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Abstract. The discrete Fourier analysis on the 30°-60°—90° triangle is deduced from the
corresponding results on the regular hexagon by considering functions invariant under the
group G, which leads to the definition of four families generalized Chebyshev polynomials.
The study of these polynomials leads to a Sturm-Liouville eigenvalue problem that contains
two parameters, whose solutions are analogues of the Jacobi polynomials. Under a concept
of m-degree and by introducing a new ordering among monomials, these polynomials are
shown to share properties of the ordinary orthogonal polynomials. In particular, their
common zeros generate cubature rules of Gauss type.
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1 Introduction

In our recent works [9, 10, 11] we studied discrete Fourier analysis associated with translation
lattices. In the case of two dimension, our results include discrete Fourier analysis of expo-
nential functions on the regular hexagon and, by restricting to symmetric and antisymmetric
exponentials on the hexagon under the reflection group Ay (the group of symmetry of the regu-
lar hexagon), the generalized cosine and sine functions on the equilateral triangle, which can
also be transformed into the generalized Chebyshev polynomials on a domain bounded by the
hypocycloid. These polynomials possess maximal number of common zeros, which implies the
existence of Gaussian cubature rules, a rarity that is only the second example ever found. The
first example of Gaussian cubature rules is connected with the trigonometric functions on the
45°—45°-90° triangle. The richness of these results prompts us to look into similar results on
the 30°-60°-90° triangle in the present work. This case is also considered recently in [13] as
an example under a general framework of cubature rules and orthogonal polynomials for the
compact simple Lie groups, for which the group is Gbs.

It turns out that much of the discrete Fourier analysis on the 30°-60°-90° triangle can be
obtained, perhaps not surprisingly, though symmetry from our results on the hexagonal domain.
The most direct way of deduction, however, is not through our results on the equilateral triangle.
The reason lies in the underline group G2, which is a composition of Ay and its dual A3, the
symmetric group of the regular hexagon and its rotation. Our framework of discrete Fourier
analysis incorporates two lattices, one determines the domain and the other determines the space
of exponentials. Our results on the equilateral triangle are obtained from the situation when
both lattices are taken to be the same hexagonal lattices [9]. Another choice is to take one lattice
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as the hexagonal lattice and the other as the rotation of the same lattice by 90° degree [10], with
the symmetric groups Ay and A%, respectively. As we shall see, it is from this set up that our
results on the 30°-60°-90° triangle can be deduced directly via symmetry. The results include
cubature rules and orthogonal trigonometric functions that are analogues of cosine and sine
functions. There are four families of such functions and they have also been studied recently
in [13, 18]. While the results in these two papers concern mainly with orthogonal polynomials,
our emphasis is on the discrete Fourier analysis and cubature rules, and on the connection to
the results in the hexagonal domain.

The generalized cosine and sine functions on the 30°-60°-90° triangle are also eigenfunctions
of the Laplace operator with suitable boundary conditions. There are four families of such
functions. Under proper change of variables, they become orthogonal polynomials on a domain
bounded by two curves. However, unlike the equilateral triangle, these polynomials do not form
a complete orthogonal basis in the usual sense of total order of monomials. To understand
the structure of these polynomials, we consider the Sturm—Liouville problem for a general pair
of parameters «, B, with the four families that correspond to the generalized cosine and sine
functions as o = i%, 8= i%. The differential operator of this eigenvalue problem has the form

Ea,ﬁ = _All(xay)ag - 2A12($, y)axay - A22(1‘ay)a§ + Bl(w,y)é’m + BQ<$:y)ay-

Such operators have long been studied in association with orthogonal polynomials in two va-
riables; see for example [6, 7, 8, 16], as well as [1] and the references therein. Our operator L, g,
however, is different in the sense that the coefficient functions A;; are usually assumed to be
of quadratic polynomials to ensure that the operator has n + 1 polynomials of degree n as
eigenfunctions, whereas A2 in our L, g is a polynomial of degree 3 for which it is no longer
obvious that a full set of eigenfunctions exists. Nevertheless, we shall prove that the eigenvalue
problem L, gu = Au has a complete set of polynomial solutions, which are also orthogonal
polynomials, analogue of the Jacobi polynomials. Upon introducing a new ordering among
monomials, these polynomials can be shown to be uniquely determined by their highest term
in the new ordering. As a matter of fact, this ordering defines the region of influence and
dependence in the polynomial space for each solution. Furthermore, it preserves the m-degree
of polynomials, a concept introduced in [13], rather than the total degree. In the case of & = i%
and 8 = i%, the common zeros of these polynomials determine the Gauss, Gauss—Lobatto and
Gauss—Radau cubature rules, respectively, all in the sense of m-degree. It is known that the
cubature rule of degree 2n — 1 exists if and only if its nodes form a variety of an ideal generated
by certain orthogonal polynomials. It is somewhat surprising that this relation is preserved
when the m-degree is used in place of the ordinary degree.

The paper is organized as follows. The following section contains what we need from the
discrete Fourier analysis on the hexagonal domain. The results on the 30°-60°-90° triangle is
developed in Section 3, which are translated into generalized Chebyshev polynomials in Section 4.
The Sturm—Liouville problem is defined and studied in Section 5 and the cubature rules are
presented in Section 6.

2 Discrete Fourier analysis on hexagonal domain

Before stating the results on the hexagonal domain, we give a short narrative of the neces-
sary background on the discrete Fourial analysis with lattice as developed in [9, 11]. We refer
to [2, 3, 12, 14] for some applications of discrete Fourier analysis in several variables.

A lattice L in R? is a discrete subgroup L = L4 := AZ?, where A, called a generator matrix,
is nonsingular. A bounded set Q of R, called the fundamental domain of L, is said to tile R?
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with the lattice L if Q + L = R?, that is,

Z xalr+a) =1, for almost all z € R?,

ael

where yq denotes the characteristic function of Q. For a given lattice Ly4, the dual lattice L% 4 is
given by Ll = A7Ze. A result of Fuglede [5] states that a bounded open set Q tiles R? with
the lattice L if, and only if, {e?™*7 : q € LL} is an orthonormal basis with respect to the inner
product

1 -
fo9 = L f(x)g(x)da. (2.1)

Since Ly = A™"7Z4, we can write « = A™%k for a € L} and k € Z4, so that e?™@e = 2k AT e,
For our discrete Fourier analysis, the boundary of 2 matters. We shall fix an 2 such that
0eQand Q + AZ? = R? holds pointwisely and without overlapping.

Definition 2.1. Let Q4 and Qp be the fundamental domains of AZ¢ and BZ?, respectively.
Assume all entries of the matriz N := BY A are integers. Define

Ay :={keZ:B™"keQa} and Al :={kez!: A"keQp}.
Furthermore, define the finite-dimensional subspace of exponential functions
Vy := span {627”‘]‘3"’471’”, ke A;rv}
A function f defined on R? is called a periodic function with respect to the lattice AZ if

fz+ Ak) = f(x) for all k e Z4.
The function z > 2Tk A7z g periodic with respect to the lattice AZ? and Vy is a space
of periodic exponential functions. We can now state the central result in the discrete Fourier
analysis.

Theorem 2.2. Let A, B and N be as in Definition 2.1. Define

SN = g 2 SBDaB )

JGAN

for f, g in C(Qa), the space of continuous functions on Q4. Then

<fag>QA :<f7g>N> fvgeVN- (22)

It follows readily that (2.2) gives a cubature formula exact for functions in V. Furthermore,
it implies an explicit Lagrange interpolation by exponential functions, which we shall not state
since it will not be needed in the present work.

In the following, we shall call the lattice L4 as the lattice for the physical space, as it
determines the domain on which our analysis lies, and the lattice Lp as the lattice for the
frequency space, as it determines the points that defines the inner product.

The classical discrete Fourier analysis of two variables is the tensor product of the results
in one variable, which corresponds to A = B = I, the identity matrix. We are interested in
choosing A as the generating matrix H of the hexagonal domain,

H:(ﬁ 3) with Q= {reR: 1< ey <1f.
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If we choose B = §H, so that N = B'Y A has all integer entries, we are back to the situation
studied in [9], which is the one that leads to the discrete Fourier analysis on the equilateral
triangle. The other choices are considered in [10].

For the case that we are interested in, we choose A = H, the matrix for the hexagonal lattice
in the physical space, and B = nH ™' with n € Z, the matrix for the hexagonal lattice in the
frequency space. Then N = BYA = nl has all integer entries. This case was studied in [10],
which will be used to deduce the case that we are interested in by an additional symmetry. As
shown in [9, 17], it is more convenient to use homogeneous coordinates (t1, t2, t3) defined by

¢ V3 1

1 2 2 (2,

to | = 0 1 <$ > = Ex, (2.3)
W \g )

which satisfy ¢; +to +t3 = 0. We adopt the convention of using bold letters, such as t to denote
points in homogeneous coordinates. We define by

RY = {t = (t1,t2,t3) eR® 1ty + o +t5 =0} and H :=Z° R},

the spaces of points and integers in homogeneous coordinates, respectively. In such coordinates,
the fundamental domains of the lattices L4 and Lp are then given by

QZZQAZ{tER%Z —1<t1,t2,—t3<1},
Qp={teRy: —n <ty —to,t; —t3,to —tz3 <n},

where 4 can be viewed as the intersection of the plane t1 + t + ¢35 = 0 with the cube [—1,1]3.
Define the index sets in homogeneous coordinates

Hy o= {jeH": —n < j1, 2,53 <n, j=0 (mod 3)},
Hf = {keH : —n < ks — ko, k1 — k3, ko — k1 <n},

where t = 0 (mod m) means, by definition, t; = t, = t3 (mod m). We note that H,, and HJ,
serve as the symmetric counterparts of Ay and A;rv, respectively, so that H,, determines the
points in the discrete inner product and IHIL determines the space of exponentials. Moreover,
the index set Hl,, can be obtained from a rotation of HL, as shown in the following proposition.

('%71) (%ﬂl)
,I
,I
2 ,l 2
(_ﬁ70)/ (\/570) (10_1)
\\ O 71 sV
\\
\
\\\
(") (1)

Figure 2.1. 4 in Cartesian coordinates (left) and homogeneous coordinates (right).

PI‘OpOSitiOH 2.3 ([10]) Fort = (tl,tg,t;g) € R%, deﬁne E = (t3 — tg,tl — t3,t2 — t1>. Then
kK eH) ifkeH, and k€ H, if k € H}.
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Figure 2.2. Qp in Cartesian coordinates (left) and homogeneous coordinates (right).

Proposition 2.3 states that H,, = }IT]LT1 = {E ke HL} Similarly, we can define H = Hf =
{1A< : ke H'} ={jeH : j=0 (mod3)}. The set H, is the index set for the space of
exponentials. Define the finite-dimensional space HL of exponential functions

H] := span {gbk —e Tkt ke HL} .
By induction, it is not difficult to verify that

n?2+n+1, ifn#1l (mod3),

dim #, = [H}| = [Hy| = .
n?+n—1, ifn=1 (mod 3).

Under the homogeneous coordinates (2.3), z = y (mod H) becomes t = s (mod 3). We call

(-n,n,0) (0,n,-n) (-n,n,0) (0,n,-n) (-n,n,0) (0,n,-n)

(-n,0,n) (n,0,-n)  (-n,0,n) (e * * . (n,0,-n)  (-n,0,n) (n,0,-n)

(0,-n,n) (n,-n,0) (0,-n,n) (n,-n,0) (0,-n,n) (n,-n,0)

Figure 2.3. H,, for n =9 (left), n = 10 (center) and n = 11 (right).

(-a,2a,-a) (-a,2a,-a) (-a,2a,-a)

(-2a,a,a) (a,a,-2a) (-2a,a,a) (a,a,-2a) (-2a,a,a) (a,a,-2a)

(-a,-a,2a) (2a,-a,-a)  (-a,-a,2a) (2a,-a,-a) (-a,-a,2a) (2a,-a,-a)

(a,-2a,a) (a,-2a,a) (a,-2a,a)
Figure 2.4. M for n =9 (left), n = 10 (center) and n = 11 (right), where a = 2.

a function f H-periodic if f(t) = f(t + j) whenever j = 0(mod3). Since j,k € H implies that
2j -k = (j1 — j2) (k1 — k2) + 3j3ks3, we see that ¢; is H-periodic.
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Theorem 2.4 ([10]). The following cubature rule holds for any f € H;nfl,

1 1 17 je H:L?
o | st =5 ¥ dUr), =44 e, (2.4)
Q jeH, % jE HY

where H;,, H? and HS denote the set of points in interior, set of vertices, and set of points
on the edges but not on the vertices; more precisely, H, = {je H: —n < ji, j2,j3 < n}, HY =
{(n,0,—n)oeH: o€ A2} and HS, = H,\(H,, VH") = {(j,n—j,—n)oeH: 1<j<n-—1}. In
particular, let Q,f denote the right hand side of (2.4); then for any k € H', Q¢ = 1 sz =0
(mod 3n) and Qn¢x = 0 otherwise.

Here we state the main result in terms of the cubature rule (2.4), from which the discrete
inner product can be easily deduced. For further results in this regard, including interpolation,
we refer to [10].

3 Discrete Fourier analysis on the 30°—60°—90° triangle

In this section we deduce a discrete Fourier analysis on the 30°-60°-90° triangle from the analysis
on the hexagon by working with invariant functions.
3.1 Generalized trigonometric functions

The group As is generated by the reflections in the edges of the equilateral triangles inside the
regular hexagon 2. In homogeneous coordinates, the three reflections o1, o9, o3 are defined by

tor := —(t1,13,12), tog := —(t2,t1,13), tog := —(t3,t2,11).
Because of the relations o3 = 010901 = 090109, the group is given by
Az = {1,01,092,03,0102,0201} .

The group A3 of isometries of the hexagonal lattice is generated by the reflections in the
median of the equilateral triangles inside it, which can be derived from the reflection group .4s
by a rotation of 90° and is exactly the permutation group of three elements. To describe the
elements in A3, we define the reflection —o for any o € Ay by

t(—o) := —to, Vte RY.
With this notation, the group A3 is given by
A; = {17 —01,—02,—03,0102, 0201} )

in which —oy, —o9, —03 serve as the three basic reflections. The group A% is the same as the
permutation group S3 with three elements.
The group G is exactly the composition of Ay and A3,

Go ={o0* :0€ Ay, 0" € A5} = {£1, 01, £o9, t03, £o109, L0201} .

Let G denote the group of Az or A3 or Ga. For a function f in homogeneous coordinates, the
action of the group G on f is defined by o f(t) = f(to), o0 € G. A function f is called invariant
under G if o f = f for all 0 € G, and called anti-invariant under G if of = (—1)°If for all o € G,
where |o| denotes the inversion of o and (—1)I°! = 1if 0 = +1, 46102, +0901, and (1)1l = —1
if 0 = +01,+09, +03. The following proposition is easy to verify (see [6]).
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Proposition 3.1. Define the operators P+ and P~ acting on f(t) by

PEf(t) — é LF(t) + f(bor0a) + F(boaot) = F(bon) + f(ton) + F(tos)]. (3.1)

Then the operators Pt and P~ are projections from the class of H-periodic functions onto
the class of invariant, respectively anti-invariant, functions under As. Furthermore, define the
operators P;” and P, acting on f(t) by

PEf(t) = é [f(t) + f(toro2) + f(toeor) £ f(—to1) £ f(—to2) £ f(—to3)]. (3.2)

Then the operators P," and P, are projections from the class of H-periodic functions onto the
class of invariant, respectively anti-invariant functions under Aj.

(-1,1,0) (0,1,-1)

(0,-1,1) (1,-1,0)

Figure 3.1. Symmetry under Ay (left), A% (center) and G (right) in the physical space. The shaded
area is the fundamental triangle of Q4 under Gs.

Figure 3.2. Symmetry under Ay (left), A% (center) and Gy (right) in the frequency space. The shaded
area is the fundamental triangle of Qp under Gs.

For o € Go, the number of inversion |o| satisfies | — 0| = |o|. The following lemma can be
easily verified (writing down the table of oo™ for o € Ay and o* € A if necessary).

Lemma 3.2. Let f be a generic H-periodic function. Then

PIPIE) = 15 2 Utto) 41t Zg f(t0),

PP = 15 3 (Ut~ f(-te) = % UeA*(—w'a (f(to) ~ f(~t0)).
PP f(t) = 1120;;—1)“' (F(b0) — f(— EA (~t0)).
PRI = 35 3 (DI (f(t0) + F(—t0)) = 15 37 (<1)7 f(to).

ocAs 0692



8 H. Li, J. Sun and Y. Xu

For ¢y (t) = e2ﬂék't, the action of Pt and P~ on ¢y are called the generalized cosine and

generalized sine functions in [9], which are trigonometric functions given by

Ci(t) :== PHox(t) = % [e%('ﬂ_ki”)(tl_t?’) cos koTty
+ o3 (ki—ks)(t2—t1) (g komts + o5 (k1 —hs)(ts—12) ¢ /€27Tt1] ; (3.3)
Si(t) i %p—@(t) _ é [ (18)(1=15) iy
+ 5 (ki—ka)(t2—t1) iy komts + e (ki —hs)(ts—t2) gipy kzﬂ'tl] . (3.4)

Because of the symmetry, we only need to consider these functions on the fundamental domain
of the group Az, which is one of the equilateral triangles of the regular hexagon. These functions
form a complete orthogonal basis on the equilateral triangle and they are the analogues of the
cosine and sine functions on the equilateral triangle. These generalized cosine and sine functions
are the building blocks of the discrete Fourier analysis on the equilateral triangle and subsequent
analysis of generalized Chebyshev polynomials in [9].

We now define the analogue of such functions on G2. Since the fundamental domain of the
group G4 is the 30°-60°-90° triangle, which is half of the equilateral triangle, we can relate the
new functions to the generalized cosine and sine functions on the latter domain. There are,
however, four families of such functions, defined as follows:

CC(t) = PIPT0u() = o D) (Beo(8) + 6 10(8) = 5 (Cult) + Ci(8),

12
oeAs
SCult) 1= PP () = 12 D) (Gro(t) — 6 () = o (Cule) — C (),
O'EA2
CSu(t) 1= TP P () = 15 ) (- (Dro(6) — 6 ko (6)) = 5 (Si(6) — S (1),
oceA2
SS(t) 1= ~P P ou(t) = o O (1) (G1er () + 6-1er () = 5 (Sk(8) + S_x(8)).
o€z

where the second and the third equalities follow directly from the definition. We call these
functions generalized trigonometric functions. As their names indicate, they are of the mixed
type of cosine and sine functions.

From (3.3) and (3.4), we can derive explicit formulas for these functions, which are

1 IRV e k)t
CCk(t) = g[cos w cos wkoto + cos w cos kats

ﬂ(klfk‘g)(tgftg)
+ cos -3

Cos ﬂkgtl], (3.5)

1 _ _ _ _
SCk(t) = 3 [ sin Tk1—ks)(ti=ts) (o wkoto + sin mlki—ks)(ta—t1) (g wkots

3 3
+ sin w cos ﬂkgtl], (3.6)
1 _ _ _ _
CSx(t) = 3 [ cos w sin wkoto + cos w sin wkots
+ cos TERIE) i e | (3.7)

1 ) (f —t _ _
SSk(t) = 3 [ sin w sin wkoto + sin w sin wkots

+ sin w sin 771{:2151] : (3.8)
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In particular, it follows from (3.6)—(3.8) that CSk(t) = SSk(t) = 0 whenever k contains zero
component and SCy(t) = SSk(t) = 0 whenever k contains equal elements. Similar formulas can
be derived from the permutations of t1, t2, t3. In fact, the functions CCy and SSy are invariant
and anti-invariant under Go, respectively, whereas the functions CSy and SCy are of the mixed
type, with the first one invariant under As and anti-invariant under A5 and the second one
invariant under A3 and anti-invariant under 4. More precisely, these invariant properties lead
to the following identities:

CCx(to) = CCx(t),  SSk(to) = (=1)IISSk(t), o€ Go, (3.9)
SCx(to) = —SCi(—to) = SCyx(t), o€ A, (3.10)
CSi(to) = —CSi(—ta) = (=1)I7ICSy(b), o€ Ay, (3.11)
SC(to) = —SCi(—to) = (—1)!7ISCy (), o e As, (3.12)
CSk(to) = —CSk(—to) = CSk(t), ge A;. (3.13)

In particular, it follows from (3.6)—(3.8) that CSk(t) = SSk(t) = 0 whenever k contains zero
component and SCg(t) = SSk(t) = 0 whenever k contains equal elements. Moreover, for any
k € Hf, CSi(t) = SSk(t) = 0 whenever t contains zero component and SCy(t) = SSk(t) = 0
whenever t contains equal elements.

Because of their invariant properties, we only need to consider these functions on one of the
twelve 30°—60°-90° triangles in the hexagon 2. We shall choose the triangle as

={teR} :0<ty<t; <—t3<1}. (3.14)

The region A and its relative position in the hexagon are depicted in Figs. 3.3 and 3.1.

(55

\.,\:

%)

(0,0,0) (1,0,-1)

(0,0,0) (3

=]
)
NG

ol

Figure 3.3. The fundamental triangles in Q4 (left) and Qp (right).

When CCy, SCy, CSy, SSy are restricted to the triangle A, we only need to consider a subset
of k € H as can be seen by the relations in (3.9)-(3.13). Indeed, we can restrict k to the index
sets

ki),  Ii={keH': 0<ke <k}, (3.15)
ki), T=:={keH : 0<ky <k}, (3.16)

respectively, where the notation is self-explanatory; for example, I'°° is the index set for CCy.
We define an inner product on A by

o pn = ymf f(t dt—4f dtgf : g(t)dt.

If fg is invariant under the group G, then it is easy to see that (f, g>q = {(f,g)a. Consequently,
we can deduce the orthogonality of CCy, SCy, CSy, SSi from that of ¢y on €.
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Proposition 3.3. It holds that

1

_ Ay _ 1,
<CCk7CCJ>A - ‘kG2| - Aka.] 617
12>

Ak 1

SCk,SC- A = — Ak7' 67
< J> |kG2‘ J %7
Ak,' 1’

<CSk7 CSj>A - m - Akd {61
127

A .
(SSk, SSidn = ‘kg;’ = LAk

k =0,
kz(lﬁ—kz)zo, /{1>0,
]{31>k32>0,

k2:0)

k1>k2>0,
k= ko >0,
k1>k2>0,

where kGy = {ko : 0 € Gy} denotes the orbit of k under Gs.

j, keI,

j7 k e FSC?

j kel

j, keI,

3.2 Discrete Fourier analysis on the 30°-60°—90° triangle

(3.17)

(3.18)

(3.19)

(3.20)

Using the fact that CCy, SCy and CSy, SSi are invariant and anti-invariant under A, and that
CCy, CSk and SCk, SSk are invariant and anti-invariant under A3, we can deduce a discrete
orthogonality for the generalized trignometric functions. Again, we state the main result in

terms of cubature rules. The index set for the nodes of the cubature rule is given by

Topi={jeH: 0<j2<j1<—j3<

n},

which are located inside nA as seen by (3.14). The space of invariant functions being integrated
exactly by the cubature rule are indexed by

D,=TC:=TUH ={keH : 0<k <k <ks+n},

=T UH = {keH: 0

<k2<k1<k3+n},

e :=T"OH] = {keH : 0<ky <k <ks+n},
=T UH! = {keH": 0 <k <k <ks+n}

Correspondingly, we define the following subspaces of HIL,
Hi¢ = span{CCy : k e I'[°}, H>¢ = span{SCy : k e I'}’},
H;? = span{CSy : k e I'}’}, H> = span{SSk : k e I'}’}.

It is easy to verify that

dimHy® = I3[ = 5315 — 2n) (15] + 1) = (I5] —n = 1) (I5] + 1),
dimHE = T5] = [Tosgl,  dimHE = [T = dim K = T = |T_s.

Theorem 3.4. The following cubature is exact for all f € HSS

n—1

1 _ 1 g (d

JeTyH
where
12, jeX,,
1, j=0,

wj(n) = CJ@) liGa| =

(

(
2, j=(n,0,—n), (60°-vertex),
3’ j = (%7%7_’”)’ (
6, otherwise, (

interior),

30°-vertez),

90°-vertex),

boundaries).

(3.21)

(3.22)
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(%3.5,-n) (3.5,-n)

(0,0,0) (n,0,-n)  (0,0,0) (n,0,-n)  (0,0,0) (n,0,-n)

Figure 3.4. The index set Tp,. n =0 (mod 3) (left), n =1 (mod 3) (center) and n =2 (mod 3) (right).

(5:5-%) nn

(0,0,0) (5.0.-%) (0.0,0) (2,0,-2)
(sc)

%) (3.5-%)

(0,0,0) (2,0,-2) (0,0,0) (2,0,-2)
(cs) (ss)

Figure 3.5. The index set I',,.

Moreover, if we define the discrete inner product {f, g)an = # > wj(n)f(%)g(%), then

jeYTn
Ay Ay )

<CC_]1 CCk>A,’ﬂ = (n) Jie = E],,;l){a Js ke an
G |kGo| wp

A; A; . sc

(SC;,SCloam = Gy = =, jkely,
¢ |kGs| wy

AN AN . o

(€S, CS10an = Gy n— = =5, jkely,
cr ' |kGa|  wg
k k
Ay D

3.k _ =k j, k e FZS’

(SS;,SSk)an = = :
J CI(A{”) |kG2’ 12

where k = (ks — ko, k1 — k3, ks — k1).

The formula (3.22) is derived from (2.4) by using the invariance of the functions in H$S,_; and

upon writing Q = (U,eq, {to : t € A%) U (Uyeq, {to : t € 0A}). The reason that k appears
goes back to Proposition 2.3. As the proof is similar to that in [9], we shall omit the details.
One may note that the formulation of the result resembles a Gaussian quadrature. The

connection will be discussed in Section 6.
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3.3 Sturm-Liouville eigenvalue problem for the Laplace operator

Recall the relation (2.3) between the coordinates (x,z2) and the homogeneous coordinates
(t1,t2,t3). A quick calculation gives the expression of the Laplace operator in homogeneous
coordinates,

AL P P (o 0N (o oY (o 2
Cox? oxk 2| \ot1 Ot oty Ots oty oty ) |

A further computation shows that ¢y (t) = e 5kt are the eigenfunctions of the Laplace operator:
for k € H,

2
Ady = =Mk,  Ag:i= 2% [(k1 — k2)? + (k2 — ka)® + (ks — k1)?]. (3.23)

As a consequence, our generalized trigonometric functions are the solutions of the Sturm-—
Liouville eigenvalue problem for the Laplace operator with certain boundary conditions on the
30°-60°-90° triangle. To be more precise, we denote the three linear segments that are the
boundary of this triangle by Bj, Bs, Bs,

31:={tEA:t3=—1}, BQiZ{tEA:tQZO}, Bg:z{tEA:tlth}.
Let % denote the partial derivative in the direction of the exterior norm of A. Then

9
on

0 0 0 0

_o_
Bl_atg 6t1'

BT 0 ol L on

Theorem 3.5. The generalized trigonometric functions CCy, SCy, CSk, SSk are the eigenfunc-
tions of the Laplace operator, Au = —Agu, that satisfy the boundary conditions:

0 0

G : & —0, SC: U =0,  ulp =0,
On|B;UByUB3 on|ByuB;
ou

CSk H % Bs = 0, U|BluB2 = 0, SSk H u|BlU32uB3 = 0.

Proof. Since Ay is invariant under G, that is, Ax = Ak, V0 € Go, that these functions satisfy
Au = —Mu follows directly from their definitions. The boundary conditions can be verified
directly via the equations (3.5), (3.6), (3.7) and (3.8). |

In particular, CCy satisfies the Neumann boundary conditions and SSy satisfies the Dirichlet
type boundary conditions.

3.4 Product formulas for the generalized trigonometric functions

Below we give a list of identities on the product of the generalized trigonometric functions, which
will be needed in the following section.

Lemma 3.6. The generalized trigonometric functions satisfy the relations,

1 1
CGiCCk = 5 > Cluijo = o > CGtos (3.24)
JEGQ UEGQ
1 1 .
CGiSCi = 45 > SChijo = o D7 (=17 (SCisxer — SCimier) (3.25)

oeGa TeAS
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1 1
CGiCSk = 5 > CSiyjo = o > (CSjiaer — CSjier), (3.26)
oeGa TeAd
1 1 .
CGiSSk = 75 > SSiijo = 3 (—1)I1SS; 4 1o, (3.27)
O'EGQ oelGa
SC;SCy = —— Z 1) (CCsjr — CCxjyr)
TE.A*
1
= 2 (DG — CCiier) (3.28)
TeAR
1
SCjCSk = Z )M (SSicrsr = SSk-jr) = 15 D, (SSyskr — SSj-kr), (3.29)
TEA2 TeA}
1 1
CSiCSk = —15 2, (Cluijr = Clijr) = —35 > (CCisaer — CCioir), (3.30)
* *
TEAS TEAS
SS;SSk = — Z DIICC o = — D) (-DICCh 410 (3.31)
aeGg oeGa
Furthermore, the following formulas hold:
35C1,0,-1(t)CS1,1,-2(t) = SS2,1,-3(t), (3.32)
1
[SC1707_1(t)]2 = g[l + 2(:(:1717_2] — [CC1707_1]2, (333)
1
[CSLL_Q]Z + [CCLL_Q]Q = 5[1 + 2CC3707_3], (3.34)
1 1 1 1
3_ 4 : - il
[CCLO,—I] =36 CC3,07_3 + 4CC170,_1 + 6CC1’1 _9 + 18 + CC1 1, _9CCy ,0,—1- (3.35)

Proof. For (3.24)—(3.31), we only prove (3.29). Other 1dent1t1es can be proved similarly. By

the definition of the generalized trigonometric functions,

SC;CSy = Z DI (¢35 — 6_50) x 12 D7 (br — bkr)

UEA* TEA;
= 22 Z |T| Z lJT k+jcr7'—1)7' + ¢*(k+j07'_1)‘r
TEA* O'E.A*

- ¢(kfj0'7'—1)7 - ¢7(kfjo"r—1)7]

upon using the relation (—1)I7lem I = (=1)lel consequently,

SCjCSk = 22 Z ‘UI 2 |T‘ k+ja)‘r + ¢7(k+j0)7 - (Zs(k*ja)‘r

UGA* TE.A*

1
=1 (—=1)'(SSktjo — SSk-jo)

*
o€ A3

proving the first equality in (3.29). Further by (3.9),

1 1
75 2 ("D (SSkeir = SSkmjo) = 75 2, (SSko-145 — SSio-1-y)
oe A% oc A%
1 1
= ﬁ (Ssj+ko - SSkafj) = ﬁ Z (SSj+ko - SSj,kU),
oA oA

since SS; = SS_j by (3.5). This completes the proof of (3.29).

— b (k—joyr]
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We now prove the relations (3.32)-(3.35). By (3.29),

1
CS1,1,-2(t)SCr0,-1(t) = g[(552,1,—3(t) —SS0,-1,1(t)) + (SS—1,1,0(t) — SS3,-1,-2(t))
1
+ (SS2,-2,0(t) — 550,2,—2(‘6))] = 35521,-3(t),

which proves (3.32). By (3.28) and (3.24), we have

1
6

+ é[CCZO’_Q + 1+ 2CC1,_1’0 + 2CC171’_2] = %[1 + QCCLL_Q],

[SC170,_1]2 + [CC1707_1]2 = [CC2707_2 -1+ 2CC17_1,0 — 2CC1717_2]

which is (3.33). Next, from (3.30) and (3.24) we deduce that

1
[CS11, 2] + [CCo1 )" = =5 [CCop s = 1+ 2CCh1, - — 2CCy, 3]
1 1
+ 6[CC2,2774 +142CCy 1o+ 2CC3,0’73] = 5[1 + 2CC3,0773],

which is (3.34). Finally, the identity (3.35) follows from a successive use of (3.24). The proof is
completed. |

4 Generalized Chebyshev polynomials

In [9], the generalized cosine and sine functions Cx and Sy are shown to be polynomials under
a change of variables, which are analogues of Chebyshev polynomials of the first and the second
kind, respectively, in two variables. These polynomials, first studied in [6, 7], are orthogonal
polynomials on the region bounded by the hypocycloid and they enjoy a remarkable property
on its common zeros, which yields a rare example of the Gaussian cubature rule.

In this section, we consider analogous polynomials related to our new generalized trigono-
metric functions, which has a structure different from those related to Cy and Sk.

The classical Chebyshev polynomials, T),(z), are obtained from the trigonometric functions
cosnb by setting x = cos 6, the lowest degree nontrivial trigonometric function. In analogy, we
make a change of variables based on the first two nontrivial generalized cosine functions:

1 _
z=uz(t) :=CCyg_1(t) = 3 <cos L(té’ 2) 4 cos 7%(22“2) + cos 72”(2?”1)) ,

1
y =y(t) := CCy1,—2(t) = 3 (cos 2wty + cos 2wty + cos 2w (ty + t2)) . (4.1)

If we change variables (¢1,t2) — (x,y), then the region A is mapped onto the region A* bounded
by two hypocycloids,

AN ={(z,y): (1+2y— 31’2) (243:3 —y? —12zy — 62 — 4y — 1) =0}. (4.2)
The curve that defined the boundary of the domain A* satisfies the following relation:

Lemma 4.1. Let F(z,y) := (1+2y—32?)(2423 —y?>—120y—62—4y—1). Then, in homogeneous
coordinates,

F(z,y) = 3[SC1,0-1(t)]* [CS1.1,2(t)]* = = [SSa.1,_3(t)]*. (4.3)

W =
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(-11) (1.1)

10,-3) (1,0,-1)

Wl

02D

Figure 4.1. The region A* (right) bounded by two hypocycloids, which is mapped from the triangle A
(left).

Furthermore, let J(x,y) be the Jacobian of the changing of variable (4.1); then

472 ty —t ty + 2t 21 +t
J(z,y) = 627; sin 7wty sin 7tg sin w(t) + t2) sin m( 13 2) sin Tt ; 2) sin m( 13+ 2)
472

Proof. Under the change of variables (4.1), by (3.33), (3.34) and (3.35), it follows that

1
[SCr0-1(t)]* = S (1+2y— 32%),
[CS11,—2(t)]” = 242® — y® — 122y — 62 — 4y — 1, (4.5)
from which the first equality in (4.3) follows, whereas the second one follows from (3.32).

Taking derivatives and simplifying, we derive the formula of J(z,y) in terms of the product
of sine functions. Furthermore, under the change of variables (4.1), it is not hard to verify that

16
243 —y? — 122y — 6z —4dy — 1 = n sin® 7ty sin® 7wty sin® mw(t + ta),

16 t1 —t t 2t 2t t
1+2y—33r2=—sir127r(1 2)Sin27r(1+ 2)sin27r( 1 + 1)

3 3 3 3 ’

from which the second equality of (4.4) follows readily. |

Definition 4.2. Under the change of variables (4.1), define for ki, ko > 0,

Pk;17k72 ($7 y) = Cck1+k2,k2,—k1—2k’2 (t)v

N1t
Wl

P%»*% (.%', y) — Sck1+/€2+1,k2,—k1—2k2—1(t)

k1,k2 SC1707_1(t) )
_11 CS k1 —2ke—2(t
Pk gkag(aj’y) — k1+ko+1,ko+1,—k1—2k2 2( )’
L CSI71’_2(t)
Pk;%’% (%y) = SS]fl+k2+2,k’2+1,—k’1—2k2—3(t)
b 55271773(t)

_1_1
We call these functions generalized Chebyshev polynomials and, in particular, call P, *" *(x,y)

11
and P;>"?(x,y) the first kind and the second kind, respectively.

That these functions are indeed algebraic polynomials in  and y variables can be seen from
the following recursive relations, which can be derived from (3.24)-(3.27).
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Proposition 4.3. For o, = + , P, ’i2 satisfy the recursion relation

Pl () = 6sz‘3 (@00) = Pl (520) - PPy (:9)

k1+1 ko — 1(1‘ y) — Po’ 2k2+1($’y) k1’51 ks (%, 9), (4.6)
Pkf,izﬂ( y) = 6ypk1’ig( Y) = k1+3 k2 o(T,y) — k1+3 ky—1(T:Y)
Pkf,izﬂ( ) == P’ 3k2+1($»?/) 3k2+2(93ay) klﬂk‘z 1(zy) (4.7)

for k1, ko = 0. Furthermore, the following symmetric relations hold,

o,— o, — , 01,l
P,u 2(‘T y) PM 331/(1’ y) PM —21/ 1(‘7: y) P,u %))l/,l/—l(x7y)7 >3y = 07 (48)

"
P2y = P2’ (wy), P2 ()= —P20 (@) >p=0.  (49)
— vV V= 7ya —p— 11/:1:’?/ ‘u,ly 'u,xaya V/lu’/ . .

Proof. The recursive relations (4.6) and (4.7) follow directly from (3.24) and (3.27). As for (4.8)
and (4.9), we resort to the following identities of the trigonometric functions,

CChr—v—v20—p(2,y) = CCLu30) 1w —n(, Y),

SCu—vt1,—v20—pu—1(%,Y) = SClu_sv)4v41,0w—p—1(T, Y),

CS a1+ 1=+ 1)+ 1,20—p(T:Y) = —=CS(—30)+ (v—1)+1,(v=1)+1,0—u (5 Y),
SSy—(u+1)+2,—(u+1)+1,2u—u—1(xvy) = _SS(;L73V)+(1/71)+2,(1/71)+1,1/7/171(‘T7y)7
Cc—u+u,u,u—2u(ﬂf; y) = CCM+(V7u),V7u,/L72V(xa Y),

Csfu+y+1,u+1,pf2uf2(m> y) = CS;H—(V—M)+1,(u—u)+1,u—2y—2(x7 y)v

SC—(,LL+1)+V+1,Z/“LL—2V(:L‘7 y) = 7SC(M—1)+(V—M)+1,V—M,M—QV(‘/'U’ y)a
SS*(,LL+1)+V+2,Z/+1HU,72V72(x7 y) = _SS(,ufl)Jr(l/f,u)JrQ,(z/f,u)+1,u721/72(x7 y)a
which are derived from (3.9)—(3.13). [

The recursive relations (4.6) and (4.7) can be used to generate all polynomials Pk ', TECUI-
sively. The task, however, is non-trivial. Below we describe an algorithm for the recursion. Our
starting point is

Pod Hwy) =1, Pg iew)=a  PBf i) =y,
Po%,t’)ié(xvy) =1, Pl%l’)f%(x,y) = 6z + 2, Pé’fé(:c,y) =6z +3y+1,
P(;o%é(ﬂf,y)zl, P;%%(ac,y)=3x, Po_%%(w y) = 6y + 2,
PO%,()%(%?J):L P%%(x y) = 6z + 1, P%%(.T} y) = 6z + 6y + 2.

The first few cases are complicated as the right side of the (4.6) and (4.7) involve negative
indexes, for which we need to use (4.8) and (4.9). We give these cases explicitly below

11 11

Py % (x,y) =627 —2x — 2y — 1 P 2 (x,y) = 3wy 622+ + 2y + 1
_11 11

P, 2% (z,y) = 182% — 3z — 6y — 3, P, 2’2(33 y) = 18zy + 62 — 1822 + 6y + 3,
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P0,2%7 2 (x,y) = 6y> + 10y — 722> + 36y + 18z + 3,
% %(:c y) = 36y° + 36y — 2162° + 108y + 54x + 9,
PO% %(37, y) = 126xy + 18y* + 36y + 54z + 10 — 2162,
o (z,y) = 1ddzy + 36y2 + 42y — 2162° + 60z + 11.

The above formulas are derived from the recursive relations in the order of (2,0), (1,1), (3,0),
(0,2), that is, we need to deduce (3,0) before proceeding to (0,2). It should be pointed out
that our polynomial POO: ’26 is of degree 3, rather than degree 2, which shows that our polynomials

do not satisfy the property of span{P,S‘l 7,[112 : k1 + ko < n} = 2. In particular, they cannot be
ordered naturally in the graded lexicographical order.

We shall show in the following section that our polynomials are best ordered in another
graded order for which the order is defined by 2k; +3k2 = n. We have displayed the polynomials

PIS‘I 8 (z,y) for all 2k; + 3ka < 6. In Algorithm 1 below we give an algorithm for the evaluation

of all P,?l’ig (x,y) with 2k1 +3ko =nand n>7

141
The polynomials P]:_r 2tz defined in the Definition 4.2 satisfy an orthogonality relation. Let
us define a weight function w, g on the domain A*,

(4m?)th 210 32 B
we 5(T,y) 1= Szt (1+2y—32%)" (242° — y* — 122y — 62 — 4y — 1)
47’(2 a+p N
(%) e (Csi a0

where the second equality follows from (4.5). This weight function is closely related to the
Jacobian of the changing variables (4.1), as seen in Lemma 4.1. With respect to this weight
function, we define

s Dwa s 1= Cap L* f(@,9)9(x, y)wa,p(x, y)dzdy,

where ¢, 5 1= 1/ SA* wq,8(z,y)drdy is a normalization constant; in particular, c_1 1 = 4,
27 2
c1_1=c_11 =18/m? and c1 1 = 243/7*. Since the change of variables (4.1) implies immedi-
27 2 272 272

ately that
1 o
Cart L (@, y)wa,p(,y)dedy = IAIJ F(6)(SCro0,1(8) " (CS11,—2(t))* b, (4.10)
* A

we can translate the orthogonality of CC;, SC;, CS; and SS; to that of P ’ﬁ for a, 8 = %
Indeed, from Proposition 3.3 we can deduce the followmg theorem

1 1
Theorem 4.4. For a = +5,3 = +3,

< k1,k2’ J1 j2>wa 8 dgl k25k1,]15k2 J2o (4.11)
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Algorithm 1. A recursive algorithm for the evaluation of P,ffl ’iz (z,y).

Step 1 if n =2m
Pr?:lg(aja y) = 61‘P£§’_ﬁl70(l‘, y) - Cﬁpq?;’fll(x) y) - Pq?q,;ﬁQ’(](x) y) - Cﬁpﬁé’_ﬁ&l(l” y)7
Where05=2if,8=—%, andc5=11f6=%;
Step 2 for k2 from 2 — mod(n,2) with increment 2 up to [5] — 2 do

n—3k
kl = 2 27

7ﬁ 7/3 7B 7/3
Pkahkz (z,y) = prkoi—l,k’z (z,y) — P/?1+1J€2—1(x’ y) — Pkal—Q,k’z-&-l(x’y)
B B B .
= P (@:9) = Py g1 (@0y) = P, (9);

Step 3 if n =3m

P, y) = 6yl (v,y) — Py _s(x,y) — P _y(x,y) — PSoi_o(@,y)
1
2

P ) = P (), o= -
Pﬁ£_2($,y)+Pﬁ;§_l(;p,y), Ck:%;

ifn=3m+1

Pyl (x,y) = 62P0_ (x,y) — Py o(x,y) — Pooh(x,y) — Py _o(x,y)
1
2

m—2
- ngfz—l('rvy) - {

1.
O, o = 35
ifn=3m+2
Pavﬁ(x ) _ Bxp(?:;g(x’y)_Pg;gfl(xvy)_Plo:;gfl('xvy)v @ = _%’
1 ’ -
" (62 + 1)Fgy(x.y) = P _y(2.y) = Pl (,w), a =3
where
1, ki =ky=0, 1
_11 11 1 k1 >0, ko =
) L 1 ) )6 1 =Y, h2 )
dklsz 2 .= 59 kike =0, k1 + ko > 0, dlil,kj =91
1 12> ]6120, k2>07
12 ki1 > 0, ko > 0,
11 1 = > 11
dk272 — 61’ k]_ 07 k2/07 dk272k :i, kl)O, k2>0
1,72 5 kl > 07 ]{32 > 07 1,72 12
Proof. All four cases follow from Proposition 3.3. For a = 8 = —%, this is immediate. For the
other three cases, we observe that the weight function cancels the denominator in the definition
of PIZ%Pﬁi (see Definition 4.2), which requires (3.32) in the case of a = 3 = 3. [ |

141
Although the polynomials Pki1 2152 are mutually orthogonal, they are not quite the usual

orthogonal polynomials as we have seen from the recursive relations. In fact, there are only
two such polynomials with the total degree 2, which is one less than the number of monomials
of degree 2. As we have seen from the recursive relations, the structure of these polynomials
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is much more complicated. To understand their structure, we study them as solutions of the
corresponding Sturm—Liouville problem in the following section.

5 Sturm-—Liouville eigenvalue problem
and generalized Jacobi polynomials

Recall that our generalized trigonometric polynomials are solutions of the Sturm—Liouville
eigenvalue problems with corresponding boundary conditions. The Laplace operator becomes
a second-order linear differential operator in x, y variables under the change of variables (4.1).
Using the fact that t3 = —t; — t2, we rewrite the change of variables (4.1) as

1 2Tr(t17t2) 2Tr(t27t3) 2Tr(t37t1)
xr = § (cos 3 + cos 3 + cos 3 ) ,

1
y= g(COS 27ty + cos 27ty 4 cos 2mt3).

A tedious but straightforward computation shows that

(atl - atz)Q + (atz - ats)Q + (atg - at1)2

W
no

47? ™
- T[Am(;zc, )02 + 2A1 o(x,y) 020y + Ag,g(:v,y)(?s + 620, + 18yd, | =: TE_%’_%’
where we define
A = *6!E2 +y+ 3z + 2, Ao = A9y 1= —9zy + 18$2 — 6y — 3,
Ago 1= —18y? + 10823 — Bdxy — 272 — 9y. (5.1)

Consequently, we can translate the Laplace equation satisfied by CCy into the equation in
1 1

L_ 11 for the polynomials Pk: 5,9;5 (z,y). It is easy to verify that the operator can be rewritten
as
11
,C_%,_% = _w%:% [axwaﬂ (Anax + A128y) + 8yw 202 (Aglax + Aggay)]
=—w11VTw_1 _1AV,
272 27 2

where in the second line we have used

. tr (A Ap
V = (0y, 0y) and A= <A21 Ay )

It is not difficult to verify that the matrix A is positive definite in the interior of the domain A*.
Indeed, det A = 3F(z,y), where F is defined in Lemma 4.1, and A;1(z,y) = 3(z —y) + 2(1 +
2y — 3x2) is positive if 2 > y and it attains its minimal on the left most boundary, as seen by
taking partial derivatives, in the rest of the domain, from which it is easy to verify that Ay 1 > 0
in the interior of A*. The expression of £_ 11 prompts the following definition.

Definition 5.1. For a, 8 > —1, define a second-order differential operator

Lop:=—w_q_3VTw, AV
—W_q,—8 [8xwa75 (Allax + A12ay) + 8ywa73 (Azlax + Azgay)] .
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The explicit formula of this differential operator is given by
Lop=—A1102 — 24120,0, — A220; + B10; + Bad,. (5.2)
where we define

Bi(z,y) = 21z + 12ax + 185z + 6c + 3,
Ba(x,y) = 18x + 36ax + 183 + 45y + 36y + 18ay + 9.

Theorem 5.2. Let o, 8 > —1. Then, the differential operator
Lop=—w_o sV wPAV

is self-adjoint and positive definite with respect to the inner product (-, ), ;-

Proof. By Green’s formula,
[ #20s9w0sdody = [[ 197w saVadzay =~ [[ (V1) A(Tg)wesdody
A* A* A*

+ § wa,pf [(A11029 + A120y9)dy — f(A220yg + A210,9)dx]
BA*

— [ Va9 v pdody
2

# ) was o) (Aridy = Aunde) = (0y9) (s — Arady)]
ON*

where 0A* denotes the boundary of the triangle. Recall that dA* is defined by F(x,y) = 0,
where F is defined in Lemma 4.1. It follows then

oF 2 oF

dF = Fidx + Fody = 0, where F=—, 9= —=. (53)
ox oy
On the other other hand, a quick computation shows that
Fi1 A + FoA9 = —6(52 + 1)F(x,y) =0, (5.4)
FiApp + FAgy = —6(3y + 22 + 1)F(2,y) =0 (5.5)

on 0A*. Solving (5.3) and (5.4) shows that Aj1dy — A21dx = 0, whereas solving (5.3) and (5.5)
shows that Assdx — A1ody = 0 on 0A*. Consequently, the integral over dA* is zero and we
conclude that

[ £Easguapdzay = [[(THTAT D sdrdy =~ {[ oL i ey,
Ak A% A

which shows that L, g is self-adjoint and positive definite. |

We consider polynomial solutions for the eigenvalue problem L, gu = Au. Differential opera-
tors in the form of (5.2) have long been associated with orthogonal polynomials of two variables
(see, for example, [8, 16]). However, in most of the studies, the coefficients A; ; are chosen to
be polynomials of degree 2, which is necessary if, for each positive integer n, the solution of the
eigenvalue problem is required to consist of n + 1 linearly independent polynomials of degree
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n, since such choices ensure that the differential operator preserves the degree of polynomials.
In our case, however, the coefficient Azo in (5.1) is of degree 3, which causes a number of
complications. In particular, our differential operator does not preserve the polynomial degree;
in other words, it does not map II2 to I12, the space of polynomials of degree at most n in two
variables.

Definition 5.3. For ki, ko > 0, the m-degree of the monomial z¥1y*2 is defined as |k, :=
2k1 + 3ks. A polynomial p in two variables is said to have m-degree n if one monomial in p has
m-degree of exactly n and all other monomials in p have m-degree at most n. For n € Ny, let IT
denote the space of polynomials of m-degree at most n; that is,

I} .= span{xklyk2 10 < ki, ko; 2k1 + 3k < n}.
The dimension of the space II? is the same as that of HS, by (3.21),
dimIT; = 3 (35| —2n) (151 + 1) — (2] —n—1)(13] +1). (5.6)

Here is a list of the dimension for small n:

n [1|12]3]4]5/6|7|8 |9 10|11 |12
dimIl} |12 (34|57 |8 10|12 | 14|16 |19

The name m-degree is coined in [13] after the marks, or co-marks, in the root system for
the simple compact Lie group, where the case of the group G2 is used as an example. For
polynomials graded by the m-degree, we introduce an ordering among monomials.

Definition 5.4. For any k,j € N3, we define an order < by k < j if 2j1 + 372 > 2k; + 3k
or 2(k1 — j1) = 3(jo — k2) > 0, and k < jif k < j or k = j. We call < the xorder. If

p(z,y) = >, c/k;h/@xklyk;2 with ¢y, # 0, we call ¢, ,2™y" the leading term of p in the
(k1,k2)<(m,n)
x-order.

For m,n = 0, define
H:‘mn = span{xjyk (g, k) < (m, n)}

It is easy to see that IT} =1II* .,

on—3122].2(22 | —n’ The #-order is well-defined. The following lemma

justifies our definitions.

*

Lemma 5.5. For m,n >0, the operator L 3 maps 115, ,

onto 113, ..
Proof. We apply the operator £, g on the monomial x7y*. The result is

Ea,ngyk = —Allé’iwjyk - Aggazwjyk — 2A128x6yxjyk + Bléx:njyk + Bgé’yxjyk

[6(;2 + 3k% + 3jk) + 3(5 + 4a + 68)5 + 3(9 + 6a + 128)k] 27y*

—108k(k — 1)ad™3yF=2 — (5 — 1)ad 2y 4 18k(3k — 2 — 25 + 2a)2? TlyF !
+35(—j + 2 + 4k + 20) 27 YyF 4+ 9k (k + 28)ayF 1

—2j(j — D)ad 7 2yF + 27k(k — D 1yF 2 4+ 6jkad~yF L

Introducing the notation

T = {(0,0),(0,1),(1,0), (1,1),(2,1),(3,2), (4,2), (4,3), (5,3)} ,
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we write the expression as

Logziy* = Z alh i 2By a2y, (5.7)
()Y
where
ably = 6(5% + 3k% + 3jk) + 3(5 + da + 68); + 3(9 +06a +120)k,
ay = —108k(k — 1), alp=—j(i—1),  aff =18k(3k —2 —2j + 2a),
ag’fi:SJ( —j+ 2+ 4k + 2a), a32—9k(k+26)
ahy = =2 =1, e =2Tk(k—1),  aff=Gjk

From this computation, it follows readily that L, 5 maps II7,  into II}, . Furthermore, with
respect to the #-order, it is easy to see that ao’[’) xz™y" is the leading term of L, g by (5.7), which
shows that L, g maps I}, , onto I}, . [

The identity (5.7) also shows that £, g has a complete set of eigenfunctions in ITy, ,

Theorem 5.6. For o, 3 > —1/2 and ky,ke = 0, there exists a polynomial P,?l’i € th,@ with
the leading term x*'y*2 such that

o, a,B ,ﬁ
cavﬁpk‘hkg = >\k1 k’Q k’l k:g (58)
where
a, 9
/\klﬁk2 : yk\ (|kl« +5+4a+68) + §k2(k2+1+2ﬁ). (5.9)

Furthermore, if we require all the polynomials are orthogonal to each other with respect to the
inner product {-, '>wa,5’ then Pkafig 1s uniquely determined by its leading term in the x-order.

Proof. We first apply the Gram—Schmidt orthogonality process to monomials {xklka} in the
x-order, which uniquely determines a complete system of orthogonal polynomials with leading
term z*y*2 with respect to (-, )u, ,; that is, ng{)ﬁ(x,y) =1 and

(aM1y*, P

2 S,
Pk;@ (z,y) = a*1yk2 — > o i ”> 2P (), (0,0) < (K1, ks).
(J1,92)<(k1,k2) J1,J2° ]1 J2/ Wa,B

The Gram—Schmidt orthogonality and Lemma 5.5 show that

LO& B‘Pk;l ]4;2(:’6 y) € Spa‘n{lewa ‘CU y) (j17j2) =< (k:]-? kQ)} = Hzl,kg' (510)

0,0

Evidently, Ea’ngf y =0=ayR, (’)ﬂ . We apply induction. Assume that

s 0,0 s ..
'CO"BPJ'O;:?Z - ajldzpﬁgz’ (]17]2) < (k17k52)-

It then follows from Theorem 5.2 and the orthogonality of Pko‘1 ”ia that

a,B a,B _ J1.d2/ posB _
<’C ’BPkl ko> 31,J2>wa 8 <Pk‘17k2’£a~8 J1,J2>wa s = 90,0 <Pk1 ko> Jh]2>wf¥ 8 0,

so that, as a consequence of (5.10),

LopPlh = cPl . (5.11)



Discrete Fourier Analysis and Chebyshev Polynomials with Go Group 23

Comparing the leading term of the above identity, we obtain from (5.7) that

alg10,k2xk1,k2 — Cl‘kl’k2,
which gives ¢ = aglo’kQ. Ultimately, this inductive process shows that
a’ﬁ __ a’ﬁ a7ﬁ ; a7ﬁ _ k17k2
LagPiiky = Mol Doy WIth Al = agg™.

As shown in the proof of Lemma 5.5,
Ab = 6(kE + 3K3 + 3k1ks) + 3(5 + da + 68)k1 + 3(9 + 6o + 128)k
= g(le + 3k2)((2k1 + 3k2) +4 + 4o+ 683) + gkg(k‘g + 2+ 28) + 3k,
which is (5.9) since |k|« = 2k1 + 3k2 by definition.

Moreover, suppose ]5,?1 ’iQ (z,y) € 1T} ,, is another polynomial with the leading term xhkyh2
such that

LosPpt, (@ y) = APE (),
<ﬁl?f§cz’p>wa,5 =0, Vp € span {z?1y7? : (j1, ja) < (K1, ka)} -

Using the same argument that determines ¢ in (5.11), we see that A = )\zl’ﬁ ky = algldk"’. Moreover,

it is easy to see that

PR~ POA e span {27y : (j1, j2) < (k1 k2)},
<P’?17§€2 o P’:ij,iQ’ Pa’ﬁ = 07 v (j17j2) < (kla k2)

Ji,J2 Wa,B

This finally leads to Py, ’iQ - ]3,?1 ’iQ = 0, which shows that P_" ”?@ is uniquely determined by its

leading term in the #-order and the orthogonality <PIS‘1’%2 , iy, = 0forall (j1,j2) < (1, k2).
This completes the proof. |

Let P,f‘l ’ig be orthogonal to each other with respect to the inner product (-, '>wa, 5+ The first
few polynomials and the eigenvalues can be readily checked to be

Poofbﬁ(a:,y) =1, /\8‘7’0’8 =0;

o 1+ 2« a,
PL(’)B(CL‘,:U) :l""m’ Al,Oﬁ = 3(7+40[+6B),
Py (zy) =y + B(L+2a) 545+ 118+ 208 +65° + do?
0,1\ 4+a+33 (4+a+308)(5+2a+43)
Xt =9(5 + 20 + 4B);
2y 4(a+1)2a—1)
Pavﬁ — 2 —

—105 — 86 — 1208 — 3683% — 483a + 8a? + 240
3(3 4 2a)(4a + 11 + 63)(4a + 65 + 9) ’
X = 6(9 + 48 + 6a),
32a—1) 5  6Ba+ 1la+ 153+ 2a2 + 27
5+a+3ﬁx (5+a+35)(4a+65+13)y
N 119+2295+40a3+3663—|—111a—|—806a2+15662+132Ba+140a2+36ﬁ2a$
2o+ T7+48)(4a + 658+ 13)(5 + a + 303)

+

P (w,y) = zy +
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8a2 + 6a? + 4Ba? + 126%a + 9a + 28Ba + 70 + 933 + 3032
(2a+ 7+ 48) (4 + 68 + 13)(5 + o + 33) ’

X{‘f =6(14 + 98 + 50).

For each Pm’g, (5.10) shows that the L, 5P m.n involves only P ’?2 with (j1,j2) in

Lo i= {(j1,52) € N? 1 (j1, j2) < (m,n)}.
This set of dependence of the polynomial solution is determined by the *-ordering. Indeed, it is
easy to see that

Ty =i UL

m,n?

Pt ::{m_2p+3q7”+P—QQ))€Z2¢0<q<lHT"J,0<p<2m+3n},
Do = {(m—2p+3gn+p—20 e 22: 25 <g < -1,1 <p < |23}

For p, q as in 'y, 1, but not both 0, we have that for o, 3 > —%,

A8 B

ks ko K —2p+3q ka4 p—2q = =32k —2p+3¢+2a+1)p+9(2ke+p—2¢+28+1)qg >0,

which shows that )\a’ﬁ # A\ ]1’@2 for any (j1,J2) € F,’: k- This implies that polynomial solutions

of the same m- degree below to different eigenvalues. Moreover, if )‘k k2 )\?1,,6;2 for (71, j2) <
(k1, k2), then (j1,j2) € L ko

In the case of (o, 3) = (—3, —3), our polynomials P ’B , agree with the generalized Chebyshev

polynomial that we defined in the last section. For the other three cases of (a, ) = (£3,+1),

this requires proof. Let us denote the Chebyshev polynomials temporarily by le Ky (o, B) =

(— ;, —%) It is not hard to see, from Algorithm 1, that the leading term of Qk, Ky 1S caryh2
with certain ¢ > 0, which implies that Spam{Q]1 (@ y) : (J1,72) < (K1, k2) } qu g, Lhus, we

can write

) k1,k
Ea,ﬁQ:ka (z,y) = k1 ngkl ko (z,y) + Z ]11,3226231,]2( Y)- (5.12)
(J1,52)<(k1,k2)

On the other hand, by the orthogonality and the self-adjointness of L, g, for any (li,l2) <
(K1, k2),

(ﬁaﬁQz{,kQ’ Ql&lﬁz)wa = (szlw’ 7ﬁQll,b)wa 8

B

llzl2 7/8 _
Qe M QR D rnQi, = 0.

(J1,j2)<(l1,l2) Wap

As a result, we deduce from (5.12) that

6Qk1 ko (‘T y) = AZ{ﬁ@le ko (w y)

Consequently, up to a constant multiple, we see that le’g ko coincides with the Jacobi polyno-
mials.

Corollary 5.7. The Chebyshev polynomials defined in Definition 4.2 satisfy the equation (5.8).

In particular, this shows that the Chebyshev polynomials are elements in H|*k| and they are
determined, as eigenfunctions of £, g, uniquely by the leading term in the *-order.
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6 Cubature rules for polynomials

In the case of the equilateral triangle, the cubature rules for the trigonometric functions are
transformed into cubature rules of high quality for polynomials on the region bounded by the
Steiner’s hypocycloid. In this section we discuss analogous results for the cubature rules in the
Section 3. To put the results in perspective, let us first recall the relevant background.

Let w be a nonnegative weight function defined on a compact set € in R%. A cubature rule
of degree 2n — 1 for the integral with respect to w is a sum of point evaluations that satisfies

N
L f@w@)dr = S A f@),  AjeR
j=1

for every f € 113, ;. It is well-known that a cubature rule of degree 2n — 1 exists only if N >
dimI12_| = n(n + 1)/2. A cubature that attains such a lower bound is called Gaussian. Unlike
one variable, the Gaussian cubature rule exists rarely and it exists if and only if the corresponding
orthogonal polynomials of degree n, all n + 1 linearly independent ones, have n(n + 1)/2 real
distinct common zeros. We refer to [4, 15] for these results and further discussions. At the
moment there are only two regions with weight functions that admit the Gaussian cubature
rule. One is the region bounded by the Steiner’s hypocycloid and the Gaussian cubature rule is
obtained by transformation from one cubature rule for trigonometric functions on the equilateral
triangle.

6.1 Gaussian cubature rule of m-degree

We first consider the case of w1 1, which turns out to admit the Gaussian cubature rule in the
22
sense of m-degree.

Theorem 6.1. For w on A*, the cubature rule

11
272
12 . . .
ey [[ et ety = 2o (85010 () e () (). 6)
A* NS S

is exact for all polynomials f € P5, .

Proof. Using (4.10) with a = 8 =  and (3.32), we see that

c @wm@=£JfWWWM$uﬂm%t (6.2)

11 11
202 Jpox 22

By (4.3) and (4.5), [SS2,1,_3(t)]? has m-degree 10, so that f(z(t),y(t)) [SSo.1,_3(t)]* € 5o if
fells, ;. Since SSy1,_3(t) vanishes on the boundary of A, applying the cubature rule (3.22)
of degree 2n + 9 to the right hand side of (6.2) gives the stated result. |

What makes this result interesting is the fact that, by (3.21),
Yol = Toysl = [T = dim Iy,

which shows that the cubature rule (6.1) resembles the Gaussian cubature rule under the m-
degree. Furthermore, it turns out that it is again characterized by the common zeros of ortho-
gonal polynomials. Let Y, be the image of {% 1jE€ Tif} under the mapping t — x,

Vo= {(2(2).w(}) - e 1o},

11
which is the set of nodes for (6.1). Then all polynomials P>'%  with m-degree n vanish on Y.
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Theorem 6.2. The setY, s is the variety of the polynomial ideal <P2’2 x) : 2ky + 3ko = n>
Proof. By the definition of sz z , it suffices to show that

SSk(7l5) =0 for jeT, kel and ki—ks=n+5. (6.3)

Directly form its definition,

1 o .
J . m(k1—ks)(j1—743) mkaja m(k1—k3)(G2—d1) ;.. whajs
SSk (5 5) *[Sm 3(n+5) sin S75t + sin 3(n+5) S =3

m(k1—ks) (43 —J2) sin wkaj1 ]

3(n+5) n+5
1 - s L 7Us—ja) . ke
=3 [ sin (313 73) gin wkm + sin (]23 i) gin ﬂfijgs + sin 7T(]33 J2) gin Wfi%l ]’
Since j; = j2 = js (mod3), we conclude then SSk(n%ﬁf’) = (. The proof is completed. |

In [13], the existence of the Gaussian cubature rule in the sense of m-degree and the connection
to orthogonal polynomials were established in the context of compact simple Lie groups. The
case of the group Go was used as an example, where a numerical example was given. The
domain A* and the one in [13] differ by an affine change of variables.

Our results give explicit nodes and weights of the cubature rule and provide further expla-
nation for the result.

(1,1) (-3 (1,1)

Chebyshev-Guass Chebyshev—Guass—Lobatto

(1,1) -1,1) (1,1)

Chebyshev—Guass—Radau I Chebyshev—Guass—Radau 11

Figure 6.1. The cubature nodes on the region A*.

6.2 Gauss—Lobatto cubature and Chebyshev polynomials of the first kind

In the case of w_ 11 the change of variables t — x shows that (3.22) leads to a cubature of
m-~degree 2n — 1 based on the nodes of Y.
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Theorem 6.3. For the weight function w_1 _1 on A* the cubature rule
27 2
1 (n) . .
ey [ sy y(pdzay - TERICCRID) (6.4
A JELn

holds for f el1l3, ;.

The set Y,, includes points on the boundary of A*, hence, the cubature rule in (6.4) is an
analogue of the Gauss—Lobatto type cubature for w_1 _1 on A*. The number of nodes of this
T2

2
cubature is dimII7}, instead of dim IT}_;. In this case, the corresponding orthogonal polynomials

11

are the generalized Chebyshev polynomials of the first kind, Ty, x,(z,y) := P, ** *(x,y). The
polynomials in {7}, : |a|+ = n} do not have enough common zeros in general. In fact, the two
orthogonal polynomials of m-degree 6,

Ts0(2,y) = 362% — 182y — 9z — 6y — 2,
Too(x,y) = 6y + 10y — 722> + 362y + 18z + 3.

only have three common zeros on A*,

21
(z,y) = (\}ﬁl cos(Z5E + 1 arccos 2%%1),—\[71“), pw=0,1,2,

whereas dimIIf = 5. For cubature rules in the ordinary sense, that is, with I12 in place of IT%,
the nodes of a cubature rule of degree 2n — 1 with dim IT? nodes must be the variety of a poly-
nomial ideal generated by dimII}_ ; linearly independent polynomials of degree n + 1, and these
polynomials are necessarily quasi-orthogonal in the sense that they are orthogonal to all polyno-
mials of degree n—2 [19]. Our next theorem shows that this characterization of such a cubature
carries over to the case of m-degree.

Theorem 6.4. Denote a* = (a1 — 1,a3), a1 > ag, and o™ = (a1, 1 — 1) if a1 = ay. Then Y,
is the variety of the polynomial ideal

(To(x) = Tox(z) : |als =n+1). (6.5)

Furthermore, the polynomial To(x)—T o (x) is of m-degree n+1 and orthogonal to all polynomials
in IIY o with respect to w_1 _1.
27 2

Proof. A direct computation shows that, for any k € I' with k; — ks = n + 1,

1 _ _ _ _
CCly—1,ko by +1(t) — CCx(t) = g[cos W cos koto + cos W cos Tkats

+ cos 7r(n—1)3(t3—t2) 7r(n+1)3(t1—t3)
)

1
cos Trkgtl] —3 [ cos cos kots

+ cos W cos mkats + cos w cos 7rl<:2t1]
27 . “tg) . _ . ) . _

= g[sm m(tg t3) gin ﬂ(tlg t3) cos mkote + sin m(t?,’ ) gin ﬂ(tlg t3) cos mkots
+ sin ”n(t?b) sin ”(tlgts) coS Wkgtl],

where we have used the definition of CCy for the first equality sign. Hence, for any j € Y,

) . 2 . _ ,
CChyi—1 ko kz+1 (%) — CCy (%) = g[sin ﬁ(]ls 33) gin ﬂ(jg,mjg) cos ”kflﬁ
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+ sin TF(J'2?;J'1) sin “(J';;le) cos ﬂkﬁjs + sin 7T(J'33*j2) sin Tf(j%;jz) COS WkTQle] -0,
where the last equality sign uses the fact j; = jo = js (mod 3). With a; = k1 + k2, this shows
that T, — T,* vanishes on Y,,. Finally, we note that |a*|, = |a|s — 2 or |a| — 1, so that T« is
a Chebyshev polynomial of degree at least n — 1 and T, — T, is orthogonal to all polynomials
in IT* 5. [

6.3 Gauss—Radau cubature and Chebyshev polynomials of mixed kinds

Under the change of variables t — z defined in (4.1), we can also transform (3.22) into cubature
rules with respect to w_1 ! and w_1 1 which have nodes on part of the boundary and are

27 27
analogue of Gauss—Radau cubature rule They are associated with Chebyshev polynomials of
the mixed types. We state the result without proof.

Theorem 6.5. The following cubature rules hold,

c_11 f f(z, y)w_%’% (x,y)dzdy

e " .
- gz 2 A sCn )| 1) (). v e, 1 (60)
jeTn42

c1 1 fff z,y)wi 1 (x,y)dedy
2 2 2
472 ‘2

= m 2 wj(nJrS) ’CSl,l,—Q(%_;_g) f(I(%%)’y(%ﬁ))v vf € H;n—l' (67)
J€Yny3

Since by (4.5), SCq,0,—1 and CSy 1 2 vanish on part of the boundary of A, the summation is
not over the entire Y, o or Y,,+3 but over a subset that exclude points on the respective boun-
dary. Let Y’¢; and Y% 3 denote the set of nodes for the above two cubature rules, respectively.

Theorem 6.6. Y}<, is the variety of the polynomial ideal

22(2) : |aly = n). (6.8)

And Y% 5 is the variety of the polynomial ideal

11 11
(P27 2(z) — P2 2(z): |als =n+1). (6.9)

It is of some interests to notice that, in terms of the number of nodes vs the degree, (6.6) is
an analogue of the Gauss cubature rule in m-degree.
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