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Abstract. We give a complete proof of a set of identities (7) proposed recently from
calculation of high-energy string scattering amplitudes. These identities allow one to extract
ratios among high-energy string scattering amplitudes in the fixed angle regime from high-
energy amplitudes in the Regge regime. The proof is based on a signless Stirling number
identity in combinatorial theory. The results are valid for arbitrary real values L rather
than only for L = 0, 1 proved previously. The identities for non-integer real value L were
recently shown to be realized in high-energy compactified string scattering amplitudes [He S.,
Lee J.C., Yang Y., arXiv:1012.3158]. The parameter L is related to the mass level of an
excited string state and can take non-integer values for Kaluza–Klein modes.
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1 Introduction

Recently high-energy fixed angle string scattering amplitudes were intensively investigated
[6, 7, 9] for string states at arbitrary mass levels. One of the motivation of this calculation has
been to uncover the fundamental hidden stringy spacetime symmetry conjectured more than
twenty years ago in [12, 13, 14, 15, 16]. It was conjectured in late 80s [12, 13] that there exist li-
near relations or symmetries among scattering amplitudes in the high energy fixed angle regime,
or Gross regime (GR). In the recent calculations, an infinite number of linear relations among
high-energy scattering amplitudes of different string states were derived and the complete ratios
among the amplitudes at each fixed mass level can be determined. An important new ingredient
of this string amplitude calculation was based on an old conjecture of [8, 10, 20, 23, 24, 25] on
the decoupling of zero-norm states (ZNS) in the spectrum, in particular, the identification of
inter-particle symmetries induced by the inter-particle ZNS [24, 25] in the spectrum.

Another fundamental regime of high-energy string scattering amplitudes is the Regge regime
(RR) [1, 2, 3, 5, 27, 29]. See also [4, 11, 19]. It was found [22] that the high-energy string
scattering amplitudes in the GR and RR contain information complementary to each other. On
the other hand, since the decoupling of ZNS applies to all kinematic regimes, one expects that
the ratios obtained from the decoupling of ZNS in the GR are closely related to the decoupling
of ZNS or scattering amplitudes in the RR. Moreover, it is conceivable that there exists some
link between the patterns of the high-energy scattering amplitudes in the GR and RR. It was
found that the number of high-energy scattering amplitudes for each fixed mass level in the
RR is much more numerous than that of GR calculated previously. In contrast to the case of
scattering amplitudes in the GR, there is no linear relation among scattering amplitudes in the
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RR. Moreover, it was discovered that the leading order amplitudes at each fixed mass level in
the RR can be expressed in terms of the Kummer function of the second kind. More surprisingly,
for those leading order string tree four-point high-energy amplitudes A(N,2m,q) (see equation (4))
in the RR with the same type of (N, 2m, q) as those of GR, one can extract from them the ratios
T (N,2m,q)/T (N,0,0) (see equations (1) and (2)) in the GR by using this Kummer function. The
calculation was based on a set of identities equation (7) which depend on an integer parameter
L(M2

2 ) = 1−N where M2
2 = 2(N − 1) is the mass square of the second string scattering state

(here, for simplicity, one chooses the other three string states to be tachyons). The calculation
can be done for both the case of open string and the closed string as well.

The proof of these identities for L = 0, 1 was previously given in [17, 22] based on a set of
signed Stirling number identities developed in 2007 [21]. However, the proof of these identities
for arbitrary integer values L is still lacking, and it is crucial to complete the proof in order to link
high-energy string scattering amplitudes in the RR and GR regimes as claimed above. Moreover,
it was discovered recently [18] that in order to link the RR and GR string amplitudes for the
scattering compactified on tori, one needs to prove the identities for arbitrary real values L.

In this letter, we are going to prove these identities for arbitrary real values L by using
a signless Stirling number identity. It is remarkable to see that the identities suggested by
string theory calculation can be rigorously proved by a totally different mathematical method
in combinatorial theory. It is also very interesting to see that, physically, the identities for
arbitrary real values L in equation (8) can only be realized in high-energy compactified string
scattering amplitudes considered very recently [18]. This is mainly due to the relation M2 =(
K25

)2
+ M̂2 where M̂2 = 2(N − 1) and K25 = 2πl−θl+θi

2πR (see, e.g., [28]) is the generalized KK
internal momentum corresponding to the compactified string coordinate [18]. In the definition
of K25, l is the quantized momentum, R is the radius of compactified S1, and we have included
a nontrivial Wilson line with U(n) Chan–Paton factors, i, l = 1, 2, . . . , n. All other high-energy
string scattering amplitudes calculated previously [17, 22] correspond to integer values of L only.

2 GR and RR amplitudes

We begin with a brief review of the high-energy string scattering in the fixed angle regime,

s,−t→∞, t/s ≈ − sin2
φ

2
= fixed (but φ 6= 0),

where s, t and u are the Mandelstam variables and φ is the CM scattering angle. It was shown [6]
that for the 26D open bosonic string the only states that will survive the high-energy limit at
mass level M2

2 = 2(N −1) are of the form (we choose the second state of the four-point function
to be the higher spin string state)

|N, 2m, q〉 ≡
(
αT−1

)N−2m−2q(
αL−1

)2m(
αL−2

)q|0, k〉, (1)

where the polarizations of the 2nd particle with momentum k2 on the scattering plane were
defined to be eP = 1

M2
(E2, k2, 0) =

k2
M2

as the momentum polarization, eL = 1
M2

(k2, E2, 0) the

longitudinal polarization and eT = (0, 0, 1) the transverse polarization which lies on the scat-
tering plane. The three vectors eP , eL and eT satisfy the completeness relation [7] ηµν =∑

α,β e
α
µe
β
νηαβ where µ, ν = 0, 1, 2 and α, β = P,L, T , and αT−1 =

∑
µ e

T
µα

µ
−1, α

T
−1α

L
−2 =∑

µ e
T
µe

L
ν α

µ
−1α

ν
−2 etc. diag ηµν = (−1, 1, 1). In equation (1), N , m and q are non-negative

integers and N ≥ 2m+2q. These integers characterise the mass square and “spin” of the higher
string states. Note that eP approaches to eL in the GR [7] or equivalently the eP polariza-
tions can be gauged away using ZNS. So we did not put eP components in equation (1). For
simplicity, we choose the particles associated with momenta k1, k3 and k4 to be tachyons. It
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turned out that the high-energy fixed angle scattering amplitudes can be calculated by using the
saddle-point method [6]. An infinite number of linear relations among four-point high-energy
scattering amplitudes of different string states were derived and the complete ratios among the
amplitudes at each fixed mass level can be calculated to be [6]

T (N,2m,q)

T (N,0,0)
=

(
− 1

M2

)2m+q (1

2

)m+q

(2m− 1)!!. (2)

Alternatively, the ratios can be calculated by the method of decoupling of two types of ZNS
in the old covariant first quantized string spectrum. Since the decoupling of ZNS applies to
all string loop order, the ratios calculated in equation (2) are valid to all string loop order.
Similarly, the ratios for closed string, superstring and D-brane scattering amplitudes [9] can be
obtained.

Another high-energy regime of string scattering amplitudes, which contains complementary
information of the theory, is the fixed momentum transfer t or RR. That is in the kinematic
regime

s→∞,
√
−t = fixed (but

√
−t 6=∞).

It was found [22] that the number of high-energy scattering amplitudes for each fixed mass level
in this regime is much more numerous than that of fixed angle regime calculated previously. On
the other hand, it seems that both the saddle-point method and the method of decoupling of
zero-norm states adopted in the calculation of fixed angle regime do not apply to the case of
Regge regime. However the calculation is still manageable, and the general formula for the high
energy (s, t) channel open string scattering amplitudes at each fixed mass level can be written
down explicitly.

It was shown that a class of high-energy open string states in the Regge regime at each fixed
mass level N =

∑
l,m lpl +mqm are [17, 22]

|pl, qm〉 =
∏
l>0

(
αT−l
)pl ∏

m>0

(
αL−m

)qm |0, k〉. (3)

As explained in [17] for the purpose of connecting the RR with the GR limit of a scattering
amplitude, suffices to consider scattering amplitudes involving only the vertex in equation (3).
The complete high energy vertex can be found in [17]. The momenta of the four particles on
the scattering plane are

k1 =

(
+
√
p2 +M2

1 ,−p, 0
)
, k2 =

(
+
√
p2 +M2

2 ,+p, 0

)
,

k3 =

(
−
√
q2 +M2

3 ,−q cosφ,−q sinφ
)
, k4 =

(
−
√
q2 +M2

4 ,+q cosφ,+q sinφ

)
,

where p ≡ |~p|, q ≡ |~q| and k2i = −M2
i . The relevant kinematics are

eP · k1 ' −
s

2M2
, eP · k3 ' −

t̃

2M2
= − t−M

2
2 −M2

3

2M2
,

eL · k1 ' −
s

2M2
, eL · k3 ' −

t̃′

2M2
= − t+M2

2 −M2
3

2M2
,

and

eT · k1 = 0, eT · k3 ' −
√
−t,
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where t̃ and t̃′ are related to t by finite mass square terms

t̃ = t−M2
2 −M2

3 , t̃′ = t+M2
2 −M2

3 .

Note that eP does not approach to eL in the RR. The Regge scattering amplitude for the (s, t)
channel was calculated to be [22] (we choose to calculate eL amplitudes, the eP amplitudes can
be similarly discussed)

A(N,2m,q)(s, t) = sα(t)
√
−tN−2m−2q

(
1

2M2

)2m+q

· 22m(t̃′)qU
(
−2m, t

2
+ 2− 2m,

t̃′

2

)
, (4)

where the level independent [22] exponent α(t) = a(0)+α′t, a(0) = 1 and α′ = 1
2 . In equation (4)

U is the Kummer function of the second kind and is defined to be

U(a, c, x) =
π

sinπc

[
M(a, c, x)

(a− c)!(c− 1)!
− x1−cM(a+ 1− c, 2− c, x)

(a− 1)!(1− c)!

]
, c 6= 2, 3, 4, . . . ,

where M(a, c, x) =
∞∑
j=0

(a)j
(c)j

xj

j! is the Kummer function of the first kind. Note that the second

argument of Kummer function c = t
2+2−2m is a function of the variable t, and is not a constant

as it was in the literature previously.
It can be seen from equation (4) that the Regge scattering amplitudes at each fixed mass

level are no longer proportional to each other. The ratios are t dependent functions and can be
calculated to be [22]

A(N,2m,q)(s, t)

A(N,0,0)(s, t)
= (−1)m

(
− 1

2M2

)2m+q

(t̃′ − 2N)−m−q(t̃′)2m+q

×
2m∑
j=0

(−2m)j

(
−1 +N − t̃′

2

)
j

(−2/t̃′)j

j!
+ O

{(
1

t̃′

)m+1
}
, (5)

where (x)j = x(x+ 1)(x+ 2) · · · (x+ j − 1) is the Pochhammer symbol which can be expressed
in terms of the signed Stirling number of the first kind s (n, k) as following

(x)n =

n∑
k=0

(−)n−ks (n, k)xk.

It was proposed in [22] that the coefficients of the leading power of t̃′ in equation (5) can be
identified with the ratios in equations (2). To ensure this identification

lim
t̃′→∞

A(N,2m,q)

A(N,0,0,)
=
T (N,2m,q)

T (N,0,0)
=

(
− 1

M2

)2m+q (1

2

)m+q

(2m− 1)!!, (6)

one needs the following identity

2m∑
j=0

(−2m)j

(
−L− t̃′

2

)
j

(−2/t̃′)j

j!

= 0 · (−t̃′)0+ 0 · (−t̃′)−1+ · · ·+ 0 · (−t̃′)−m+1+
(2m)!

m!
(−t̃′)−m + O

{(
1

t̃′

)m+1
}
, (7)

where L = 1−N and is an integer. Similar identification can be extended to the case of closed
string as well. For all four classes of high-energy superstring scattering amplitudes, L is an
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integer too [17]. A recent work on string D-particle scattering amplitudes [26] also gives an

integer value of L. Note that L affects only the sub-leading terms in O
{(

1
t̃′

)m+1 }
. Here we

give a simple example for m = 3 [17]

6∑
j=0

(−2m)j

(
−L− t̃′

2

)
j

(−2/t̃′)j

j!

=
120

(−t̃′)3
+

720L2 − 2640L+ 2080

(−t̃′)4
+

480L4 − 4160L3 + 12000L2 − 12928L+ 3840

(−t̃′)5

+
64L6 − 960L5 + 5440L4 − 14400L3 + 17536L2 − 7680L

(−t̃′)6
.

Mathematically, equation (7) was exactly proved [17, 22] for L = 0, 1 by a calculation based
on a set of signed Stirling number identities developed very recently in combinatorial theory
in [21]. For general integer L cases, only the identity corresponding to the nontrivial leading

term (2m)!
m! (−t̃′)−m was rigorously proved [17], but not for other “0 identities”. A numerical proof

of equation (7) was given in [17] for arbitrary real values L and for non-negative integer m up to
m = 10. It was then conjectured that [17] equation (7) is valid for any real number L and any
non-negative integer m. It is important to prove equation (7) for any non-negative integer m
and arbitrary real values L, since these values can be realized in the high-energy scattering of
compactified string states, as was shown recently in [18]. Real values of L appear in string
compactifications due to the dependence on the generalized KK internal momenta K25

i [18]

L = 1−N −
(
K25

2

)2
+K25

2 K
25
3 . (8)

All other high-energy string scattering amplitudes calculated previously [17, 22] correspond to
integer value of L only. It is thus of importance to rigorously prove the validity of equation (7)
for arbitrary real values L.

3 Proof of the identity

We now proceed to prove equation (7). We first rewrite the left-hand side of equation (7) in the
following form

2m∑
j=0

(−2m)j

(
−L− t̃′

2

)
j

(−2/t̃′)j

j!

=

2m∑
j=0

(−1)j
(
2m

j

) j∑
l=0

(
j

l

)
(−L)j−l

l∑
s=0

c (l, s)

(
− 2

t̃′

)j−s
, (9)

where we have used the identity (a + b)j =
j∑
l=0

(
j
l

)
(a)j−l(b)l and have introduced the signless

Stirling number of the first kind c (l, s) to expand the Pochhammer symbol

(x)n =

n∑
k=0

c (n, k)xk. (10)

The coefficient of (−2/t̃′)i in equation (9), which will be defined as G (m, i), can be read off
from the equation as

G (m, i) =

2m∑
j=0

j∑
l=0

(−1)j+i
(
2m

j

)(
j

l

)
(−L)j−lc (l, j − i) .
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One needs to prove that

1. G (m,m) = (2m− 1)!!, for all L ∈ R; (11)

2. G (m, i) = 0, for all L ∈ R and 0 ≤ i < m. (12)

From the definition of c (n, k) in (10), we note that c (n, k) 6= 0 only if 0 ≤ k ≤ n. Thus
c (l, j − i) 6= 0 only if j ≥ i and l ≥ j − i. We can rewrite G (m, i) as

G (m, i) =
2m∑
j=i

j∑
l=j−i

(−1)j
(
2m

j

)(
j

l

)
(−L)j−lc (l, j − i)

=
2m−i∑
k=0

i∑
p=0

(−1)k+i
(

2m

i+ k

)(
i+ k

p+ k

)
(−L)i−pc (k + p, k)

= (−1)i
i∑

p=0

(−L)i−p
(

2m

i− p

) 2m−i∑
k=0

(−1)k
(
2m− i+ p

k + p

)
c (k + p, k)

≡ (−1)i
i∑

p=0

(−L)i−p
(

2m

i− p

)
S2m−i (p) , (13)

where we have defined

SN (p) =
N∑
k=0

(−1)k
(
N + p

k + p

)
c (k + p, k) . (14)

It is easy to see that for fixed m and 0 ≤ i < m, G (m, i) is a polynomial of L of degree i,
expanded with the basis 1, (−L)1, (−L)2, . . . . Note that p ≤ i < m, so 2m − i ≥ p + 1. For
equation (12), we want to show that SN (p) = 0 for N ≥ p+ 1. For this purpose, we define the
functions

Cn (x) =
∑
k≥0

c (k + n, k)xk+n.

The recurrence of the signless Stirling number identity

c (k + n, k) = (n+ k − 1) c (n+ k − 1, k) + c (n+ k − 1, k − 1)

leads to the equation

Cn (x) =
x2

1− x
d

dx
Cn−1 (x) ,

with the initial value

C0 (x) =
1

1− x
.

The first couple of Cn (x) can be calculated to be

C1 (x) =
x2

(1− x)3
, C2 (x) =

x4 + 2x3

(1− x)5
, C3 (x) =

x6 + 8x5 + 6x4

(1− x)7
.

Now by induction, it is easy to show that

Cn (x) =
fn (x)

(1− x)2n+1 , where fn (x) = x2n +O
(
x2n−1

)
, (15)

fn (1) = (2n− 1)!!. (16)
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Proof. If

fn (1) = (2n− 1)!!,

then

fn+1 (x) = (1− x)2n+3 x2

1− x
d

dx

[
fn (x)

(1− x)2n+1

]
= x2

[
(2n+ 1) fn (x) + (1− x) f ′n (x)

]
when x = 1, since fn (x) is a polynomial, this gives

fn+1 (1) = (2n+ 1) fn (1) = (2n+ 1)!! = [2 (n+ 1)− 1]!!. �

In order to prove equation (12), we note that

(−1)NSN (p) =
N∑
k=0

(−1)N+k

(
N + p

k + p

)
c (k + p, k)

is the coefficient of xN+p in the function

(1− x)N+pCp (x) = (1− x)N+p
∑
k≥0

c (k + p, k)xk+p

=
∑
k≥0

N+p∑
m=0

(
N + p

m

)
(−1)N+p−m c (k + p, k)xN+2p+k−m.

On the other hand, the above function is a polynomial when N > p due to equation (15)

(1− x)N+pCp (x) = fp (x) (1− x)N−p−1 = xN+p−1 +O (· · · ) . (17)

It is obvious that the coefficient of xN+p in equation (17) is zero. This proves that SN (p) = 0
for N > p. For m > i ≥ 0 and 0 ≤ p ≤ i, 2m − i > i ≥ p, we have S2m−i (p) = 0 and thus
equation (12),

G (m, i) = (−1)i
i∑

p=0

(−L)i−p
(

2m

i− p

)
S2m−i (p) = 0.

In order to prove the first identity in equation (11), we first note that the above argument
remains true for i = m and 0 ≤ p < i, i.e. 2m− i = i > p and thus S2m−i (p) = 0. So G (m,m)
only receives contributions from the term with p = i = m. By using equation (13) and (14), we
can evaluate

G (m,m) = (−1)m Sm (m) =

m∑
k=0

(−1)k+m
(

2m

k +m

)
c (k + p, k) . (18)

Equation (18) corresponds to the coefficient of x2m in the function

(1− x)2mCm(x) =
fm (x)

1− x
= fm (x)

(
1 + x+ x2 + · · ·

)
.

By equation (16), this coefficient is

fm (1) = (2m− 1)!!.

This proves equation (11). We thus have completed the proof of equation (7) for any non-negative
integer m and any real value L.
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