\mathfrak{g}; \mathfrak{e}, \mathfrak{f})_0$ the group of all the automorphisms as a graded Lie algebra preserving \mathfrak{e} and \mathfrak{f} , which is called the automorphism group of the pseudo-product graded Lie algebra $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$. In Section 9, we show that $\operatorname{Aut}(\mathfrak{g}; \mathfrak{e}, \mathfrak{f})_0$ is isomorphic to $\operatorname{GL}(\mathfrak{e}) \times \operatorname{GL}(\mathfrak{f})$.

Notation and conventions

- (1) From Section 2 to the last section, all vector spaces are considered over the field \mathbb{C} of complex numbers.
- (2) Let V be a vector space and let W_1 and W_2 be subspaces of V. We denote by $W_1 \wedge W_2$ the subspace of $\Lambda^2 V$ spanned by all the elements of the form $w_1 \wedge w_2$ ($w_1 \in W_1, w_2 \in W_2$).
- (3) Graded vector spaces are always \mathbb{Z} -graded. If we write $V = \bigoplus_{p < 0} V_p$, then it is understood that $V_p = \{0\}$ for all $p \geq 0$. Let $V = \bigoplus_{p \in \mathbb{Z}} V_p$ be a graded vector space. We denote by V_- the subspace $V = \bigoplus_{p < 0} V_p$. Also for $k \in \mathbb{Z}$ we denote by $V_{\leq k}$ the subspace $\bigoplus_{p \leq k} V_p$.

Let
$$V = \bigoplus_{p \in \mathbb{Z}} V_p$$
 and $W = \bigoplus_{p \in \mathbb{Z}} W_p$ be graded vector spaces. For $r \in \mathbb{Z}$, we set

$$\operatorname{Hom}(V,W)_r = \{ \varphi \in \operatorname{Hom}(V,W) : \varphi(V_p) \subset W_{p+r} \text{ for all } p \in \mathbb{Z} \}.$$

2 Free fundamental graded Lie algebras

First of all we give several definitions about graded Lie algebras. Let \mathfrak{g} be a Lie algebra. Assume that there is given a family of subspaces $(\mathfrak{g}_p)_{p\in\mathbb{Z}}$ of \mathfrak{g} satisfying the following conditions:

- $(i) \ \mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p;$
- (ii) dim $\mathfrak{g}_p < \infty$ for all $p \in \mathbb{Z}$;
- (iii) $[\mathfrak{g}_p,\mathfrak{g}_q] \subset \mathfrak{g}_{p+q}$ for all $p,q \in \mathbb{Z}$.

Under these conditions, we say that $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ is a graded Lie algebra (GLA). Moreover we define the notion of homomorphism, isomorphism, monomorphism, epimorphism, subalgebra and ideal for GLAs in an obvious manner.

A GLA $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ is called transitive if for $X \in \mathfrak{g}_p$ $(p \ge 0)$, $[X, \mathfrak{g}_-] = \{0\}$ implies X = 0, where \mathfrak{g}_- is the negative part $\bigoplus_{p < 0} \mathfrak{g}_p$ of \mathfrak{g} . Furthermore a GLA $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ is called irreducible if the \mathfrak{g}_0 -module \mathfrak{g}_{-1} is irreducible.

Let μ be a positive integer. A GLA $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ is said to be of depth μ if $\mathfrak{g}_{-\mu} \neq \{0\}$ and $\mathfrak{g}_p = \{0\}$ for all $p < -\mu$.

Next we define fundamental GLAs. A GLA $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ is called a fundamental graded Lie algebra (FGLA) if the following conditions hold:

- (i) $\dim \mathfrak{m} < \infty$;
- (ii) $\mathfrak{g}_{-1} \neq \{0\}$, and \mathfrak{m} is generated by \mathfrak{g}_{-1} , or more precisely $\mathfrak{g}_{p-1} = [\mathfrak{g}_p, \mathfrak{g}_{-1}]$ for all p < 0.

If an FGLA $\mathfrak{m} = \bigoplus_{p<0} \mathfrak{g}_p$ is of depth μ , then \mathfrak{m} is also said to be of the μ -th kind. Moreover an FGLA $\mathfrak{m} = \bigoplus \mathfrak{g}_p$ is called non-degenerate if for $X \in \mathfrak{g}_{-1}$, $[X, \mathfrak{g}_{-1}] = \{0\}$ implies X = 0.

FGLA $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ is called non-degenerate if for $X \in \mathfrak{g}_{-1}$, $[X, \mathfrak{g}_{-1}] = \{0\}$ implies X = 0. Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be an FGLA of the μ -th kind, where $\mu \geq 2$. \mathfrak{m} is called a free fundamental graded Lie algebra of type (n, μ) if the following conditions hold:

- (i) dim $\mathfrak{g}_{-1} = n$;
- (ii) Let $\mathfrak{m}' = \bigoplus_{p < 0} \mathfrak{g}'_p$ be an FGLA of the μ -th kind and let φ be a surjective linear mapping of \mathfrak{g}_{-1} onto \mathfrak{g}'_{-1} . Then φ can be extended uniquely to a GLA epimorphism of \mathfrak{m} onto \mathfrak{m}' .

Proposition 2.1. Let n and μ be positive integers such that $n, \mu \geq 2$.

- (1) There exists a unique free FGLA of type (n, μ) up to isomorphism.
- (2) Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a free FGLA of type (n, μ) . We denote by $\operatorname{Der}(\mathfrak{m})_0$ the Lie algebra of all the derivations of \mathfrak{m} preserving the gradation of \mathfrak{m} . Then the mapping $\Phi : \operatorname{Der}(\mathfrak{m})_0 \ni D \mapsto D|\mathfrak{g}_{-1} \in \mathfrak{gl}(\mathfrak{g}_{-1})$ is a Lie algebra isomorphism.

Proof. (1) The uniqueness of a free FGLA of type (n,μ) follows from the definition. We set $X = \{1,\ldots,n\}$. Let L(X) be the free Lie algebra on X (see [1, Chapter II, § 2]) and let $i: X \to L(X)$ be the canonical injection. We define a mapping ϕ of X into \mathbb{Z} by $\phi(k) = -1$ $(k \in X)$. The mapping ϕ defines the natural gradation $(L(X)_p)_{p<0}$ on L(X) such that: (i) L(X) is generated by $L(X)_{-1}$; (ii) $\{i(1),\ldots,i(n)\}$ is a basis of $L(X)_{-1}$ (see [1, Chapter II, § 2, no. 6]). Note that if n > 1, then $L(X)_p \neq 0$ for all p < 0. We set $\mathfrak{a} = \bigoplus_{p < -\mu} L(X)_p$; then \mathfrak{a} is a graded ideal of L(X) and the factor GLA $\mathfrak{m} = L(X)/\mathfrak{a}$ becomes an FGLA of the μ -th kind. We put $\mathfrak{a}_p = \mathfrak{a} \cap L(X)_p$ and $\mathfrak{g}_p = L(X)_p/\mathfrak{a}_p$.

Now we prove that $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ is a free FGLA of type (n, μ) . Let $\mathfrak{m}' = \bigoplus_{p < 0} \mathfrak{g}'_p$ be an FGLA of the μ -th kind and let φ be a surjective linear mapping of \mathfrak{g}_{-1} onto \mathfrak{g}'_{-1} . Let h be a mapping of X into \mathfrak{m}' defined by $h(k) = \varphi(i(k))$ $(k \in X)$. Then there exists a Lie algebra homomorphism \tilde{h} of L(X) into \mathfrak{m}' such that $\tilde{h} \circ i = h$. Since L(X) (resp. \mathfrak{m}') is generated by $L(X)_{-1}$ (resp. \mathfrak{g}'_{-1}), \tilde{h} is surjective. Since $\mathfrak{m}' = \bigoplus_{p < 0} \mathfrak{g}'_p$ is of the μ -th kind, $\tilde{h}(\mathfrak{a}) = 0$, so \tilde{h} induces a GLA epimorphism $L(\varphi)$ of \mathfrak{m} onto \mathfrak{m}' such that $L(\varphi)|\mathfrak{g}_{-1} = \varphi$. The homomorphism $L(\varphi)$ is unique, because $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ is generated by \mathfrak{g}_{-1} . Thus \mathfrak{m} is a free FGLA of type (n, μ) .

(2) Assume that \mathfrak{m} is a free FGLA constructed in (1). Let ϕ be an endomorphism of \mathfrak{g}_{-1} . By Corollary to Proposition 8 of [1, Chapter II, § 2, no. 8], ϕ can be extended uniquely to a unique derivation D of L(X). Since $D(L(X)_{-1}) = \phi(L(X)_{-1}) = \phi(\mathfrak{g}_{-1}) \subset L(X)_{-1}$, and since L(X) is generated by $L(X)_{-1}$, we see that $D(L(X)_p) \subset L(X)_p$ and $D(\mathfrak{a}) \subset \mathfrak{a}$. Thus there is a derivation of D_{ϕ} of \mathfrak{m} such that $\pi \circ D = D_{\phi} \circ \pi$, where π is the natural projection of L(X) onto \mathfrak{m} . The correspondence $\mathfrak{gl}(\mathfrak{g}_{-1}) \ni \phi \mapsto D_{\phi} \in \mathrm{Der}(\mathfrak{m})_0$ is an injective linear mapping. Hence $\dim \mathfrak{gl}(\mathfrak{g}_{-1}) \subseteq \dim \mathrm{Der}(\mathfrak{m})_0$. On the other hand, since \mathfrak{m} is generated by \mathfrak{g}_{-1} , the mapping Φ is a Lie algebra monomorphism. Therefore Φ is a Lie algebra isomorphism.

Remark 2.1. Let n and μ be positive integers with $n, \mu \geq 2$, and let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a free FGLA of type (n, μ) . Furthermore let $\mathfrak{m}' = \bigoplus_{p < 0} \mathfrak{g}'_p$ be an FGLA of the μ -th kind, and let φ be a linear mapping of \mathfrak{g}_{-1} into \mathfrak{g}'_{-1} .

(1) From the proof of Proposition 2.1, there exists a unique GLA homomorphism $L(\varphi)$ of \mathfrak{m} into \mathfrak{m}' such that $L(\varphi)|_{\mathfrak{g}_{-1}} = \varphi$.

- (2) Let $\mathfrak{m}'' = \bigoplus_{p < 0} \mathfrak{g}_p''$ be an FGLA of the μ -th kind, and let φ' be a linear mapping of \mathfrak{g}_{-1}' into \mathfrak{g}_{-1}'' . Assume that $\mathfrak{m}' = \bigoplus_{p < 0} \mathfrak{g}_p'$ is a free FGLA. By the uniqueness of $L(\varphi' \circ \varphi)$, we see that $L(\varphi' \circ \varphi) = L(\varphi') \circ L(\varphi)$.
- (3) Assume that $\mathfrak{m}' = \bigoplus_{p<0} \mathfrak{g}'_p$ is a free FGLA and φ is injective. By the result of (2), $L(\varphi)$ is a monomorphism.
- (4) Let W be an m-dimensional subspace of \mathfrak{g}_{-1} with $m \geq 2$. By the result of (3), the subalgebra of \mathfrak{m} generated by W is a free FGLA of type (m, μ) .

By Remark 2.1 (4) and [1, Chapter II, § 2, Theorem 1], we get the following lemma.

Lemma 2.1. Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a free FGLA of type (n, μ) with $\mu \geq 3$. If X, Y are linearly independent elements of \mathfrak{g}_{-1} , then

$$ad(X)^{\mu}(Y) = 0,$$
 $ad(X)^{\mu-1}(Y) \neq 0,$
 $ad(Y) ad(X)^{\mu-1}(Y) = 0,$ $ad(Y) ad(X)^{\mu-2}(Y) \neq 0.$

3 Universal fundamental graded Lie algebras

Following N. Tanaka [11], we introduce universal FGLAs of the μ -th kind.

Let V be an n-dimensional vector space. We define vector spaces $b(V)_p$ (p < 0) and linear mappings B_p of $\sum_{r+s=p} b(V)_r \wedge b(V)_s$ into $b(V)_p$ $(p \le -2)$ as follows: First of all, we put $b(V)_{-1} = V$ and $b(V)_{-2} = \Lambda^2 V$. Further we define a mapping $B_{-2} : b(V)_{-1} \wedge b(V)_{-1} \to b(V)_{-2}$ to be the identity mapping. For $k \le -3$, we define $b(V)_k$ and B_k inductively as follows: We set $b(V)^{(k+1)} = \bigoplus_{p=-1}^{k+1} b(V)_p$ and we define a subspace $c(V)_k$ of $\Lambda^2(b(V)^{(k+1)})$ to be $\sum_{r+s=k} b(V)_r \wedge b(V)_s$. We denote by $A(V)_k$ the subspace of $c(V)_k$ spanned by the elements

$$\mathfrak{S}_{(X,Y,Z)} \sum_{r+s=k} \sum_{u+v=r} B_r(X_u \wedge Y_v) \wedge Z_s, \qquad X, Y, Z \in b(V)^{(k+1)},$$

where $\mathfrak{S}_{(X,Y,Z)}$ stands for the cyclic sum with respect to $X,\,Y,\,Z$, and X_u denotes the $b(V)_u$ component in the decomposition $b(V)^{(k+1)} = \bigoplus_{p=-1}^{k+1} b(V)_p$. Now we define $b(V)_k$ to be the factor
space $c(V)_k/A(V)_k$, and B_k to be the projection of $c(V)_k$ onto $b(V)_k$. We put $b(V) = \bigoplus_{p<0} b(V)_p$ and define a bracket operation $[\ ,\]$ on b(V) by

$$[X,Y] = \sum_{p \le -2} \sum_{r+s=p} B_p(X_r \land Y_s)$$

for all $X, Y \in b(V)$. Then $b(V) = \bigoplus_{p < 0} b(V)_p$ becomes a GLA generated by $b(V)_{-1}$, and $b(V)_p \neq 0$ for all p < 0 if dim V > 1.

Note that $b(V)_{-3}$ is isomorphic to $\Lambda^2(V) \otimes V/\Lambda^3V$. Let μ be a positive integer. Assume that $\mu \geq 2$ and dim $V = n \geq 2$. Since $\bigoplus_{p < -\mu} b(V)_p$ is a graded ideal of b(V), we see that the factor space $b(V,\mu) = b(V)/\bigoplus_{p < -\mu} b(V)_p$ becomes an FGLA of μ -th kind, which is called a universal fundamental graded Lie algebra of the μ -th kind. By [11, Proposition 3.2], $b(V,\mu)$ is a free FGLA of type (n,μ) .

4 The prolongations of fundamental graded Lie algebras

Following N. Tanaka [11], we introduce the prolongations of FGLAs. Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be an FGLA. A GLA $\mathfrak{g}(\mathfrak{m}) = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}(\mathfrak{m})_p$ is called the prolongation of \mathfrak{m} if the following conditions hold:

- (i) $\mathfrak{g}(\mathfrak{m})_p = \mathfrak{g}_p$ for all p < 0;
- (ii) $\mathfrak{g}(\mathfrak{m})$ is a transitive GLA;
- (iii) If $\mathfrak{h} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{h}_p$ is a GLA satisfying conditions (i) and (ii) above, then $\mathfrak{h} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{h}_p$ can be embedded in $\mathfrak{g}(\mathfrak{m})$ as a GLA.

We construct the prolongation $\mathfrak{g}(\mathfrak{m}) = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}(\mathfrak{m})_p$ of \mathfrak{m} . We set $\mathfrak{g}(\mathfrak{m})_p = \mathfrak{g}_p$ (p < 0). We define subspaces $\mathfrak{g}(\mathfrak{m})_k$ $(k \ge 0)$ of $\mathrm{Hom}(\mathfrak{m}, \bigoplus_{p \le k-1} \mathfrak{g}(\mathfrak{m})_p)_k$ and a bracket operation on $\mathfrak{g}(\mathfrak{m}) = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}(\mathfrak{m})_p$ inductively. First $\mathfrak{g}(\mathfrak{m})_0$ is defined to be $\mathrm{Der}(\mathfrak{m})_0$ and a bracket operation $[\ ,\]: \bigoplus_{p \le 0} \mathfrak{g}(\mathfrak{m})_p \times \bigoplus_{p \le 0} \mathfrak{g}(\mathfrak{m})_p \to \bigoplus_{p \le 0} \mathfrak{g}(\mathfrak{m})_p$ is defined by

$$[X,Y] = -[Y,X] = X(Y),$$
 $X \in \mathfrak{g}(\mathfrak{m})_0,$ $Y \in \mathfrak{m},$ $[X,Y] = XY - YX,$ $X,Y \in \mathfrak{g}(\mathfrak{m})_0.$

Next for k > 0 we define $\mathfrak{g}(\mathfrak{m})_k$ $(k \ge 1)$ inductively as follows:

$$\mathfrak{g}(\mathfrak{m})_k = \Big\{ X \in \mathrm{Hom} \left(\mathfrak{m}, \bigoplus_{p \leqq k-1} \mathfrak{g}(\mathfrak{m})_p \right)_k \colon X([u,v]) = [X(u),v] + [u,X(v)] \text{ for all } u,v \in \mathfrak{m} \Big\},$$

where for $X \in \mathfrak{g}(\mathfrak{m})_r$, $u \in \mathfrak{m}$, we set [X, u] = -[u, X] = X(u). Further for $X \in \mathfrak{g}(\mathfrak{m})_k$, $Y \in \mathfrak{g}(\mathfrak{m})_l$ $(k, l \ge 0)$, by induction on $k + l \ge 0$, we define $[X, Y] \in \mathrm{Hom}(\mathfrak{m}, \mathfrak{g}(\mathfrak{m}))_{k+l}$ by

$$[X,Y](u)=[X,[Y,u]]-[Y,[X,u]], \qquad u\in\mathfrak{m}.$$

It follows easily that $[X,Y] \in \mathfrak{g}(\mathfrak{m})_{k+l}$. With this bracket operation, $\mathfrak{g}(\mathfrak{m}) = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}(\mathfrak{m})_p$ becomes a graded Lie algebra satisfying conditions (i), (ii) and (iii) above.

Let \mathfrak{m} and $\mathfrak{g}(\mathfrak{m})$ be as above. Assume that we are given a subalgebra \mathfrak{g}_0 of $\mathfrak{g}(\mathfrak{m})_0$. We define subspaces \mathfrak{g}_k $(k \ge 1)$ of $\mathfrak{g}(\mathfrak{m})_k$ inductively as follows:

$$\mathfrak{g}_k = \{X \in \mathfrak{g}(\mathfrak{m})_k : [X, \mathfrak{g}_p] \subset \mathfrak{g}_{p+k} \text{ for all } p < 0\}.$$

If we put $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$, then $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ becomes a transitive graded Lie subalgebra of $\mathfrak{g}(\mathfrak{m})$, which is called the prolongation of $(\mathfrak{m}, \mathfrak{g}_0)$.

By Proposition 2.1 (2) we get the following proposition.

Proposition 4.1. Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a free FGLA and let $\mathfrak{g}(\mathfrak{m}) = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}(\mathfrak{m})_p$ be the prolongation of \mathfrak{m} . Then the mapping $\mathfrak{g}(\mathfrak{m})_0 \ni D \mapsto D|\mathfrak{g}_{-1} \in \mathfrak{gl}(\mathfrak{g}_{-1})$ is an isomorphism.

Conversely we obtain the following proposition.

Proposition 4.2. Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be an FGLA of the μ -th kind and let $\mathfrak{g}(\mathfrak{m}) = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}(\mathfrak{m})_p$ be the prolongation of \mathfrak{m} . Assume that $\mathfrak{g}(\mathfrak{m})_0$ is isomorphic to $\mathfrak{gl}(\mathfrak{g}_{-1})$. If $\mu = 2$ or $\mu = 3$, then \mathfrak{m} is a free FGLA.

Proof. We put $n = \dim \mathfrak{g}_{-1}$. We consider a universal FGLA $b(\mathfrak{g}_{-1}, \mu) = \bigoplus_{p < 0} b(\mathfrak{g}_{-1}, \mu)_p$ of the μ -th kind. Since $b(\mathfrak{g}_{-1}, \mu)$ is a free FGLA of type (n, μ) , there exists a GLA epimorphism φ of $b(\mathfrak{g}_{-1}, \mu)$ onto \mathfrak{m} such that the restriction $\varphi|b(\mathfrak{g}_{-1}, \mu)_{-1}$ is the identity mapping. Let $\check{b}(\mathfrak{g}_{-1}, \mu) = \bigoplus_{p \in \mathbb{Z}} \check{b}(\mathfrak{g}_{-1}, \mu)_p$ be the prolongation of $b(\mathfrak{g}_{-1}, \mu)$. Since the mapping $\mathfrak{g}(\mathfrak{m})_0 \ni D \mapsto D|\mathfrak{g}_{-1} \in \mathfrak{gl}(\mathfrak{g}_{-1})$ is an isomorphism, φ can be extended to be a homomorphism $\check{\varphi}$ of $\bigoplus_{p \le 0} \check{b}(\mathfrak{g}_{-1}, \mu)_p$ onto $\bigoplus_{p \le 0} \mathfrak{g}(\mathfrak{m})_p$. Let \mathfrak{a} be the kernel of $\check{\varphi}$; then \mathfrak{a} is a graded ideal of $\bigoplus_{p \le 0} \check{b}(\mathfrak{g}_{-1}, \mu)_p$. We set $\mathfrak{a}_p = \mathfrak{a} \cap \check{b}(\mathfrak{g}_{-1}, \mu)_p$; then $\mathfrak{a} = \bigoplus_{p \le 0} \mathfrak{a}_p$. Since the restriction of $\check{\varphi}$ to $\check{b}(\mathfrak{g}_{-1}, \mu)_{-1} \oplus \check{b}(\mathfrak{g}_{-1}, \mu)_0$ is injective, $\mathfrak{a}_p = \{0\}$ for $p \ge -1$.

Also each \mathfrak{a}_p is a $\check{b}(\mathfrak{g}_{-1},\mu)_0$ -submodule of $\check{b}(\mathfrak{g}_{-1},\mu)_p$. From the construction of $b(\mathfrak{g}_{-1},\mu)$, we see that $b(\mathfrak{g}_{-1},\mu)_{-2}$ (resp. $b(\mathfrak{g}_{-1},\mu)_{-3}$) is isomorphic to $\Lambda^2(\mathfrak{g}_{-1})$ (resp. $\Lambda^2(\mathfrak{g}_{-1})\otimes\mathfrak{g}_{-1}/\Lambda^3(\mathfrak{g}_{-1})$) as a $\check{b}(\mathfrak{g}_{-1},\mu)_0$ -module. By the table of [8], $\Lambda^2(\mathfrak{g}_{-1})$ and $\Lambda^2(\mathfrak{g}_{-1})\otimes\mathfrak{g}_{-1}/\Lambda^3(\mathfrak{g}_{-1})$ are irreducible $\mathfrak{gl}(\mathfrak{g}_{-1})$ -modules. Thus we see that $\mathfrak{a}_{-2}=\mathfrak{a}_{-3}=\{0\}$. From $\mu\leq 3$ it follows that φ is an isomorphism.

5 Finite-dimensional simple graded Lie algebras

Following [15], we first state the classification of finite-dimensional simple GLAs.

Let $\mathfrak{g}=\bigoplus_{p\in\mathbb{Z}}\mathfrak{g}_p$ be a finite-dimensional simple GLA of the μ -th kind over \mathbb{C} such that the negative part \mathfrak{g}_- is an FGLA. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}_0 ; then \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} such that $E\in\mathfrak{h}$, where E is the element of \mathfrak{g}_0 such that [E,x]=px for all $x\in\mathfrak{g}_p$ and p. Let Δ be a root system of $(\mathfrak{g},\mathfrak{h})$. For $\alpha\in\Delta$, we denote by \mathfrak{g}^α the root space corresponding to α . We set $\mathfrak{h}_{\mathbb{R}}=\{h\in\mathfrak{h}:\alpha(h)\in\mathbb{R}\text{ for all }\alpha\in\Delta\}$ and let (h_1,\ldots,h_l) be a basis of $\mathfrak{h}_{\mathbb{R}}$ such that $h_1=E$. We define the set of positive roots Δ^+ as the set of roots which are positive with respect to the lexicographical ordering in $\mathfrak{h}_{\mathbb{R}}^*$ determined by the basis (h_1,\ldots,h_l) of $\mathfrak{h}_{\mathbb{R}}$. Let $\Pi\subset\Delta^+$ be the corresponding simple root system. We denote by $\{m_1,\ldots,m_l\}$ the coordinate functions corresponding to Π , i.e., for $\alpha\in\Delta$, we can write $\alpha=\sum_{i=1}^l m_i(\alpha)\alpha_i$.

We set $\alpha_i(E) = s_i$ and $\mathbf{s} = (s_1, \dots, s_l)$; then each s_i is a non-negative integer. For $\alpha \in \Delta$, we call the integer $\ell_{\mathbf{s}}(\alpha) = \sum_{i=1}^{l} m_i(\alpha) s_i$ the s-length of α . We put $\Delta_p = \{\alpha \in \Delta : \ell_{\mathbf{s}}(\alpha) = p\}$, $\Pi_p = \Delta_p \cap \Pi$ and $I = \{i \in \{1, \dots, l\} : s_i = 1\}$. Let θ be the highest root of \mathfrak{g} ; then $\ell_{\mathbf{s}}(\theta) = \mu$. Also since the \mathfrak{g}_0 -module $\mathfrak{g}_{-\mu}$ is irreducible, dim $\mathfrak{g}_{-\mu} = 1$ if and only if $\langle \theta, \alpha_i^\vee \rangle = 0$ for all $i \in \{1, \dots, l\} \setminus I$, where $\{\alpha_i^\vee\}$ is the simple root system of the dual root system Δ^\vee of Δ corresponding to $\{\alpha_i\}$. In our situation, since \mathfrak{g}_- is generated by \mathfrak{g}_{-1} , we have $s_i = 0$ or 1 for all i. The l-tuple $\mathbf{s} = (s_1, \dots, s_l)$ of non-negative integers is determined only by the ordering of $(\alpha_1, \dots, \alpha_l)$. In what follows, we assume that the ordering of $(\alpha_1, \dots, \alpha_l)$ is as in the table of [2]. If \mathfrak{g} has the Dynkin diagram of type X_l ($X = A, \dots, G$), then the simple GLA $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ is said

to be of type (X_l, Π_1) . Here we remark that for an automorphism $\bar{\mu}$ of the Dynkin diagram, a simple GLA of type (X_l, Π_1) is isomorphic to that of type $(X_l, \bar{\mu}(\Pi_1))$. We will identify a simple GLA of type (X_l, Π_1) with that of type $(X_l, \bar{\mu}(\Pi_1))$.

For $i \in I$, we put $\Delta_p^{(i)} = \{\alpha \in \Delta : m_i(\alpha) = p \text{ and } m_j(\alpha) = 0 \text{ for } j \in I \setminus \{i\}\}$ and $\mathfrak{g}_p^{(i)} = \sum_{\alpha \in \Delta_p^{(i)}} \mathfrak{g}^{\alpha}$; then $\mathfrak{g}_{-1}^{(i)}$ is an irreducible \mathfrak{g}_0 -submodule of \mathfrak{g}_{-1} with highest weight $-\alpha_i$. In

particular, if the \mathfrak{g}_0 -module \mathfrak{g}_{-1} is irreducible, then #(I) = 1.

For $i \in I$, we denote by $\mathfrak{g}^{(i)}$ the subalgebra of \mathfrak{g} generated by $\mathfrak{g}_{-1}^{(i)} \oplus \mathfrak{g}_{1}^{(i)}$; then $\mathfrak{g}^{(i)}$ is a simple GLA whose Dynkin diagram is the connected component containing the vertex i of the subdiagram of X_l corresponding to vertices $(\{1,\ldots,l\}\setminus I)\cup\{i\}$. We denote by $\theta^{(i)}$ the highest root of $\mathfrak{g}^{(i)}$. Then $[\mathfrak{g}_{-1}^{(i)},\mathfrak{g}_{-1}^{(i)}]=\{0\}$ if and only if $m_i(\theta^{(i)})=1$.

From Theorem 5.2 of [15], we obtain the following theorem:

Theorem 5.1. Let $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ be a finite-dimensional simple GLA over \mathbb{C} such that \mathfrak{g}_- is an FGLA and the \mathfrak{g}_0 -module \mathfrak{g}_{-1} is irreducible. Then $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ is the prolongation of \mathfrak{g}_- except for the following cases:

- (a) \mathfrak{g}_{-} is of the first kind;
- (b) \mathfrak{g}_{-} is of the second kind and $\dim \mathfrak{g}_{-2} = 1$.

Let $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ be a finite-dimensional simple GLA. Now we assume that \mathfrak{g}_0 is isomorphic to $\mathfrak{gl}(\mathfrak{g}_{-1})$; then the \mathfrak{g}_0 -module \mathfrak{g}_{-1} is irreducible. The derived subalgebra $[\mathfrak{g}_0, \mathfrak{g}_0]$ of \mathfrak{g}_0 is a semisimple Lie algebra whose Dynkin diagram is the subdiagram of X_l consisting of the vertices $\{1, \ldots, l\} \setminus I$. Since $[\mathfrak{g}_0, \mathfrak{g}_0]$ is of type A_{l-1} and since the \mathfrak{g}_0 -module \mathfrak{g}_{-1} is elementary, (X_l, Δ_1) is one of the following cases:

$$(A_l, \{\alpha_1\}), (B_l, \{\alpha_l\}), l \ge 2, (G_2, \{\alpha_1\}).$$

From this result and Propositions 4.1 and 4.2, we get the following theorem:

Theorem 5.2. Let $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ be a finite-dimensional simple GLA of type (X_l, Π_1) over \mathbb{C} satisfying the following conditions:

- (i) \mathfrak{g}_{-} is an FGLA of the μ -th kind;
- (ii) The \mathfrak{g}_0 -module \mathfrak{g}_{-1} is irreducible;
- (iii) \mathfrak{g}_0 is isomorphic to $\mathfrak{gl}(\mathfrak{g}_{-1})$;
- (iv) \mathfrak{g} is the prolongation of \mathfrak{g}_{-} .

Then \mathfrak{g}_{-} is a free FGLA of type (l,μ) , and $\mathfrak{g}=\bigoplus_{p\in\mathbb{Z}}\mathfrak{g}_{p}$ is one of the following types:

- (a) $l \ge 3$, $\mu = 2$, $(X_l, \Pi_1) = (B_l, \{\alpha_l\})$.
- (b) l = 2, $\mu = 3$, $(X_l, \Pi_1) = (G_2, \{\alpha_1\})$.

6 Graded Lie algebras W(n), K(n) of Cartan type

In this section, following V.G. Kac [3], we describe Lie algebras W(n), K(n) of Cartan type and their standard gradations.

Let A(m) denote the monoid (under addition) of all m-tuples of non-negative integers. For an m-tuple $\mathbf{s} = (s_1, \ldots, s_m)$ of positive integers and $\alpha = (\alpha_1, \ldots, \alpha_m) \in A(m)$ we set $\|\alpha\|_{\mathbf{s}} = \sum_{i=1}^{m} s_i \alpha_i$. Also we denote the m-tuple $(1, \ldots, 1)$ by $\mathbf{1}_m$ and we denote the (m+1)-tuple $(1, \ldots, 1, 2)$ by $(\mathbf{1}_m, 2)$. Let $\mathfrak{A}(m) = \mathbb{C}[x_1, \ldots, x_m]$. For any m-tuple \mathbf{s} of positive integers, we denote by $\mathfrak{A}(m; \mathbf{s})_p$ the subspace of $\mathfrak{A}(m)$ spanned by polynomials

$$x^{\alpha} = x_1^{\alpha_1} \cdots x_m^{\alpha_m}, \qquad \alpha = (\alpha_1, \dots, \alpha_m) \in A(m), \quad \|\alpha\|_{\mathbf{s}} = p.$$

Let W(m) be the Lie algebra consisting of all the polynomial vector fields

$$\sum_{i=1}^{m} P_i \frac{\partial}{\partial x_i}, \qquad P_i \in \mathfrak{A}(m). \tag{6.1}$$

For an m-tuple $\mathbf{s} = (s_1, \ldots, s_m)$ of positive integers, we denote by $W(m; \mathbf{s})_p$ the subspaces of W(m) consisting of those polynomial vector fields (6.1) such that the polynomials P_i are contained in $\mathfrak{A}(m; \mathbf{s})_{p+s_i}$; then $W(m; \mathbf{s}) = \bigoplus_{p \in \mathbb{Z}} W(m; \mathbf{s})_p$ is a transitive GLA. In particular,

 $W(m; \mathbf{1}_m) = \bigoplus_{p \geq -1} W(m; \mathbf{1}_m)_p$ is a transitive irreducible GLA such that: (i) $W(m; \mathbf{1}_m)_0$ is iso-

morphic to $\mathfrak{gl}(m,\mathbb{C})$; (ii) the $W(m;\mathbf{1}_m)_0$ -module $W(m;\mathbf{1}_m)_{-1}$ is elementary; (iii) $W(m;\mathbf{1}_m)$ is the prolongation of $W(m;\mathbf{1}_m)_-$.

We now consider the following differential form

$$\omega_K = dx_{2n+1} - \sum_{i=1}^n x_{i+n} dx_i.$$

Define

$$K(n) = \{ D \in W(2n+1) : D\omega_K \in \mathfrak{A}(2n+1)\omega_K \}.$$

(Here the action of D on the differential forms is extended from its action $\mathfrak{A}(2n+1)$ by requiring that D be derivation of the exterior algebra satisfying D(df) = d(Df), where $df = \sum \frac{\partial f}{\partial x_i} dx_i$, $f \in \mathfrak{A}(m)$.) We set $K(n)_p = W(2n+1; (\mathbf{1}_{2n}, 2))_p \cap K(n)$. Then $K(n) = \bigoplus_{p \geq -2} K(n)_p$ is a transitive

irreducible GLA such that: (i) $K(n)_0$ is isomorphic to $\mathfrak{csp}(n,\mathbb{C})$; (ii) the $K(n)_0$ -module $K(n)_{-1}$ is elementary; (iii) K(n) is the prolongation of $K(n)_-$ (cf. [3, 5]).

From Proposition 2.2 of [6], we get

Theorem 6.1. Let $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ be a transitive GLA over \mathbb{C} satisfying the following conditions:

- (i) \mathfrak{g}_{-} is an FGLA of the μ -th kind;
- (ii) g is infinite-dimensional;
- (iii) The \mathfrak{g}_0 -module \mathfrak{g}_{-1} is irreducible;
- (iv) \mathfrak{g} is the prolongation of \mathfrak{g}_{-} .

Then $\mu \leq 2$ and $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ is isomorphic to $W(m; \mathbf{1}_m)$ or K(n).

7 Classification of the prolongations of free fundamental graded Lie algebras

Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a free FGLA of type (n, μ) over \mathbb{C} , and let $\mathfrak{g}(\mathfrak{m}) = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}(\mathfrak{m})_p$ be the prolongation of \mathfrak{m} . First of all, we assume that $\dim \mathfrak{g}(\mathfrak{m}) = \infty$. By Theorem 6.1, $\mathfrak{g}(\mathfrak{m})$ is isomorphic to K(m) as a GLA, where n = 2m. Since $K(m)_0$ is isomorphic to $\mathfrak{csp}(m, \mathbb{C})$ and since $\mathfrak{g}(\mathfrak{m})_0$ is isomorphic to $\mathfrak{gl}(n, \mathbb{C})$, we see that m = 1. Therefore $\mathfrak{g}(\mathfrak{m})$ is isomorphic to K(1) as a GLA.

Next we assume that $\dim \mathfrak{g}(\mathfrak{m}) < \infty$ and $\mathfrak{g}(\mathfrak{m})_1 \neq 0$. Since the $\mathfrak{g}(\mathfrak{m})_0$ -module $\mathfrak{g}(\mathfrak{m})_{-1}$ is irreducible, $\mathfrak{g}(\mathfrak{m})$ is a finite-dimensional simple GLA (see [4, 7]). By Theorem 5.2, $\mathfrak{g}(\mathfrak{m})$ is isomorphic to one of the following types:

$$(B_l, \{\alpha_l\})$$
 $l \ge 3,$ $(G_2, \{\alpha_1\}).$

Thus we get a proof of the following theorem:

Theorem 7.1. Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a free FGLA of type (n, μ) over \mathbb{C} , and let $\mathfrak{g}(\mathfrak{m}) = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}(\mathfrak{m})_p$ be the prolongation of \mathfrak{m} . Then one of the following cases occurs:

- (a) $(n, \mu) \neq (n, 2)$ $(n \ge 2)$, (2, 3). In this case, $\mathfrak{g}(\mathfrak{m})_1 = \{0\}$.
- (b) $(n, \mu) = (n, 2)$ $(n \ge 3)$, (2, 3). In this case, $\dim \mathfrak{g}(\mathfrak{m}) < \infty$ and $\mathfrak{g}(\mathfrak{m})_1 \ne \{0\}$. Furthermore $\mathfrak{g}(\mathfrak{m})$ is isomorphic to a finite-dimensional simple GLA of type $(B_n, \{\alpha_n\})$ $(n \ge 3)$ or $(G_2, \{\alpha_1\})$ (n = 2).
- (c) $(n, \mu) = (2, 2)$. In this case, $\dim \mathfrak{g}(\mathfrak{m}) = \infty$. Furthermore, $\mathfrak{g}(\mathfrak{m})$ is isomorphic to K(1) as a GLA.

8 Free pseudo-product fundamental graded Lie algebras

An FGLA $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ equipped with nonzero subspaces \mathfrak{e} , \mathfrak{f} of \mathfrak{g}_{-1} is called a pseudo-product FGLA if the following conditions hold:

- (i) $\mathfrak{g}_{-1} = \mathfrak{e} \oplus \mathfrak{f}$;
- (ii) $[\mathfrak{e}, \mathfrak{e}] = [\mathfrak{f}, \mathfrak{f}] = \{0\}.$

The pair $(\mathfrak{e},\mathfrak{f})$ is called the pseudo-product structure of the pseudo-product FGLA $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$. We will also denote by the triplet $(\mathfrak{m};\mathfrak{e},\mathfrak{f})$ the pseudo-product FGLA $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ with pseudo-product structure $(\mathfrak{e},\mathfrak{f})$. Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ (resp. $\mathfrak{m}' = \bigoplus_{p < 0} \mathfrak{g}'_p$) be a pseudo-product FGLA with pseudo-product structure $(\mathfrak{e},\mathfrak{f})$ (resp. $(\mathfrak{e}',\mathfrak{f}')$). We say that two pseudo-product FGLAs $(\mathfrak{m};\mathfrak{e},\mathfrak{f})$ and $(\mathfrak{m}';\mathfrak{e}',\mathfrak{f}')$ are isomorphic if there exists a GLA isomorphism φ of \mathfrak{m} onto \mathfrak{m}' such that $\varphi(\mathfrak{e}) = \mathfrak{e}'$ and $\varphi(\mathfrak{f}) = \mathfrak{f}'$.

Proposition 8.1. Let $\mathfrak{m} = \bigoplus_{p<0} \mathfrak{g}_p$ be a pseudo-product FGLA of the μ -th kind with pseudo-product structure $(\mathfrak{e},\mathfrak{f})$. If \mathfrak{m} is a free FGLA of type (n,μ) , then n=2.

Proof. Let (e_1, \ldots, e_m) (resp. (f_1, \ldots, f_l)) be a basis of \mathfrak{e} (resp. \mathfrak{f}). Since $[\mathfrak{e}, \mathfrak{f}] = \mathfrak{g}_{-2}$, the space \mathfrak{g}_{-2} is generated by $\{[e_i, f_j] : i = 1, \ldots, m, j = 1, \ldots, l\}$ as a vector space, so dim $\mathfrak{g}_{-2} \leq ml$. On the other hand, since \mathfrak{m} is a free FGLA,

$$\dim \mathfrak{g}_{-2} = \dim b(\mathfrak{g}_{-1}, \mu)_{-2} = \dim \Lambda^2(\mathfrak{g}_{-1}) = \frac{(m+l)(m+l-1)}{2},$$

so $ml \ge \frac{(m+l)(m+l-1)}{2}$. From this fact it follows that m=l=1.

Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a pseudo-product FGLA of the μ -th kind with pseudo-product structure $(\mathfrak{e}, \mathfrak{f})$, where $\mu \geq 2$. \mathfrak{m} is called a free pseudo-product FGLA of type (m, n, μ) if the following conditions hold:

- (i) dim $\mathfrak{e} = m$ and dim $\mathfrak{f} = n$;
- (ii) Let $\mathfrak{m}' = \bigoplus_{p < 0} \mathfrak{g}'_p$ be a pseudo-product FGLA of the μ -th kind with pseudo-product structure $(\mathfrak{e}', \mathfrak{f}')$ and let φ be a surjective linear mapping of \mathfrak{g}_{-1} onto \mathfrak{g}'_{-1} such that $\varphi(\mathfrak{e}) \subset \mathfrak{e}'$ and $\varphi(\mathfrak{f}) \subset \mathfrak{f}'$. Then φ can be extended uniquely to a GLA epimorphism of \mathfrak{m} onto \mathfrak{m}' .

Proposition 8.2. Let m, n and μ be positive integers such that $\mu \geq 2$.

- (1) There exists a unique free pseudo-product FGLA of type (m, n, μ) up to isomorphism.
- (2) Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a free pseudo-product FGLA of type (m, n, μ) with pseudo-product structure $(\mathfrak{e}, \mathfrak{f})$. We denote by $\operatorname{Der}(\mathfrak{m}; \mathfrak{e}, \mathfrak{f})_0$ the Lie algebra of all the derivations of \mathfrak{m} preserving the gradation of \mathfrak{m} , \mathfrak{e} and \mathfrak{f} . Then the mapping $\Phi : \operatorname{Der}(\mathfrak{m}; \mathfrak{e}, \mathfrak{f})_0 \ni D \mapsto (D|\mathfrak{e}, D|\mathfrak{f}) \in \mathfrak{gl}(\mathfrak{e}) \times \mathfrak{gl}(\mathfrak{f})$ is a Lie algebra isomorphism.

Proof. (1) The uniqueness of a free pseudo-product FGLA of type (m,n,μ) follows from the definition. Let V be an (m+n)-dimensional vector space and let \mathfrak{e} , \mathfrak{f} be subspaces of V such that $V=\mathfrak{e}\oplus\mathfrak{f}$, $\dim\mathfrak{e}=m$ and $\dim\mathfrak{f}=n$. Let $\mathfrak{a}=\bigoplus_{p<0}\mathfrak{a}_p$ be the graded ideal of $b(V,\mu)$ generated by $[\mathfrak{e},\mathfrak{e}]+[\mathfrak{f},\mathfrak{f}]$. We set $\mathfrak{m}=b(V,\mu)/\mathfrak{a}$, $\mathfrak{g}_p=b(V,\mu)_p/\mathfrak{a}_p$. Clearly $\mathfrak{m}=\bigoplus_{p<0}\mathfrak{g}_p$ is a pseudo-product FGLA. We show that the factor algebra \mathfrak{m} is a free pseudo-product FGLA of type (m,n,μ) . First we prove that \mathfrak{m} is of the μ -th kind. Let $\mathfrak{n}=\bigoplus_{p<0}\mathfrak{g}_p''$ be a free FGLA of type $(2,\mu)$ and let \mathfrak{e}'' and \mathfrak{f}'' be one-dimensional subspaces of \mathfrak{g}''_{-1} such that $\mathfrak{g}''_{-1}=\mathfrak{e}''\oplus\mathfrak{f}''$. Let φ_1 be an injective linear mapping of \mathfrak{g}''_{-1} into V such that $\varphi_1(\mathfrak{e}'')\subset\mathfrak{e}$ and $\varphi_1(\mathfrak{f}'')\subset\mathfrak{f}$. Let φ_2 be a linear mapping of V into \mathfrak{g}''_{-1} such that $\varphi_2\circ\varphi_1=1_{\mathfrak{g}''_{-1}}, \varphi_2(\mathfrak{e})=\mathfrak{e}''$ and $\varphi_2(\mathfrak{f})=\mathfrak{f}''$. There exists a homomorphism $L(\varphi_1)$ (resp. $L(\varphi_2)$) of \mathfrak{n} (resp. $b(V,\mu)$) into $b(V,\mu)$ (resp. \mathfrak{n}) such that $L(\varphi_1)|\mathfrak{g}''_{-1}=\varphi_1$ (resp. $L(\varphi_2)|V=\varphi_2$). Since $L(\varphi_2)([\mathfrak{e},\mathfrak{e}]+[\mathfrak{f},\mathfrak{f}])=\{0\},L(\varphi_2)$ induces a homomorphism $\hat{L}(\varphi_2)$ of \mathfrak{m} into \mathfrak{n} such that $L(\varphi_2)=\hat{L}(\varphi_2)\circ\pi$, where π is the natural projection of $b(V,\mu)$ onto \mathfrak{m} . Since

$$1_{\mathfrak{n}} = L(\varphi_2) \circ L(\varphi_1) = \hat{L}(\varphi_2) \circ \pi \circ L(\varphi_1),$$

 $\pi \circ L(\varphi_1)$ is a monomorphism of $\mathfrak n$ into $\mathfrak m$, so $\mathfrak g_{-\mu} \neq \{0\}$. Thus $\mathfrak m$ is of the μ -th kind. Let $\mathfrak m' = \bigoplus_{p < 0} \mathfrak g'_p$ be a pseudo-product FGLA of the μ -th kind with pseudo-product structure $(\mathfrak e', \mathfrak f')$ and let ϕ be a surjective linear mapping of $b(V, \mu)_{-1}$ onto $\mathfrak g'_{-1}$ such that $\phi(\mathfrak e) \subset \mathfrak e'$ and $\phi(\mathfrak f) \subset \mathfrak f'$. By the definition of a free FGLA, there exists a GLA epimorphism $L(\phi)$ of $b(V, \mu)$ onto $\mathfrak m'$ such that $L(\phi)|b(V,\mu)_{-1} = \phi$. Since $L(\phi)([\mathfrak e,\mathfrak e]+[\mathfrak f,\mathfrak f]) \subset [\mathfrak e',\mathfrak e']+[\mathfrak f',\mathfrak f']=\{0\}$, we see that $L(\phi)(\mathfrak a)=\{0\}$, so the epimorphism $L(\phi)$ induces a GLA epimorphism $\hat L(\phi)$ of $\mathfrak m$ onto $\mathfrak m'$ such that $\hat L(\phi)|\mathfrak g_{-1}=\phi$.

(2) We may prove the fact that the mapping Φ is surjective. Let ϕ be an endomorphism of \mathfrak{g}_{-1} such that $\phi(\mathfrak{e}) \subset \mathfrak{e}$ and $\phi(\mathfrak{f}) \subset \mathfrak{f}$. By Proposition 2.1 (2), there exists a $D \in \mathrm{Der}(b(V,\mu))_0$ such that $D|b(V,\mu)_{-1} = \phi$. Since $D([\mathfrak{e},\mathfrak{e}] + [\mathfrak{f},\mathfrak{f}]) \subset [\mathfrak{e},\mathfrak{e}] + [\mathfrak{f},\mathfrak{f}]$, D induces a derivation \hat{D} of \mathfrak{m} such that $\hat{D}|\mathfrak{g}_{-1} = \phi$.

Remark 8.1. Let m, n, m', n' and μ be positive integers with $\mu \geq 2$, and let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ (resp. $\mathfrak{m}' = \bigoplus_{p < 0} \mathfrak{g}'_p$) be a free pseudo-product FGLA of type (m, n, μ) (resp. (m', n', μ)) with pseudo-product structure $(\mathfrak{e}, \mathfrak{f})$ (resp. $(\mathfrak{e}', \mathfrak{f}')$). Furthermore let φ be a linear mapping of \mathfrak{g}_{-1} into \mathfrak{g}'_{-1} such that $\varphi(\mathfrak{e}) \subset \mathfrak{e}'$ and $\varphi(\mathfrak{f}) \subset \mathfrak{f}'$.

- (1) From the proof of Proposition 8.2, there exists a unique GLA homomorphism $\hat{L}(\varphi)$ of \mathfrak{m} into \mathfrak{m}' such that $\hat{L}(\varphi)|\mathfrak{g}_{-1}=\varphi$. If φ is injective, then $\hat{L}(\varphi)$ is a monomorphism.
- (2) Assume that m = n = 1 and φ is injective. Then $\hat{L}(\varphi)(\mathfrak{m})$ is a graded subalgebra of \mathfrak{m}' isomorphic to a free FGLA of type $(2, \mu)$. From this result, the subalgebra of \mathfrak{m}' generated by a nonzero element X of \mathfrak{e}' and a nonzero element Y of \mathfrak{f}' is a free FGLA of type $(2, \mu)$.

Let $\mathfrak{m} = \bigoplus_{p<0} \mathfrak{g}_p$ be a pseudo-product FGLA of the μ -th kind with pseudo-product structure $(\mathfrak{e},\mathfrak{f})$. We denote by \mathfrak{g}_0 the Lie algebra of all the derivations of \mathfrak{m} preserving the gradation

of m, e and f:

$$\mathfrak{g}_0 = \{ D \in \mathrm{Der}(\mathfrak{g})_0 : D(\mathfrak{e}) \subset \mathfrak{e}, D(\mathfrak{f}) \subset \mathfrak{f} \}.$$

The prolongation $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ of $(\mathfrak{m}, \mathfrak{g}_0)$ is called the prolongation of $(\mathfrak{m}; \mathfrak{e}, \mathfrak{f})$.

A transitive GLA $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ is called a pseudo-product GLA if there are given nonzero subspaces \mathfrak{e} and \mathfrak{f} of \mathfrak{g}_{-1} satisfying the following conditions:

- (i) The negative part \mathfrak{g}_{-} is a pseudo-product FGLA with pseudo-product structure $(\mathfrak{e},\mathfrak{f})$;
- (ii) $[\mathfrak{g}_0,\mathfrak{e}] \subset \mathfrak{e}$ and $[\mathfrak{g}_0,\mathfrak{f}] \subset \mathfrak{f}$.

The pair $(\mathfrak{e}, \mathfrak{f})$ is called the pseudo-product structure of the pseudo-product GLA $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$. If the \mathfrak{g}_0 -modules \mathfrak{e} and \mathfrak{f} are irreducible, then the pseudo-product GLA $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ is said to be of irreducible type.

The following lemma is due to N. Tanaka (cf. [9]). Here we give a proof for the convenience of the readers.

Lemma 8.1. Let $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ be a pseudo-product GLA of depth μ with pseudo-product structure $(\mathfrak{e}, \mathfrak{f})$.

- (1) If \mathfrak{g}_{-} is non-degenerate, then \mathfrak{g} is finite-dimensional.
- (2) If $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ is of irreducible type and $\mu \geq 2$, then \mathfrak{g} is finite-dimensional.

Proof. (1) The proof is essentially due to the proof of [11, Corollary 3 to Theorem 11.1]. For $p \in \mathbb{Z}$, we set $\mathfrak{h}_p = \{X \in \mathfrak{g}_p : [X, \mathfrak{g}_{\leq -2}] = \{0\}\}$. We define $I \in \mathfrak{gl}(\mathfrak{g}_{-1})$ as follows: $I(x) = -\sqrt{-1}x$ for $x \in \mathfrak{e}$, $I(x) = \sqrt{-1}x$ for $x \in \mathfrak{f}$. Then $I^2 = -1$, I([a,x]) = [a,I(x)] and [I(x),I(y)] = [x,y] for $a \in \mathfrak{g}_0$ and $x,y \in \mathfrak{g}_{-1}$. We put $\langle x,y \rangle = [I(x),y]$ for $x,y \in \mathfrak{g}_{-1}$. Then $\langle x,y \rangle = \langle y,x \rangle$, and for $x \in \mathfrak{g}_{-1}$, $\langle x,\mathfrak{g}_{-1} \rangle = \{0\}$ implies x = 0, since \mathfrak{g}_- is non-degenerate. Also $\langle [a,x],y \rangle + \langle x,[a,y] \rangle = 0$ and [[b,x],y] = [[b,y],x] for $a \in \mathfrak{h}_0$, $b \in \mathfrak{h}_1$ and $x,y \in \mathfrak{g}_{-1}$. Then, for $b \in \mathfrak{h}_1$, $x,y,z \in \mathfrak{g}_{-1}$, we have $\langle [[b,x],y],z \rangle = -\langle y,[[b,x],z] \rangle = -\langle y,[[b,z],x] \rangle = \langle [[b,z],y],x \rangle = \langle [[b,y],z],x \rangle = -\langle z,[[b,y],x] \rangle = -\langle [[b,x],y],z \rangle$, so $\langle [[b,x],y],z \rangle = 0$. By transitivity of \mathfrak{g} , $\mathfrak{h}_1 = \{0\}$. Therefore by [11, Corollary 1 to Theorem 11.1], \mathfrak{g} is finite-dimensional.

(2) We may assume that $\mathfrak{g}_1 \neq \{0\}$. By [16, Lemma 2.4], the \mathfrak{g}_0 -modules \mathfrak{e} , \mathfrak{f} are not isomorphic to each other. We put $\mathfrak{d} = \{X \in \mathfrak{g}_{-1} : [X, \mathfrak{g}_{-1}] = \{0\}\}$; then \mathfrak{d} is a \mathfrak{g}_0 -submodule of \mathfrak{g}_{-1} . Hence $\mathfrak{d} = \{0\}$, $\mathfrak{d} = \mathfrak{e}$, $\mathfrak{d} = \mathfrak{f}$ or $\mathfrak{d} = \mathfrak{g}_{-1}$. If $\mathfrak{d} \neq \{0\}$, then $\mathfrak{g}_{-2} = [\mathfrak{e}, \mathfrak{f}] = \{0\}$, which is a contradiction. Thus \mathfrak{g}_- is non-degenerate. By (1), \mathfrak{g} is finite-dimensional.

The prolongation of a pseudo-product FGLA becomes a pseudo-product GLA. By Proposition 8.2 (2), the prolongation of a free pseudo-product FGLA is a pseudo-product GLA of irreducible type. By Lemma 8.1 (2), the prolongation of a free pseudo-product FGLA is finite-dimensional.

Proposition 8.3. Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a free pseudo-product FGLA of type (m, n, μ) with pseudo-product structure $(\mathfrak{e}, \mathfrak{f})$ and let $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ be the prolongation of $(\mathfrak{m}; \mathfrak{e}, \mathfrak{f})$.

- (1) \mathfrak{g}_0 is isomorphic to $\mathfrak{gl}(\mathfrak{e}) \oplus \mathfrak{gl}(\mathfrak{f})$ as a Lie algebra.
- (2) \mathfrak{g}_{-2} is isomorphic to $\mathfrak{e} \otimes \mathfrak{f}$ as a \mathfrak{g}_0 -module. In particular, dim $\mathfrak{g}_{-2} = mn$.

(3) \mathfrak{g}_{-3} is isomorphic to $S^2(\mathfrak{e}) \otimes \mathfrak{f} \oplus S^2(\mathfrak{f}) \otimes \mathfrak{e}$ as a \mathfrak{g}_0 -module. In particular, $\dim \mathfrak{g}_{-3} = \frac{mn(m+n+2)}{2}$.

Proof. (1) This follows from Proposition 8.2 (2).

- (2) Let $\mathfrak{a} = \bigoplus_{p < 0} \mathfrak{a}_p$ be the graded ideal of $b(\mathfrak{g}_{-1}, \mu)$ generated by $[\mathfrak{e}, \mathfrak{e}] + [\mathfrak{f}, \mathfrak{f}]$. By the construction of $b(\mathfrak{g}_{-1}, \mu)_{-2}$, \mathfrak{a}_{-2} is isomorphic to $\Lambda^2(\mathfrak{e}) \oplus \Lambda^2(\mathfrak{f})$, so $\mathfrak{g}_{-2} = b(\mathfrak{g}_{-1}, \mu)_{-2}/\mathfrak{a}_{-2}$ is isomorphic to $\mathfrak{e} \otimes \mathfrak{f}$.
 - (3) By the construction of $b(\mathfrak{g}_{-1},\mu)_{-3}$, $b(\mathfrak{g}_{-1},\mu)_{-3}$ is isomorphic to

$$(\mathfrak{e} \oplus \mathfrak{f}) \otimes \Lambda^2(\mathfrak{e} \oplus \mathfrak{f})/\Lambda^3(\mathfrak{e} \oplus \mathfrak{f}) \cong (\mathfrak{e} \otimes \mathfrak{e} \otimes \mathfrak{f}) \oplus (\mathfrak{e} \otimes \mathfrak{f} \otimes \mathfrak{f}).$$

Moreover, \mathfrak{a}_{-3} is isomorphic to

$$(\mathfrak{e} \oplus \mathfrak{f}) \otimes \Lambda^2(\mathfrak{e}) \oplus (\mathfrak{e} \oplus \mathfrak{f}) \otimes \Lambda^2(\mathfrak{f})/\Lambda^3(\mathfrak{e} \oplus \mathfrak{f}) \cong \mathfrak{e} \otimes \Lambda^2(\mathfrak{e}) \oplus \mathfrak{f} \otimes \Lambda^2(\mathfrak{f}).$$

Hence $\mathfrak{g}_{-3} = b(\mathfrak{g}_{-1}, \mu)_{-3}/\mathfrak{a}_{-3}$ is isomorphic to

$$(\mathfrak{e} \otimes \mathfrak{e} \otimes \mathfrak{f})/\Lambda^2(\mathfrak{e}) \otimes \mathfrak{f} \oplus (\mathfrak{e} \otimes \mathfrak{f} \otimes \mathfrak{f})/\mathfrak{e} \otimes \Lambda^2(\mathfrak{f}) \cong S^2(\mathfrak{e}) \otimes \mathfrak{f} \oplus S^2(\mathfrak{f}) \otimes \mathfrak{e}.$$

This completes the proof.

Proposition 8.4. Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a pseudo-product FGLA of the μ -th kind with pseudo-product structure $(\mathfrak{e}, \mathfrak{f})$, where $\mu \geq 2$. We denote by \mathfrak{e} the centralizer of \mathfrak{g}_{-2} in \mathfrak{g}_{-1} . Let $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ be the prolongation of $(\mathfrak{m}; \mathfrak{e}, \mathfrak{f})$. Assume that \mathfrak{g}_0 is isomorphic to $\mathfrak{gl}(\mathfrak{e}) \oplus \mathfrak{gl}(\mathfrak{f})$ as a Lie algebra.

- (1) If $\mu = 2$, then $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a free pseudo-product FGLA.
- (2) If $\mu \geq 3$ and $\mathfrak{c} \neq \{0\}$, then $(\mathfrak{m}; \mathfrak{e}, \mathfrak{f})$ is not a free pseudo-product FGLA.
- (3) If $\mu = 3$ and $\mathfrak{c} = \{0\}$, then $(\mathfrak{m}; \mathfrak{e}, \mathfrak{f})$ is a free pseudo-product FGLA.

Proof. Let $\check{\mathfrak{m}}=\bigoplus_{p<0}\check{\mathfrak{g}}_p$ be the free pseudo-product FGLA of type (m,n,μ) with pseudo-product structure $(\check{\mathfrak{e}},\check{\mathfrak{f}})$ such that $\check{\mathfrak{g}}_{-1}=\mathfrak{g}_{-1}$, $\check{\mathfrak{e}}=\mathfrak{e}$ and $\check{\mathfrak{f}}=\mathfrak{f}$. Let $\check{\mathfrak{g}}=\bigoplus_{p\in\mathbb{Z}}\check{\mathfrak{g}}_p$ be the prolongation of $(\check{\mathfrak{m}};\check{\mathfrak{e}},\check{\mathfrak{f}})$. There exists a GLA epimorphism φ of $\check{\mathfrak{m}}$ onto \mathfrak{m} such that the restriction $\varphi|\check{\mathfrak{g}}_{-1}$ is the identity mapping. Since the mapping $\check{\mathfrak{g}}_0\ni D\mapsto (D|\mathfrak{e},D|\mathfrak{f})\in\mathfrak{gl}(\mathfrak{e})\times\mathfrak{gl}(\mathfrak{f})$ is an isomorphism, φ can be extended to be a homomorphism $\check{\varphi}$ of $\bigoplus_{p\le 0}\check{\mathfrak{g}}_p$ onto $\bigoplus_{p\le 0}\mathfrak{g}_p$. Let \mathfrak{a} be the kernel of $\check{\varphi}$; then \mathfrak{a} is a graded ideal of $\bigoplus_{p\le 0}\check{\mathfrak{g}}_p$. We set $\mathfrak{a}_p=\mathfrak{a}\cap\check{\mathfrak{g}}_p$; then $\mathfrak{a}=\bigoplus_{p\le 0}\mathfrak{a}_p$. Since the restriction of $\check{\varphi}$ to $\check{\mathfrak{g}}_{-1}\oplus\check{\mathfrak{g}}_0$ is injective, $\mathfrak{a}_p=\{0\}$ for $p\ge -1$. Also each \mathfrak{a}_p is a $\check{\mathfrak{g}}_0$ -submodule of $\check{\mathfrak{g}}_p$. Since the $\check{\mathfrak{g}}_0$ -module $\check{\mathfrak{g}}_{-2}$ is irreducible (Proposition 8.3 (2)), $\varphi|\mathfrak{g}_{-2}$ is injective. If $\mu=2$, then φ is an isomorphism. This proves the assertion (1). Now we assume that $\mu\ge 3$. Then

$$\check{\mathfrak{g}}_{-3}=[[\mathfrak{e},\mathfrak{f}],\mathfrak{f}]\oplus[[\mathfrak{e},\mathfrak{f}],\mathfrak{e}].$$

Since $\check{\mathfrak{g}}_0$ -modules $[[\mathfrak{e},\mathfrak{f}],\mathfrak{f}]$ and $[[\mathfrak{e},\mathfrak{f}],\mathfrak{e}]$ are irreducible and not isomorphic to each other (Proposition 8.3 (3)), one of the following cases occurs: (i) $\mathfrak{a}_{-3} = [[\mathfrak{e},\mathfrak{f}],\mathfrak{f}];$ (ii) $\mathfrak{a}_{-3} = [[\mathfrak{e},\mathfrak{f}],\mathfrak{e}];$ (iii) $\mathfrak{a}_{-3} = [[\mathfrak{e},\mathfrak{f}],\mathfrak{f}]$ (resp. $\mathfrak{a}_{-3} = [[\mathfrak{e},\mathfrak{f}],\mathfrak{e}]$), then $\mathfrak{c} = \mathfrak{f}$ (resp. $\mathfrak{c} = \mathfrak{e}$). Also since \mathfrak{g}_0 -modules \mathfrak{e} , \mathfrak{f} are irreducible and not isomorphic to each other, one of the following cases occurs: (i) $\mathfrak{c} = \mathfrak{e}$; (ii) $\mathfrak{c} = \mathfrak{f}$; (iii) $\mathfrak{c} = \{0\}$. If $\mathfrak{c} = \mathfrak{e}$ (resp. $\mathfrak{c} = \mathfrak{f}$), then $\mathfrak{a}_{-3} = [[\mathfrak{e},\mathfrak{f}],\mathfrak{f}]$). In this case, φ is not injective. Hence $(\mathfrak{m};\mathfrak{e},\mathfrak{f})$ is not free. If $\mathfrak{c} = \{0\}$, then $\mathfrak{a}_{-3} = \{0\}$. Hence $\varphi|\check{\mathfrak{g}}_{-3}$ is an isomorphism. In particular, if $\mu = 3$, then $(\mathfrak{m};\mathfrak{e},\mathfrak{f})$ is free.

Example 8.1. Let V and W be finite-dimensional vector spaces and $k \ge 1$. We set

$$\mathfrak{C}^{k}(V,W) = \bigoplus_{p=-k-1}^{-1} \mathfrak{C}^{k}(V,W)_{p},$$

$$\mathfrak{C}^{k}(V,W)_{p} = W \otimes S^{k+p+1}(V^{*}), \quad -k-1 \leq p \leq -2,$$

$$\mathfrak{C}^{k}(V,W)_{-1} = V \oplus (W \otimes S^{k}(V^{*})).$$

The bracket operation of $\mathfrak{C}^k(V,W)$ is defined as follows:

$$[W, V] = \{0\},$$
 $[V, V] = \{0\},$ $[W \otimes S^r(V^*), W \otimes S^s(V^*)] = \{0\},$ $[w \otimes s_r, v] = w \otimes (v \,\lrcorner\, s_r)$ for $v \in V, \ w \in W, \ s_r \in S^r(V^*).$

Equipped with this bracket operation, $\mathfrak{C}^k(V, W)$ becomes a pseudo-product FGLA of the (k+1)-th kind with pseudo-product structure $(V, W \otimes S^k(V^*))$, which is called the contact algebra of order k of bidegree (n, m), where $n = \dim V$ and $m = \dim W$ (cf. [14, p. 133]). We assume that $\mathfrak{C}^k(V, W)$ is a free pseudo-product FGLA. Since

$$\dim \mathfrak{C}^k(V,W)_{-2} = m \binom{n+k-2}{k-1}, \qquad \dim V \dim(W \otimes S^k(V^*)) = nm \binom{n+k-1}{k},$$

we get n = 1. Since $W \otimes S^k(V^*)$ is contained in the centralizer of $\mathfrak{C}^k(V, W)_{-2}$ in $\mathfrak{C}^k(V, W)_{-1}$, we get k = 1. Thus we obtain that $\mathfrak{C}^k(V, W)$ is a free pseudo-product FGLA if and only if k = 1, n = 1.

Example 8.2. Let $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ be a finite-dimensional simple GLA of type $(A_{m+n}, \{\alpha_m, \alpha_{m+1}\})$.

We set $\mathfrak{e} = \mathfrak{g}_{-1}^{(m)}$, $\mathfrak{f} = \mathfrak{g}_{-1}^{(m+1)}$. Then $(\mathfrak{g}_{-}; \mathfrak{e}, \mathfrak{f})$ is a pseudo-product FGLA. Since $\dim \mathfrak{e} = m$, $\dim \mathfrak{f} = n$ and $\dim \mathfrak{g}_{-2} = mn$, the pseudo-product FGLA $(\mathfrak{g}_{-}; \mathfrak{e}, \mathfrak{f})$ is a free pseudo-product FGLA of type (m, n, 2) (Proposition 8.3 (2)). Also $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ is the prolongation of \mathfrak{g}_{-} except for the following cases (see [15]):

- (1) m = n = 1. In this case, the prolongation of \mathfrak{g}_{-} is isomorphic to K(1).
- (2) m = 1 or n = 1 and $l = \max\{m, n\} \ge 2$. In this case, the prolongation of \mathfrak{g}_- is isomorphic to $W(l+1; \mathbf{s})$, where $\mathbf{s} = (1, 2, \dots, 2)$.

Example 8.3. Let V and W be finite-dimensional vector spaces such that dim $V=m \ge 1$ and dim $W=n \ge 1$. We set

$$\mathfrak{g}_{-1} = V \oplus W, \qquad \mathfrak{g}_{-2} = V \otimes W,$$

$$\mathfrak{g}_{-3} = V \otimes S^2(W) \oplus S^2(V) \otimes W, \qquad \mathfrak{m} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-3}.$$

The bracket operation of m is defined as follows:

$$[\mathfrak{g}_{-3},\mathfrak{g}_{-1} \oplus \mathfrak{g}_{-2}] = [\mathfrak{g}_{-2},\mathfrak{g}_{-2}] = \{0\}, \qquad [V,V] = [W,W] = \{0\},$$

$$[v,w] = -[w,v] = v \otimes w, \qquad [v,v' \otimes w] = -[v' \otimes w,v] = v \otimes v' \otimes w,$$

$$[v \otimes w,w'] = -[w',v \otimes w] = v \otimes w \otimes w',$$

where $v, v' \in V$ and $w, w' \in W$. Equipped with this bracket operation, \mathfrak{m} becomes a free pseudo-product FGLA of type (m, n, 3) with pseudo-product structure (V, W) (Proposition 8.3).

Theorem 8.1. Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a free pseudo-product FGLA of type (m, n, μ) with pseudo-product structure $(\mathfrak{e}, \mathfrak{f})$ over \mathbb{C} . Furthermore let $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ (resp. $\mathfrak{g}(\mathfrak{m}) = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}(\mathfrak{m})_p$) be the prolongation of $(\mathfrak{m}; \mathfrak{e}, \mathfrak{f})$ (resp. \mathfrak{m}).

- (1) Assume that $\dim \mathfrak{g}(\mathfrak{m}) = \infty$. Then m = 1 or n = 1, and $\mu = 2$. Furthermore $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ is isomorphic to a finite-dimensional simple GLA of type $(A_{l+1}, \{\alpha_1, \alpha_2\})$, where $l = \max\{m, n\}$. If l = 1, then $\mathfrak{g}(\mathfrak{m})$ is isomorphic to K(1). If $l \geq 2$, then $\mathfrak{g}(\mathfrak{m})$ is isomorphic to W(l+1;s), where $s = (1, 2, \ldots, 2)$.
- (2) If $\mathfrak{g}_1 \neq \{0\}$, then $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ is a finite-dimensional simple GLA of type $(A_{m+n}, \{\alpha_m, \alpha_{m+1}\})$.

Proof. (1) For $p \ge -1$, we put $\mathfrak{h}_p = \{X \in \mathfrak{g}(\mathfrak{m})_p : [X, \mathfrak{g}_{\le -2}] = \{0\}\}$. Assume that $\dim \mathfrak{g}(\mathfrak{m}) = \infty$ and $\mu \ge 3$. By Proposition 8.4 (2), $\mathfrak{h}_{-1} = \{0\}$. Since $[\mathfrak{h}_0, \mathfrak{g}_{-1}] \subset \mathfrak{h}_{-1} = \{0\}$, we see that $\mathfrak{h}_0 = \{0\}$. By [11, Corollary 1 to Theorem 11.1], we obtain that $\dim \mathfrak{g}(\mathfrak{m}) < \infty$, which is a contradiction. Thus we see that $\mu = 2$ if $\dim \mathfrak{g}(\mathfrak{m}) = \infty$. The remaining assertion follows from Example 8.2.

(2) Assume that $\mathfrak{g}_1 \neq \{0\}$ and $\mu \geq 3$. By transitivity of \mathfrak{g} , $[\mathfrak{g}_1,\mathfrak{e}] \neq \{0\}$ or $[\mathfrak{g}_1,\mathfrak{f}] \neq \{0\}$. We may assume that $[\mathfrak{g}_1,\mathfrak{e}] \neq \{0\}$. Then there exists an irreducible component \mathfrak{g}'_1 of the \mathfrak{g}_0 -module \mathfrak{g}_1 such that $[\mathfrak{g}'_1,\mathfrak{e}] \neq \{0\}$ and $[\mathfrak{g}'_1,\mathfrak{f}] = \{0\}$. The subalgebra $\mathfrak{e} \oplus [\mathfrak{e},\mathfrak{g}'_1] \oplus \mathfrak{g}'_1$ is a simple GLA of the first kind. Since \mathfrak{g}_0 is isomorphic to $\mathfrak{gl}(\mathfrak{e}) \oplus \mathfrak{gl}(\mathfrak{f})$, $\mathfrak{e} \oplus [\mathfrak{e},\mathfrak{g}'_1] \oplus \mathfrak{g}'_1$ is of type $(A_m, \{\alpha_1\})$. Let D be a nonzero element of \mathfrak{g}'_1 . There exist $\lambda \in \mathfrak{e}^*$ and $\eta \in \mathfrak{f}^*$ such that

$$[[D, Z], U] = \lambda(U)Z + \lambda(Z)U, \qquad [[D, Z], W] = \eta(Z)W,$$

where $Z, U \in \mathfrak{e}$ and $W \in \mathfrak{f}$ (cf. [12, p. 4]). Let X (resp. Y) be a nonzero element of \mathfrak{e} (resp. \mathfrak{f}). Since the subalgebra generated by X, Y is a free FGLA of type $(2, \mu)$ (Remark 8.1 (2)),

$$ad(X)^{\mu}(Y) = 0,$$
 $ad(X)^{\mu-1}(Y) \neq 0,$ $ad(Y) ad(X)^{\mu-1}(Y) = 0,$ $ad(Y) ad(X)^{\mu-2}(Y) \neq 0$

(Lemma 2.1). By induction on μ , we see that

$$0 = \operatorname{ad}(D) \operatorname{ad}(X)^{\mu}(Y) = (\mu(\mu - 1)\lambda(X) + \mu\eta(X)) \operatorname{ad}(X)^{\mu - 1}(Y),$$

$$0 = \operatorname{ad}(D) \operatorname{ad}(Y) \operatorname{ad}(X)^{\mu - 1}(Y)$$

$$= ((\mu - 1)(\mu - 2)\lambda(X) + (\mu - 1)\eta(X)) \operatorname{ad}(Y) \operatorname{ad}(X)^{\mu - 2}(Y).$$

Since

$$\det\begin{bmatrix} \mu(\mu-1) & \mu \\ (\mu-1)(\mu-2) & \mu-1 \end{bmatrix} = \mu(\mu-1) \neq 0,$$

we see that $\lambda(X) = \eta(X) = 0$, which is a contradiction. Thus we obtain that $\mu = 2$ if $\dim \mathfrak{g}_1 \neq \{0\}$. From Example 8.2, it follows that $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ is a simple GLA of type $(A_{m+n}, \{\alpha_m, \alpha_{m+1}\})$ if $\dim \mathfrak{g}_1 \neq \{0\}$.

9 Automorphism groups of the prolongations of free pseudo-product fundamental graded Lie algebras

For a GLA $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ we denote by $\operatorname{Aut}(\mathfrak{g})_0$ the group of all the automorphisms of \mathfrak{g} preserving the gradation of \mathfrak{g} :

$$\operatorname{Aut}(\mathfrak{g})_0 = \{ \varphi \in \operatorname{Aut}(\mathfrak{g}) : \varphi(\mathfrak{g}_p) = \mathfrak{g}_p \text{ for all } p \in \mathbb{Z} \}.$$

Proposition 9.1. Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be an FGLA and let $\mathfrak{g}(\mathfrak{m}) = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}(\mathfrak{m})_p$ be the prolongation of \mathfrak{m} . The mapping $\Phi : \operatorname{Aut}(\mathfrak{g}(\mathfrak{m}))_0 \ni \phi \mapsto \phi | \mathfrak{m} \in \operatorname{Aut}(\mathfrak{m})_0$ is an isomorphism.

Proof. It is clear that Φ is a group homomorphism. We prove that Φ is injective. Let ϕ be an element of Ker Φ . Assume that $\phi(X) = X$ for all $X \in \mathfrak{g}(\mathfrak{m})_p$ (p < k). For $X \in \mathfrak{g}(\mathfrak{m})_k$, $Y \in \mathfrak{g}_{-1}$,

$$[\phi(X) - X, Y] = \phi([X, Y]) - [X, Y].$$

Since $[X,Y] \in \mathfrak{g}(\mathfrak{m})_{k-1}$, we have $[\phi(X)-X,Y]=0$. By transitivity, $\phi(X)=X$. By induction, we have proved ϕ to be the identity mapping. Hence Φ is a monomorphism.

We prove that Φ is surjective. Let $\varphi \in \operatorname{Aut}(\mathfrak{m})_0$. We construct the mapping $\varphi_p : \mathfrak{g}(\mathfrak{m})_p \to \mathfrak{g}(\mathfrak{m})_p$ inductively as follows: First for $X \in \mathfrak{g}(\mathfrak{m})_0$, we set $\varphi_0(X) = \varphi X \varphi^{-1}$. Then for $Y, Z \in \mathfrak{m}$

$$\varphi_0(X)([Y,Z]) = [\varphi(X(\varphi^{-1}(Y))), Z] + [Y, \varphi(X(\varphi^{-1}(Z)))],$$

so $\varphi_0(X) \in \mathfrak{g}(\mathfrak{m})_0$. Furthermore we can prove easily that $[\varphi_0(X), \varphi_p(Y)] = \varphi_p([X, Y])$ for $X \in \mathfrak{g}_0$ and $Y \in \mathfrak{g}_p$ $(p \leq 0)$. Here for p < 0 we set $\varphi_p = \varphi|\mathfrak{g}(\mathfrak{m})_p$. Assume that we have defined linear isomorphisms φ_p of $\mathfrak{g}(\mathfrak{m})_p$ onto itself $(0 \leq p < k)$ such that

$$\varphi_{r+s}([X,Y]) = [\varphi_r(X), \varphi_s(Y)]$$

for $X \in \mathfrak{g}(\mathfrak{m})_r$, $Y \in \mathfrak{g}(\mathfrak{m})_s$ (r + s < k, r < k, s < k). For $X \in \mathfrak{g}(\mathfrak{m})_k$ we define $\varphi_k(X) \in \operatorname{Hom}(\mathfrak{m}, \bigoplus_{p \le k-1} \mathfrak{g}(\mathfrak{m})_p)_k$ as follows:

$$\varphi_k(X)(Y) = \varphi_{k+s}([X, \varphi^{-1}(Y)]), \qquad Y \in \mathfrak{g}_s, \ s < 0.$$

For $Y \in \mathfrak{g}_s$, $Z \in \mathfrak{g}_t$ (s, t < 0),

$$\varphi_{k}(X)([Y,Z]) = \varphi_{k+t+s}([X,\varphi^{-1}([Y,Z]])$$

$$= \varphi_{k+s+t}([[X,\varphi^{-1}(Y)],\varphi^{-1}(Z)] + [\varphi^{-1}(Y),[X,\varphi^{-1}(Z)]])$$

$$= [\varphi_{k+s}([X,\varphi^{-1}(Y)]),Z] + [Y,\varphi_{k+t}([X,\varphi^{-1}(Z)])]$$

$$= [\varphi_{k}(X)(Y),Z] + [Y,\varphi_{k}(X)(Z)],$$

so $\varphi_k(X) \in \mathfrak{g}(\mathfrak{m})_k$. Next we prove that for $X \in \mathfrak{g}_p$, $Y \in \mathfrak{g}_q$ $(p+q=k, 0 \leq p \leq k, 0 \leq q \leq k)$,

$$\varphi_k([X,Y]) = [\varphi_p(X), \varphi_q(Y)].$$

For $Z \in \mathfrak{g}_s$ (s < 0),

$$\begin{aligned} [[\varphi_p(X), \varphi_q(Y)], Z] &= [\varphi_p(X), [\varphi_q(Y), Z]] - [\varphi_q(Y), [\varphi_p(X), Z]] \\ &= \varphi_{p+q+s}([X, [Y, \varphi^{-1}(Z)]] - [Y, [X, \varphi^{-1}(Z)]]) \\ &= \varphi_{p+q+s}([[X, Y], \varphi^{-1}(Z)]) = [\varphi_k([X, Y]), Z]. \end{aligned}$$

By transitivity, we see that $\varphi_k([X,Y]) = [\varphi_p(X), \varphi_q(Y)]$. We define a mapping $\check{\varphi}$ of $\mathfrak{g}(\mathfrak{m})$ into itself as follows:

$$\check{\varphi}(X) = \begin{cases} \varphi(X), & X \in \mathfrak{m}, \\ \varphi_k(X), & k \ge 0, \ X \in \mathfrak{g}(\mathfrak{m})_k. \end{cases}$$

From the above results and the definition of φ_k $(k \ge 0)$, we see that $\check{\varphi}$ is a GLA homomorphism. Assume that φ_{k-1} $(k \ge 0)$ is a linear isomorphism. For $X \in \mathfrak{g}(\mathfrak{m})_k$, if $\varphi_k(X) = 0$, then $0 = [\varphi_k(X), Y] = \varphi_{k-1}([X, \varphi^{-1}(Y)])$ for all $Y \in \mathfrak{g}_{-1}$. By transitivity, we see that X = 0, so φ_k is a linear isomorphism. Therefore $\check{\varphi}$ is an automorphism of $\mathfrak{g}(\mathfrak{m})$.

Theorem 9.1. Let $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$ be a free FGLA over \mathbb{C} , and let $\mathfrak{g}(\mathfrak{m}) = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}(\mathfrak{m})_p$ be the prolongation of \mathfrak{m} . The mapping $\Phi : \operatorname{Aut}(\mathfrak{g}(\mathfrak{m}))_0 \ni \phi \mapsto \phi | \mathfrak{g}_{-1} \in GL(\mathfrak{g}_{-1})$ is an isomorphism.

Proof. We may assume that \mathfrak{m} is a universal FGLA $b(\mathfrak{g}_{-1},\mu)$ of the μ -th kind. By Corollary 1 to Proposition 3.2 of [11], the mapping $\operatorname{Aut}(\mathfrak{m})_0 \ni a \mapsto a|\mathfrak{g}_{-1} \in GL(\mathfrak{g}_{-1})$ is an isomorphism. By Proposition 9.1, we see that the mapping $\Phi: \operatorname{Aut}(\mathfrak{g}(\mathfrak{m}))_0 \ni \phi \mapsto \phi|\mathfrak{g}_{-1} \in GL(\mathfrak{g}_{-1})$ is an isomorphism.

For a pseudo-product GLA $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ with pseudo-product structure $(\mathfrak{e}, \mathfrak{f})$, we denote by $\operatorname{Aut}(\mathfrak{g}; \mathfrak{e}, \mathfrak{f})_0$ the group of all the automorphisms of \mathfrak{g} preserving the gradation of \mathfrak{g} , \mathfrak{e} and \mathfrak{f} :

$$\operatorname{Aut}(\mathfrak{g};\mathfrak{e},\mathfrak{f})_0 = \{ \varphi \in \operatorname{Aut}(\mathfrak{g})_0 : \varphi(\mathfrak{e}) = \mathfrak{e}, \varphi(\mathfrak{f}) = \mathfrak{f} \}.$$

Theorem 9.2. Let $\mathfrak{m} = \bigoplus_{p<0} \mathfrak{g}_p$ be a free pseudo-product FGLA of type (m, n, μ) with pseudo-product structure $(\mathfrak{e}, \mathfrak{f})$ over \mathbb{C} , and let $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ be the prolongation of $(\mathfrak{m}; \mathfrak{e}, \mathfrak{f})$. The mapping $\Phi : \operatorname{Aut}(\mathfrak{g}; \mathfrak{e}, \mathfrak{f})_0 \ni \phi \mapsto (\phi | \mathfrak{e}, \phi | \mathfrak{f}) \in GL(\mathfrak{e}) \times GL(\mathfrak{f})$ is an isomorphism. Furthermore if $\dim \mathfrak{e} \neq \dim \mathfrak{f}$, then $\operatorname{Aut}(\mathfrak{g}; \mathfrak{e}, \mathfrak{f})_0 = \operatorname{Aut}(\mathfrak{g})_0$.

Proof. Clearly Φ is a monomorphism. We show that Φ is surjective. Let (ϕ_1, ϕ_2) be an element of $GL(\mathfrak{e}) \times GL(\mathfrak{f})$. We set $\phi = \phi_1 \oplus \phi_2 \in GL(\mathfrak{g}_{-1})$. By Corollary 1 to Proposition 3.2 of [11], there exists an element $\varphi_1 \in \operatorname{Aut}(b(\mathfrak{g}_{-1}, \mu))_0$ such that $\varphi_1|\mathfrak{g}_{-1} = \phi$. Since $\varphi_1([\mathfrak{e}, \mathfrak{e}] + [\mathfrak{f}, \mathfrak{f}]) = [\mathfrak{e}, \mathfrak{e}] + [\mathfrak{f}, \mathfrak{f}]$, φ_1 induces an element $\varphi_2 \in \operatorname{Aut}(\mathfrak{m}; \mathfrak{e}, \mathfrak{f})_0$ such that $\varphi_2|\mathfrak{g}_{-1} = \phi$. By Proposition 9.1, there exists $\varphi_3 \in \operatorname{Aut}(\mathfrak{g}(\mathfrak{m}))_0$ such that $\varphi_3|\mathfrak{m} = \varphi_2$. We prove that $\varphi_3(\mathfrak{g}) = \mathfrak{g}$. For $X_0 \in \mathfrak{g}_0$ and $Y \in \mathfrak{e}$, we see that $[\varphi_3(X_0), Y] = \varphi_3([X_0, \varphi_3^{-1}(Y)]) \in \varphi_3(\mathfrak{e}) = \mathfrak{e}$, so $\varphi_3(X_0)(\mathfrak{e}) \subset \mathfrak{e}$. Similarly we get $\varphi_3(X_0)(\mathfrak{f}) \subset \mathfrak{f}$. Thus we obtain that $\varphi_3(\mathfrak{g}_0) = \mathfrak{g}_0$. Now we assume that $\varphi_i(\mathfrak{g}_i) = \mathfrak{g}_i$ for $0 \le i \le k$. Then for $X_{k+1} \in \mathfrak{g}_{k+1}$ and $Y \in \mathfrak{g}_p$ (p < 0), we see that $[\varphi_3(X_{k+1}), Y] = \varphi_3([X_{k+1}, \varphi_3^{-1}(Y)]) \in \varphi_3(\mathfrak{g}_{p+k+1}) = \mathfrak{g}_{p+k+1}$, so $\varphi_3(\mathfrak{g}_{k+1}) \subset \mathfrak{g}_{k+1}$. Hence $\varphi_3(\mathfrak{g}) = \mathfrak{g}$ and Φ is surjective. Now we assume that dim $\mathfrak{e} \ne \dim \mathfrak{f}$. Let $\varphi \in \operatorname{Aut}(\mathfrak{g})_0$. Since \mathfrak{g}_0 -modules \mathfrak{e} and \mathfrak{f} are not isomorphic to each other, we see that $(i) \varphi(\mathfrak{e}) = \mathfrak{e}$, $\varphi(\mathfrak{f}) = \mathfrak{f}$ or $(ii) \varphi(\mathfrak{e}) = \mathfrak{f}$, $\varphi(\mathfrak{f}) = \mathfrak{e}$. According to the assumption dim $\mathfrak{e} \ne \dim \mathfrak{f}$, we get $\varphi(\mathfrak{e}) = \mathfrak{e}$, $\varphi(\mathfrak{f}) = \mathfrak{f}$, so $\varphi \in \operatorname{Aut}(\mathfrak{g}; \mathfrak{e}, \mathfrak{f})_0$.

References

- [1] Bourbaki N., Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie, *Actualités Scientifiques et Industrielles*, No. 1349, Hermann, Paris, 1972.
- [2] Bourbaki N., Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.
- [3] Kac V.G., Simple irreducible graded Lie algebras of finite growth, Math. USSR Izv. 2 (1968), 1271–1311.
- [4] Kobayashi S., Nagano T., On filtered Lie algebras and geometric structures. I, J. Math. Mech. 13 (1964), 875–907.
- [5] Morimoto T., Transitive Lie algebras admitting differential systems, Hokkaido Math. J. 17 (1988), 45–81.
- [6] Morimoto T., Tanaka N., The classification of the real primitive infinite Lie algebras, *J. Math. Kyoto Univ.* **10** (1970), 207–243.
- [7] Ochiai T., Geometry associated with semisimple flat homogeneous spaces, Trans. Amer. Math. Soc. 152 (1970), 159–193.
- [8] Onishchik A.L., Vinberg E.B., Lie groups and algebraic groups, *Springer Series in Soviet Mathematics*, Springer-Verlag, Berlin, 1990.

[9] Tanaka N., Geometric theory of ordinary differential equations, Report of Grant-in-Aid for Scientific Research MESC Japan, 1989.

- [10] Tanaka N., On affine symmetric spaces and the automorphism groups of product manifolds, Hokkaido Math. J. 14 (1985), 277–351.
- [11] Tanaka N., On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ. 10 (1970), 1–82.
- [12] Tanaka N., Projective connections and projective transformations, Nagoya Math. J. 12 (1957), 1–24.
- [13] Warhurst B., Tanaka prolongation of free Lie algebras, Geom. Dedicata 130 (2007), 59-69.
- [14] Yamaguchi K., Contact geometry of higher order, Japan. J. Math. (N.S.) 8 (1982), 109–176.
- [15] Yamaguchi K., Differential systems associated with simple graded Lie algebras, in Progress in Differential Geometry, Adv. Stud. Pure Math., Vol. 22, Math. Soc. Japan, Tokyo, 1993, 413–494.
- [16] Yatsui T., On pseudo-product graded Lie algebras, Hokkaido Math. J. 17 (1988), 333–343.