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Abstract. A new solvable many-body problem is identified. It is characterized by nonlinear
Newtonian equations of motion (“acceleration equal force”) featuring one-body and two-
body velocity-dependent forces “of goldfish type” which determine the motion of an arbitrary
number N of unit-mass point-particles in a plane. The N (generally complex ) values zn(t)
at time t of the N coordinates of these moving particles are given by the N eigenvalues of
a time-dependent N ×N matrix U(t) explicitly known in terms of the 2N initial data zn(0)
and żn(0). This model comes in two different variants, one featuring 3 arbitrary coupling
constants, the other only 2; for special values of these parameters all solutions are completely
periodic with the same period independent of the initial data (“isochrony”); for other special
values of these parameters this property holds up to corrections vanishing exponentially as
t → ∞ (“asymptotic isochrony”). Other isochronous variants of these models are also
reported. Alternative formulations, obtained by changing the dependent variables from the
N zeros of a monic polynomial of degree N to its N coefficients, are also exhibited. Some
mathematical findings implied by some of these results – such as Diophantine properties of
the zeros of certain polynomials – are outlined, but their analysis is postponed to a separate
paper.
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1 Introduction

The technique used in this paper to identify a new solvable many-body problem has become by
now standard. Its more convenient version starts from the identification of a solvable matrix
problem characterized by two first-order, generally autonomous, matrix ODEs defining the time
evolution of two N ×N matrices U ≡ U(t) and V ≡ V (t):

U̇ = F (U, V ), V̇ = G(U, V ), (1.1a)

where the two functions F (U, V ), G(U, V ) may depend on several scalar parameters but on
no other matrix besides U and V . Here and hereafter superimposed dots denote of course
differentiations with respect to the independent variable t (“time”). The solvable character of
this system amounts to the possibility to obtain the solution of its initial-value problem,

U(t) = U(t;U0, V0), V (t) = V (t;U0, V0), U0 ≡ U(0), U0 ≡ V (0), (1.1b)
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with the two matrix functions U(t;U0, V0), V (t;U0, V0) explicitly known. For instance, in this
paper we shall focus (see (3.3) below) on a system (1.1a) which can be related to a linear
(third-order, matrix) evolution equation (see (3.3) below), so that its initial-value problem can
be explicitly solved.

One then introduces the eigenvalues zn(t) of one of these two matrices, by setting, say

U(t) = R(t)Z(t)[R(t)]−1, Z(t) = diag[zn(t)]. (1.2)

Remark 1.1. The diagonalizing matrix R(t) is identified by this formula up to right-multipli-
cation by an arbitrary diagonal N ×N matrix D(t), R(t)⇒ R̃(t) ≡ R(t)D(t).

Then one introduces a new N ×N matrix Y (t) by setting

V (t) = R(t)Y (t)[R(t)]−1, Y (t) = [R(t)]−1V (t)R(t), (1.3a)

where of course the N ×N matrix R(t) is that defined above, see (1.2). This matrix Y (t) is of
course generally nondiagonal :

Ynm(t) = δnmyn(t) + (1− δnm)Ynm(t). (1.3b)

Notation 1.1. Indices such as n, m, ` run from 1 to N (unless otherwise explicitly indicated),
and N is an arbitrary positive integer (indeed generally N ≥ 2). δnm is the Kronecker symbol,
δnm = 1 if n = m, δnm = 0 if n 6= m. Note that hereafter we use the notation Ynm to denote
the N (N − 1) off-diagonal elements of the N ×N matrix Y .

It often turns out that the time evolution of the eigenvalues zn (t) is then characterized by
a system of N second-order ODEs which read as follows:

z̈n = f(zn, żn) +

N∑
`=1, `=n

[
Yn`Y`n

g(1)(zn, żn)g
(2)(z`, ż`)

zn − z`

]
, (1.4)

where the three functions f(z, ż), g(1)(z, ż) and g(2)(z, ż) can be computed from the two matrix
functions F (U, V ), G(U, V ) (see below). It is then natural to try and interpret this system
of ODEs as the Newtonian equations of motion (“acceleration equal force”) of a many-body
problem characterizing the motion of N particles whose coordinates coincide with the N eigenva-
lues zn(t); an N -body problem generally featuring one-body and two-body velocity-dependent
forces, with the N(N − 1) quantities Yn`Y`n playing the role of “coupling constants”. But
these quantities are not time-independent, nor can they be arbitrarily assigned: they are the
off-diagonal elements of the N × N matrix Y , hence they should be themselves considered as
dependent variables, the time evolution of which is characterized by the system of N(N − 1)
ODEs implied for them by (1.1a) via (1.2) and (1.3).

Two options are then open to provide nonetheless a “physical” interpretation for the equations
of motion (1.4).

One option that we do not pursue here is to provide some kind of “physical” interpretation
for these N(N − 1) quantities Yn`Y`n as additional (internal) degrees of freedom of the moving
particles.

A second option – the one which we pursue below – is to find a (time-independent) ansatz
expressing the N(N − 1) quantities Yn` in terms of the N coordinates zm, or possibly of the 2N
quantities zm, żm; an ansatz consistent with the N(N − 1) equations of motion satisfied by the
N(N − 1) quantities Yn`, which satisfies these equations either identically (i.e., independently
from the time evolution of the N coordinates zm(t)) or, as it were, self-consistently (i.e., thanks
to the time evolution (1.4) of the N coordinates zm(t) with the N(N−1) quantities Yn` assigned



Another New Solvable Many-Body Model of Goldfish Type 3

according to the ansatz ). Given a matrix system of type (1.1a) no technique is known to assess
a priori whether or not such an ansatz exist. However the experience accumulated over time
suggests that, if such an ansatz does exist, it has one of the following two forms:

ansatz 1 : Yn` =
g(1)(zn)g

(2)(z`)

zn − z`
; (1.5a)

ansatz 2 : Yn` =
{
g(1)(zn)g

(2)(z`)
[
żn + f (1)(zn)

][
ż` + f (2)(z`)

]}1/2
; (1.5b)

of course with the functions appearing in the right-hand side of these formulas chosen appro-
priately. And as a rule the ansatz 1 should work identically, i.e. independently of the time
evolution of the coordinates zm(t); while to ascertain the validity of ansatz 2 the equations of
motion (1.4) should be used self-consistently.

For instance in the very simple case of the equations of motion (1.1a) with F (U, V ) = V and
G(U, V ) = 0 implying Ü = 0 and U(t) = U0 + V0t, V (t) = V0, both ansätze exist: the ansatz 1
reads in this case Yn` = ig/(zn − z`) with i the imaginary unit (introduced for convenience)
and g an arbitrary constant, and it yields the prototypical “CM” model characterized by the
equations of motion

z̈n = 2g2
N∑

`=1, ` 6=n

(zn − z`)−3; (1.6)

while the ansatz 2 in this case reads Yn` = (żnż`)
1/2, and it yields the prototypical “goldfish”

model characterized by the equations of motion

z̈n =

N∑
`=1, ` 6=n

(
2żnż`
zn − z`

)
. (1.7a)

Nomenclature and historical remarks. The model characterized by the Newtonian
equations of motion (1.6) – which obtain from the Hamiltonian

HCM(z, p) =
1

2

N∑
n=1

p2n +
1

2
g2

N∑
n,m=1, n6=m

(zn − zm)−2

– is usually associated with the names of those who first demonstrated the possibility to treat
this many-body problem exactly, respectively in the quantal [1] and in the classical [2] contexts;
accordingly, we usually call “many-body problems of CM-type” those featuring in the right-
hand (“forces”) side of their Newtonian equations of motion a term such as that appearing in
the right-hand side of (1.6) (in addition of course to other terms). Such models are typically
produced by the ansatz 1.

The solvable character of the many-body problem characterized by the Newtonian equations
of motion (1.7a) – which is also Hamiltonian, for instance with the Hamiltonian [3, 4, 5]

Hgold(z, p) =

N∑
n=1

exp(pn) N∏
m=1,m 6=n

(zn − zm)−1


– is demonstrated by the following neat Prescription [5, 6, 7]: the N values of the coordina-
tes zn(t) providing the solution of the initial-value problem of the equations of motion (1.7a)
are the N zeros of the following algebraic equation for the variable z:

N∑
n=1

[
żn(0)

z − zn(0)

]
=

1

t
. (1.7b)
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(Note that this formula amounts to a polynomial equation of degree N in z, as it is immediately

seen by multiplying it by the polynomial
N∏

m=1
[z − zm(0)]). In [7] it was suggested that this

model, in view of its neat character, be considered a “goldfish” (meaning, in Russian traditional
lore, a very remarkable item, endowed with magical properties); accordingly, we usually call
“many-body problems of goldfish-type” those featuring in the right-hand (“forces”) side of their
Newtonian equations of motion a term such as that appearing in the right-hand side of (1.7a)
(in addition of course to other terms). Such models are typically produced by the ansatz 2.

The original idea of the approach described above is due to Olshanetsky and Perelomov,
who introduced it to solve, in the classical context, the many-body model characterized by the
Newtonian equations of motion (1.6) [8]. For a more detailed description of their work see
the review paper [9], the book [10], Section 2.1.3.2 (entitled “The technique of solution of Ol-
shanetsky and Perelomov”) in [11], and other references cited in these books. In Section 4.2.2
(entitled “Goldfishing”) of [5] several many-body problems, mainly “of goldfish type”, are re-
viewed, the solvable character of which has been ascertained by this approach; and several other
such models are discussed in more recent papers [12, 13, 14, 15].

The present paper provides two further additions to the list of solvable many-body problems
“of goldfish type”; and we expect that other items will be added to this list in the future, possibly
by a continuation of the case-by-case search of solvable matrix evolution equations allowing – via
the route outlined above and described in more detail, in a specific case, below (see Section 3) –
the identification of working ansätze leading to new systems of Newtonian equations (thereby
shown to be themselves solvable, inasmuch as their solution is reduced to the algebraic task of
computing the N eigenvalues of an explicitly known N ×N matrix). The identification of a new
model of this kind constitutes – in our opinion – an interesting finding (even if several analogous
models have been previously discovered): we view these many-body problems as gems embedded
in the magma of the generic many-body problems which are not amenable to exact treatments
(although the latter include of course more examples of applicative interest and are also mathe-
matically interesting to investigate the emergence and phenomenology of chaotic behaviors).

In the following Section 2 the main findings of this paper are reported, including in particular
a description of two new solvable many-body problems (one featuring 3, the other only 2,
a priori arbitrary parameters), of the algebraic solution of their initial-value problems, and of the
variety of behaviors (including isochrony and asymptotic isochrony) featured by them for certain
assignments of their parameters; two additional isochronous systems are moreover exhibited in
Section 2.1. In Section 3 these results are proven. Section 4 provides the alternative formulations
of these models, obtained by changing the dependent variables from the N zeros of a monic
polynomial of degree N to its N coefficients. A final Section 5 entitled “Outlook” outlines
further developments, including in particular the identification of Diophantine properties of the
zeros of certain polynomials; but their detailed discussion is postponed to a separate paper.

2 Main findings

The two models treated in this paper are characterized by the following two sets of Newtonian
equations of motion “of goldfish type”.

Model (i):

z̈n = −3żnzn + γżn − z3n + γz2n + [−a+ b(γ + b)]zn + a(γ + b)

+

N∑
`=1, ` 6=n

[
2
(
żn + a+ bzn + z2n

)(
ż` + a+ bz` + z2`

)
zn − z`

]
, (2.1a)

where a, b and γ are 3 a priori arbitrary parameters.
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Model (ii):

z̈n = −3żnzn − 3bżn − z3n − 3bz2n − 2
(
a+ b2

)
zn − 2ab

+
N∑

`=1, ` 6=n

[
2
(
żn + a+ bzn + z2n/2

)(
ż` + a+ bz` + z2` /2

)
zn − z`

]
, (2.1b)

where a and b are 2 a priori arbitrary parameters.

Notation 2.1. These models describe the motion of an arbitrary number N (generally N ≥ 2)
of points moving in the complex z-plane (but see below Remark 2.1). Their positions are
identified by the complex dependent variables zn ≡ zn(t). The independent variable t (“time”)
is instead real. Superimposed dots denote of course time-differentiations. The parameters
featured by these models are generally arbitrary complex numbers; unless otherwise specified
when discussing special cases.

Remark 2.1. It is possible to reformulate these models so that they describe the motion of
pointlike “physical particles” moving in a real – say, horizontal – plane: see for instance, in [11],
Section 4.1 entitled “How to obtain by complexification rotation-invariant many-body models
in the plane from certain many-body models on the line”. This task is left to the interested
reader. But hereafter we feel free to refer to the models identified by the Newtonian equations
of motion (2.1) as many-body problems characterizing the motion of N particles in a plane.

Remark 2.2. Additional parameters could be inserted in these models by shifting or rescaling
the dependent variables zn or the independent variable t. We will not indulge in such trivial
exercises (see also Remark 3.1 below).

The solvable character of these two models is demonstrated by the following

Proposition 2.1. The solution of the initial-value problems of the two many-body models cha-
racterized by the Newtonian equations of motion “of goldfish type” (2.1) are given by the eigen-
values of the N × N matrix U(t), the explicit expression of which in terms of the 2N initial
data zn(0), żn(0) and of the time t is given by the following formulas (see (3.6a) with (3.7)):

U(t) = i
{
I +A exp[i(ω2 − ω1)t] +B exp[i(ω3 − ω1)t]

}−1
×
{
ω1I + ω2A exp[i(ω2 − ω1)t] + ω3B exp[i(ω3 − ω1)t]

}
, (2.2a)

with the two constant N ×N matrices A and B defined as follows:

A = −(ω1 − ω3)(ω2 − ω3)
−1[I − i(ω1 + ω3)

(
V0 + ω2

3

)−1
(U0 − iω3)

−1]
×
[
I − i(ω2 + ω3)

(
V0 + ω2

3

)−1
(U0 − iω3)

−1]−1, (2.2b)

B = (ω1 − ω2)(ω2 − ω3)
−1[I − i(ω1 + ω2)

(
V0 + ω2

2

)−1
(U0 − iω2)

−1]
×
[
I − i(ω2 + ω3)

(
V0 + ω2

2

)−1
(U0 − iω2)

−1]−1. (2.2c)

Here and hereafter I is the N ×N unit matrix, the N ×N matrix U0 ≡ U(0) is diagonal and is
given in terms of the initial particle positions zn(0) as follows,

U0 = diag[zn(0)], (2.3)

while the N × N matrix V0 ≡ V (0) is the sum of a diagonal and a dyadic matrix, being given
componentwise by the following formulas in terms of the initial particle positions zn(0) and
velocities żn(0):

(V0)nm = −δnm
[
a+ bzn(0) + (c− 1)z2n(0)

]
+ VnVm, (2.4a)
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Vn =
[
żn(0) + a+ bzn(0) + cz2n(0)

]1/2
, (2.4b)

with c = 1 for model (i) and c = 1/2 for model (ii) (see (2.6)). As for the 3 constants ωj

appearing in (2.2), they are defined by the following formula (see (3.5b)):

ω3 + iγω2 + βω − iα = (ω − ω1)(ω − ω2)(ω − ω3) (2.5a)

implying

α = −iω1ω2ω3, β = ω1ω2 + ω2ω3 + ω3ω1, γ = i(ω1 + ω2 + ω3), (2.5b)

with α and β respectively α, β and γ given by the following expressions for model (i) respectively
for model (ii) (see (3.21a) respectively (3.21b)):

model (i):

c = 1, α = a(γ + b), β = −a+ b(γ + b); (2.6a)

model (ii):

c =
1

2
, α = −2ab, β = −2

(
a+ b2

)
, γ = −3b. (2.6b)

Note that the 3 a priori arbitrary parameters ωj have the dimension of an inverse time; above
and hereafter we assume for simplicity that they are different among each other (except in the
following Subsection 2.1, where they are all assumed to vanish).

It is plain (see (2.2)) that, if the 3 constants ωj are integer multiples of a single real constant ω,

ωj = kjω, j = 1, 2, 3, (2.7a)

then the matrix U(t) is periodic,

U(t) = U(t± T ), (2.7b)

with period

T =
2π

|ω|
. (2.8)

Here and throughout the 3 parameters kj are integer numbers (positive, negative or vanishing,
but different among themselves); their definition, as well as that of the positive parameter ω, is
made unequivocal (up to permutations; once the 3 parameters α, β, γ are assigned, compatibly
via (2.5b) with (2.7a)) by the requirement that this positive parameter ω be assigned the largest
value for which (2.7a) holds.

More generally, if the real parts of the 3 constants ωj are integer multiples of a single real
constant ω and the imaginary parts of 2 of them coincide while the imaginary part of the third
is larger, say,

Re(ωj) = kjω, j = 1, 2, 3; Im(ω1) = Im(ω2) < Im(ω3), (2.9a)

then the matrix U(t) is asymptotically periodic with period T , namely it becomes periodic with
period T in the remote future up to exponentially vanishing corrections, so that

lim
t→∞
|U(t)− U(t± T )| = 0. (2.9b)
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While for generic values of the parameters, implying via (2.5) that the imaginary parts of
the 3 quantities ωj are different among themselves,

Im(ω1) 6= Im(ω2), Im(ω2) 6= Im(ω3), Im(ω3) 6= Im(ω1), (2.10a)

then clearly U(t) tends to a time-independent matrix as t→ ±∞,

U(t) →
t→±∞

U(±∞). (2.10b)

Let us emphasize that these outcomes, (2.7b) or (2.9b) or (2.10b), obtain – provided the
3 parameters α, β, γ satisfy (2.5b) with (2.7a) or (2.9a) or (2.10a) – for arbitrary initial data,
and that the period T is as well independent of the initial data. Let us also note that these
properties hold unless U(t) is singular ; clearly a nongeneric circumstance, in which case U(t)
would in fact still feature the properties indicated above, but only in the sense in which, for
instance, the function tan[ω(t−t0)/2] (with ω and t0 two real numbers) is periodic with period T .

These properties of the N × N matrix U(t) carry of course over to its eigenvalues zn(t),
hence to the generic solutions of the many-body problems “of goldfish type” (2.1); these models
are therefore isochronous respectively asymptotically isochronous if their parameters satisfy the
relevant conditions, see (2.5b) with (2.7a) respectively (2.9a).

Remark 2.3. Let us however recall that the periods of the time evolution of individual eigen-
values of a periodic matrix may be a (generally small) positive integer multiple of the period of
the matrix, due to the possibility that different eigenvalues exchange their roles over the time
evolution (for a discussion of this possibility see [16], where a justification is also provided of
the statement made above that the relevant positive integer multiple is “generally small”).

2.1 Two additional isochronous many-body models

Additional isochronous models obtain by applying, to the special cases of the two many-body
models (2.1) with all parameters vanishing,

z̈n = −3żnzn − z3n ++
N∑

`=1, ` 6=n

[
2(żn + cz2n)(ż` + cz2` )

zn − z`

]
, (2.11)

with c = 1 respectively c = 1/2, the standard “isochronizing” trick, see for instance Section 2.1
(entitled “The trick”) of [5]. It amounts in these cases to the following change of dependent and
independent variables,

z̃n(t) = exp(iωt)zn(τ), τ =
exp(iωt)− 1

iω
, (2.12a)

implying

z̃n(0) = zn(0),
·
z̃n(0) = z′n(0) + iωzn(0). (2.12b)

Here and below ω is again an arbitrary real constant to which we associate the period T ,
see (2.8), and of course appended primes denote differentiations with respect to the argument
of the function they are appended to (hence z′n(τ) = dzn(τ)/dτ). Hence clearly the Newtonian
equations of motion of these two models read as follows:

··
z̃n = 3iω

·
z̃n + 2ω2z̃n − 3

·
z̃nz̃n + 3iωz̃2n − z̃3n
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+
N∑

`=1, ` 6=n

2( ·z̃n − iωz̃n + cz̃2n)(
·
z̃` − iωz̃` + cz̃2` )

z̃n − z̃`

 , (2.13)

again with c = 1 respectively c = 1/2. The solutions of the corresponding initial-value problems
are clearly given by the following variant (of the case with ωj = 0) of Proposition 2.1:

Proposition 2.2. The solution of the initial-value problems of the two many-body models cha-
racterized by the Newtonian equations of motion “of goldfish type” (2.13) are given by the eigen-
values of the N × N matrix Ũ(t) given by the following formulas in terms of the 2N initial

data z̃n(0),
·
z̃n(0) and of the time t:

Ũ(t) = exp(iωt)
(
I + Ãτ + B̃τ2

)−1
(Ã+ 2B̃τ), (2.14a)

with the two constant N ×N matrices Ã and B̃ defined as follows:

Ã = diag[z̃n(0)], B̃nm =
1

2
vnvm, vn =

·
z̃n(0)− iωz̃n(0) + cz̃2n(0), (2.14b)

of course always with c = 1 respectively c = 1/2 and τ ≡ τ(t) defined in terms of the time t
by (2.12a). Note that the N ×N matrix Ã is diagonal and the N ×N matrix B̃ is now dyadic.

It is plain that the matrix Ũ(t) is isochronous with period T (see (2.14a), (2.12a) and (2.8)),

Ũ(t± T ) = Ũ(t), (2.15)

and the same property of isochrony holds therefore for the generic solutions of the two many-
body models (2.13), up to the observation made above (see Remark 2.3).

3 Proofs

The starting point of our treatment is the following system of two coupled matrix ODEs satisfied
by the two N ×N matrices U ≡ U(t) and V ≡ V (t):

U̇ = −U2 + V, V̇ = −UV + αI + βU + γV. (3.1)

Notation 3.1. The 3 scalars α, β, γ are 3, a priori arbitrary, constant parameters; I is the
unit N ×N matrix; and we trust the rest of the notation to be self-evident (see also Sections 1
and 2).

Remark 3.1. Additional parameters could of course be introduced by scalar shifts or rescalings
of the dependent variables U , V or of the independent variable t (“time”). We forsake any
discussion of such trivial transformations (see Remark 2.2).

To solve this matrix system we introduce the N ×N matrix W ≡W (t) by setting

U(t) = [W (t)]−1Ẇ (t), V (t) = [W (t)]−1Ẅ (t). (3.2)

It is then easily seen that the system (3.1) entails that the matrix W satisfy the following linear
third-order matrix ordinary differential equation (ODE):

...
W = αW + βẆ + γẄ ; (3.3)

and the converse is as well true (in fact, perhaps easier to verify), namely if W satisfies this
linear third-order matrix ODE, then the two matrices U and V defined by (3.2) satisfy the
system (3.1).
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Clearly the general solution of this linear third-order matrix ODE reads

W (t) =

3∑
j=1

[
W (j) exp(iωjt)

]
, (3.4)

where the 3 constant matrices W (j) are arbitrary, i is the imaginary unit (i2 = −1; introduced
here for notational convenience), and the 3 scalars ωj are the 3 roots of the following cubic
equation in ω:

ω3 + iγω2 + βω − iα = 0, (3.5a)

ω3 + iγω2 + βω − iα = (ω − ω1)(ω − ω2)(ω − ω3), (3.5b)

so that

α = −iω1ω2ω3, β = ω1ω2 + ω2ω3 + ω3ω1, γ = i(ω1 + ω2 + ω3). (3.5c)

It is then easily seen that the general solution of the system (3.1) can be written as follows:

U(t) = i
{
I +A exp[i(ω2 − ω1)t] +B exp[i(ω3 − ω1)t]

}−1
×
{
ω1I + ω2A exp[i(ω2 − ω1)t] + ω3B exp[i(ω3 − ω1)t]

}
, (3.6a)

V (t) = −
{
I +A exp[iω2 − ω1)t] +B exp[i(ω3 − ω1)t]

}−1
×
{
ω2
1I + ω2

2A exp[i(ω2 − ω1)t] + ω2
3B exp[i(ω3 − ω1)t]

}
, (3.6b)

where A and B are two, a priori arbitrary, constant N × N matrices. And a trivial if tedious
computation shows that these formulas provide the solution of the initial-value problem for the
system (3.1) if the two matrices A and B are expressed in terms of the initial values U0 ≡ U(0),
V0 ≡ V (0) as follows:

A = −(ω1 − ω3)(ω2 − ω3)
−1[I − i(ω1 + ω3)

(
V0 + ω2

3

)−1
(U0 − iω3)

−1]
×
[
I − i(ω2 + ω3)

(
V0 + ω2

3

)−1
(U0 − iω3)

−1]−1, (3.7a)

B = (ω1 − ω2)(ω2 − ω3)
−1[I − i(ω1 + ω2)

(
V0 + ω2

2

)−1
(U0 − iω2)

−1]
×
[
I − i(ω2 + ω3)

(
V0 + ω2

2

)−1
(U0 − iω2)

−1]−1. (3.7b)

To derive, from the solvable matrix system (3.1), the solvable many-body problem reported
in the preceding section, we follow the procedure outlined in Section 1. This requires that we
introduce – in addition to the diagonal N × N matrix Z respectively the nondiagonal N × N
matrix Y associated to U respectively V via (1.2) respectively (1.3a) – the auxiliary N × N
matrix M ≡M(t) defined as follows in terms of the diagonalizing matrix R(t), see (1.2):

M(t) = [R(t)]−1Ṙ(t). (3.8a)

In the following we indicate as µn ≡ µn(t) respectivelyMnm ≡Mnm(t) the diagonal respectively
off-diagonal elements of this matrix:

Mnm = δnmµn + (1− δnm)Mnm. (3.8b)

Remark 3.2. As implied by Remark 1.1, the diagonal elements µn can be assigned freely, since
the transformation R(t) ⇒ R̃(t) = R(t)D(t) with D(t) = diag[dn(t)] implies, for the diagonal

elements µ̃n(t) of the matrix M̃ = [R̃(t)]−1
·
R̃(t), the expression µ̃n(t) = µn(t) + ḋn(t)/dn(t),

with a corresponding change of the off-diagonal elements of the matrix M , Mnm ⇒ M̃nm =
δ−1n Mnmδm. Note that here and hereafter we denote as Mnm the off-diagonal elements of the
matrix M .
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It is then easily seen that the equations (1.2) characterizing the time evolution of U and V
imply the following equations characterizing the time evolution of Z and Y :

Ż + [M,Z] = −Z2 + Y, Ẏ + [M,Y ] = −ZY + αI + βZ + γY. (3.9)

Notation 3.2. The notation [A,B] denotes the commutator of the two matrices A, B: [A,B] ≡
AB −BA.

Let us now look separately at the diagonal and off-diagonal parts of these two matrix equa-
tions, (3.9).

The diagonal part of the first of these two equations reads (see (1.2) and (1.3b))

żn = −z2n + yn, (3.10a)

implying

yn = żn + z2n. (3.10b)

Likewise, the off-diagonal part of the first of these two equations reads

−(zn − zm)Mnm = Ynm, n 6= m, (3.11a)

implying

Mnm = − Ynm
zn − zm

, n 6= m. (3.11b)

The diagonal part of the second of these two equations reads (see (1.2) and (1.3b))

ẏn = −znyn + α+ βzn + γyn +

N∑
`=1, ` 6=n

(Yn`M`n −Mn`Y`n), (3.12a)

implying, via (3.10b) and (3.11b),

ẏn = −żnzn + γżn − z3n + γz2n + βzn + α+ 2
N∑

`=1, ` 6=n

(
Yn`Y`n
zn − z`

)
. (3.12b)

We now note that, via this equation, time-differentiation of (3.10a) yields the following set
of Newtonian-like equations of motion:

z̈n = −3żnzn + γżn − z3n + γz2n + βzn + α+ 2
N∑

`=1, ` 6=n

(
Yn`Y`n
zn − z`

)
, (3.13)

confirming the treatment outlined in Section 1, see in particular (1.4).
Finally we consider the off-diagonal elements of the second of the matrix equations (3.9).

The relevant equations read, componentwise, as follows:

Ẏnm = −(zn − γ)Ynm +

N∑
k=1

(YnkMkm −MnkYkm), n 6= m, (3.14a)

namely, via (1.3b) and (3.8b),

Ẏnm = −(zn − γ)Ynm − (µn − µm)Ynm + (yn − ym)Mnm
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+

N∑
`=1, ` 6=n,m

(Yn`M`m −Mn`Y`m), n 6= m. (3.14b)

And via (3.10b) and (3.11b) (and a tiny bit of algebra) this becomes

Ẏnm
Ynm

= −2zn − zm + γ − µn + µm −
żn − żm
zn − zm

+
N∑

`=1, ` 6=n,m

[
Yn`Y`m
Ynm

(
1

zn − z`
+

1

zm − z`

)]
, n 6= m. (3.14c)

The next step is to try out the ansätze (1.5), to see if one can thereby get rid of the quanti-
ties Ynm.

We leave the (rather easy but unfortunately unproductive) task to verify that the
ansatz (1.5a) does not work, i.e. that it does not allow to eliminate the quantities Ynm by
finding an assignment of the functions g(1)(z) and g(2)(z) which, when inserted in (1.5a), yield
N(N − 1) quantities Ynm that satisfy the N(N − 1) ODEs (3.14c) (even by taking into account
the possibility to assign freely – see Remark 3.2 – the N quantities µn).

We show that instead the ansatz (1.5b) allows the elimination of the quantities Ynm and leads
to the Newtonian equations of motion “of goldfish type” (2.1). Indeed the insertion in (3.14c)
of (1.5b) with

g(1)(z) = g(2)(z) = g(z), f (1)(z) = f (2)(z) = f(z), (3.15a)

and the assignment (see Remark 3.2)

µn = −zn
2

(3.15b)

entails that the N(N − 1) equations (3.14c) can be re-formulated as follows:

1

2

{
z̈n + żnf

′(zn)

żn + f(zn)
+
g′(zn)

g(zn)
+ 3zn − γ + ((n⇒ m))

}
= − żn − żm

zn − zm

+
N∑

`=1, ` 6=n,m

{
g(z`)[ż` + f(z`)]

(
1

zn − z`
+

1

zm − z`

)}
, n 6= m. (3.16a)

Notation 3.3. Here and below primes indicate differentiations with respect to the argument of
the functions they are appended to; and the convenient shorthand notation +((n⇒ m)) denotes
addition of whatever comes before it, with the index n replaced by the index m.

It is easily seen that these equations can be re-written as follows:

z̈n + żnf
′(zn)

żn + f(zn)
+
g′(zn)

g(zn)
+ 3zn − γ −

N∑
`=1, ` 6=n

{
g(z`)[ż` + f(z`)]

zn − z`

}
+ ((n⇒ m)) (3.16b)

= 2

{
[g(zn)− 1]żn − [g(zm)− 1]żm + g(zn)f(zn)− g(zm)f(zm)

zn − zm

}
, n 6= m.

This suggests the assignments

g(z) = 1, f(z) = a+ bz + cz2, (3.17)
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with the 3 parameters a, b, c a priori arbitrary, since thereby the N(N − 1) equations (3.16b)
get reduced to the N equations

z̈n + żn(b+ 2czn)

żn + a+ bzn + cz2n
= (2c− 3)zn + γ + b+ 2

N∑
`=1, ` 6=n

(
ż` + a+ bz` + cz2`

zn − z`

)
, (3.18a)

or equivalently (in Newtonian form)

z̈n = −3żnzn + γżn + (2c− 3)cz3n + [γc+ 3b(c− 1)]z2n

+ [a(2c− 3) + b(γ + b)]zn + a(γ + b)

+
N∑

`=1, ` 6=n

[
2
(
żn + a+ bzn + cz2n

)(
ż` + a+ bz` + cz2`

)
zn − z`

]
. (3.18b)

Consistency requires now that this set of N Newtonian equations of motions coincide with
the N analogous equations (3.13), which, via (1.5b) with (3.15a) and (3.17), now read

z̈n = −3żnzn + γżn − z3n + γz2n + βzn + α

+
N∑

`=1, ` 6=n

[
2
(
żn + a+ bzn + cz2n

)(
ż` + a+ bz` + cz2`

)
zn − z`

]
. (3.19)

This clearly requires that the following 4 constraints on the 6 parameters α, β, γ, a, b, c
be satisfied (note that, somewhat miraculously, the two velocity-dependent one-body terms in
the right-hand sides of the last two equations match automatically, as well as the two-body
terms):

(2c− 3)c = −1, (3.20a)

γc+ 3b(c− 1) = γ, (3.20b)

a(2c− 3) + b(γ + b) = β, (3.20c)

a(γ + b) = α. (3.20d)

And it is easily seen that this entails two alternative possibilities:
model (i): a, b, γ arbitrary and

c = 1, β = −a+ b(γ + b), α = a(γ + b); (3.21a)

model (ii): a, b arbitrary and

c =
1

2
, γ = −3b, β = −2

(
a+ b2

)
, α = −2ab. (3.21b)

(Note that, in case (i), another miracle occurred: the solution c = 1 of the first, (3.20a), of the
4 constraints (3.20) entailed that the second, (3.20b), of these 4 equations hold identically).

Clearly these two possibilities correspond to the two solvable many-body models “of goldfish
type” (2.1).

Next, we must justify the assertions made in the preceding section (see Proposition 2.1)
concerning the solution of the initial-value problems for the many-body models characterized by
the Newtonian equations of motion (2.1). The treatment given above (in this section) entails
that these solutions are provided by the eigenvalues of the N×N matrix U(t) evolving according
to the explicit formula (3.6a) with (3.7); the missing detail is to express the two initial N ×N
matrices U0 ≡ U(0) and V0 ≡ V (0) appearing in the right-hand side of (3.7) in terms of the 2N
initial data, zn(0) and żn(0), of the many-body problems (2.1).
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To simplify the derivation of these formulas it is convenient to make the assumption (allowed
by the treatment given above) that the matrix U(t) be initially diagonal, namely (see (1.2)) that

R(0) = I. (3.22)

This entails (see (1.2) and (1.3a)) that

U(0) = diag[zn(0)], V (0) = Y (0). (3.23)

The formula (2.3) for U0 is thereby immediately implied.

The formula (2.4) for V0 ≡ V (0) = Y (0) is also easily obtained, since the expression (3.10b)
of the diagonal elements of the matrix Y and the ansatz (1.5b) with (3.15a) and (3.17) for the
off-diagonal elements of Y entail that, componentwise,

Ynm(0) = δnm[żn(0) + z2n(0)] + (1− δnm)
[
żn(0) + a+ bzn(0) + cz2n(0)

]1/2
×
[
żm(0) + a+ bzm(0) + cz2m(0)

]1/2
, (3.24)

and this clearly yields (2.4).

This completes the proof of the results of the preceding Section 2. As for the findings reported
in Section 2.1, we consider their derivation sufficiently obvious – for instance via the treatment
detailed in Section 2.1 of [5]; and by repeating the relevant treatment as given above, especially
in the last part of this section – to justify us to dispense here from any further elaboration.

4 Additional findings

In this section we introduce the time-dependent (monic) polynomial ψ(z, t) whose zeros are the
N eigenvalues zn(t) of the N ×N matrix U(t):

ψ(z, t) = det[zI − U(t)], (4.1a)

ψ(z, t) =
N∏

n=1

[z − zn(t)] = zN +
N∑

m=1

[
cm(t)zN−m

]
. (4.1b)

The last of these formulas introduces the N coefficients cm ≡ cm(t) of the monic polyno-
mial ψ(z, t); of course it implies that these coefficients are related to the zeros zn(t) as follows:

c1 = −
N∑

n=1

zn, c2 =
N∑

n,m=1, n>m

znzm, (4.1c)

and so on.

The fact that the initial-value problem associated with the time evolution (2.1) of the N
coordinates zn can be solved by algebraic operations implies that the same solvable character
holds for the time evolution of the monic polynomial ψ(z, t) and of the N coefficients cm(t).
In this section we display explicitly the equations that characterize these time evolutions. The
procedure to obtain these equations from the equations of motion (2.1) is quite tedious but
standard; a key role in this development are the identities reported, for instance, in Appendix A
of [5] (but there are 2 misprints in these formulas: in equation (A.8k) the term (N + 1) inside
the square bracket should instead read (N−3); in equation (A.8l) the term N2 inside the square
bracket should instead read N(N − 2)). Here we limit our presentation to reporting the final
result.
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The equation characterizing the time evolution of the monic polynomial ψ(z, t) implied by
the Newtonian equations of motion (2.1) reads as follows:

ψtt +
(
η0 + η1z + η2z

2
)
ψzt + (θ0 + θ1z)ψt

+
(
α0 + α1z + α2z

2 + α3z
3 + α4z

4
)
ψzz +

(
β0 + β1z + β2z

2 + β3z
3
)
ψz

+
(
γ0 + γ1z + γ2z

2
)
ψ = 0. (4.2a)

Here the subscripted variables denote partial differentiations, and the 17 coefficients appearing
in this equation are defined in terms of the quantities c1 ≡ c1(t), ċ1 ≡ ċ1(t) and c2 ≡ c2(t),
see (4.1c), of the arbitrary positive integer N and of the 3 free parameters a, b and γ charac-
terizing model (i), respectively of the 2 free parameters a and b characterizing model (ii), as
follows:

model (i):

η0 = −2a, η1 = −2b, η2 = −2;
θ0 = −2c1 + 2 (N − 1) b− γ, θ1 = 2N − 1;

α0 = a2, α1 = 2ab, α2 = 2a+ b2, α3 = 2b, α4 = 1;

β0 = [2c1 − (2N − 3)b+ γ]a, β1 = 2bc1 − (2N − 3)
(
a+ b2

)
+ bγ,

β2 = 2c1 − 2(2N − 3)b+ γ, β3 = −(2N − 3);

γ0 = −ċ1 + c21 − 2(N − 1)bc1 + γc1 −Na+N(N − 2)b2 −Nbγ,
γ1 = −(2N − 1)c1 + 2N(N − 2)b−Nγ, γ2 = N(N − 2); (4.2b)

model (ii):

η0 = −2a, η1 = −2b, η2 = −1;
θ0 = −c1 + 2(N + 1)b, θ1 = N + 1;

α0 = a2, α1 = 2ab, α2 = a+ b2, α3 = b, α4 =
1

4
;

β0 = (c1 − 2Nb)a, β1 = bc1 −Na− 2Nb2, β2 =
c1
2
− 2Nb, β3 = −

N

2
;

γ0 = −2ċ1 + c21 − (N + 2)bc1 −
3c2
2

+Na+N(N + 1)b2,

γ1 = −
(N + 1)c1

2
+N(N + 1)b, γ2 =

N(N + 1)

4
. (4.2c)

Remark 4.1. The equation (4.2a) characterizing the time evolution of the monic polynomial ψ
looks like a linear partial differential equation, but it is in fact a nonlinear functional equation,
because some of its coefficients depend on the quantities c1 and c2 which themselves depend
on ψ, indeed clearly (see (4.1))

c1 ≡ c1(t) =
ψ(N−1)(0, t)

(N − 1)!
, c2 ≡ c2(t) =

ψ(N−2)(0, t)

(N − 2)!
, (4.3a)

where we used the shorthand notation ψ(j)(z, t) to indicate the j-th partial derivative with
respect to the variable z of ψ(z, t),

ψ(j)(z, t) ≡ ∂jψ(z, t)

∂zj
, j = 1, 2, . . . . (4.3b)
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As for the system of N nonlinear autonomous second-order ODEs of Newtonian type cha-
racterizing the time evolution of the N coefficients cm, for model (i) they read as follows:

c̈m + p(−1)m ċm−1 + p(0)m ċm + p(1)m ċm+1

+ q(−2)m cm−2 + q(−1)m cm−1 + q(0)m cm + q(1)m cm+1 + q(2)m cm+2

= 2c1ċm − 2(N −m+ 1)ac1cm−1

+
[
ċ1 − c21 + 2(m− 1)bc1 − γc1

]
cm + (2m+ 1)c1cm+1, (4.4a)

with the 3N (time-independent) coefficients p
(j)
m and the 5N (time-independent) coefficients q

(j)
m

defined here in terms of the 3 free parameters a, b and γ (and of the numbers m and N) as
follows:

p(−1)m = −2(N −m+ 1)a, p(0)m = 2(m− 1)b− γ, p(1)m = 2m+ 1;

q(−2)m = (N −m+ 2)(N −m+ 1)a2,

q(−1)m = (N −m+ 1)[−(2m− 3)b+ γ]a,

q(0)m = −m(2N − 2m+ 1)a+m(m− 2)b2 −mbγ,
q(1)m = 2

(
m2 − 1

)
b− (m+ 1)γ, q(2)m = m(m+ 2). (4.4b)

The analogous equations for model (ii) read as follows:

c̈m + p(−1)m ċm−1 + p(0)m ċm + p(1)m ċm+1

+ q(−2)m cm−2 + q(−1)m cm−1 + q(0)m cm + q(1)m cm+1 + q(2)m cm+2

= c1ċm − (N −m+ 1)ac1cm−1

+

[
2ċ1 +

3c2
2
− c21 + (m+ 2)bc1

]
cm +

(m
2

+ 1
)
c1cm+1, (4.5a)

with the 3N (time-independent) coefficients p
(j)
m and the 5N (time-independent) coefficients q

(j)
m

defined here in terms of the 2 free parameters a and b (and of the numbers m and N) as follows:

p(−1)m = −2(N −m+ 1)a, p(0)m = 2(m+ 1)b, p(1)m = m+ 2;

q(−2)m = (N −m+ 2)(N −m+ 1)a2, q(−1)m = −2m(N −m+ 1)ab,

q(0)m = −m(N −m− 1)a+m(m+ 1)b2,

q(1)m = (m+ 1)(m+ 2)b, q(2)m =
(m+ 2)(m+ 3)

4
. (4.5b)

Of course in these equations of motion, (4.4a) and (4.5a), it is understood that, for n < 0
and for n > N , the coefficients cn vanish identically, cn = 0, while c0 = 1 (see (4.1)).

It is plain that these equations of motion, (4.4) and (4.5), inherit the properties of the original
many-body models: they clearly are as well solvable by algebraic operations, and of course if
the original many-body model is isochronous the corresponding model for the coefficients cm is
as well isochronous, namely

cm(t± T ) = cm(t), (4.6a)

and likewise if the original many-body model is asymptotically isochronous, the corresponding
model for the coefficients cm is as well asymptotically isochronous, namely

lim
t→∞

[cm(t± T )− cm(t)] = 0. (4.6b)
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This of course entails that the conditions on the 3 a priori free parameters a, b and γ of the
version (4.4) of model (i), or on the 2 a priori free parameters a and b of the version (4.5) of
model (ii), which are necessary and sufficient to imply that these models be isochronous re-
spectively asymptotically isochronous, are those indicated in Section 1, namely are those implied
by (2.6) with (2.5b) and (2.7a) respectively (2.9a); while in the generic case, see (2.10), the
coefficients cm(t) tend asymptotically to time-independent values,

lim
t→±∞

[cm(t)] = cm(±∞). (4.6c)

4.1 Two additional isochronous models

Here we report formulas analogous to those reported above, but related to the many-body models
discussed in Section 2.1 rather than to those reported in Section 2. We consider the derivation
of these results sufficiently straightforward not to require any detailed elaboration here beyond
the terse hints provided below.

The starting point are the two special cases of the two systems (4.4a) and (4.5a) which obtain
by setting all the free parameters to vanish. We write them in compact form as follows:

c̈m = 2cc1ċm − [2c(m− 1) + 3]ċm+1 +
[
(3− 2c)ċ1 − c21 + 2

(
1− c2

)
c2
]
cm

+
(
2c2m+ 1

)
c1cm+1 − (m+ 2)

[
c2(m− 1) + 1

]
cm+2 (4.7)

with c = 1 respectively c = 1/2. It is remarkable that the number N does not appear in these
equations; although we always assume that these equations hold for m = 1, 2, . . . , N and that
the dependent variables cn vanish identically for n > N , with N an arbitrary positive integer.
The diligent reader may also check that this equation also holds identically form = 0 with c0 = 1
(see (4.1)).

We then make the following change of dependent and independent variables:

c̃m(t) = exp(imωt)cm(τ), τ =
exp(iωt)− 1

iω
, (4.8)

with ω again a real arbitrary constant to which we associate the period T (see (2.8)). One thereby
easily sees that the new dependent variables c̃m(t) satisfy the following system of autonomous
Newtonian equations of motion:

··
c̃m =

[
(2m+ 1)iω + 2cc̃1

] ·
c̃m − [2c(m− 1) + 3]

·
c̃m+1

+
{
m(m+ 1)ω2 − [2c(m− 1) + 3]iωc̃1 + (3− 2c)

·
c̃1 − c̃21 + 2

(
1− c2

)
c̃2
}
c̃m

+
{
(m+ 1)[2c(m− 1) + 3]iω +

(
2c2m+ 1

)
c̃1
}
c̃m+1

− (m+ 2)
[
c2(m− 1) + 1

]
c̃m+2. (4.9)

It is plain from the way these two models (with c = 1 or c = 1/2) have been derived that
they are isochronous, namely the generic solutions of these nonlinear Newtonian equations of
motion satisfy the condition

c̃m(t+ T ) = c̃m(t). (4.10)

5 Outlook

It is clearly far from trivial that the Newtonian many-body models introduced in this paper –
see (2.1), (2.13), (4.4), (4.5), and (4.9) – can be solved, for arbitrary initial data, by algebraic
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operations. Also remarkable is that, for special assignments of their parameters, the systems of
autonomous nonlinear ODEs (2.1), (4.4) and (4.5) are isochronous or asymptotically isochronous,
and the systems of autonomous nonlinear ODEs (2.13) and (4.9) are isochronous.

Let us end this paper by pointing out that Diophantine findings can be obtained from a non-
linear autonomous isochronous dynamical system by investigating its behavior in the infinitesi-
mal vicinity of its equilibria. The relevant equations of motion become then generally linear, but
they of course retain the properties to be autonomous and isochronous. For a system of linear
autonomous ODEs, the property of isochrony implies that all the eigenvalues of the matrix of
its coefficients are integer numbers (up to a common rescaling factor). When the linear system
describes the behavior of a nonlinear autonomous system in the infinitesimal vicinity of its equi-
libria, these matrices can generally be explicitly computed in terms of the values at equilibrium
of the dependent variables of the original, nonlinear model. In this manner nontrivial Diophan-
tine findings and conjectures have been discovered and proposed: see for instance the review
of such developments in Appendix C (entitled “Diophantine findings and conjectures”) of [5].
Analogous results obtained by applying this approach to the isochronous systems of autonomous
nonlinear ODEs introduced above will be reported in a separate paper if they turn out to be
novel and interesting.
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