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Luis GUTIÉRREZ FREZ † and José PANTOJA ‡
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Abstract. We construct a complex linear Weil representation ρ of the generalized special
linear group G = SL1

∗(2, An) (An = K[x]/〈xn〉, K the quadratic extension of the finite
field k of q elements, q odd), where An is endowed with a second class involution. After the
construction of a specific data, the representation is defined on the generators of a Bruhat
presentation of G, via linear operators satisfying the relations of the presentation. The
structure of a unitary group U associated to G is described. Using this group we obtain
a first decomposition of ρ.
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1 Introduction

Weil representations is a central topic in representation theory. They arise as a consequence
of one of the many seminal works of A. Weil [17]. They are projective representations of the
groups Sp(2n, F ), F a locally compact field. These representations are an important subject
of study. By decomposition into irreducible factors, Weil representations provide all irreducible
complex representations of the general linear group over a finite field, and over a local field of
residual characteristic different from 2. It has many other important consequences, and it has
applications in different topics as theta functions and physics to mention only some of them. In
fact, in representation theory it helps to understand (among other things) the harmonic analysis
of the group, and in the Langlands program, to explain the relations between linear groups
defined over local or global fields, and the Galois groups of the fields.

A point of view that has been favorably used in representation theory, is to extend to higher
rank groups, methods successfully used in lower rank groups. This philosophy has led Pan-
toja and Soto-Andrade (see [11, 12, 13]) to define the groups GLε∗(2, A) and SLε∗(2, A), where
ε = ±1. These are “generalized linear groups” of rank 2 with coefficients in a unitary involutive
ring (A, ∗) [10] (ε = ±1). In this way, the symplectic group and the orthogonal group of rank n
over a field F appear as groups SLε∗(2, A) considering as involutive ring, the ring of n× n mat-
rices over F with the transposition of matrices, and taking, respectively, ε equals to −1 and 1.
Different choices of involutive rings produce new examples of diverse kind.

The rings considered are, in general, non-commutative, and this non-commutativity is con-
trolled by the relation (ab)∗ = b∗a∗. In this sense, it should be pointed out the similarity of our
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group GL∗(2, A), with the quantum group GLq(2) (as a “group” of matrices with some commu-
ting relations). Furthermore, the generalized linear groups afford the notion of a ∗-determinant,
det∗, in analogy with the q-determinant. Also, the homomorphism ∗-determinant can be con-
sidered as a first way of describing the mentioned groups, as these can be defined as two by
two matrices with coefficients in A, (satisfying some commutation relations that involve ∗),
with ∗-determinant different from 0. Then, the groups SL∗(2, A) appear as the kernel of the
homomorphism det∗.

The approach, used here, has been considered in diverse interesting groups [6, 7, 16]. Having
a presentation of the group, that the authors call Bruhat presentation, and certain specific data,
a generalized Weil representation has been constructed. Historically, the groups G were defined
first for ε = −1. The work of Soto-Andrade on the symplectic group over a finite field [15] and
the representations constructed by Gutiérrez [6] appear as examples of these constructions in [7].
Later, after the generalization to ε = 1, Vera [16] constructed a generalized Weil representation
of the orthogonal group over a finite field, where she also relates the representation with the
one that can be constructed by the theory of dual pairs of Howe [9]. However, even that the
orthogonal group is a natural example of a generalized linear group with ε = 1, her work is
done treating the group as a “symplectic type” group, i.e., as a SL−1

∗ group, by twisting the
transposition of matrices to define the involution of the ring.

Our method to construct Weil representations is one of many successful approaches to attack
this topic, and has been studied by several authors (see, e.g., [1, 4, 5, 17]). Using Weil’s original
point of view, Szechtman et al. in [2] construct Weil representations of symplectic groups over
finite rings via Heisenberg groups. Recently, Herman and Szechtman [8] construct Weil rep-
resentations of unitary groups associated to a finite, commutative, local principal ring of odd
characteristic, by imbedding the group into a symplectic group.

A great diversity of groups can be originated via generalized linear groups for appropriate
choices of involutive rings. For each of them, Weil representations could be constructed by using
our approach of defining linear operators for each generator of the group in such a way that they
satisfy the basic (universal) relations of a “simple” presentation. This variety of cases for which
a (generalized) Weil representation could be produced has led us to verify that, in practice, the
procedure is effective. In fact, several examples of groups GLε∗(2, A) and SLε∗(2, A) have been
given in loc. cit. for different choices of involutive rings provided with first class involutions [10].
However, no example with an involutive ring (algebra) provided with a second class involution
has been considered up to now. Furthermore, explicit constructions for generalized linear groups
with ε = 1 have not been made so far.

In this work, we construct a Weil representation of a generalized SL1
∗ “orthogonal type group”

(i.e., a generalized special linear group with ε = 1) over the ring An = K[x]/〈xn〉, which is a non-
semisimple ring (algebra in fact) over K, K the quadratic extension of the finite field k of q
elements (q odd), provided with a second class involution. We show first that the group under
consideration has a Bruhat presentation, after which a data necessary to produce a Weil represen-
tation of G via relations and generators, is specifically described. We also obtain a first decompo-
sition of the representation. Using a complete different approach leaning on the works of Amri-
tanshu Prasad and Kunal Dutta [3, 14], a further decomposition could be achieved. Furthermore,
a comparison of their methods and ours will be performed in a work that will appear elsewhere.

The paper is organized as follows: In Section 2, we present the main definitions on generalized
classical groups GLε∗(2, A) and SLε∗(2, A) for an involutive ring (A, ∗) and we describe some
properties of the truncated polynomials ring K[x]/〈xn〉, for K a quadratic extension of a field
of q elements (q odd). In Section 3, a Bruhat presentation of SL1

∗(2, An) is constructed. Section 4
is devoted first to recall a very general procedure to construct generalized Weil representations
of SLε∗(2, A), for a group with a Bruhat presentation and a suitable data (M,χ, γ, c). After this,
the necessary data for the group under consideration is produced and completely described and
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detailed. Finally, in Section 5, we define the abelian “unitary” group U(M,χ, γ, c) of (M,χ, γ, c),
with the explicit decomposition into cyclic subgroups, which allow us to get a first decomposition
of the constructed representation.

2 Preliminaries

In this section, we fix notations and recall some basic facts about generalized general special
linear groups over involutive rings.

Let A be a unitary ring endowed with an involution ∗, i.e., an antiautomorphism a 7→ a∗ of A
of order two. We denote by Z(A) the center of A, and we write A× (respectively Z(A)×) for
the group of invertible elements of A (respectively, of Z(A)). T sym (respectively T asym) stands
for the set of symmetric (respectively antisymmetric) elements of the subset T of A, i.e., the
set of elements a in T such that a∗ = a (respectively a∗ = −a). The involution ∗ induces an
involution on the ring of 2 × 2 matrices with coefficients in A, by (g∗)ij = g∗ji (g ∈ M(2, A)),
which we denote also with the symbol ∗.

2.1 The groups SL1
∗(2, A)

We give a brief description of the groups SL1
∗(2, A). For more details see [13].

If A is a unitary ring with an involution ∗, and J =

(
0 1
1 0

)
in M(2, A), let GL1

∗(2, A) :={
g =

(
a b
c d

)
∈ M(2, A) : g∗Jg = λ(g)J, λ(g) ∈ (Z(A)sym)×

}
. Then GL1

∗(2, A) is a group. Mo-

reover, the map

det∗ : GL1
∗(2, A)→ (Z(A)sym)×

given by det∗(g) = λ(g) = ad∗ + bc∗ = a∗d+ c∗b is an homomorphism.

We define SL1
∗(2, A) as the kernel of det∗. One can observe that the entries of g =

(
a b
c d

)
∈

SL1
∗(2, A) satisfy: a∗c = −c∗a, ab∗ = −ba∗, b∗d = −d∗b, cd∗ = −dc∗.

2.2 The involutive ring of truncated polynomials

Let k be a finite field of q elements, where q is a power of an odd prime p. We consider K the
unique quadratic extension of k and we take ∆ ∈ K such that K = k(∆) and ∆2 ∈ k. We write
a+ b∆ to denote the image a − b∆ of the element a + b∆ under the nontrivial element of the
Galois group of the extension K/k. Let

An = K[x]/〈xn〉, n ∈ N,

which will be considered as polynomials (with coefficients in K), truncated at n (i.e., such that
xm = 0 for m = n).

We define an involution ∗ in the k-algebra An by

a+ b∆ 7→ a+ b∆,

x 7→ −x.

We first present some results concerning cardinalities about sets that we will use later on.

Proposition 1. If | S | denotes the cardinality of S, we have

1. The order of the group of invertible elements of An is |A×n | = (q2 − 1)q2(n−1).
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2.

Asym
n =

{
a =

n−1∑
i=0

aix
i : a2i ∈ k and a2i+1 ∈ ∆k

}

has cardinality |Asym
n | = qn.

3.

Aasym
n =

{
a =

n−1∑
i=0

aix
i : a2i ∈ ∆k and a2i+1 ∈ k

}

has cardinality |Aasym
n | = qn.

Proof. 1. The result is clear observing that an invertible element of the ring must have nonzero
constant term.

2. Let a =
n−1∑
i=0

aix
i be an arbitrary element in An, then

a∗ =
n−1∑
i=0

(−1)iaix
i.

So a∗ = a if and only if ai = (−1)iai, for each i. Thus

Asym
n =

{
a =

n−1∑
i=0

aix
i : ai ∈ k for i even and ai ∈ ∆k for i odd

}
,

and the result follows.

3. Similar to 2. This completes the proof. �

Proposition 2. The order of SL1
∗(2, An) is (q2 − 1)q4n−3(q + 1).

Proof. The group SL∗(2, An) acts on M2×1(An) by left multiplication. Set

O1 =

{(
a
ua

)
∈ M2×1(An) : a ∈ A×n , u ∈ Aasym

n

}
,

O2 =

{(
uc
c

)
∈ M2×1(An) : c ∈ A×n , u ∈ Aasym

n \A×n
}
.

We claim that the orbit OrbSL1
∗(2,An)

(
1
0

)
is the union of O1 and O2. In fact, we note that the

first column

(
a
c

)
of a matrix in SL1

∗(2, An) satisfies a∗c = −c∗a. Since a or c must be invertible,

we get ca−1 (or ac−1) is anti-symmetric, then c = ua (or a = uc), for some anti-symmetric

element u. From here OrbSL1
∗(2,An)

(
1
0

)
is contained in the union O1 ∪O2. On the other hand,

if

(
a
ua

)
∈ O1, then

(
a 0

ua a∗
−1

)
∈ SL1

∗(2, An),

(
a
ua

)
=

(
a 0

ua a∗
−1

)(
1
0

)
.
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Thus, O1 is contained in the orbit OrbSL1
∗(2,An)

(
1
0

)
. Similarly, OrbSL1

∗(2,An)

(
1
0

)
contains O2.

This proves the claim.
Now given that the sets are disjoint we verify∣∣∣∣OrbSL1

∗(2,An)

(
1
0

)∣∣∣∣ =
(
q2 − 1

)
q2(n−1)qn +

(
q2 − 1

)
q2(n−1)qn−1 =

(
q2 − 1

)
q3n−3(q + 1).

Finally, the isotropy group Stab

((
1
0

))
is the group of upper unipotent matrices in SL1

∗(2, An)

which has cardinality qn, and therefore our proposition follows. �

3 Bruhat presentation for SL1
∗(2, An)

In this section, we prove that the group G = SL1
∗(2, An) has a Bruhat-like presentation, which

will be used in the construction of a Weil representation of G.
To this end, we set

ht = h(t) =

(
t 0
0 t∗−1

)
, t ∈ A×, w =

(
0 1
1 0

)
,

and

us = u(s) =

(
1 s
0 1

)
, s ∈ Aasym,

noticing that the matrices ht, ω, us ∈ SL1
∗(2, A).

Lemma 1. Let a and c be two elements in An such that Aa + Ac = A and a∗c = c∗a. Then,
there exits an element s ∈ Aasym

n such that a+ sc is invertible.

Proof. We first observe that a or c has to be invertible. Suppose that a is invertible, then
considering s = 0 we have the result. On the other hand, if a is non-invertible, then c is
invertible and so any nonzero element s in k∆ proves the lemma. �

Proposition 3. The matrices ht, us and w, with t ∈ A×n , s ∈ Aasym
n , generate SL∗(2, An).

Proof. Let g =

(
a b
c d

)
∈ SL1

∗(2, An). If c = 0, then g = haua−1b.

Suppose now that c is invertible. Since det∗(g) = 1, i.e., ad∗ + bc∗ = 1 one gets b =
c∗

−1
+ ac−1d. One checks g = h(c∗

−1
)u(c∗a)wu(c−1d).

Now if c 6= 0 and non-invertible, we take an antisymmetric element s satisfying the above
lemma. Now

wusg =

(
0 1
1 0

)(
1 s
0 1

)(
a b
c d

)
=

(
c d

a+ sc b+ sd

)
.

Thus the matrix wusg has entry (2, 1) invertible and we can write

wu(s)g = h((a+ sc)∗
−1

)u((a+ sc)∗c)wu((a+ sc)−1(b+ sd)).

From here, SL1
∗(2, An) is generated by the matrices ht, us and w with t ∈ A×n , s ∈ Aasym

n . �

Lemma 2. Let a and b be two non-invertible antisymmetric elements in An. Then, we can
find an antisymmetric invertible element v ∈ An such that a− v−1 and b+ v are antisymmetric
invertible elements in An.
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Proof. Since a, b are non-invertible elements, they are in the ideal generated by x. Then taking
any nonzero element v ∈ ∆k, we check that a − v−1 and b + v are antisymmetric invertible
elements in An. �

Lemmas 1, 2 and Proposition 3 prove, using the same argument as in Theorem 15 of [11],
our next result:

Theorem 1. The matrices ht, us and w (t ∈ A×n , s ∈ Aasym
n ), with the commutating relations:

ht1ht2 = ht1t2 ,

us1us2 = us1+s2 ,

htus = utst∗ht,

w2 = 1,

htw = wh
t∗−1 ,

wut−1wu−twut−1 = h−t

give a presentation of SL1
∗(2, An).

4 A generalized Weil representation of SL1
∗(2, An)

In [7, Theorem 4.4], a Weil representation is constructed for groups that afford a Bruhat pre-
sentation as the one obtained in Theorem 1. Specific data are required.

First, we must have a finite right A-module M and pair of functions χ : M ×M → C× and

γ : Aasym ×M → C×, a nonzero complex number c, and a character α ∈ Â×, satisfying the
following properties and relations among them:

a) χ is bi-additive;

b) χ(mt, v) = α(tt∗)χ(m, vt∗) for m, v ∈M and t ∈ A×;

c) χ(v,m) = [χ(m, v)]−1;

d) χ(v,m) = 1 for all m ∈M , implies v = 0;

e) γ(b,mt) = γ(tbt∗,m);

f) γ(t,m+ z) = γ(t,m)γ(t, z)χ(m, zt) for all m, z ∈M , t ∈ Aasym, where t is anti-symmetric
invertible in A and c ∈ C× satisfies
c2 |M | = 1;

g) γ(b+ b′,m) = γ(b,m)γ(b′,m), for all b, b′ ∈ Aasym and m ∈M , and

h)
∑
m∈M

γ(t,m) = α(t)
c .

Then, with the above data we have (see [7]):

Theorem 2. If SL1
∗(2, A) has a Bruhat presentation, the data (M,χ, γ, c) defines a (linear)

representation (CM , ρ) of SL1
∗(2, A), which we call Weil representation, by

1) ρub(ea) = γ(b, a)ea,

2) ρht(ea) = α(t)eat−1,

3) ρw(ea) = c
∑
b∈M

χ(−a, b)eb,

for a ∈M , b ∈ Aasym, t ∈ A× and ea the Dirac function at a, defined by ea(u) = 1 if u = a and
ea(u) = 0 otherwise.
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4.1 Construction of data for SL1
∗(2, An)

Since we already know that SL1
∗(2, An) has a Bruhat presentation, we construct now a data for

this group, in order to apply Theorem 2.
Let ψ0 be a nontrivial additive character of K such that ψ0 is nontrivial in k and in ∆k. We

consider the biadittive function χ from An ×An to C× given by

(a, b) 7→ ψ(a∗b),

where ψ is the nontrivial character of An defined as

ψ
(
ao + a1x+ · · ·+ an−1x

n−1
)

= ψ0(an−1).

We take M = An and we assume α = 1. It is clear that a), b) and c) above are fulfilled. We
prove now d).

Proposition 4. The biadditive map χ is non-degenerate.

Proof. Let a be a nonzero element of An. We need to prove that there is an element b in An
such that χ(a, b) 6= 1. Let us write a = ao + a1x + · · · + an−1x

n−1. If ai is the first nonzero
coefficient of a, set b = txn−i−1. Then χ(a, b) = ψ0((−1)iāit). If t runs over K, then so does
(−1)iāit. Since the character ψ0 is nontrivial, the result follows. �

We now define the function γ by γ(t,m) = χ(−2−1tm,m), for t ∈ Aasym
n and m in An. We

claim that γ satisfies conditions e), f), g), and h) above.
e) Let b ∈ Aasym

n , m ∈ An and t ∈ A×n . Then

γ
(
tbt∗,mt−1

)
= χ

(
−2−1tbt∗mt−1,mt−1

)
= χ

(
−2−1bt∗m,mt−1

)
.

Now, using that χ is balanced, we get γ(tbt∗,mt−1) = χ(−2−1bm,m) = γ(b,m).
f) Let t ∈ Aasym

n and m, v ∈ An. Then

γ(t,m+ v) = χ
(
−2−1t(m+ v),m+ v

)
= χ

(
−2−1tm,m

)
χ
(
−2−1tv, v

)
χ
(
−2−1tm, v

)
χ
(
−2−1tv,m

)
.

Now, since χ is balanced, we have χ(−2−1tm, v) = χ(m, 2−1tv). On the other hand, we have
χ(−2−1tv,m) = χ(m, 2−1tv). Then χ(−2−1tm, v)χ(−2−1tv,m) = χ(m, vt), and

γ(t,m+ v) = χ
(
−2−1tm,m

)
χ
(
−2−1tv, v

)
χ(m, vt).

g) γ(b1 + b2,m) = γ(b1,m)γ(b2,m) follows from the bi-additive property of χ.
h) Set c = (−1)n 1

qn . Since |An| = q2n, we have c2|An| = 1. The result will follow from
Proposition 5 below, which needs Lemma 3:

Lemma 3. Let ψ be the additive character of K defined above. Then∑
z∈K

ψ(NK/k(λz)) =

{
q2 if λ = 0,

−q if λ 6= 0.

Proof. The case λ = 0 is clear. Suppose then λ 6= 0. Since z runs over K it suffices to compute
the sum

∑
z∈K

ψ(NK/k(z)). We observe

K =
⋃
t∈k

N−1
K/k(t).

Since the character ψ is nontrivial on k and the cardinality of N−1
K/k(t) is q + 1 for any t ∈ k×,

we have∑
z∈K

ψ(NK/k(λz)) = ψ(0) +
∑
t∈k×

(q + 1)ψ(t) = 1 + (q + 1)(−1) = −q. �
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Now,

Proposition 5. We have∑
y∈An

γ(t, y) = (−1)nqn.

Proof. By defintion γ(t, y) = χ(−1
2 ty, y). We set y =

n−1∑
i=0

αix
i and −1

2 t =
n−1∑
i=0

λix
i for y ∈ An

and t ∈ Aasym×
. We will write sometimes (y)i for the coefficient of xi in y. Then

∑
y∈An

γ(t, y) =
∑
y∈An

χ

(
−1

2
ty, y

)
=
∑
y∈An

ψ

(
−1

2
ty∗y

)
=

n∑
i=1

ψ0

((
−1

2
ty∗y

)
n−1

)
.

Since t∗ = −t we have λi = di ∈ k for i odd, and λi = di∆ ∈ k∆ for i even.

We will split the proof into two cases, according to n is even or odd. We first assume that n
is even. Using the above, and after a computation, we have

∑
y∈An

γ(t, y) =

n−1∑
αi,i=0

ψ0(dn−1β0 + ∆dn−2β1 + · · ·+ d1βn−2 + ∆d0βn−1), (1)

where βi =
i∑

j=0
(−1)jᾱjαi−j .

We first observe that αn−1 appears only in βn−1. Summing first over αn−1, we write∑
· · ·

∑
α0,αn−1

· · ·ψ0(∆d0(ᾱ0αn−1 − ᾱn−1α0)

=
∑
· · ·

∑
α0,αn−1

· · ·ψ0(∆d0(ᾱ0αn−1 − α0αn−1)).

Given the assumption on ψ0, the character that sends αn−1 into ψ0(∆d0(ᾱ0αn−1 − ᾱ0αn−1))
is an additive, nontrivial character of K. This sum is zero unless α0 = 0. Then the sum over α0

and αn−1 contributes with q2. In this way, the above sum becomes∑
· · ·

∑
α1,αn−2

· · · q2ψ0(dn−3γ1 + ∆d2γ2 + · · ·+ d1γn−3 + ∆d0γn−2),

where γi =
i∑

j=1
(−1)jᾱjαi−j+1. We note again that, in this case, αn−2 appears only in γn−2, and

we can write the sum as∑
· · ·

∑
α1,αn−2

· · · q2ψ0(∆d0(−ᾱ1αn−2 + ᾱn−2α1)).

We sum next over α1 and αn−2, and we continue with this process to obtain at the end that (1)
is (q2)

n
2 = qn.

We assume this time n is odd. In this case, we have∑
y∈An

γ(t, y) =
∑
αi

i=0,...,n−1

ψ0(∆dn−1β0 + dn−2β1 + · · ·+ ∆d1βn−2 + d0βn−1). (2)
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As before, αn−1 appears only in βn−1. Summing first over α0 and αn−1, to get∑
· · ·

∑
α0,αn−1

· · ·ψ0(∆d0(ᾱ0αn−1 + ᾱn−1α0)

=
∑
· · ·

∑
α0,αn−1

· · ·ψ0(∆d0(ᾱ0αn−1 + α0αn−1).

We have ψ0(∆d0(ᾱ0αn−1 +α0αn−1) = ψ0(∆d0 Tr((ᾱ0αn−1)), where Tr stands for the field trace
of the extension E ⊃ F .

Arguing as before, at the last step, i.e., after n−1
2 steps we get

(
q2
)n−1

2
∑
αn−1

2

ψ0

(
∆αn−1

2
αn−1

2

)
.

Using Lemma 3, we obtain (2) is equal to −qn. �

5 A first decomposition

We will get a first decomposition of ρ, constructed in Theorem 2. To this end, we lean on
Theorem 7.6 in [7]. The unitary group U = U(χ, γ, c) consisting of all An-linear automor-
phism ϕ of M such that γ(b, ϕ(x)) = γ(b, x), for any b ∈ An and x ∈ M , allows us to obtain
a decomposition of the Weil representation. In fact, the characters of U define the invariant
subspaces of a decomposition of ρ. So, we will devote ourselves to obtain the structure of this
group. Observing first that U is abelian, Theorem 7.6 in [7] reads as:

If Λ ∈ Û , let WΛ be the vector subspace of W of the Λ-homogeneous functions, that is, the
vector subspace of the functions f ∈ W such that f(ua) = Λ(u)f(a), for a ∈ An and u ∈ U ,
then

Theorem 3. The Weil representation (W,ρ) is the direct sum of all WΛ, where Λ runs over all
linear characters of U .

We first prove:

Proposition 6. We have

1. The group A×n acts transitively on Asym
n ∩A×n by a · t = ata∗.

2. The group of units A×n acts transitively on Aasym
n ∩A×n under the same action.

Proof. 1. We consider the case when n is even. Since the ring An is commutative, we see that
if t1, t2 are in the orbit Orb(1), then t1t2 ∈ Orb(1). We will first prove that every element of
the form t = 1 + a1∆x+ a2x

2 + · · ·+ an−1∆xn−1 (ai ∈ k, for all i) belongs to Orb(1).

In fact, one can check that there is an element b = 1 + b1∆x+ b2x
2 + · · ·+ bn−1∆xn−1 ∈ An

(bi ∈ k), such that t = bb∗, given that the system

1 = 1,

2b1 = a1

2b2 + b21∆2 = a2,

2b3 + 2b1b2 = a3,

2b4 + 2b1b3∆2 + b22 = a4,

· · · · · · · · · · · · · · · · · · · · · · · ·
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2bn−1 + 2b1bn−2 + 2b2bn−3 + · · ·+ 2bn−2b2 = an−1

has always a solution.

Now, for an arbitrary invertible symmetric element t = a0 + a1∆x+ a2x
2 + · · ·+ an−1∆xn−1,

given that any nonzero element of k is in Orb(1), we have that

t = a0

(
1 + a−1

0 a1∆x+ a−1
0 a2x

2 + · · ·+ a−1
0 an−1∆xn−1

)
belongs to Orb(1) and therefore Orb(1) = Asym

n ∩A×n .

The case when n is odd is handled in a similar way.

2. Notice that ∆a ∈ Aasym
n ∩ A×n , for any symmetric invertible element a ∈ An. Then, it

follows from part 1 that ∆(Asym
n ∩A×n ) = ∆Orb(1) is a subset of Aasym

n ∩A×n that has the same
cardinality than Aasym

n ∩A×n . We have that the orbit of ∆ is the unique orbit for the action.

This proves the proposition. �

Next we start to prove that the group U = U(χ, γ, c) is isomorphic to the group of all a ∈ A×n
such that aa∗ = 1. We first prove

Lemma 4. The subgroup {a ∈ An : aa∗ = 1} has (q + 1)qn−1 elements.

Proof. By proof of Proposition 6, the cardinality of orbit Orb(1) under the action of A×n on
Asym
n ∩A×n is (q − 1)qn−1. The isotropy group Stab(1) is U , hence

|{a ∈ An : aa∗ = 1}| = |A×n |
|Orb(1)|

=
(q2 − 1)q2(n−1)

(q − 1)qn−1
= (q + 1)qn−1. �

Proposition 7. U(χ, γ, c) ∼= {a ∈ An : aa∗ = 1}.

Proof. We have U(χ, γ, c) consists of all An-automorphisms ϕ : An → An such that γ(b, ϕ(y)) =
γ(b, y) for all b ∈ Aasym

n
×

and y ∈ An. Hence ϕ(1) determines completely ϕ.

Now, the definition of γ implies ψ(−1
2bϕ(y)ϕ(y)∗) = ψ(−1

2byy
∗) and so ψ(−1

2byy
∗ϕ(1)ϕ(1)∗)

= ψ(−1
2byy

∗). Setting t = −1
2b and d = ϕ(1)ϕ(1)∗ we have in the notations of Section 4.1

ψ(dtyy∗) = ψ(tyy∗) (3)

for all t ∈ Aasym
n

×
and y ∈ An, from which ψ0((dtyy∗)n−1) = ψ0((tyy∗)n−1). We will prove that

d = 1. To do that set d = d0 + d1x + · · · + dn−1x
n−1. Given that d is symmetric, di ∈ k for i

even, and di ∈ k∆ for i odd. Now, since t is antisymmetric, we see t = λ0∆ + λ1x + λ2∆x2 +
λ3x

3 + λ4∆x4 + · · · ) with λi ∈ k and λ0 6= 0. We write y = y0 + y1x+ · · ·+ yn−1x
n−1. We want

to prove then d0 = 1 and di = 0 for i > 0. Now, the equation (3) implies

ψ0(d0λ0∆(ȳ0yn−1 − ȳ1yn−2 + · · ·+ (−1)n−1ȳn−1y0) + (d0λ1(ȳ0yn−2 − ȳ1yn−3 + · · ·
+ (−1)n−2ȳn−2y0) + · · ·+ dn−2λ1ȳ0y0 + dn−1λ0∆ȳ0y0)

= ψ0(λ0∆(ȳ0yn−1 − ȳ1yn−2 + · · ·+ (−1)n−1ȳn−1y0) + · · ·
+ λn−2∆δ1(ȳ0y1 − ȳ1y0) + λn−1∆δ2)

(δ1 = 1 if n is even, and 0 otherwise; δ2 = 0 if n is even, and 1 otherwise).

If we take λ0 = 1, λi = 0 if i > 0, and taking y0 arbitrary, and yi = 0 for i > 0 we end up
with ψ0(dn−1∆ȳ0y0) = 1. By the choice of ψ0, it follows that dn−1 = 0. For the next step (to
prove now that dn−2 = 0) we take λ0 = λ1 = 1 and λi = 0 for i > 1. As before, we set yi = 0
for i > 0 and y0 arbitrary, getting this time ψ0(dn−2∆ȳ0y0) = 1. So, dn−2 = 0.
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Continuing with this process, we obtain di = 0 for all i > 0. Finally, considering λ0 = 1 and
λi = 0 for i > 0, we are left with

ψ0

(
d0∆

(
ȳ0yn−1 − ȳ1yn−2 + · · ·+ (−1)n−1ȳn−1y0

))
= ψ0

(
∆
(
ȳ0yn−1 − ȳ1yn−2 + · · ·+ (−1)n−1ȳn−1y0

))
,

from which it follows d0 = 1. �

Proposition 8. We have

1. U ' N−1
K/k(1)× U0 where U0 = {b : b ∈ U, (b)0 = 1}, (b)0 as defined in Proposition 5.

2. • If n is even, then the group U0 consists of all elements z of the form:

z = 1 + λ1x+ (f1(λ1) + λ2∆)x2 + (λ3 + f2(λ1, λ2)∆)x3 + · · ·
+ (λn−1 + fn−2(λ1, . . . , λn−2)∆)xn−1,

with λi ∈ k.

• If n is odd, then the group U0 consists of all elements z of the form:

z = 1 + λ1x+ (f1(λ1) + λ2∆)x2 + (λ3 + f2(λ1, λ2)∆)x3 + · · ·
+ (fn−2(λ1, . . . , λn−2) + λn−1∆)xn−1,

where λi ∈ k.

Proof. Part 1 follows directly from the definitions.
We prove part 2. If b = r+ c∆, we will write r = Real(b) ∈ k and c = Im(b) ∈ k. Expanding(

1 + b1x+ b2x
2 + · · ·+ bn−1x

n−1
)(

1− b̄1x+ b̄2x
2 − · · · ± b̄n−1x

n−1
)

= 1,

we see that b1 ∈ k. We set λ1 = b1.

Similarly, we get b2+b̄2 = b1b̄1 so Real(b2) =
λ21
2 . We see Im(b2) is an element of k, independent

of λ1. Setting λ2 = Im(b2), we can write b2 = f1(λ1) + λ2∆ with f1(λ1) a function of λ1 which
is independent from λ2.

In the next step, we obtain b3 − b̄3 = b2b̄1 − b1b̄2, from which Im(b3) = 2λ1λ2. We observe
Real(b3) is an element of k independent from λ1 and λ2. We write this time b3 = λ3+f2(λ1, λ2)∆,
for a function f2(λ1, λ2) independent from λ3.

In general, when i is even, bi + b̄i is a k-valued function fi(λ1, . . . , λi−1), and Im(bi) =
fi−1(λ1, . . . , λi−1) is a new variable, getting bi = λi. When i is odd, bi− b̄i determines a k-valued
function, we set this time Im(bi) = fi−1(λ1, . . . , λi−1) and Real(bi) = fi−1(λ1, . . . , λi−1 for a new
variable independent from λ1, . . . , λi−1. We can write bi = λi + fi−1(λ1, . . . , λi−1)∆. The result
now follows. �

Remark 1. We observe that in fact the functions fi have the property

fi(0, 0, . . . , 0) = 0.

The field k = Fq (where q = pt, p an odd prime number) is a t-dimensional vector space
over Fp. We set e1, . . . , et for a basis of k over Fp.

We describe the elements of U0 as in Proposition 8, and we define:

Definition 1. Let i be relatively prime to p, and l = 1, . . . , t. Hi,l denotes the cyclic subgroup
of U0 of order d = di,l (d is a power of p), generated by z = 1 + elx

i +α2x
2i + · · ·+αord(z)x

ord(z)i

for i odd, and generated by z = 1 + el∆x
i + α2∆2x2i + · · · + αord(z)∆

ord(z)xord(z)i for i even,
where ord(z) is the integer such that ord(z)i < n, but (ord(z) + 1)i ≥ n, and αj are certain
elements in k.
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We determine now the elements αi for i odd (the other case being similar). The condition(
1 + elx

i + α2x
2i + · · ·

)(
1 + elx

i + α2x
2i + · · ·

)∗
= 1

leads to the system (with α1 = el)

1 = 1,

2α2 − α2
1 = 0,

0 = 0,

2α4 − 2α3 + α2
2 = 0,

· · · · · · · · · · · · · · · · · ·
j∑
s=1

(−1)s−jαsαs−j = 0,

which has the solution α2 = 1
2α

2
1, αj = 0 for j odd and for j even greater than 2. So, αj is

computed inductively by 2αj +

j−2t
2∑
t
α2tαj−2t = 0.

Proposition 9. The intersection of
∏
v,u
Hv,u with the subgroup Hi0,l0 is 1 [1 ≤ v ≤ n − 1,

v relatively prime to p, v > i0 if u = l0, and v ≥ i0 if u 6= l0, u = 1, . . . , t].

Proof. Let Hi0,l0 with i0 relatively prime to p. We prove the case when i0 is odd (the case
when i0 is even is similar).

Let z ∈ Hi0,l0 . Then z = (1 + el0x
i0 + α2x

2i0 + · · · + αord(z)x
ord(z)i0)j , where 1 ≤ j ≤ d

(d is a power of p) is such that i0d > n. We have j = pas, where a > 0, g. c.d.(s, p) = 1 if p
divides j, and a = 0 if j = s is relatively prime to p. Then, we can write z = 1 + s0el0x

pai0 +
terms of higher degree (s ≡ s0 (mod p), 1 ≤ s0 < p).

If z is also an element of the product above, then

z =
(
1 + β1el1x

pc1 il1 + · · ·
)(

1 + β2el2x
pc2 il2 + · · ·

)
· · · ,

(1 ≤ βr < p, r = 1, . . . ,m) for some m, and ir > i0 if lr = l0, ir ≥ i0 if lr 6= l0. So, the lower
degree term of z, as an element of the product must be of the form (β1el1+β2el2+· · ·+βmelm)xp

ai0

with pc1i1 = · · · = pcmim = pai0. But then β1eu1 + β2eu2 + · · ·+ βmeum = s0el0 .
We have two possible cases according to whether l0 appears in the factors for z (as an element

of a product of H’s) or not. In the first case, since the e’s are linearly independent, we must
have (reordering if necessary) β1 = s0, β2 = · · · = βm = 0 and l1 = l0. The equality pc1i1 = pai0
is contradictory because i1 > i0, and i0 and i1 are relatively prime to p. In the second case, we
would have linear dependency between the e’s.

From here, the result follows. �

The next lemmas are direct result of the definition of the integer part function.

Lemma 5. Let a, b be positive integers such that a < b, then the number of multiples of p in
the interval ]a, b] is b bpc − b

a
pc.

Lemma 6. Let n, p be positive integers with p a prime element. Then⌊⌊
n
pj

⌋
p

⌋
=

⌊
n

pj+1

⌋
.
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We assume n is relatively prime to p. Consider the maximal integer r such that n = pr−1m+R,
with 0 < R < pr−1.

Proposition 10. The cardinality of the subgroup Hi,u, for u = 1, . . . , t, where i belongs to the
interval

]⌊
n
pj

⌋
,
⌊

n
pj−1

⌋]
and i is relatively prime to p, is pj.

Proof. We observe that to find the order of Hi,u we need to find the integer αi such that
ipαi−1 < n < ipαi , from which Hi,u will have order pαi . Let us write n = ar−1p

r−1 + ar−2p
r−2 +

· · ·+ a1p+ a0 with 0 ≤ ai < p and ar−1 6= 0. Then⌊
n

pj

⌋
= ar−1p

r−1−j + ar−2p
r−2−j + · · ·+ aj ,⌊

n

pj−1

⌋
= ar−1p

r−j + ar−2p
r−1−j + · · ·+ ajp+ aj−1.

The conditions on i and n say

ar−1p
r−1−j + ar−2p

r−2−j + · · ·+ aj < i ≤ ar−1p
r−j + ar−2p

r−1−j + · · ·+ ajp+ aj−1,

from which we have the inequalities

pj−1i ≤ ar−1p
r−1 + ar−2p

r−2 + · · ·+ ajp
j + aj−1p

j−1 ≤ n,

but since n is relatively prime to p, we have pj−1i < n, and

ar−1p
r−1 + ar−2p

r−2 + · · ·+ ajp
j < pji.

Using the base p expansion of n, we get from this last inequality that n < pji. Taking αi = j
the result follows. �

Corollary 1. The group U0 is the direct product of all subgroups Hi,u as above, where u varies
from 1 to t, and i is less or equal to n− 1 and relatively prime to p.

Proof. According to Propositions 9, 10 and Lemma 4 it is enough to show that the order of
the direct product of all subgroups Hi,u is qn−1.

Let us fix an element u (u = 1, . . . , t). First, notice that there are no multiples of p in the
interval

⌊
1,
⌊

n
pr−1

⌋⌋
. In general, the number of multiples of p in

[⌊
n

pr−j

⌋
+ 1,

⌊
n

pr−j−1

⌋]
is⌊⌊

n
pr−j−1

⌋
p

⌋
−

⌊⌊
n

pr−j

⌋
p

⌋
=

⌊
n

pr−j

⌋
−
⌊

n

pr−j+1

⌋
.

For each integer j ≥ 0, we denote by γj the number of integers relatively prime to p in the
interval

[⌊
n

pr−j

⌋
+ 1,

⌊
n

pr−j−1

⌋]
. We observe that

γj =

(⌊
n

pr−j−1

⌋
−
⌊

n

pr−j

⌋)
−
(⌊

n

pr−j

⌋
−
⌊

n

pr−j+1

⌋)
.

Then, the order of the subgroup Hi,u with i in the interval
[⌊

n
pr−j

⌋
+ 1,

⌊
n

pr−j−1

⌋]
is pr−j . Hence

the product of the orders of all Hi,u, for a fixed u, is p

r−1∑
j=0

γj(r−j)
. Now, we verify that

r−1∑
j=0

γj(r − j) = r

⌊
n

pr−1

⌋
+ (r − 1)

[(⌊
n

pr−2

⌋
−
⌊

n

pr−1

⌋)
−
⌊

n

pr−1

⌋]
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+ (r − 2)

[(⌊
n

pr−3

⌋
−
⌊

n

pr−2

⌋)
−
(⌊

n

pr−2

⌋
−
⌊

n

pr−1

⌋)]
+ (r − 3)

[(⌊
n

pr−4

⌋
−
⌊

n

pr−3

⌋)
−
(⌊

n

pr−3

⌋
−
⌊

n

pr−2

⌋)]
+ (r − 4)

[(⌊
n

pr−5

⌋
−
⌊

n

pr−4

⌋)
−
(⌊

n

pr−4

⌋
−
⌊

n

pr−3

⌋)]
+ · · ·

+ 3

[(⌊
n

p2

⌋
−
⌊
n

p3

⌋)
−
(⌊

n

p3

⌋
−
⌊
n

p4

⌋)]
+ 2

[(⌊
n

p

⌋
−
⌊
n

p2

⌋)
−
(⌊

n

p2

⌋
−
⌊
n

p3

⌋)]
+

[(
(n− 1)−

⌊
n

p

⌋)
−
(⌊

n

p

⌋
−
⌊
n

p2

⌋)]
= n− 1.

From this, it is clear that the product of all Hi,u’ (running also over u) is (pn−1)t = qn−1. From
here the result follows. �

We have found a decomposition of U as a product of cyclic subgroups:

Theorem 4. The group U is the direct product of a cyclic subgroup of order q+1 and the cyclic
subgroups determined by the groups Hi,l of Corollary 1.
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