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Abstract. A new class of solvable N -body problems is identified. They describe N unit-
mass point particles whose time-evolution, generally taking place in the complex plane,
is characterized by Newtonian equations of motion “of goldfish type” (acceleration equal
force, with specific velocity-dependent one-body and two-body forces) featuring several ar-
bitrary coupling constants. The corresponding initial-value problems are solved by finding
the eigenvalues of a time-dependent N × N matrix U(t) explicitly defined in terms of the
initial positions and velocities of the N particles. Some of these models are asymptotically
isochronous, i.e. in the remote future they become completely periodic with a period T
independent of the initial data (up to exponentially vanishing corrections). Alternative for-
mulations of these models, obtained by changing the dependent variables from the N zeros
of a monic polynomial of degree N to its N coefficients, are also exhibited.
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1 Introduction

In this paper a new class of solvable N -body problems is identified. They describe an arbitrary
number N of unit-mass point particles whose time-evolution, generally taking place in the comp-
lex plane, is characterized by Newtonian equations of motion “of goldfish type” (acceleration
equal force, with specific velocity-dependent one-body and two-body forces, see below) featuring
several arbitrary coupling constants. The solvable character of these models is demonstrated by
the possibility to ascertain their time evolution by purely algebraic operations. In particular it
is shown below that their initial-value problems are solved by finding the eigenvalues of a time-
dependent N ×N matrix U(t) explicitly defined in terms of the initial positions and velocities
of the N particles. Some of these models are asymptotically isochronous, i.e. in the remote
future they become completely periodic with a period T independent of the initial data (up
to exponentially vanishing corrections). Alternative formulations of these models, obtained by
changing the dependent variables from the N zeros of a monic polynomial of degree N to its N
coefficients, are also exhibited.

The main idea to obtain these results is to identify the N coordinates zn(t) characterizing
the positions of the particles of the N -body problem with the N eigenvalues of an N×N matrix
U(t), itself evolving according to a solvable (or integrable) matrix ODE. This technique was in-
vented long ago by Olshanetsky and Perelomov [1–4] and has been much exploited subsequently,
identifying thereby many solvable (or integrable) many-body problems: see for instance [5] (in
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particular its Section 2.1.3.2 entitled “The technique of solution of Olshanetsky and Perelomov
(OP)”) and [6] (in particular its Section 4.2.2 entitled “Goldfishing”), and the more recent pa-
pers [7–23]. The present paper provides new results of this kind, by taking as point of departure
a solvable ODE characterizing the time-evolution of the N ×N matrix U(t) which is different
or more general than those previously employed to this end. These results are treated in the fol-
lowing section, including its subsections and Appendices A and B where all the equations solved
in this paper are listed (hence, the reader wishing to get an immediate glance at them may
immediately jump to these appendices). The last section, entitled “Outlook”, tersely outlines
further developments whose treatment is postponed to subsequent papers.

2 Solvable N -body problems

In this section we describe two classes of solvable N -body problems. The models of the first
class are not new, hence their treatment is not elaborated beyond their identification; several
models of the second class are new, hence they are fully dealt with.

In Subsection 2.1 we introduce a system of two matrix first-order ordinary differential equa-
tions (ODEs) characterizing the time-evolution of the two N × N matrices U ≡ U(t) and
V ≡ V (t), and we indicate how the corresponding initial-value problem can be explicitly solved.

In Subsection 2.2 we show how – via the introduction of two appropriate ansätze – the N
eigenvalues zn(t) of the matrix U(t) can be identified with the N coordinates of N unit-mass
point particles whose time-evolution, generally taking place in the complex plane, is characterized
by Newtonian equations of motion (“acceleration equal force”, with nonlinear one-body and two-
body forces). These models are thereby shown to be solvable. The first ansatz yields various
models whose solvability was already known; hence their treatment is limited to the derivation
of their equations of motion. The second ansatz yields several new models – as well as several
previously known models – characterized by equations of motion with specific velocity-dependent
one-body and two-body forces “of goldfish type” featuring several arbitrary coupling constants.
They are all listed in Appendix A. The alternative class of many-body models obtained by
changing the dependent variables from the N zeros of a monic polynomial of degree N to its N
coefficients is discussed in Subsection 2.3; the corresponding equations of motion are listed in
Appendix B.

As it is well known (see for instance [5], in particular Chapter 4, entitled “Solvable and/or
integrable many-body problems in the plane, obtained by complexification”), models such as
those described below, which describe the motions of N points in the complex z-plane, can
be reformulated as N -body models describing the motion in a plane of N point-particles, the
positions of which are identified by real 2-vectors in that plane. While we leave the elaboration
of this connection to the interested reader, we feel justified by it to refer to our findings as
describing “physical” (if not necessarily “realistic”) many-body problems in the plane.

2.1 A solvable system of two matrix ODEs

In this subsection we discuss the following system of two matrix ODEs, satisfied by the two
N ×N matrices U and V :

U̇ = αU + βU2 + γV + η(UV + V U), V̇ = ρV. (2.1)

Notation. Upper-case Latin letters generally denote N × N matrices (unless otherwise indi-
cated), with the (scalar!) N being throughout an arbitrary positive integer. Here and below the
matrices are time-dependent (unless otherwise indicated), in particular U ≡ U(t), V ≡ V (t).
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Lower case letters generally denote scalars. The 5 scalar parameters α, β, γ, η, ρ are time-
independent but a priori arbitrary, until specific restrictions on their values are explicitly men-
tioned. Superimposed dots always indicate time differentiations.

Remark 2.1. The factor β multiplying the term U2 in the right-hand side of the first of the
two matrix ODEs (2.1) could be eliminated (i.e., replaced by unity) by rescaling U (and by
correspondingly replacing γ with an adjusted value, say γ̃); then the factor η multiplying the
term (UV + V U), or the (adjusted) factor γ̃ multiplying the term V , could also be eliminated
(i.e., replaced by unity) by rescaling V . It is preferable not to do so in order to keep open the
possibility to set one or the other of these parameters, η or γ, to zero (but we will never set
both of them to zero, to avoid decoupling the time evolution of U(t) from that of V (t)). Note
moreover that the introduction of a constant scalar term (implicitly multiplied by the N × N
unit matrix I) in the right-hand side of the first equation would amount – up to a redefinition
of other parameters – to adding to the matrix U the N ×N unit matrix I multiplied by a new
(constant) parameter, implying just a constant shift of all the eigenvalues of the matrix U ,
a trivial change not worth pursuing; while the introduction of two different parameters in front
of the two terms UV and V U could be eliminated by adding, in the right-hand side of the first
of the two matrix ODEs (2.1), the commutator [U, V ] of U and V times a convenient parameter,
without any effect on the eigenvalues of U . If some of the parameters in the matrix ODEs
(2.1) vanish this model may reduce to one of those that have been previously treated, see [6]
(in particular its Section 4.2.2 entitled “Goldfishing”) and the more recent papers [7–23]; we do
not discard these models in the following, since we consider in any case worthwhile to exploit
the unified treatment provided by the present approach based on (2.1). As for the possibility
of replacing the right-hand side of the second matrix ODE (2.1) with a more general function
of the matrix V , it is a possibility whose exploration is postponed to a future investigation (see
Section 3).

Solution of the system of two matrix ODEs (2.1). Clearly the solution of the second of the
two matrix ODEs (2.1) reads

V (t) = V0 exp(ρt), V0 ≡ V (0). (2.2)

To solve the first of the two matrix ODEs (2.1) it is convenient to set

U = − η
β
V − (βF )−1Ḟ , (2.3)

obtaining thereby for the N × N matrix F ≡ F (t) the following second-order linear matrix
ODE:

F̈ − αḞ + FW = 0, (2.4a)

W = (−αη + βγ + ηρ)V − η2V 2. (2.4b)

It is then plain via (2.2) that the general solution of this matrix ODE reads

F (t) = F+f+(t;V0) + F−f−(t;V0), (2.5)

where F± are two arbitrary constant N × N matrices and the two scalar functions f±(t; v)
(which of course become N ×N matrices when the scalar v is replaced by the N ×N matrix V0,
see (2.5)) are two independent solutions of the scalar second-order linear ODE

f̈ − αḟ +
[
(−αη + βγ + ηρ)v exp(ρt)− η2v2 exp(2ρt)

]
f = 0. (2.6)
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And it is easily seen that two independent solutions of this ODE are given by the following
formulas:

f+(t; v) = exp

[
−ηv
ρ

exp(ρt)

]
Φ

(
− βγ

2ηρ
; 1− α

ρ
;
2ηv

ρ
exp(ρt)

)
, (2.7a)

f−(t; v) = exp

[
−ηv
ρ

exp(ρt)

]
exp(αt)Φ

(
2αη − βγ

2ηρ
; 1 +

α

ρ
;
2ηv

ρ
exp(ρt)

)
. (2.7b)

Here the (scalar!) function Φ(a; c; z) is the confluent hypergeometric function (see, for in-
stance, [24]).

Note that the formula (2.3) with (2.5) implies the following explicit solution of the initial-value
problem for the matrix U(t):

U(t) = − 1

β

{
ηV0 exp(ρt) +

[
f+(t;V0) + C f−(t;V0)

]−1[
ḟ+(t;V0) + Cḟ−(t;V0)

]}
, (2.8a)

with the time-independent matrix C defined in terms of the initial data U(0) and V0 ≡ V (0)
(see (2.2)) as follows:

C = −
{
f+(0;V0)[βU(0) + ηV0] + ḟ+(0;V0)

}{
f−(0;V0)[βU(0) + ηV0] + ḟ−(0;V0)

}−1
.(2.8b)

Remark 2.2. The fact that the expression (2.3) (with (2.2) and (2.4)) of the matrix U(t) satis-
fies (2.1), and likewise that the functions f±(t; v) (see (2.7)) satisfy the ODE (2.6), can be easily
verified. Of course these formulas are valid for generic values of the parameters that appear in
them, excluding special cases – such as vanishing values of ρ or η (see (2.7)) or of β (see (2.8a)),
or values of α and ρ such that α/ρ is an integer (in which case the two functions f± (t; v) do
not provide two independent solutions of the ODE (2.6): see Section 6.7 of [24]) – which are
clearly problematic (although the formulas may in these cases be reinterpreted via appropriate
limiting procedures). We ignore hereafter these issues, even when listing below solvable N -body
models a few of which belong to these problematic cases. Indeed in this paper we mainly limit
our consideration to the identification of solvable N -body problems; these findings open the
way to obtaining a rather detailed understanding of their actual behaviors (see for instance the
following Remark 2.3), but such analyses exceed the scope of this paper: they should be done
on a case-by-case basis, and shall perhaps be postponed to the moment when some of these
N -body models evoke a specific, theoretical or applicative, interest.

Remark 2.3. If the parameter ρ is purely imaginary and the parameter α is real and negative,

ρ =
2πi

T
, α < 0 (2.9a)

(of course with T real and nonvanishing, and i the imaginary unit, i2 = −1), then clearly the
matrix U(t) (see (2.8) with (2.7)) is asymptotically isochronous (i.e., asymptotically periodic
with the period T independent of the initial data): indeed in this case, as t→ +∞,

U(t) = U+(t) +O[exp(αt)] (2.9b)

with U+(t) given by the formula (2.8) with C = 0,

U+(t) = − 1

β

{
ηV0 exp(ρt) + [f+(t;V0)]

−1[ḟ+(t;V0)]
}
, (2.9c)

hence (see (2.9a) and (2.7a)) it is periodic with period T ,

U+(t+ T ) = U+(t). (2.9d)

This observation entails of course the property of asymptotic isochrony for the solvable N -
body models identified below featuring parameters α and ρ which satisfy the conditions (2.9a).
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2.2 Identification of solvable many-body models

The starting point is to introduce the N eigenvalues zn(t) of the matrix U(t), and the corre-
sponding diagonalizing matrix R(t), by setting

U(t) = R(t)Z(t)[R(t)]−1, Z(t) = diag[zn(t)]. (2.10a)

Here and hereafter indices such as n, m, `, k run over the integers from 1 to N (unless otherwise
indicated).

Likewise we set

V (t) = R(t)Y (t)[R(t)]−1, Ynn(t) = yn(t), (2.10b)

and we introduce the N ×N matrix M(t) by setting

M(t) = [R(t)]−1Ṙ(t), Mnn(t) = µn(t). (2.10c)

Remark 2.4. The diagonalizing matrix R(t) is defined up to right-multiplication by an ar-
bitrary diagonal N × N matrix D(t), since the replacement of R(t) by R̃(t) = R(t)D(t) does

not affect (2.10a). But it changes M(t) (see (2.10c)) into M̃(t) = [R̃(t)]−1 ˙̃R(t) implying the
following change of its diagonal elements: µn(t) =⇒ µ̃n(t) = µn(t) + ḋn(t)/dn(t), where the N
quantities dn(t) are the, a priori arbitrary, elements of the diagonal matrix D(t). Hence we
retain the privilege to assign at our convenience (see below) the diagonal elements µn(t) of the
matrix M(t).

It is now easily seen that via these assignments (2.10) the two matrix ODEs (2.1) get rewritten
as follows:

Ż + [M,Z] = αZ + βZ2 + γY + η(ZY + Y Z), Ẏ + [M,Y ] = ρY. (2.11)

Here and hereafter the notation [A,B] denotes the commutator of the two matrices A and B:
[A,B] ≡ AB −BA.

Let us now look, componentwise, at the diagonal and off-diagonal elements of these two
matrix ODEs.

The diagonal part of the first of the two ODEs (2.11) reads

żn = αzn + βz2n + γyn + 2ηznyn, (2.12a)

implying

yn =
żn − αzn − βz2n

γ + 2ηzn
. (2.12b)

The off-diagonal part of the first of the two ODEs (2.11) reads

− (zn − zm)Mnm = [γ + η(zn + zm)]Ynm, n 6= m, (2.13a)

implying

Mnm = −
[
γ + η (zn + zm)

zn − zm

]
Ynm, n 6= m. (2.13b)

The diagonal part of the second of the two ODEs (2.11) reads

ẏn = ρyn +

N∑
`=1,`6=n

(Yn`M`n −Mn`Y`n) , (2.14a)
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implying, via (2.13b),

ẏn = ρyn + 2
N∑

`=1,` 6=n

{
Yn`Y`n

[
γ + η(zn + z`)

zn − z`

]}
. (2.14b)

Hence, by time-differentiation of (2.12a) we see via (2.12b) and (2.14b) that the coordina-
tes zn(t) satisfy the following system of N equations of motion of Newtonian type (“acceleration
equal force”, with one-body and two-body forces):

z̈n = −αρzn − βρz2n + (α+ ρ)żn + 2βżnzn +
2ηżn

(
żn − αzn − βz2n

)
γ + 2ηzn

+ 2(γ + 2ηzn)

N∑
`=1,` 6=n

{
Yn`Y`n

[
γ + η(zn + z`)

zn − z`

]}
. (2.15)

But in these equations of motion the role of “two-body coupling constants” is played by the
quantities Yn`Y`n (with ` 6= n) which are in fact time-dependent. Indeed the time evolution of
the off-diagonal elements Ynm of the matrix Y is determined by the off-diagonal part of the
second of the two ODEs (2.11) which componentwise read

Ẏnm = ρYnm +
N∑
k=1

(YnkMkm −MnkYkm) , n 6= m, (2.16a)

yielding, via (2.10b), (2.10c), (2.12b), (2.13b) and a bit of algebra,

Ẏnm
Ynm

= α+ ρ+ β(zn + zm)− żn − żm
zn − zm

+
η
(
żn − αzn − βz2n

)
γ + 2ηzn

+
η
(
żm − αzm − βz2m

)
γ + 2ηzm

− µn + µm +
N∑

`=1,`6=n,m

{
Yn`Y`m
Ynm

[
2η + (γ + 2ηz`)

(
1

zn − z`
+

1

zm − z`

)]}
,

n 6= m. (2.16b)

So, in order that (2.15) become the N Newtonian equations of motion of a genuine N -body
problem one must either provide some “physical interpretation” for the quantities Yn` (with
` 6= n) – possibly in terms of internal degrees of freedom, an alternative we do not pursue in
this paper – or find a way to “get rid” of these quantities, i.e. find a way to express them – if at
all possible – via the N coordinates zm ≡ zm(t) and possibly also the N velocities żm ≡ żm(t).
Previous experience [5–23] suggest that two types of ansätze are the appropriate starting points
to try and achieve this goal.

2.2.1 First ansatz

The first ansatz reads

Ynm =
(gngm)1/2

zn − zm
, n 6= m, (2.17)

where we reserve the option to make a convenient assignment for the N functions gn of the
coordinate zn, gn ≡ gn(zn) ≡ gn[zn(t)].

The insertion of this ansatz in (2.16b) yields, after a bit of trivial algebra,

ġn
2gn
− α+ ρ

2
− βzn −

η
(
żn − αzn − βz2n

)
γ + 2ηzn

+ ((n→ m))
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=
gn(γ + 2ηzm)− gm(γ + 2ηzn)

(zn − zm)2
− µn + µm

+
N∑

`=1,`6=n

{
g`

[
γ + 2ηzn
(zn − z`)2

]}
−

N∑
`=1,`6=m

{
g`

[
γ + 2ηzm
(zm − z`)2

]}
, n 6= m. (2.18)

Here and throughout the notation +((n→ m)) indicates the addition of whatever comes before
it, with the index n replaced by m.

We now take advantage of the freedom (see Remark 2.4) to assign the diagonal elements µn
of the matrix M by setting

µn =
N∑

`=1,` 6=n

{
g`

[
γ + 2ηzn
(zn − z`)2

]}
, (2.19)

and we moreover make the assignment

gn = g(γ + 2ηzn), (2.20)

with g an arbitrary constant (i.e., ġ = 0). Thereby the system of N(N − 1) equations (2.18)
gets reduced to the following, much simpler, system of only N algebraic equations:

−α+ ρ

2
− βzn +

η
(
αzn + βz2n

)
γ + 2ηzn

= 0, (2.21)

which amounts to the following 3 equations (recall that we exclude the uninteresting possibility
that γ and η both vanish):

βη = 0, (2.22a)

βγ + ηρ = 0, (2.22b)

γ (α+ ρ) = 0. (2.22c)

This boils down to the following 3 possibilities:

α = β = ρ = 0, (2.23a)

or

β = γ = ρ = 0, (2.23b)

or

β = η = 0, ρ = −α. (2.23c)

The corresponding solvable N -body models – obtained by inserting (2.17) with (2.20) and with
these assignments of the parameters in the Newtonian equations of motion (2.15) – read, in the
first 2 of these 3 cases – after conveniently setting

γ + 2ηzn(t) = exp[2cζn(t)] (2.24a)

with c an arbitrary nonvanishing constant – as follows:

ζ̈n =

(
g2η4

c2

)
d

dζn

N∑
`=1,` 6=n

sinh−2[c(ζn − ζ`)]; (2.24b)
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while in the third of these 3 cases they read

z̈n = α2zn + g2γ4
d

dzn

N∑
`=1,` 6=n

(zn − z`)−2. (2.25)

But these are well-known solvable N -body problems, see for instance [5]. Hence we conclude
that from the matrix system (2.1) no new solvable many-body models are obtained via the
ansatz (2.17).

2.2.2 Second ansatz

We proceed then to consider a second ansatz, reading

Ynm = [gngm (żn + fn) (żm + fm)]1/2 , n 6= m, (2.26)

with gn and fn functions of the coordinate zn that we reserve to assign later: gn ≡ gn(zn) ≡
gn[zn(t)], fn ≡ fn(zn) ≡ fn[zn(t)]. Its insertion in (2.16b) yields, again after a bit of trivial
algebra and now the assignment µn = 0 (again justified by Remark 2.4), the following system
of N(N − 1) second-order ODEs:

1

2

(
z̈n + ḟn
żn + fn

+
ġn
gn
− α− ρ

)
− βzn − η

żn − αzn − βz2n
γ + 2ηzn

+ η(żn + fn)gn −
N∑

`=1,`6=n

{
(ż` + f`)g`

[
γ + η(zn + z`)

zn − z`

]}

− żn[gn(γ + 2ηzn)− 1] + fngn(γ + 2ηzn)

zn − zm
+ ((n→ m)) = 0, n 6= m. (2.27)

To reduce this system we clearly must now set

gn =
1

γ + 2ηzn
, (2.28a)

fn = f (0) + f (1)zn + f (2)z2n, (2.28b)

where f (0), f (1), f (2) are 3 constant parameters that we reserve to assign later. Thereby the
system of N(N − 1) ODEs (2.27) gets transformed into the following system of (only) N ODEs:

z̈n − 2(żn + fn)

N∑
`=1,`6=n

{
(ż` + f`)[γ + η(zn + z`)]

(zn − z`)(γ + 2ηz`)

}

=

[
α+ ρ+ 2βzn +

2η
(
żn − αzn − βz2n − fn

)
γ + 2ηzn

]
(żn + fn) +

(
f (1) + 2f (2)zn

)
fn. (2.29)

Note that to write this system in more compact form we employed a mixed notation, using
sometimes the functions fn or f` instead of their explicit expressions, see (2.28b).

To complete the task of ascertaining for which values of the (so far arbitrary) 8 constant
parameters α, β, γ, η, ρ, f (0), f (1), f (2) the system of N(N − 1) ODEs (2.29) is satisfied we
must utilize the equations of motion (2.15) which, via the ansatz (2.26) with (2.28), now read

z̈n − 2(żn + fn)

N∑
`=1,`6=n

{
(ż` + f`)[γ + η(zn + z`)]

(zn − z`)(γ + 2ηz`)

}
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= −αρzn − βρz2n + (α+ ρ)żn + 2βżnzn +
2ηżn

(
żn − αzn − βz2n

)
γ + 2ηzn

. (2.30)

Comparison of this system of N ODEs to the system (2.29) yields the following system of N
algebraic equations (note that – as it were, “miraculously” – the velocities żn have disappeared
from these equations):

αρzn + βρz2n +
[
α+ ρ+ f (1) + 2

(
β + f (2)

)
zn
]
fn =

2η
(
αzn + βz2n + fn

)
fn

γ + 2ηzn
. (2.31)

It is now clear that, in order to satisfy this system – identically, i.e. for any values of the
coordinates zn – one must set either

case (i) : fn = (a+ bzn)(γ + 2ηzn) (2.32a)

implying (see (2.28b))

case (i) : f (0) = aγ, f (1) = 2aη + bγ, f (2) = 2bη, (2.32b)

or

case (ii) : fn = −αzn − βz2n + (a+ bzn)(γ + 2ηzn) (2.33a)

implying (see (2.28b))

case (ii) : f (0) = aγ, f (1) = 2aη + bγ − α, f (2) = 2bη − β. (2.33b)

So, in both cases, we hereafter only retain the freedom to assign the 2 constants a, b rather
than the 3 constants f (0), f (1), f (2).

Clearly in case (i) we get the following system of N algebraic equations:

αρzn + βρz2n + [α+ ρ+ 2aη + bγ + 2(β + 2bη)zn]
[
aγ + (2aη + bγ)zn + 2bηz2n

]
= 2η

[
αzn + βz2n + (a+ bzn)(γ + 2ηzn)

]
(a+ bzn), (2.34a)

and likewise in case (ii)

αρzn + βρz2n + [ρ+ 2aη + bγ + 4bηzn]
[
aγ + (2aη + bγ − α)zn + (2bη − β)z2n

]
= 2η

[
−αzn − βz2n + (a+ bzn)(γ + 2ηzn)

]
(a+ bzn). (2.34b)

Hence in case (i) the following set of 4 nonlinear algebraic equations must be satisfied by the
7 parameters a, b, α, β, γ, η, ρ:

bη(β + 2bη) = 0, (2.35a)

(β + 2bη)(ρ+ 2aη + 2bγ) = 0, (2.35b)

(α+ 2aη + bγ)(ρ+ bγ) + 2a(β + bη)γ = 0, (2.35c)

a(α+ ρ+ bγ)γ = 0. (2.35d)

Likewise in case (ii) the following set of 4 nonlinear algebraic equations must be satisfied by the
7 parameters a, b, α, β, γ, η, ρ:

bη(β − 2bη) = 0, (2.36a)

b[2η(2aη + 2bγ − α+ ρ)− βγ] = 0, (2.36b)

2aηρ+ bγ(4aη + bγ − α+ ρ) = 0, (2.36c)

a(ρ+ bγ)γ = 0. (2.36d)

Then a trivial if rather tedious computation yields, in case (i) respectively in case (ii), the
solutions reported in Table 2.1 respectively in Table 2.2 (note that for α = β = η = 0 these two
cases coincide, so the corresponding results are only included in Table 2.2).
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Table 2.1∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

# a b α β γ η ρ
1 0 0 ∗ ∗ ∗ ∗ 0
2 ∗ 0 ∗ 0 0 ∗ 0
3 ∗ 0 −2aη 0 0 ∗ ∗
4 ∗ 0 −2aη 0 ∗ ∗ 2aη
5 ∗ 0 −2aη ∗ 0 ∗ −2aη
6 ∗ 0 2aη 4aη2/γ ∗ ∗ −2aη
7 0 ∗ −bγ 0 ∗ 0 ∗
8 ∗ ∗ −bγ 0 ∗ 0 0
9 0 ∗ ∗ 0 ∗ 0 −bγ
10 0 ∗ −bγ ∗ ∗ 0 −2bγ
11 ∗ ∗ bγ b2γ/a ∗ 0 −2bγ
12 0 ∗ −bγ −2bη ∗ ∗ ∗
13 0 ∗ ∗ −2bη ∗ ∗ −bγ
14 ∗ ∗ ∗ −2bη 0 ∗ 0
15 ∗ ∗ −2aη −2bη 0 ∗ ∗
16 −bγ ∗ ∗ −2bη ∗ ∗ −α− bγ
17 ∗ ∗ −2aη −2bη ∗ ∗ −α− bγ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
This table indicates the 17 sets of values to be assigned to the 7 parameters a, b, α, β, γ, η, ρ in order to

satisfy the 4 equations characterizing case (i), see (2.35). Cases with γ = η = 0 are excluded. Asterisks

indicate that the corresponding parameters can be assigned freely. Note that each of the 7 lines 1, 12,

13, 14, 15, 16, 17 assigns values to only 3 of the 7 parameters, while each of the other 10 lines assigns

values to 4 of the 7 parameters.

Table 2.2∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

# a b α β γ η ρ
1 0 0 ∗ ∗ ∗ ∗ ∗
2 ∗ 0 ∗ ∗ ∗ ∗ 0
3 0 ∗ bγ + ρ 0 ∗ 0 ∗
4 ∗ ∗ 0 0 ∗ 0 −bγ
5 0 ∗ bγ + ρ 2bη ∗ ∗ ∗
6 0 ∗ ρ 2bη 0 ∗ ∗
7 ∗ ∗ 2aη 2bη ∗ ∗ −bγ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
This table indicates the 7 sets of values to be assigned to the 7 parameters a, b, α, β, γ, η, ρ in order to

satisfy the 4 equations characterizing case (ii), see (2.36). Cases with γ = η = 0 are excluded. Asterisks

indicate that the corresponding parameters can be assigned freely. Note that each of the lines 1 and 2

assigns values to only 2 of the 7 parameters, lines 3, 4 and 6 assign values to 4 of the 7 parameters, and

lines 5 and 7 assign values to 3 of the 7 parameters.

We therefore conclude that the many-body models of goldfish type characterized by the
Newtonian equations of motion (2.30) (or, equivalently, (2.29)) are solvable provided either the
quantities fn are expressed by (2.32a) and the 7 parameters a, b, α, β, γ, η, ρ are consistent with
Table 2.1 or the quantities fn are expressed by (2.33a) and the 7 parameters a, b, α, β, γ, η, ρ
are consistent with Table 2.2. There are therefore altogether 24 solvable models. Some of these
models are however not new (in particular, when some parameters vanish); moreover in some
cases the solution (2.8) with (2.7) of the matrix equation (2.1) is only valid in a limiting sense
(see Remark 2.2). We leave these issues to whoever will be interested – possibly in specific,
theoretical or applicative, contexts – in more detailed investigations of anyone of these models;
our focus in this paper is rather in the unified treatment, and the simultaneous display (see the
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Table 2.3∣∣∣∣∣∣∣∣∣∣∣∣

# a b α β γ η ρ
1 0 ∗ −bγ 0 ∗ 0 ∗
2 ∗ ∗ −bγ 0 ∗ 0 0
3 0 ∗ ∗ 0 ∗ 0 −bγ
4 0 ∗ −bγ ∗ ∗ 0 −2bγ
5 ∗ ∗ bγ b2γ/a ∗ 0 −2bγ

∣∣∣∣∣∣∣∣∣∣∣∣
This table indicates the 5 sets of values to be assigned to the 7 parameters a, b, α, β, γ, η, ρ in (2.37)

with (2.38). Asterisks indicate that the corresponding parameters can be assigned freely. Note that in

every case there are 3 free parameters.

Table 2.4∣∣∣∣∣∣
# a b α β γ η ρ
1 0 ∗ bγ + ρ 0 ∗ 0 ∗
2 ∗ ∗ 0 0 ∗ 0 −bγ

∣∣∣∣∣∣
This table indicates the set of values to be assigned to the 7 parameters a, b, α, β, γ, η, ρ in (2.37)

with (2.39). Asterisks indicate that the corresponding parameters can be assigned freely: in the second

line a, b, and γ are 3 free parameters, in the first line b, γ and ρ are 3 free parameters.

appendices below), of all of them (except for the elimination, as already mentioned, of the cases
with γ = η = 0).

It is convenient to write the corresponding equations of motion in two different ways, de-
pending whether the parameter η does or does not vanish.

If the parameter η vanishes, η = 0, the equations of motion read as follows:

z̈n = −αρzn − βρz2n + (α+ ρ)żn + 2βżnzn + 2(żn + fn)
N∑

`=1,` 6=n

[
(ż` + f`)

(zn − z`)

]
(2.37)

with the following assignments corresponding respectively to case (i) and case (ii).
In case (i)

fn = aγ + bγzn (2.38)

and the 7 parameters a, b, α, β, γ, η, ρ are restricted according to Table 2.3 (being the relevant
subcase of Table 2.1).

In case (ii)

fn = aγ + (bγ − α) zn − βz2n (2.39)

and the 6 parameters a, b, α, β, γ, ρ are restricted according to Table 2.4 (being the relevant
subcase of Table 2.2).

If the parameter η does not vanish, η 6= 0, the equations of motion are more conveniently
written in terms of the dependent variables

xn(t) ≡ zn(t) +
γ

2η
, (2.40)

reading then as follows:

ẍn =
ẋ2n
xn

+ λ
ẋn
xn

+ βẋnxn + ρ
(
ẋn + λ− µxn − βx2n

)
+ (ẋn + fn)

N∑
`=1,` 6=n

[
(ẋ` + f`)(xn + x`)

(xn − x`)x`

]
(2.41a)
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Table 2.5∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

# a b α β γ η ρ
1 0 0 ∗ ∗ ∗ ∗ 0
2 ∗ 0 ∗ 0 0 ∗ 0
3 ∗ 0 −2aη 0 0 ∗ ∗
4 ∗ 0 −2aη 0 ∗ ∗ 2aη
5 ∗ 0 −2aη ∗ 0 ∗ −2aη
6 ∗ 0 2aη 4aη2/γ ∗ ∗ −2aη
7 0 ∗ −bγ −2bη ∗ ∗ ∗
8 0 ∗ ∗ −2bη ∗ ∗ −bγ
9 ∗ ∗ ∗ −2bη 0 ∗ 0
10 ∗ ∗ −2aη −2bη 0 ∗ ∗
11 −bγ ∗ ∗ −2bη ∗ ∗ −α− bγ
12 ∗ ∗ −2aη −2bη ∗ ∗ −α− bγ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
This table indicates the 12 sets of values to be assigned to the 7 parameters a, b, α, β, γ, η, ρ in (2.41)

with (2.42). Asterisks indicate that the corresponding parameters can be assigned freely (with η 6= 0).

Note that each of the 7 lines 1, 7, 8, 9, 10, 11, 12 assigns values to only 3 of the 7 parameters, while the

other 5 assign values to 4 of the 7 parameters.

or equivalently

ẍn =
(
λ− 2f (0)

) ẋn
xn

+ [(N − 2)f (1) + ρ]ẋn +
(
− 2f (2) + β

)
ẋnxn −

(
f (0)

)2
xn

+ ρλ

+ (N − 2)f (0)f (1) +
[
−ρµ+ (N − 1)

(
f (1)

)2 − 2f (0)f (2)
]
xn

+
[
−βρ+ (N − 2)f (1)f (2)

]
x2n −

(
f (2)

)2
x3n + (ẋn + fn)

N∑
k=1

[(
ẋk + f (0)

)
xk

+ f (2)xk

]

+ 2
N∑

`=1,` 6=n

[
(ẋn + fn)(ẋ` + f`)

(xn − x`)

]
(2.41b)

with

λ =
(2αη − βγ)γ

4η2
, µ = α− βγ

η
so that µ2 = α2 − λ

4
, (2.41c)

and with the following assignments corresponding respectively to case (i) and case (ii).
In case (i)

fn = (2aη − bγ)xn + 2bηx2n (2.42)

and the 7 parameters a, b, α, β, γ, η, ρ are restricted according to Table 2.5 (being the relevant
subcase of Table 2.1).

In case (ii)

fn =
(2αη − βγ)γ

4η2
+

(
2aη − bγ − α+

βγ

η

)
xn + (2bη − β)x2n (2.43)

and the 7 parameters a, b, α, β, γ, η, ρ are restricted according to Table 2.6 (being the relevant
subcase of Table 2.2):

These 24 Newtonian equations of motion are exhibited in Appendix A. Their solvable charac-
ter is of course implied by the fact that the N coordinates zn(t) coincide with the N eigenvalues
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Table 2.6∣∣∣∣∣∣∣∣∣∣∣∣

# a b α β γ η ρ
1 0 0 ∗ ∗ ∗ ∗ ∗
2 ∗ 0 ∗ ∗ ∗ ∗ 0
3 0 ∗ bγ + ρ 2bη ∗ ∗ ∗
4 0 ∗ ρ 2bη 0 ∗ ∗
5 ∗ ∗ 2aη 2bη ∗ ∗ −bγ

∣∣∣∣∣∣∣∣∣∣∣∣
This table indicates the 5 sets of values to be assigned to the 7 parameters a, b, α, β, γ, η, ρ in (2.41)

with (2.43). Asterisks indicate that the corresponding parameters can be assigned freely (with η 6= 0).

Note that each of the first 2 lines assigns values to only 2 of the 7 parameters, while the third and fifth

lines assign values to 3 of the 7 parameters, and the fourth line assign values to 4 of the 7 parameters.

of the matrix U(t) (see (2.10a)). To ascertain the behavior of these solutions zn(t) one must
in each case take account of the restrictions on the parameters characterizing these models, as
detailed above, which are of course also relevant in order to identify the corresponding evolution
of the matrix U(t): as implied by inserting in the explicit formula (2.8) with (2.7) – in addition
to the parameters α, β, γ, η, ρ associated with the solvable N -body model under consideration –
the expressions of the initial values U(0) and V (0) ≡ V0 of the matrices U(t) and V (t) in terms
of the N initial values zn(0) of the N coordinates and the N initial values żn(0) of the N ve-
locities. To obtain these expressions it is useful to note that it is possible – and convenient – to
assume that the diagonalizing matrix R(t) (see (2.10)) is initially just the N ×N unit matrix I,

R(0) = I, (2.44)

implying initially (see (2.10))

U(0) = diag[zn(0)], Unm(0) = δnmzn(0), (2.45a)

V0 ≡ V (0) = Y (0), Vnm(0) = δnmyn(0) + (1− δnm)Ynm(0). (2.45b)

The first of these two formulas provides the explicit expression of U(0) in terms of the initial
data zn(0).

In the second formula the initial values yn(0) of the diagonal elements of the matrix V0 in
terms of the initial coordinates zn(0) and velocities żn(0) of the N particles read

yn(0) =
żn(0)− αzn(0)− βz2n(0)

γ + 2ηzn(0)
(2.45c)

(see (2.12b)), while the off-diagonal elements Ynm(0) (with n 6= m) of the matrix V0 are given
by the ansatz (2.26) yielding

Ynm(0) =
{
gn(0)gm(0)[żn(0) + fn(0)][żm(0) + fm(0)]

}1/2
, n 6= m, (2.45d)

with the quantities gn(0) and fn(0) given by the formulas (see (2.28))

gn(0) =
1

γ + 2ηzn(0)
, fn = f (0) + f (1)zn(0) + f (2)z2n(0), (2.45e)

with the appropriate assignments of the parameters γ, η, f (0), f (1) and f (2) characterizing the
various solvable many-body models, see above (in particular for f (0), f (1) and f (2) see (2.38)
or (2.39) or (2.42) or (2.43), as appropriate).

Note moreover that the dyadic character of the off-diagonal part of the matrix V0 = Y (0),
see (2.45d), implies a simplification when one must compute functions of this matrix V0 such as
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those appearing in the explicit expression (2.8) with (2.7) of U(t); this simplification becomes
particularly significant when the matrix V0 = Y (0) is altogether dyadic, Ynm(0) = vnvm, since
for any dyadic matrix, say Xnm = xnxm, there holds the simple formula

ϕ(X) = ϕ(0)I +
ϕ(x)− ϕ(0)

x
X, x2 =

N∑
k=1

x2n, (2.46)

where ϕ(x) is any (scalar) function for which the (matrix) expression ϕ(X) makes good sense.
This simplification clearly happens iff

fn = −αzn − βz2n, (2.47a)

as implied by (2.12b) and (2.26) with (2.28), hence in case (i) whenever (see (2.32) and Table 2.1)

aγ = 0, 2aη + bγ = −α, 2bη = −β, (2.47b)

and in case (ii) whenever (see (2.33) and Table 2.2)

a = b = 0. (2.47c)

Special cases and their (autonomous) isochronous variants. Certain special models among
those identified above as solvable can be isochronized via the following change of dependent and
independent variables,

zn(t) = exp(iσωt)ζn (τ) , τ =
exp(iωt)− 1

iω
. (2.48)

Here the quantities ζn(τ) are assumed to satisfy the Newtonian equations written above,
see (2.37) with (2.38) or (2.39), of course with the new (complex ) independent variable τ repla-
cing the time t; ω is an arbitrary real (for definiteness, positive) constant to which we associate
the period

T =
2π

ω
; (2.49)

and the number σ is adjusted so as to produce, for the dependent variables zn ≡ zn(t) (with the
real independent variable t interpreted as “time”) autonomous equations of motion (the special
models providing the starting points for the application of this trick being appropriately selected
to allow such an outcome). Since the application of this trick is by now quite standard (see, for
instance, Section 2.1 entitled “The trick” of [6]), we dispense here from any detailed discussion
of this approach and limit ourselves to reporting the results.

This trick is only applicable to (2.37) with (2.38) in the very special cases with α = ρ = 0
and either γ = 0 or a = b = 0 (as long as one is only interested in getting autonomous equations
of motion). Then the assignment σ = 1 yields the isochronous equations of motion

z̈n = 3iωżn + 2ω2zn + 2βzn(żn − iωzn) + 2(żn − iωzn)
N∑

`=1, ` 6=n

[
(ż` − iωz`)

zn − z`

]
. (2.50a)

Likewise the application of this trick to (2.37) with (2.39), again in the very special cases
with α = ρ = 0 and either γ = 0 or a = b = 0, and again with the assignment σ = 1, yields the
isochronous equations of motion

z̈n = 3iωżn + 2ω2zn + 2βzn(żn − iωzn)
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+ 2(żn − iωzn − βz2n)

N∑
`=1,`6=n

[
(ż` − iωz` − βz2` )

zn − z`

]
. (2.50b)

Neither one of these two models is however new: see Examples 4.2.2-6 and 4.2.2-7 in [6].
An analogous treatment applied, mutatis mutandis, to (2.41) with (2.42) in the special case

with ρ = 0, 2aη = bγ and 2αη = βγ (implying λ = 0), yields (again via the assignment σ = 1)
the isochronous equations of motion

ẍn = iωẋn + ω2xn +
ẋ2n
xn

+ βxn(ẋn − iωxn) +
(
ẋn − iωxn + 2bηx2n

)
×

N∑
`=1,`6=n

[
(ẋ` − iωx` + 2bηx2` )(xn + x`)

(xn − x`)x`

]
. (2.50c)

Likewise an analogous treatment applied to (2.41) with (2.43) in the special case with ρ = 0
and either 2αη = βγ (implying λ = 0) and α = −2aη + bγ or γ = 0 (implying λ = 0) and
α = 2aη, yields (again via the assignment σ = 1) the same isochronous equations of motion (up
to the, merely notational, replacement of 2bη with 2bη − β).

While finally this treatment applied, with σ = −1, to (2.41) with (2.43) in the special case
with b = β = ρ = 0 and α = 2aη yields the isochronous equations of motion

ẍn = iωẋn − ω2xn +
ẋ2n
xn

+ aγ
ẋn
xn

+ aγiω

+ (ẋn + iωxn + aγ)
N∑

`=1,`6=n

[
(ẋ` + iωx` + aγ)(xn + x`)

(xn − x`)x`

]
. (2.50d)

2.3 A related class of solvable many-body models

In this subsection we consider the Newtonian equations of motion that obtain by identifying
the N dependent variables of the models discussed above as the N zeros of a monic (time-
dependent) polynomial of degree N , and by then focussing on the time-evolution of the N
coefficients of this polynomial. It is again convenient to treat separately the two cases with
η = 0 and with η 6= 0.

In the η = 0 case the starting point are the equations of motion (2.37) with (2.38) or (2.39).
We then introduce the time-dependent (monic) polynomial ψ(z, t) whose zeros are the N eigen-
values zn(t) of the N ×N matrix U(t):

ψ(z, t) = det[zI − U(t)], (2.51a)

ψ (z, t) =

N∏
n=1

[z − zn(t)] = zN +

N∑
m=1

[
cm(t)zN−m

]
. (2.51b)

The last of these formulas introduces the N coefficients cm ≡ cm(t) of the monic polynomial
ψ(z, t); of course it implies that these coefficients are related to the zeros zn(t) as follows:

c1 = −
N∑

n=1

zn, c2 =
N∑

n,m=1;n>m

znzm, (2.51c)

and so on.
The fact that the initial-value problem associated with the time evolution of the N coordi-

nates zn can be solved by algebraic operations implies that the same solvable character can be
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attributed to the time evolution of the monic polynomial ψ(z, t) and of the N coefficients cm(t).
The procedure to obtain the equations of motion satisfied by the N coefficients cm(t) from
the N equations of motion satisfied by the N zeros is tedious but standard; a key role in this
development are the identities reported, for instance, in Appendix A of [6] (but note that there
are two misprints in these formulas: in equation (A.8k) the term (N + 1) inside the square
brackets should instead read (N − 3); in equation (A.8l) the term N2 inside the square brackets
should instead read N(N − 2) – these misprints have been corrected in the recent paperback
version of this monograph [6]). Here we limit our presentation to reporting the final result.

The equation characterizing the time evolution of the monic polynomial ψ(z, t) implied by
the Newtonian equations of motion (2.37) with (2.28b) reads as follows:

ψtt − 2
(
f (0) + f (1)z + f (2)z2

)
ψzt +

(
p(0) + p(1)z

)
ψt

+
(
q
(0)
2 + q

(1)
2 z + q

(2)
2 z2 + q

(3)
2 z3 + q

(4)
2 z4

)
ψzz

+
(
q
(0)
1 + q

(1)
1 z + q

(2)
1 z2 + q

(3)
1 z3

)
ψz +

(
q
(0)
0 + q

(1)
0 z + q

(2)
0 z2

)
ψ = 0, (2.52)

with

p(0) = −α− ρ+ 2(N − 1)f (1) − 2f (2)c1, p(1) = 2
[
−β + (N − 2)f (2)

]
; (2.53a)

q
(0)
2 =

(
f (0)

)2
, q

(1)
2 = 2f (0)f (1), q

(2)
2 = 2f (0)f (2) +

(
f (1)

)2
,

q
(3)
2 = 2f (1)f (2), q

(4)
2 =

(
f (2)

)2
; (2.53b)

q
(0)
1 = −2(N − 1)f (0)f (1) + 2f (0)f (2)c1,

q
(1)
1 = −αρ− 2(N − 2)f (0)f (2) + 2f (1)f (2)c1 − 2(N − 1)

(
f (1)

)2
,

q
(2)
1 = −βρ− 2(2N − 3)f (1)f (2) + 2

(
f (2)

)2
c1,

q
(3)
1 = −2(N − 2)

(
f (2)

)2
; (2.53c)

q
(0)
0 = Nαρ− 2Nf (0)f (2) +N(N − 1)

(
f (1)

)2
−
[
βρ+ 2(N − 1)f (1)f (2)

]
c1 + 2

(
β + f (2)

)
ċ1 + 2

(
f (2)

)2
c2,

q
(1)
0 = Nβρ+ 2N(N − 2)f (1)f (2) − 2(N − 1)

(
f (2)

)2
c1,

q
(2)
0 = N(N − 3)

(
f (2)

)2
, (2.53d)

where of course the quantities f (0), f (1), f (2) should be expressed in terms of the other parameters
as implied by (2.28b) with (2.38) or (2.39), as the case may be. Note that, while this equa-
tion, (2.52), satisfied by the function ψ(z, t) (where of course subscripted variables denote partial
differentiations) might seem a linear PDE, it is in fact a nonlinear functional equation, because
some of its coefficients, see (2.53), depend on the quantities c1 and c2 which themselves depend
on ψ, indeed clearly (see (2.51))

cm ≡ cm(t) =
ψ(N−m)(0, t)

(N −m)!
, (2.54a)

where we used the shorthand notation ψ(j)(z, t) to denote the j-th partial derivative with respect
to the variable z of ψ(z, t),

ψ(j)(z, t) ≡ ∂jψ(z, t)

∂zj
, j = 1, 2, . . . . (2.54b)

Likewise, the equation characterizing the time evolution of the monic polynomial φ (x, t)
implied by the Newtonian equations of motion (2.41) via the following assignment (analogous
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to (2.51b)),

φ(x, t) =
N∏

n=1

[x− xn(t)] = xN +
N∑

m=1

[
cm(t)xN−m

]
, (2.55)

reads

φtt − 2
(
f (0) + f (1)x+ f (2)x2

)
φxt +

(
p(−1)

x
+ p(0) + p(1)x

)
φt

+
(
q
(0)
2 + q

(1)
2 x+ q

(2)
2 x2 + q

(3)
2 x3 + q

(4)
2 x4

)
φxx (2.56)

+

(
q
(−1)
1

x
+ q

(0)
1 + q

(1)
1 x+ q

(2)
1 x2 + q

(3)
1 x3

)
φx

+

(
q
(−1)
0

x
+ q

(0)
0 + q

(1)
0 x+ q

(2)
0 x2

)
φ = 0, (2.57)

now with

p(−1) = 2f (0) − λ, p(0) = −ρ+Nf (1) − f (2)c1 + f (0)
cN−1
cN

− ċN
cN
,

p(1) = 2(N − 1)f (2) − β; (2.58a)

q
(0)
2 =

(
f (0)

)2
, q

(1)
2 = 2f (0)f (1), q

(2)
2 = 2f (0)f (2) +

(
f (1)

)2
,

q
(3)
2 = 2f (1)f (2), q

(4)
2 =

(
f (2)

)2
; (2.58b)

q
(−1)
1 = −

(
f (0)

)2
, q

(0)
1 = ρλ−Nf (0)f (1) + f (0)f (2)c1 + f (0)

ċN
cN
−
(
f (0)

)2 cN−1
cN

,

q
(1)
1 = −ρµ− 2(N − 1)f (0)f (2) + f (1)f (2)c1 − (N − 1)

(
f (1)

)2
+ f (1)

ċN
cN
− f (0)f (1) cN−1

cN
,

q
(2)
1 = −βρ− (3N − 4)f (1)f (2) +

(
f (2)

)2
c1 + f (2)

ċN
cN
− f (0)f (2) cN−1

cN
,

q
(3)
1 = −(2N − 3)

(
f (2)

)2
; (2.58c)

q
(−1)
0 =

(
λ− 2f (0)

) ċN
cN

+
(
f (0)

)2 cN−1
cN

,

q
(0)
0 = −βρc1 + βċ1 +

(
f (2)c1 −Nf (1)

) ċN
cN

+ f (0)
(
Nf (1) − f (2)c1

)cN−1
cN

,

q
(1)
0 = Nβρ+N(N − 2)f (1)f (2) − (N − 1)

(
f (2)

)2
c1 −Nf (2)

ċN
cN

+ f (0)f (2)
cN−1
cN

,

q
(2)
0 = N(N − 2)

(
f (2)

)2
. (2.58d)

The equations of motion of Newtonian type satisfied by the N coefficients cm(t) which obtain
from (2.52) hence correspond to the Newtonian equations of motion (2.37) read as follows:

c̈m − 2(N −m+ 1)f (0)ċm−1 +
[
− 2(N −m)f (1) + p(0)

]
ċm

+
[
−2(N −m− 1)f (2) + p(1)

]
ċm+1 + (N −m+ 2)(N −m+ 1)q

(0)
2 cm−2

+ (N −m+ 1)
[
(N −m)q

(1)
2 + q

(0)
1

]
cm−1

+
{

(N −m)
[
(N −m− 1)q

(2)
2 + q

(1)
1

]
+ q

(0)
0

}
cm

+
{

(N −m− 1)
[
(N −m− 2)q

(3)
2 + q

(2)
1

]
+ q

(1)
0

}
cm+1
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+
{

(N −m− 2)
[
(N −m− 3)q

(4)
2 + q

(3)
1

]
+ q

(2)
0

}
cm+2 = 0, (2.59)

where cn vanishes for n < 0 and for n > N while c0 = 1 (see (2.51)), and of course the

coefficients p(j) and q
(j)
k are defined by (2.53). Again, this system of ODEs might seem linear,

but it is in fact nonlinear because some of its coefficients depend on the dependent variables c1
and c2, see (2.53). The more explicit version of these equations of motion that obtain by
expressing the various coefficients in terms of the free parameters are listed in Appendix B.
They are of course just as solvable as the Newtonian equations of motion satisfied by the N
coordinates xn(t), see Appendix A, to which they correspond via (2.51); and in particular
whenever the parameter ρ is imaginary and the parameter α is real and negative they are
asymptotically isochronous with period T (see Remark 2.3).

Likewise, the equations of motion of Newtonian type satisfied by the N coefficients cm(t)
which obtain from (2.57) hence correspond to the Newtonian equations of motion (2.41) read
as follows:

c̈m +
[
p(−1) − 2(N −m+ 1)f (0)

]
ċm−1 +

[
−2(N −m)f (1) + p(0)

]
ċm

+
[
−2(N −m− 1)f (2) + p(1)

]
ċm+1 + (N −m+ 2)

[
(N −m+ 1)q

(0)
2 + q

(−1)
1

]
cm−2

+
{

(N −m+ 1)
[
(N −m)q

(1)
2 + q

(0)
1

]
+ q

(−1)
0

}
cm−1

+
{

(N −m)
[
(N −m− 1)q

(2)
2 + q

(1)
1

]
+ q

(0)
0

}
cm

+
{

(N −m− 1)
[
(N −m− 2)q

(3)
2 + q

(2)
1

]
+ q

(1)
0

}
cm+1

+
{

(N −m− 2)
[
(N −m− 3)q

(4)
2 + q

(3)
1

]
+ q

(2)
0

}
cm+2 = 0, (2.60)

where of course again cn vanishes for n < 0 and for n > N while c0 = 1 (see (2.55)) and of

course the coefficients p(j) and q
(j)
k are now defined by (2.58). Again, this system of ODEs

might seem linear, but it is in fact nonlinear because some of its coefficients depend on the
dependent variables c1, cN−1 and cN , see (2.58). The more explicit version of these equations
of motion that obtains by expressing the various coefficients in terms of the free parameters are
listed in Appendix B. They are of course just as solvable as the Newtonian equations of motion
satisfied by the N coordinates xn(t), see Appendix A, to which they correspond via (2.55); and
in particular whenever the parameter ρ is imaginary and the parameter α is real and negative
they are asymptotically isochronous with period T (see Remark 2.3).

Special cases and their (autonomous) isochronous variants. Certain special models among
those identified above (in this subsection) as solvable can be isochronized by an analogous trick
to that employed at the end of the preceding Subsection 2.2. One route to this end takes as
starting point the isochronized systems of Newtonian equations of motion (2.50) and applies to
them the same procedure employed above to obtain the equations of motion (2.59) with (2.53)
and (2.60) with (2.58). An equivalent procedure is to apply to certain special subcases of these
systems of ODEs, (2.59) with (2.53) and (2.60) with (2.58), the following change of dependent
and independent variables:

cm(t) = exp (i σmωt)χm (τ) , τ =
exp (iωt)− 1

iω
. (2.61)

Here the quantities χn (τ) are assumed to satisfy the systems of ODEs written above, see (2.59)
with (2.53) and (2.60) with (2.58), of course with the new (complex ) independent variable τ
replacing the time t; ω is an arbitrary real (for definiteness, positive) constant to which we
associate the period T, see (2.49); and the number σ is adjusted so as to produce autonomous
ODEs for the new dependent variables cm ≡ cm(t) (with the real independent variable t inter-
preted as “time”: the special models providing the starting points for the application of this
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trick being appropriately selected in order to allow such an outcome). Since the application of
this trick is quite standard, we dispense here from any detailed discussion of this approach and
limit ourselves to reporting the results.

The ODEs that follow from (2.59) (with α = ρ = η = 0, f (0) = f (1) = f (2) = 0 and σ = 1)
read as follows:

c̈m = i(2m+ 1)ωċm −
[
2β(ċ1 − iωc1)−m(m+ 1)ω2

]
cm

+ 2βċm+1 − i2β(m+ 1)ωcm+1; (2.62a)

those that follow from (2.59) (with α = ρ = η = 0, f (0) = f (1) = 0, f (2) = −β and σ = 1) read
instead as follows

c̈m = [i(2m+ 1)ω − 2βc1]ċm +
[
m(m+ 1)ω2 + i2mβωc1 − 2β2c2

]
cm

+ 2mċm+1 + 2m
[
β2c1 − i(m+ 1)ω

]
cm+1 − (m− 1)(m+ 2)β2cm+2. (2.62b)

Neither one of these two isochronous many-body problems is new.
The analogous results that follows from (2.60) are instead generally new. There are then two

sets of cases. The first set of isochronous models obtain from the assignment σ = 1 and read

c̈m =

[
−i(N − 2m− 1)ω + f (2)c1 +

ċN
cN

]
ċm +

(
β − 2mf (2)

)
ċm+1

+

[
−m(N −m− 1)ω2 + (N −m)ωf (2)c1 −

ċN
cN

(
imω + f (2)c1 + β(iωc1 − ċ1)

)]
cm

+

[
−i(N − 2m)(m+ 1)ωf (2) − i(m+ 1)ωβ +m

(
f (2)

)2
c1 + (m+ 1)f (2)

ċN
cN

]
cm+1

−m(m+ 2)
(
f (2)

)2
cm+2, (2.63a)

with the following restriction on the parameters:

ρ = λ = f (0) = f (1) = 0. (2.63b)

The second set of isochronous models obtain from the assignment σ = −1 and read

c̈m = (2N − 2m+ 1)λċm−1 +

[
i(N − 2m+ 1)ω +

ċN
cN
− λcN−1

cN

]
ċm

− (N −m)(N −m+ 2)λ2cm−2 +

[
i(m− 1)(2N − 2m+ 1)ω

+ (N −m+ 1)(N −m− 1)λ

(
λ
cN−1
cN

− iNω − ċN
cN

)]
cm−1

+

[
−m(N −m+ 1)ω2 + imω

(
ċN
cN
− λcN−1

cN

)]
cm, (2.64a)

with the following restrictions on the parameters:

b = β = ρ = f (1) = f (2) = 0, α = 2aη, f (0) = λ = aγ. (2.64b)

3 Outlook

Results analogous, but somewhat more general, than those reported in this paper can be obtained
by an analogous treatment based on a somewhat more general – but still solvable – system of
two N ×N matrix ODEs than (2.1), such as, for instance,

U̇ = αU + βU2 + γV + η(UV + V U), V̇ = ρ0 + ρV + ρ2V
2, (3.1)
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which contains the 2 additional scalar constants ρ0 and ρ2 (and clearly reduces to (2.1) for
ρ0 = ρ2 = 0). These developments will be reported in subsequent papers.

Finally, let us recall that Diophantine findings can be obtained from a nonlinear autonomous
isochronous dynamical system by investigating its behavior in the infinitesimal vicinity of its
equilibria. The relevant equations of motion become then generally linear, but they of course
retain the properties to be autonomous and isochronous. For a system of linear autonomous
ODEs, the property of isochrony implies that all the eigenvalues of the matrix of its coefficients
are integer numbers (up to a common rescaling factor). When the linear system describes
the behavior of a nonlinear autonomous system in the infinitesimal vicinity of its equilibria,
these matrices can generally be explicitly computed in terms of the values at equilibrium of the
dependent variables of the original, nonlinear model. In this manner nontrivial Diophantine
findings and conjectures have been discovered and proposed: see for instance the review of such
developments in Appendix C (entitled “Diophantine findings and conjectures”) of [6]. Analogous
results obtained by applying this approach to the isochronous systems of autonomous nonlinear
ODEs introduced above – and in subsequent papers – will be reported if they turn out to be
novel and interesting.

A First appendix

In this appendix we list the 24 Newtonian equations of motion whose solvable character has
been demonstrated in this paper. In each case the parameters they feature (such as a, b, α,
β, γ, η, ρ, as the case may be) are arbitrary constants; the (assigned) values of the other
ones of these parameters (which also characterize the time-evolution of the solutions of these
equations, see (2.8)), are also reported. Let us emphasize that if the parameter ρ is an imaginary
number and the parameter α is real and negative, the corresponding many-body problem is
asymptotically isochronous with period T , see Remark 2.3; and that isochronous many-body
models are characterized by the 4 Newtonian equations of motion (2.50) displayed at the end of
Subsection 2.2. Let us also mention again that the equations of motion reported below are not
all new; in particular not new are clearly those whose corresponding equations of motion in the
following Appendix B are linear.
η = 0, case (i) (5 models, corresponding to Table 2.3):
(1) a = β = 0, α = −bγ, fn = −αzn:

z̈n = −αρzn + (α+ ρ)żn + 2(żn − αzn)

N∑
`=1, ` 6=n

(
ż` − αz`
zn − z`

)
; (A.1a)

(2) α = −bγ, β = ρ = 0, fn = −(a/b)α− αzn:

z̈n = −αżn + 2
(
żn −

aα

b
− αzn

) N∑
`=1, ` 6=n

(
ż` − aα/b− αz`

zn − z`

)
; (A.1b)

(3) a = β = 0, ρ = −bγ, fn = −ρzn:

z̈n = −αρzn + (α+ ρ)żn + 2(żn − ρzn)
N∑

`=1, ` 6=n

(
ż` − ρz`
zn − z`

)
; (A.1c)

(4) a = 0, α = −bγ, ρ = −2bγ = 2α, fn = −αzn:

z̈n = −2α2zn − 2αβz2n + 3αżn + 2βżnzn + 2(żn − αzn)

N∑
`=1,`6=n

(
ż` − αz`
zn − z`

)
; (A.1d)
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(5) α = bγ, β = b2γ/a = bα/a, ρ = −2bγ = −2α, fn = aα/b+ αzn:

z̈n = 2α2zn +
2b

a
α2z2n +

2b

a
αżnzn − αżn

+ 2
(
żn + α

a

b
+ αzn

) N∑
`=1,` 6=n

(
ż` + aα/b+ αz`

zn − z`

)
. (A.1e)

η = 0, case (ii) (2 models, corresponding to Table 2.4):

(1) a = β = 0, α = bγ + ρ, fn = −ρzn:

z̈n = −(bγ + ρ)ρzn + (bγ + 2ρ)żn + 2(żn − ρzn)
N∑

`=1, ` 6=n

(
ż` − ρz`
zn − z`

)
; (A.2a)

(2) α = β = 0, ρ = −bγ, fn = aγ + bγzn:

z̈n = −bγżn + 2(żn + aγ + bγzn)

N∑
`=1, ` 6=n

(
ż` + aγ + bγz`

zn − z`

)
. (A.2b)

η 6= 0, case (i) (12 models, corresponding to Table 2.5):

(1) a = b = ρ = 0, fn = 0, λ = (2αη − βγ)γ/(4η2), µ = α− βγ/η:

ẍn =
ẋ2n
xn

+ λ
ẋn
xn

+ βẋnxn + ẋn

N∑
`=1, ` 6=n

[
ẋ`(xn + x`)

(xn − x`)x`

]
; (A.3a)

(2) b = β = γ = ρ = 0, fn = 2aηxn, λ = 0, µ = α:

ẍn =
ẋ2n
xn

+ (ẋn + 2aηxn)

N∑
`=1, ` 6=n

[
(ẋ` + 2aηx`)(xn + x`)

(xn − x`)x`

]
; (A.3b)

(3) b = β = γ = 0, α = −2aη, fn = −αxn, λ = 0, µ = α:

ẍn =
ẋ2n
xn

+ ρ(ẋn − αxn) + (ẋn − αxn)

N∑
`=1, ` 6=n

[
(ẋ` − αx`)(xn + x`)

(xn − x`)x`

]
; (A.3c)

(4) b = β = 0, α = −2aη, ρ = −α, fn = −αxn, λ = αγ/(2η), µ = α:

ẍn =
ẋ2n
xn

+
αγ

2η

ẋn
xn
− α

(
ẋn +

αγ

2η
− αxn

)
+ (ẋn − αxn)

N∑
`=1, ` 6=n

[
(ẋ` − αx`)(xn + x`)

(xn − x`)x`

]
; (A.3d)

(5) b = γ = 0, α = ρ = −2aη, fn = −αxn, λ = 0, µ = α:

ẍn =
ẋ2n
xn

+ βẋnxn + α
(
ẋn − αxn − βx2n

)
+ (ẋn − αxn)

N∑
`=1, ` 6=n

[
(ẋ` − αx`)(xn + x`)

(xn − x`)x`

]
; (A.3e)
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(6) b = 0, α = 2aη, β = 4aη2/γ = 2ηα/γ, ρ = −α, fn = αzn, λ = 0, µ = −α:

ẍn =
ẋ2n
xn

+
2αη

γ
ẋnxn − α

(
ẋn + αxn −

2αη

γ
x2n

)
+ (ẋn + αxn)

N∑
`=1, ` 6=n

[
(ẋ` + αx`)(xn + x`)

(xn − x`)x`

]
; (A.3f)

(7) a = 0, α = −bγ, β = −2bη, fn = αxn − βx2n, λ = 0, µ = −α:

ẍn =
ẋ2n
xn

+ βẋnxn + ρ
(
ẋn + αxn + βx2n

)
+
(
ẋn + αxn − βx2n

) N∑
`=1, ` 6=n

[(
ẋ` + αx` − βx2`

)
(xn + x`)

(xn − x`)x`

]
; (A.3g)

(8) a = 0, β = −2bη, ρ = −bγ, fn = −bγxn + 2bηx2n, λ = (α+ bγ)γ/(2η), µ = α+ 2bγ:

ẍn =
ẋ2n
xn

+
(α+ bγ) γ

2η

ẋn
xn
− 2bηẋnxn − bγ

[
ẋn +

(α+ bγ)γ

2η
− (α+ 2bγ)xn + 2bηx2n

]
+
(
ẋn − bγxn + 2bηx2n

) N∑
`=1, ` 6=n

[(
ẋ` − bγx` + 2bηx2`

)
(xn + x`)

(xn − x`)x`

]
; (A.3h)

(9) γ = ρ = 0, β = 2bη, fn = 2aηxn + 2bηx2n, λ = 0, µ = α:

ẍn =
ẋ2n
xn
− 2bηẋnxn +

(
ẋn + 2aηxn + 2bηx2n

)
×

N∑
`=1, ` 6=n

[(
ẋ` + 2aηx` + 2bηx2`

)
(xn + x`)

(xn − x`)x`

]
; (A.3i)

(10) γ = 0, α = −2aη, β = −2bη, fn = −αxn − βx2n, λ = 0, µ = α:

ẍn =
ẋ2n
xn

+ βẋnxn + ρ
(
ẋn − αxn − βx2n

)
+
(
ẋn − αxn − βx2n

) N∑
`=1, ` 6=n

[(
ẋ` − αx` − βx2`

)
(xn + x`)

(xn − x`)x`

]
; (A.3j)

(11) a = −bγ, β = −2bη, ρ = −α − bγ, fn = −(2η + 1)bγxn + 2bηx2n, λ = (α + bγ)γ/(2η),
µ = α+ 2bγ:

ẍn =
ẋ2n
xn

+
(α+ bγ)γ

2η

ẋn
xn
− 2bηẋnxn − (α+ bγ)

[
ẋn +

(α+ bγ)γ

2η
− (α+ 2bγ)xn + 2bηx2n

]
+
[
ẋn − (2η + 1)bγxn + 2bηx2n

]
×

N∑
`=1, ` 6=n

{[
ẋ` − (2η + 1)bγx` + 2bηx2`

]
(xn + x`)

(xn − x`)x`

}
; (A.3k)

(12) α = −2aη, β = −2bη, ρ = −α− bγ, fn = (2aη− bγ)xn + 2bηx2n, λ = (−2aη+ bγ)γ/(2η),
µ = −2aη + 2bγ:

ẍn =
ẋ2n
xn

+
(bγ − 2aη)γ

2η

ẋn
xn
− 2bηẋnxn
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− (α+ bγ)

[
ẋn +

(bγ − 2aη)γ

2η
+ (2aη − 2bγ)xn + 2bηx2n

]
+
[
ẋn + (2aη − bγ)xn + 2bηx2n

]
×

N∑
`=1, ` 6=n

{[
ẋ` + (2aη − bγ)x` + 2bηx2`

]
(xn + x`)

(xn − x`)x`

}
. (A.3l)

η 6= 0, case (ii) (5 models, corresponding to Table 2.6):
(1) a = b = 0, fn = λ− µxn − βx2n, λ = (2αη − βγ)γ/(4η2), µ = α− βγ/η:

ẍn =
ẋ2n
xn

+ λ
ẋn
xn

+ βẋnxn + ρ
(
ẋn + λ− µxn − βx2n

)
+
(
ẋn + λ− µxn − βx2n

) N∑
`=1, ` 6=n

[(
ẋ` + λ− µx` − βx2`

)
(xn + x`)

(xn − x`)x`

]
; (A.4a)

(2) b = ρ = 0, fn = λ+ (2aη − µ)xn − βx2n, λ = (2αη − βγ)γ/(4η2), µ = α− βγ/η:

ẍn =
ẋ2n
xn

+ λ
ẋn
xn

+ βẋnxn +
[
ẋn + λ+ (2aη − µ)xn − βx2n

]
N∑

`=1, ` 6=n

{[
ẋ` + λ+ (2aη − µ)x` − βx2`

]
(xn + x`)

(xn − x`)x`

}
; (A.4b)

(3) a = 0, α = bγ + ρ, β = 2bη, fn = λ− ρxn, λ = (ρ− bγ)γ/(2η), µ = ρ− bγ:

ẍn =
ẋ2n
xn

+ λ
ẋn
xn

+ 2bηẋnxn + ρ
[
ẋn + λ− (ρ− bγ)xn − 2bηx2n

]
+ (ẋn + λ− ρxn)

N∑
`=1, ` 6=n

[
(ẋ` + λ− ρx`)(xn + x`)

(xn − x`)x`

]
; (A.4c)

(4) a = γ = 0, α = ρ, β = 2bη, fn = −αxn, λ = 0, µ = α:

ẍn =
ẋ2n
xn

+ βẋnxn + α
(
ẋn − αxn − βx2n

)
+ (ẋn − αxn)

N∑
`=1, ` 6=n

[
(ẋ` − αx`)(xn + x`)

(xn − x`)x`

]
; (A.4d)

(5) α = 2aη, β = 2bη, ρ = −bγ, fn = λ+ bγxn, λ = (2αη − βγ)γ/(2η), µ = 2aη − 2bγ:

ẍn =
ẋ2n
xn

+ λ
ẋn
xn

+ 2bηẋnxn − bγ
[
ẋn + λ− (2αη − βγ)xn − 2bηx2n

]
+ (ẋn + λ+ bγxn)

N∑
`=1,` 6=n

[
(ẋ` + λ+ bγx`)(xn + x`)

(xn − x`)x`

]
. (A.4e)

B Second appendix

In this appendix we list the second series of 24 Newtonian equations of motion whose solvable
character has been demonstrated in this paper; they correspond to those reported in Appendix A
via the transformation among the N zeros zn and the N coefficients cm of a monic polynomial,
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see (2.51) and (2.55). In each case the parameters they feature (such as a, b, α, β, γ, η, ρ, as the
case may be) are arbitrary constants; the (assigned) values of the other ones of these parameters
(which also characterize the time-evolution of the solutions of these equations, see (2.8)), are also
reported. Let us emphasize that if the parameter ρ is an imaginary number and the parameter α
is real and negative, the corresponding many-body problem is asymptotically isochronous with
period T , see Remark 2.3; and that isochronous many-body models are characterized by the 4
Newtonian equations of motion (2.62), (2.63) and (2.64) displayed at the end of Subsection 2.3.
Let us also mention again that the equations of motion reported below are not all new; in
particular all those that are linear are of course not new.

Let us recall that it is always assumed that cn = 0 for n < 0 and for n > N , and c0 = 1.
η = 0, case (i) (5 models, corresponding to Table 2.3):
(1) a = β = 0, α = −bγ:

c̈m + [(1− 2m)α− ρ]ċm +mα[(m− 1)α+ ρ]cm = 0; (B.1a)

(2) β = ρ = 0, α = −bγ:

c̈m − 2(N −m− 1)aγċm−1 + (2m− 1)bγċm + (N −m+ 2)(N −m+ 1)a2γ2cm−2

− 2(N −m+ 1)(m− 1)abγ2cm−1 +m(m− 1)b2γ2 = 0; (B.1b)

(3) α = β = 0, ρ = −bγ:

c̈m + [(1− 2m)ρ− α]ċm +mρ[(m− 1)ρ+ α]cm = 0; (B.1c)

(4) a = 0, α = −bγ, ρ = 2α:

c̈m − (2m+ 1)αċm − 2βċm+1 + [m(m+ 1)α2 − 2αβc1 + 2βċ1]cm

+ 2(m+ 1)αβcm+1 = 0; (B.1d)

(5) α = bγ, β = b2γ/a, ρ = −2bγ:

c̈m − 2(N −m+ 1)aγċm−1 + (2m− 1)bγċm −
2b2γ

a
ċm+1

+ (N −m+ 2)(N −m+ 1)a2γ2cm−2 − 2(m− 1)(N −m+ 1)abγ2cm−1

+

[
m(m− 3)b2γ2 +

2b3γ2

a
c1 +

2b2γ

a
ċ1

]
cm − (m+ 1)

2b3γ2

a
cm+1 = 0. (B.1e)

η = 0, case (ii) (2 models, corresponding to Table 2.4):
(1) α = β = 0, ρ = −bγ:

c̈m − 2(N −m+ 1)aγċm−1 + (2m− 1)bγċm + (N −m+ 2)(N −m+ 1)a2γ2cm−2

− 2(m− 1)(N −m+ 1)abγ2cm−1 +m(m− 1)b2γ2cm = 0; (B.2a)

(2) a = β = 0, α = bγ + ρ :

c̈m − (2mρ+ bγ)ċm +
[
mbγρ−

(
N2 −m2

)
ρ2
]
cm = 0. (B.2b)

η 6= 0, case (i) (12 models, corresponding to Table 2.5):
(1) a = b = ρ = 0, λ = [(2αη − βγ)γ]/(2η)2, µ = α− βγ/η:

c̈m − λċm−1 −
ċN
cN
ċm − βċm+1 + λ

ċN
cN
cm−1 + βċ1cm = 0; (B.3a)



A New Class of Solvable Many-Body Problems 25

(2) b = β = γ = ρ = 0, λ = 0, µ = α:

c̈m −
[
(2N − 4m)aη − ċN

cN

]
ċm − 2maη

(
2aη +

ċN
cN

)
cm = 0; (B.3b)

(3) b = β = γ = 0, α = −2aη, λ = 0, µ = α:

c̈m +

[
(N − 2m)α− ρ− ċN

cN

]
ċm −

[
m(N −m)α2 + (N −m)αρ−mαċN

cN

]
cm = 0; (B.3c)

(4) b = β = 0, α = −2aη, ρ = 2aη = −α, λ = −aγ, µ = α:

c̈m + aγċm−1 −
[
(N − 2m+ 1)α+

ċN
cN

]
ċm + aγ

[
(N −m− 1)α− ċN

cN

]
cm−1

+

[
−(N −m)α2 + 2(N −m)α2 +mα

ċN
cN

]
cm = 0; (B.3d)

(5) b = γ = 0, α = ρ = −2aη, λ = 0, µ = α:

c̈m +

[
(N − 2m− 1)α− ċN

cN

]
ċm −

[
(m+ 1)(N −m)α2 +mα

ċN
cN

+ αβc1 − βċ1
]
cm

+ (m+ 1)αβcm+1 = 0; (B.3e)

(6) b = 0, α = 2aη, β = 4aη2/γ, ρ = −2aη, λ = 0, µ = −2aη:

c̈m −
[
2(N − 2m+ 1)aη +

ċN
cN

]
ċm −

4aη2

γ
ċm+1 (B.3f)

− 2aη

[
2(m− 1)(N −m)aη +m

ċN
cN
− 4aη2

γ
c1 −

2η

γ
ċ1

]
cm − (m+ 1)

8a2η3

γ
cm+1 = 0;

(7) a = 0, α = −bγ, β = −2bη, λ = 0, µ = −α:

c̈m −
[
(N − 2m)α+ ρ+ βc1 +

ċN
cN

]
ċm − (2m+ 1)βċm+1

−
[
m(N −m)α2 − (N −m)αρ+ (N −m)αβc1 + (βc1 +mα)

ċN
cN

+ βρc1 − βċ1
]
cm

−
{

(m+ 1)βρ− [2N2 − (3m+ 5)N + 4m+ 4]αβ +mβ2c1 + (m+ 1)β
ċN
cN

}
cm+1

−m(m+ 2)β2cm+2 = 0; (B.3g)

(8) a = 0, β = −2bη, ρ = −bγ, λ = (α+ bγ)γ/(2η), µ = α+ 2bγ:

c̈m − λċm−1 +

[
(N − 2m+ 1)bγ − 2bηc1 −

ċN
cN

]
ċm + 4(m− 1)ċm+1

+λ

[
−(N −m+ 1)bγ +

ċN
cN

]
cm−1 −

[
(m+ 4)(N −m)b2γ2 + 2(2N − 2m+ 1)b2γηc1

− (N −m)bαγ + 2bηċ1 + (mbγ − 2bηc1)
ċN
cN

]
cm

+2

[
(m+ 1)(N − 2m+ 1)b2γη − 2mb2η2c1 − (m+ 1)bη

ċN
cN

]
cm+1

+ 4m(m+ 2)cm+2 = 0; (B.3h)



26 F. Calogero and G. Yi

(9) γ = ρ = 0, β = −2bη, λ = 0, µ = α:

c̈m −
[
2(N − 2m) + 2bηc1 +

ċN
cN

]
ċm + 2(2m+ 1)bηċm+1

+

[
−4m(N −m)a2η2 + 4(N −m)abη2c1 + βċ1 + 2(bηc1 −maη)

ċN
cN

]
cm

− 2

[
2(m+ 1)(N − 2m)abη2 + 2mb2η2c1 + (m+ 1)bη

ċN
cN

]
cm+1

+ 4m(m+ 2)cm+2 = 0; (B.3i)

(10) γ = 0, α = −2aη, β = −2bη, λ = 0, µ = α:

c̈m +

[
(N − 2m)α− ρ+ βc1 −

ċN
cN

]
ċm − (2m+ 1)βċm+1

−
[
m(N −m)α2 + (N −m)αρ− (N −m)αβc1 + βρc1 − βċ1 + (βc1 −mα)

ċN
cN

]
cm

−
[
(m+ 1)(N − 2m)αβ − (m+ 1)βρ+mβ2c1 − (m+ 1)β

ċN
cN

]
cm+1

+m(m+ 2)cm+2 = 0; (B.3j)

(11) a = −bγ, β = −2bη, ρ = −α− bγ, λ = (α+ bγ)γ/(2η), µ = α+ 2bγ:

c̈m − λċm−1 +

{
[2(N − 2m)η +N − 2m+ 1]bγ + α− 2bηc1 −

ċN
cN

}
ċm

+ 2(2m+ 1)ċm+1 + λ

[
ċN
cN
− (N −m+ 1)(α+ bγ)

]
cm−1

−
{
m(N −m)b2γ2(2η + 1)2− (N −m)(α+ bγ)(α+ 2bγ) + 2(N −m)b2γη(2η + 1)c1

+ 2bη(α+ bγ)c1 + 2bηċ1 − [2bηc1 +mbγ(2η + 1)]
ċN
cN

}
cm

+ 2

[
(m+ 1)(N − 2m)b2γη(2η + 1) + (m+ 1)bη(α+ bγ)− 2mb2η2c1

− (m+ 1)bη
ċN
cN

]
cm+1 +m(m+ 2)cm+2 = 0; (B.3k)

(12) α = −2aη, β = −2bη, ρ = −α− bγ = 2aη − bγ, λ = (bγ − 2aη)γ/ (2η), µ = 2bγ − 2aη:

c̈− λċm−1 −
[
(N − 2m+ 1)(2aη − bγ) + 2bηc1 +

ċN
cN

]
ċm

+ 2(2m+ 1)bηċm+1 + λ

[
(N −m− 1)(2aη − bγ) +

ċN
cN

]
cm−1

+

{
−m(N −m)(2aη − bγ)2 + 2(N −m+ 1)(2aη − bγ)bηc1

+ (N −m)(2aη − bγ)(2aη − 2bγ)− 2bηċ1 + [2bηc1 −m(2aη − bγ)]
ċN
cN

}
cm

− 2

[
(m+ 1)(N − 2m+ 1)(2aη − bγ)bη + 2mb2η2c1 + (m+ 1)bη

ċN
cN

]
cm+1

+ 4m(m+ 2)b2η2cm+2 = 0. (B.3l)
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η 6= 0, case (ii) (5 models, corresponding to Table 2.6):
(1) a = b = 0, λ = [(2αη − βγ)γ]/(2η)2, µ = α− βγ/η:

c̈m − (2N − 2m+ 1)λċm−1 +

[
(N − 2m)µ− ρ+ βc1 + λ

cN−1
cN

− ċN
cN

]
ċm

− (2m+ 1)βċm+1 + (N −m+ 2)(N −m)λ2cm−2 −
[
(N − 2m)(N −m+ 1)λµ

− (N −m+ 1)ρλ+ (N −m+ 1)βλc1 + λ
ċN
cN
− λ2 cN−1

cN

]
cm−1

+

[
m(N −m)

(
2βλ− µ2

)
+ (βc1 −mµ)

(
λ
cN−1
cN

− ċN
cN

)
−(N −m)ρµ+ (N −m)βµc1 − βρc1 + βċ1

]
cm

−
[
(m+ 1)(N − 2m)βµ+ (m+ 1)βρ+mβ2c1 − (m+ 1)β

ċN
cN

− (N −m− 2)βλ
cN−1
cN

]
cm+1 +m(m+ 2)β2cm+2 = 0; (B.4a)

(2) b = ρ = 0, λ = [(2αη − βγ)γ]/(2η)2, µ = α− βγ/η:

c̈m − (2N − 2m+ 1)λċm−1 +

[
(N − 2m)(µ− 2aη) + βc1 + λ

cN−1
cN

− ċN
cN

]
ċm

− (2m+ 1)βċm+1 + (N −m)(N −m+ 2)λ2cm−2

+

[
(N − 2m)(N −m+ 1)λ(2aη − µ)− (N −m+ 1)βλc1

+ (N −m)λ
ċN
cN
− (N −m)λ2

cN−1
cN

]
cm−1 +

{
m(N −m)

[
2βλ− (2aη − µ)2

]
− (N −m)(2aη − µ)βc1 + βċ1 + [βc1 +m(2aη − µ)]

(
λ
cN−1
cN

− ċN
cN

)}
cm

−
[
(m+ 1)(N − 2m)βµ+ (m+ 1)βρ+mβ2c1

− (m+ 1)β
ċN
cN
− (N −m− 2)βλ

cN−1
cN

]
cm+1 +m(m+ 2)β2cm+2 = 0; (B.4b)

(3) a = 0, α = bγ + ρ, β = 2bη, λ = γρ/(2η), µ = ρ− bγ:

c̈m − (2N − 2m+ 1)λċm−1 −
[
(N − 2m+ 1)ρ− λcN−1

cN
+
ċN
cN

]
ċm

− 2bηċm+1 + (N −m)(N −m+ 2)λ2cm−2

+

[
(N −m+ 1)(N − 2m+ 1)λρ+ (N −m)λ

(
ċN
cN
− λcN−1

cN

)]
cm−1

−
[
(m+ 1)(N −m)ρ2 − (N −m)bγρ+mρ

ċN
cN
−mλρcN−1

cN

− 2bηρc1 − 2bηċ1

]
cm + 2(m+ 1)bηρcm+1 = 0; (B.4c)

(4) a = γ = 0, α = ρ, β = 2bη, λ = 0, µ = α:

c̈m +

[
(N − 2m− 1)α− ċN

cN

]
ċm − βċm+1
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−
[
(m+ 1)(N −m)α2 −mαċN

cN
+ αβc1 − βċ1

]
cm + (m+ 1)αβcm+1 = 0; (B.4d)

(5) α = 2aη, β = 2bη, ρ = −bγ, λ = [(2aη − bγ)γ]/(2η), µ = 2aη − 2bγ:

c̈m − (2N − 2m+ 1)λċm−1 −
[
(N − 2m− 1)bγ − λcN−1

cN
+
ċN
cN

]
ċm

−
[
(N + 2m+ 1)(N −m+ 1)bγλ+ (N −m)λ

(
λ
cN−1
cN

− ċN
cN

)]
cm−1

+

[
− (m+ 2)(N −m)b2γ2 +mbγ

(
λ
cN−1
cN

− ċN
cN

)
+ 2(N −m)abγη + 2b2γηc1 + 2bηċ1

]
cm − 2(m+ 1)b2γηcm+1 = 0. (B.4e)
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