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Abstract. Time correlations for KPZ growth in 1 + 1 dimensions are reconsidered. We
discuss flat, curved, and stationary initial conditions and are interested in the covariance
of the height as a function of time at a fixed point on the substrate. In each case the
power laws of the covariance for short and long times are obtained. They are derived
from a variational problem involving two independent Airy processes. For stationary initial
conditions we derive an exact formula for the stationary covariance with two approaches:
(1) the variational problem and (2) deriving the covariance of the time-integrated current
at the origin for the corresponding driven lattice gas. In the stationary case we also derive
the large time behavior for the covariance of the height gradients.
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1 Introduction

Because of novel experiments [48, 49, 50] and exact solutions (see surveys and lecture notes [10,
14, 26, 41, 44]), there is a continuing interest in growing surfaces in the Kardar–Parisi–Zhang
(KPZ) universality class [35], in particular for the case of 1 + 1 dimensions. The object of
interest is a height function h(x, t) over the one-dimensional substrate space, x ∈ R, at time
t ≥ 0, which evolves by a stochastic evolution. Examples are the KPZ equation itself, the single
step model, polynuclear growth, Eden type growth, and more. The spatial statistics, x 7→ h(x, t)
at large, but fixed time t is fairly well understood. The typical size of the height fluctuations
is of order t1/3 and the correlation length grows as t2/3. The precise spatial statistics depends
on the initial conditions. Three canonical cases have been singled out, which are flat, step (also
curved), and stationary. On the other hand, our understanding of the correlations in time is
more fragmentary. For the point-to-point semi-discrete directed polymer, which corresponds
to curved initial data, Johansson [33] recently derived the long time asymptotics of the joint
distribution of (h(0, τ t), h(0, t)), τ fixed, t → ∞. In an earlier work on the same quantity [20]
Dotsenko obtains a replica solution of the KPZ equation. In both cases the final result is an
infinite series, from which it seems to be difficult to extract more explicit information1. For us,
this state of affairs is one motivation to reconsider the issue of the KPZ time correlations.

?This paper is a contribution to the Special Issue on Asymptotics and Universality in Random Matrices,
Random Growth Processes, Integrable Systems and Statistical Physics in honor of Percy Deift and Craig Tracy.
The full collection is available at http://www.emis.de/journals/SIGMA/Deift-Tracy.html

1In [21] progress has been achieved recently at the level of joint distribution functions for curved initial data
in the limit τ → 1.
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The most basic observable is the temporal correlation function

C�(t0, t) = Cov(h(0, t0), h(0, t)) = E(h(0, t0)h(0, t))−E(h(0, t0))E(h(0, t)). (1.1)

Here the superscript � stands for the initial conditions, which are denoted by either “flat”,
“step”, or “stat”. In the stationary case the covariance depends only on t− t0. But for flat and
curved both arguments have to be kept.

The correlation (1.1) has been measured in the turbulent liquid crystal experiment by Takeu-
chi and Sano [50] and is also determined numerically by Singha [47] (for the step case) and Ta-
keuchi [48] in the closely related Eden cluster growth. The large t scaling behavior is reported as

C flat(t0, t) ' (t0)
4/3t−2/3, Cstep(t0, t) ' (t0)

2/3, (1.2)

where we ignored the model-dependent prefactors, see [50, Section 2.6] for more details. Thus
in the curved case the correlation of the unscaled height function does not decay to 0 for large t,
which is surprising at first sight. The rough explanation is as follows (see also [34]): In the flat
case the height h(0, t) depends on the nucleation events in the backward light cone with base
points x such that |x| ≤ t2/3 and so does h(0, t0) with |x| ≤ (t0)

2/3. On the other side, in the
curved case the domain of dependence has the form of a cigar of width t2/3, resp. (t0)

2/3, since
at short times only the few nucleation events close to the initial seed are available. Estimating
the overlap in each case results in the distinct behavior as stated in (1.2).

In our contribution we consider the covariance

C�t (τ) = t−2/3C�(τt, t)

rescaled according to the KPZ scaling theory. Thus one expects the limit

lim
t→∞

C�t (τ) = C�(τ)

to exist. Without loss of generality one may set 0 ≤ τ ≤ 1. To study C�(τ), we consider
last passage percolation (LPP) as a particular model in the KPZ universality class. In this
model at zero temperature, the height function is represented through the energy of an optimal
directed polymer in a random medium, which is tightly related with the totally asymmetric
simple exclusion process (TASEP), see Section 2. We first obtain an expression for C�(τ) based
on a variational problem involving two independent Airy processes. This looks complicated, but
we succeed in studying the power law behavior of C�(τ) for τ close to 0 and 1, see (2.4), (2.5).
In the first limit our result is in agreement with the behavior stated in (1.2). For stationary
initial conditions we even obtain the entire limiting Cstat(τ). Proving our result mathematically
rigorously is technically difficult and goes beyond the scope of this paper.

An alternative approach comes from switching to local slopes, ∂xh(x, t), which are then
governed by a type of stochastic particle dynamics. For example, the slope of the single step
model is equivalent to the TASEP. The process t 7→ ∂th(0, t) = j(t) is stationary and the
covariance Cov(j(t), j(t′)) depends only on t − t′. In the particle picture Cov(j(t), j(0)) is the
correlation of the current (density) across the origin. We argue that

∫
R dtCov(j(t), j(0)) = 0 and

Cov(j(t), j(0)) ' −|t|−4/3 for large |t|, see (3.9). Thereby we arrive at an expression for Cstat(τ)
which is identical to the one obtained by the LPP method. In fact, Cstat(τ) equals the covariance
of fractional Brownian motion with Hurst exponent 1

3 . However, since the rescaled height
function is expected to converge to a limit with Baik–Rains distribution, the limiting height
process cannot be Gaussian (this is proven for a few models [7, 25, 27, 40]).

Our contribution consists of three parts. In Section 2 we investigate C�(τ) in the framework
of directed polymers. In Section 3 we study the current time correlations for stationary lattice
gases and in Section 4 we report on Monte-Carlo simulations of the TASEP in support of our
theoretical findings.
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2 Variational formulas for the universal part
of the two-time distribution

As a model in the KPZ universality class we consider the totally asymmetric simple exclusion
process (TASEP). Particle configurations are denoted by η ∈ {0, 1}Z, where ηj = 1 stands for
a particle at lattice site j and ηj = 0 for site j being void. Particles jump independently one
step to the right after an exponentially distributed waiting time and subject to the exclusion
rule. Equivalently the exchange rate between sites j and j + 1 takes the form cj,j+1(η) =
ηj(1− ηj+1). The particle configuration at time t is denoted by η(t). Of central interest is the
height function, h(j, t), defined through2

h(j, t) =



J(t) +

j∑
i=1

1
2(1− 2ηi(t)), if j ≥ 1,

J(t), if j = 0,

J(t)−
0∑

i=j+1

1
2(1− 2ηi(t)), if j ≤ −1,

(2.1)

where J(t) is the particle current across the bond (0, 1) integrated over the time interval [0, t].
Note that h(0, 0) = 0. We study the TASEP because it allows for a simple mapping to last
passage percolation (LPP), which will be the main technical tool in this section.

We will study the three different initial conditions mentioned in the introduction:

(i) step initial conditions, η = 1Z− ,

(ii) flat initial conditions with density 1
2 , η = 12Z,

(iii) stationary initial conditions with density 1
2 , i.e., η is distributed according to ν1/2, where

νρ is the Bernoulli product measure with density ρ.

Density 1
2 is chosen for convenience, since in this case the characteristic line has velocity 0.

For these three initial conditions we would like to understand the scaling limit

τ 7→ X �(τ) = lim
t→∞
−24/3t−1/3

(
h(0, τ t)− 1

4τt
)
, (2.2)

which defines X �(τ), τ ≥ 0, as a stochastic process in τ (provided the limit exists). τ is
a fraction of the physical time t and the asymptotic mean has been subtracted. The fact
that the scaling (2.2) should give a non-trivial limit process is due to the slow-decorrelation
phenomenon, namely that along special space-time paths, fluctuations of order t1/3 occurs only
over a macroscopic time scale. The special paths are the characteristics of the PDE describing
the macroscopic evolution of the particle density [16, 22].

Up to model dependent scale factors, the limit processes are expected to be universal, meaning
that the limit is the same for any model in the KPZ universality class. In case the particular
initial condition has to be specified, a superscript is added as X step, X flat, X stat, respectively.
The one-point distribution of these processes is well-known [3, 4, 30, 40] and given by

P
(
X step(1) ≤ s

)
= FGUE(s),

P
(
X flat(1) ≤ s

)
= FGOE

(
22/3s

)
,

P
(
X stat(1) ≤ s

)
= FBR(s),

2In the literature the height function is mostly defined to be twice the one defined in this paper. As we will
discuss also the particle current, in our context it seems to be more natural to avoid unnecessary factors of 2
relating the two quantities.
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see Appendix A for their definition. We denote by ξGUE, ξGOE, and ξBR random variables
distributed according to GOE/GUE Tracy–Widom distribution and the Baik–Rains distribution
respectively.

For the spatial argument, the corresponding scaling limit reads

w 7→ Y�(w) = lim
t→∞
−24/3t−1/3

(
h
(
w21/3t2/3, t

)
− 1

4 t
)

(2.3)

with w ∈ R. For flat and stationary initial conditions, convergence has been proved in the sense
of finite-dimensional distribution [1, 9, 45]. For step initial condition weak*-convergence has been
proved in [32]. More specifically, one has Ystep(w) = A2(w)− w2, Y flat(w) = 21/3A1(2

−2/3w),
and Ystat(w) = Astat(w), see also the review [23]. Again we refer to Appendix A for the definition
of these Airy processes.

In Section 2.1 we will argue that the joint distribution of X �(τ) and X �(1) can be expressed
through a suitable variational formula, involving two independent copies of Y◦(w), with ◦ ∈
{step, flat, stat} depending on the cases. Unfortunately, it is not so straightforward to extract
some useful information from these formulas. Hence we first try to study the covariance

C�(τ) := Cov
(
X �(τ),X �(1)

)
= E

(
X �(τ)X �(1)

)
−E

(
X �(τ)

)
E
(
X �(1)

)
.

The parameter τ can be restricted to the interval [0, 1], since the case τ > 1 is recovered by
a trivial scaling from the fact that X �(τ) is given through the limit (2.2). As will be seen from
the explicit formula for the stationary case or from the numerical simulation in the other cases,
for τ away from 0, 1, C�(τ) looks smooth and strictly increasing, but shows interesting scaling
behavior close to the boundary points of this interval. As one of our main results we determine
the respective scaling exponents. For τ → 0 we obtain

Cstep(τ) = Θ
(
τ2/3

)
, C flat(τ) = Θ

(
τ4/3

)
, (2.4)

and for τ → 1 we obtain3

Cstep(τ) = Var(ξGUE)− 1
2Var(ξBR)(1− τ)2/3 +O(1− τ),

C flat(τ) = 2−4/3Var(ξGOE)− 1
2Var(ξBR)(1− τ)2/3 +O(1− τ). (2.5)

This implies that for the normalized correlation function A�(τ) := C�(τ)/C�(1) we have

A�(τ) = 1− c�(1− τ)2/3 +O(1− τ)

as τ → 1, where

cstep =
Var(ξBR)

2Var(ξGUE)
' 0.707, cflat =

Var(ξBR)

2−1/3Var(ξGOE)
' 0.901.

For the stationary case, we obtain the exact expression

Cstat(τ) = Var(ξBR)12
(
1 + τ2/3 − (1− τ)2/3

)
. (2.6)

The behavior close to τ = 1 is based on the same reasoning in all three cases. As key ingredient
we use that the limit processes Y� defined in (2.3) are locally Brownian [17, 27, 28, 39, 42]. Close
to τ = 0, step and stationary initial conditions exhibit the same scaling exponent. Interestingly,
the Θ(τ2/3) behavior relies on two very distinct mechanisms: for the step it is due to the
correlations generated at small times, while for the stationary case it is due to the randomness
of the initial conditions.

3The coefficient in front of (1 − τ)2/3 for the flat case was conjectured by Takeuchi in [49] and verified
experimentally in his context.
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2.1 TASEP and LPP

Let us first recall the relation between TASEP and LPP. A last passage percolation (LPP)
model on Z2 with independent random variables {ωi,j , i, j ∈ Z} is the following. An up-right
path π = (π(0), π(1), . . . , π(n)) on Z2 from a point A to a point E is a sequence of points in Z2

with π(k + 1)− π(k) ∈ {(0, 1), (1, 0)}, with π(0) = A and π(n) = E, and where n is called the
length `(π) of π. Now, given a set of points SA, one defines the last passage time LSA→E as

LSA→E = max
π : A→E
A∈SA

∑
1≤k≤`(π)

ωπ(k). (2.7)

Finally, we denote by πmax
SA→E any maximizer of the last passage time LSA→E . For continuous

random variables, the maximizer is a.s. unique.
For the TASEP the ordering of particles is preserved. If initially one orders from right to left as

· · · < x2(0) < x1(0) < 0 ≤ x0(0) < x−1(0) < · · · ,

then for all times t ≥ 0 also xn+1(t) < xn(t), n ∈ Z. The ωi,j in the LPP is the waiting time of
particle j to jump from site i − j − 1 to site i − j. By definition ωi,j are exp(1) i.i.d. random
variables. Let SA = {(u, k) ∈ Z2 : u = k + xk(0), k ∈ Z}. Then

P(LSA→(m,n) ≤ t) = P(xn(t) ≥ m− n).

Further, for m = n,

P(LSA→(n,n) ≤ t) = P(xn(t) ≥ 0) = P(J(t) ≥ n).

In particular, for the initial conditions under consideration, the set SA is given by

(i) Step initial conditions: SA = {(0, 0)}.
(ii) Flat initial conditions with density 1

2 : SA = L = {(i, j) | i+ j = 0}.

(iii) Stationary initial conditions with density 1
2 : SA = L̃ is a two-sided simple symmetric ran-

dom walk passing through the origin and rotated by π/4. Using Burke’s property [11] one
can equivalently replace all the randomness which is above the random line L̃ but outside
the first quadrant by exponentially distributed random variables with parameter 1

2 only
along the bordering lines {(i,−1), i ≥ 0} and {(−1, i, ), i ≥ 0}, see [40] for more details.

See Fig. 1 for an illustration.

2.2 Step initial conditions

TASEP with step initial conditions corresponds to the point-to-point problem in the LPP
picture, see Fig. 1(i). In this framework, consider Aτ = (τt/4, τ t/4) and Iτ (u) = Aτ +
u(τt/2)2/3(1,−1). Then as t→∞ one has [8, 15, 32]

L0→Aτ − τt
22/3t1/3

' τ1/3A2(0),

L0→Iτ (u) − τt
22/3t1/3

' τ1/3
(
A2(u)− u2

)
,

LIτ (u)→A1
− (1− τ)t

22/3t1/3
' (1− τ)1/3

[
Ã2

(
uτ̂2/3

)
−
(
uτ̂2/3

)2]
,

where A2 and Ã2 are two independent Airy2 processes. These identities are understood for
fixed τ , where the first is convergence of random variables, while the last two identities hold
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Figure 1. Last passage percolation settings corresponding to TASEP with (i) step, (ii) periodic and

(iii) stationary initial conditions. The random variables in the gray regions are exp(1) i.i.d., while in the

dark gray they are exp(2) i.i.d. In (iii)-(b) the blank regions at the boundary have a length which is i.i.d.

geometric of mean 1.

as processes in u. Also we introduced the convenient shorthand τ̂ = τ/(1 − τ). Using (2.2)
and (2.7) we thus conclude

X step(τ) = lim
t→∞

L0→Aτ − τt
22/3t1/3

.

Therefore

X step(τ) = τ1/3A2(0)

and, using the relation L0→A1 = maxu(L0→Iτ (u) + LIτ (u)→A1
), also

X step(1) = τ1/3 max
u∈R

{
A2(u)− u2 + τ̂−1/3Ã2

(
uτ̂2/3

)
− u2τ̂

}
. (2.8)

Together these formulas are a tool for determining the joint distribution of X step(τ), X step(1).
Limit τ → 0. First of all, as τ → 0, as a process in u,

τ̂−1/3
(
Ã2

(
uτ̂2/3

)
− Ã2(0)

)
'
√

2B(u), (2.9)

where B is a standard Brownian motion [17, 28, 39] (with standard meaning with normalization
Var(B(u)) = u). Further, for the two terms proportional to u2, the right term is of order τ
smaller than the left one. Therefore the maximum in (2.8) is taken at u = Θ(1) and consequently
as τ → 0 we have

Cstep(τ) = Cov
(
X step(τ),X step(1)

)
' τ2/3Cov

(
A2(0),max

u∈R

{
A2(u)− u2 +

√
2B(u)

}
+ τ̂−1/3Ã2(0)

)
,
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where the processes A2 and B are independent, and B is independent of Ã2(0). Since A2(0)
and Ã2(0) are independent, their covariance is zero.

To understand what happens, we rewrite the expectation in the covariance as the expectation
of the conditional expectation with respect to the Brownian motion B, namely

Cov
(
A2(0),max

u∈R

{
A2(u)− u2 +

√
2B(u)

})
= E

[
Cov

(
A2(0),max

u∈R

{
A2(u)− u2 +

√
2B(u)

}∣∣B)].
For typical realizations of B, the maximum is reached for u of order 1 (for B = 0 there is an
explicit formula, see [2, 37, 46]). On the other hand, the random variables max

u∈R
(· · ·) and A2(0)

are non-trivially correlated. Therefore we conclude Cstep(τ) = Θ(τ2/3) as τ → 0.

Remark 2.1. In the LPP picture, the fact that the maximum is obtained for u of order 1 is
a consequence of the constraint that the polymer maximizing L0→A1 starts at the origin.

Remark 2.2. We have

Cov
(
A2(0),max

u∈R

{
A2(u)− u2 +

√
2B(u)

})
= E

(
A2(0) max

u∈R

{
A2(u)− u2 +

√
2B(u)

})
, (2.10)

where we used the fact that E(Astat(0)) = 0 and the identity [43]

X stat(1) = Astat(0)
d
= max

v∈R

{
A2(v)− v2 +

√
2B(v)

}
(2.11)

in distribution, where the Airy2 process A2 and the Brownian motion B are independent. The
joint distribution of the two random variables in (2.10) might be obtained analytically from the
formulas in [33] and [20].

Limit τ → 1. In this case, the maximum in (2.8) is achieved for u = Θ((1 − τ)2/3) as can
one see for instance by symmetry of the point-to-point problem. Therefore let us set v = uτ̂2/3

so that now

X step(1) = (1− τ)1/3 max
v∈R

{
τ̂1/3A2

(
vτ̂−2/3

)
− v2τ̂−1 +

(
Ã2(v)− v2

)}
. (2.12)

To argue about the behavior for τ → 1, we will use the convergence of the Airy2 process to
Brownian motion (see (2.9)) and we use the identity

Cstep(τ) = 1
2Var(X step(1)) + 1

2Var(X step(τ))− 1
2E
(
(X step(τ)−X step(1))2

)
= 1

2(1 + τ2/3)Var(X step(1))− 1
2E
(
(X step(τ)−X step(1))2

)
.

Now, by (2.12) and X step(τ) = (1− τ)1/3τ̂1/3A2(0), we have

X step(1)−X step(τ) = (1− τ)1/3 max
v∈R

{
τ̂1/3

[
A2

(
vτ̂−2/3

)
−A2(0)

]
+ Ã2(v)− v2

(
1 + τ̂−1

)}
,

where A2 and Ã2 are independent Airy2 processes. In the τ → 1 limit, using (2.9) the first term
becomes

√
2B(v) and since the maximum is obtained for v of order one, the term v2τ̂−1 should

be at most a correction of order O(1− τ). (2.11) gives us

Cstep(τ) ' 1
2

(
1 + τ2/3

)
Var(X step(1))− 1

2(1− τ)2/3Var
(
X stat(1)

)
+O(1− τ),

where we used the property that Astat(0) has mean zero.

Remark 2.3. To make the present result into a theorem one has to control the convergence
of the Airy process to Brownian motion. In recent work in progress, Corwin and Hammond
establish rigorously the behavior close to τ = 0 and τ = 1 for the point-to-point problem [18].
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2.3 Flat initial conditions

TASEP with flat initial conditions corresponds to the point-to-line problem in the LPP picture,
as illustrated in Fig. 1(ii). Consider Aτ = (τt/4, τ t/4) and Iτ (u) = Aτ + u(τt/2)2/3(1,−1).
From [9, 15], we know that by setting c = 21/3, in the t→∞ limit we have

LL→Aτ − τt
22/3t1/3

' cτ1/3A1(0),

LL→Iτ (u) − τt
22/3t1/3

' cτ1/3A1

(
c−2u

)
,

LIτ (u)→A1
− (1− τ)t

22/3t1/3
' (1− τ)1/3

[
Ã2

(
uτ̂2/3

)
−
(
uτ̂2/3

)2]
,

where the Airy1 process A1 is independent of the Airy2 process Ã2. As before, the first identity
is understood for fixed τ , while the last two identities hold as processes in u. We have

X flat(τ) = lim
t→∞

LL→Aτ − τt
22/3t1/3

and thus

X flat(τ) = cτ1/3A1(0).

Further, using the relation LL→A1 = maxu(LL→Iτ (u) + LIτ (u)→A1
), we obtain

X flat(1) = τ1/3 max
u∈R

{
cA1

(
c−2u

)
+ τ̂−1/3Ã2

(
uτ̂2/3

)
− u2τ̂

}
.

Limit τ → 0. Unlike for step initial conditions, this time the quadratic term responsible for
the localization of the maximizer over a distance of order 1 (in the u variable) is absent. This
implies that the maximization no longer occurs for u of order 1. Rather, from [31, 37] we know
that the point-to-line maximizer starts from the line L at a distance of order t2/3 from the origin.
As a consequence the maximization will occur typically at values u = Θ(τ−2/3). Therefore

C flat(τ) = τ2/3Cov
(
A1(0),max

u∈R

{
cA1

(
c−2u

)
+ τ̂−1/3Ã2

(
uτ̂2/3

)
− u2τ̂

})
= τ2/3E

[
Cov

(
A1(0),max

u∈R

{
cA1

(
c−2u

)
+ τ̂−1/3Ã2

(
uτ̂2/3

)
− u2τ̂

})∣∣Ã2

]
.

To understand the behavior at small values of τ of the covariance between X flat(τ) and X flat(1),
we need to consider the following two cases (see Fig. 2 for an illustration).

(1) Realizations of Ã2 such that the maximization occurs for u � 1. In this case, since the
covariance of the Airy1 process A1 decays super-exponentially [6], the covariance conditioned
on those events goes to zero faster than any power of τ .

(2) Realizations of Ã2 such that the maximization occurs for u = Θ(1). In this case, the
covariance conditioned on those events is of order Θ(τ2/3) by the same argument as for step
initial conditions. The only minor difference is to replace A2(u)− u2 by cA1(c

−2u).

The first situation occurs with probability of order 1−Θ(τ2/3), while the second case only with
probability Θ(τ2/3). This is due to the superdiffusive transversal fluctuations of the maximizers
(compare with the point-to-point transversal fluctuations in Poisson points see [31] and [5,
Section 9] for a refined result). Therefore as τ → 0,

C flat(τ) = Cov(X (τ),X (1)) = Θ
(
τ4/3

)
.
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Figure 2. The maximizer of the LPP for Aτ is denoted by πτ , and for A1 by π1. The LPP for A1 can be

decomposed in the LPP to the dashed line and the one from the dashed line to A1. For periodic initial

condition, the probability that πτ and π1 merges is expected to be of order Θ(τ2/3).

Limit τ → 1. We use the same argument as for the step-initial condition. (2.12) is replaced
by

X flat(1) = (1− τ)1/3 max
v∈R

{
τ̂1/3A1

(
vτ̂−2/3

)
+
(
Ã2(v)− v2

)}
.

Thus we get

C flat(τ) = 1
2(1 + τ2/3)Var

(
X flat(1)

)
− 1

2E
((
X flat(τ)−X flat(1)

)2)
.

Now,

X flat(τ)−X step(1) = (1− τ)1/3 max
v∈R

{
τ̂1/3

[
A1

(
vτ̂−2/3

)
−A1(0)

]
+ Ã2(v)− v2

}
,

where the two Airy processes, A1 and Ã2, are independent. Using the property that the Airy1

process is locally Brownian [42], one concludes that

C flat(τ) ' 1
2

(
1 + τ2/3

)
Var
(
X flat(1)

)
− 1

2(1− τ)2/3Var
(
X stat(1)

)
+O(1− τ).

2.4 Stationary initial conditions

For the stationary initial conditions we employ the LPP with boundary conditions, see
Fig. 1(iii)(b) for an illustration, and denote the corresponding maximal last passage time by LB.
Let Aτ = (τt/4, τ t/4) and Iτ (u) = Aτ + u(τt/2)2/3(1,−1). Then from [1, 29] we know that in
the limit t→∞ one has

LB0→Aτ − τt
22/3t1/3

' τ1/3Astat(0),

LB0→Iτ (u) − τt
22/3t1/3

' τ1/3Astat(u),

LIτ (u)−A1
− (1− τ)t

22/3t1/3
' (1− τ)1/3

[
Ã2

(
uτ̂2/3

)
−
(
uτ̂2/3

)2]
,

where the processes Astat and Ã2 are independent. As before, the first identity is understood
for fixed τ , while the last two identities hold as processes in u.

Further it holds

X stat(τ) = lim
t→∞

LB0→Aτ − τt
22/3t1/3

, X stat(τ) = τ1/3Astat(0),
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Figure 3. The maximizer of the LPP to Aτ , A1 are denoted by πτ , π1 respectively. C1 and Cτ are the

points where the maximizers leaves the axis.

and, using the relation LB0→A1
= maxu(LB0→Iτ (u) + LIτ (u)→A1

), we obtain

X stat(1) = τ1/3 max
u∈R

{
Astat(u) + τ̂−1/3Ã2

(
uτ̂2/3

)
− u2τ̂−1

}
. (2.13)

Limit τ → 0. In the LPP picture with boundary terms, denote by C1 and Cτ the sites on
the boundary at which the maximizers of L(−1,−1)→A1

and L(−1,−1)→Aτ enter into the positi-
ve quadrant. Similarly to flat initial conditions, the maximizer in (2.13) is attained for u of
order Θ(τ−2/3).

However, this time the correlations do not decay super-exponentially. We have

Cstat(τ) = τ2/3Cov
(
Astat(0),max

u∈R

{
Astat(u) + τ̂−1/3Ã2

(
uτ̂2/3

)
− u2τ̂

})
= τ2/3E

[
Cov

(
Astat(0),max

u∈R

{
Astat(u) + τ̂−1/3Ã2

(
uτ̂2/3

)
− u2τ̂

})∣∣Ã2

]
.

To understand the behavior for the covariance of X (τ) and X (1) at small values of τ , we need
to consider the following two cases (see Fig. 3 for an illustration).

(1) Realization of Ã2 such that the maximization occurs for u = Θ(1). The same argument
as for step initial conditions indicates that the covariance conditioned on those events is of
order Θ(τ2/3). Since these events occur with probability of order Θ(τ2/3), the overall contribution
is of order Θ(τ4/3).

(2) Realizations of Ã2 such that the maximization occurs for u � 1. This event occurs
with probability 1 − Θ(τ2/3). The maximizers of L(−1,−1)→A1

and of L(−1,−1)→Aτ use disjoint
background noise, except for the randomness on the boundaries (in case they are at the same
boundary). Thus in this case the covariance of the LPP to A1 and Aτ should be as the covariance
of the LPP to C1 and Cτ at leading order.

With this reasoning, one expects that

Cstat(τ) = Cov
(
X stat(τ),X stat(1)

)
' Θ(1) max

{
τ4/3, t−2/3Cov(L(−1,−1)→Cτ , L(−1,−1)→C1

)
}
.

Since the LPP on the boundaries is merely sum of iid random variables, by the central limit
theorem, in the t→∞ limit,

t−1/3L(−1,−1)→(xt2/3,−1) → 2B(x), t−1/3L(−1,−1)→(−1,xt2/3) → 2B(−x),
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where x 7→ B(x) is a two-sided Brownian motion with constant drift. For its covariance,

Cov(B(x),B(y)) = 1+sgn(xy)
2 min{|x|, |y|} independent of the drift. Finally, since |C1| ∼ t2/3

and |Cτ | ∼ (τt)2/3, we obtain

Cstat(τ) ' Θ(1) max
{
τ4/3, τ2/3

}
= Θ

(
τ2/3

)
.

Entire τ interval. The argument used to determine the τ → 1 limit in the step and flat
initial condition case, can be used to derive a formula for the covariance in the stationary case.
(2.12) is replaced by

X stat(1) = (1− τ)1/3 max
v∈R

{
τ̂1/3Astat

(
vτ̂−2/3

)
+
(
Ã2(v)− v2

)}
.

Thus we get

Cstat(τ) = 1
2

(
1 + τ2/3

)
Var
(
X stat(1)

)
− 1

2E
((
X stat(τ)−X stat(1)

)2)
.

But now

X stat(τ)−X stat(1) = (1− τ)1/3 max
v∈R

{
τ̂1/3

[
Astat

(
vτ̂−2/3

)
−Astat(0)

]
+ Ã2(v)− v2

}
,

where the two Airy processes, Astat and Ã2, are independent. For Airystat the increments are
not only locally Brownian, but exactly Brownian. More precisely,

τ̂1/3
[
Astat

(
vτ̂−2/3

)
−Astat(0)

] d
=
√

2B(u),

where B is a standard Brownian motion. Then, using the identity (2.11), we obtain

Cstat(τ) = 1
2

(
1 + τ2/3 − (1− τ

)2/3
)Var

(
X stat(1)

)
(2.14)

for 0 ≤ τ ≤ 1.

3 Current covariance for stationary lattice gases

The height function h(0, t) of the TASEP is identical to the time-integrated current across
the bond (0, 1), denoted by J(t) in (2.1). This suggests to study the covariance of the same
observable for a more general class of one-dimensional lattice gases. The mapping to LPP is
then lost. On the other hand, in case of stationary initial conditions, one can exploit the local
conservation law for the particle number together with space-time stationarity to obtain some
information on the current covariance. Thereby we extend the validity of (2.14). The covariance
of J(t) is identical to the one of fractional Brownian motion in the scaling limit. For reversible
models the Hurst parameter is H = 1

4 , while for non-reversible lattice gases H = 1
3 . In fact,

for reversible models it is expected, and proved for particular cases [19, 38], that as a stochastic
process J(t) converges under the appropriate scaling to fractional Brownian motion, which is
a Gaussian process. Such a result cannot hold in the non-reversible case, since the large t
distribution of J(t) is Baik–Rains, as proved for a few models [7, 25, 27, 40].

We consider exclusion processes on Z, for simplicity with nearest neighbor jumps only.
They are defined as a generalization of the TASEP by allowing for an arbitrary exchange rate
cj,j+1(η) > 0. For the ASEP the exchange rates are cj,j+1(η) = pηj(1 − ηj+1) + q(1 − ηj)ηj+1

with p + q = 1, p = 1
2 being the reversible SSEP. We assume that cj,j+1 has finite range and

is invariant under lattice translations. The generator, L, of the corresponding Markov jump
process is then defined through

Lf(η) =
∑
j∈Z

cj,j+1(η)
(
f
(
ηj,j+1

)
− f(η)

)
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acting on local functions f , where ηj,j+1 denotes the configuration η with occupancies at sites j
and j + 1 exchanged.

We start the dynamics in the steady state. For reversible models, by definition there is
a finite range translation invariant energy function, H, such that

cj,j+1(η) = cj,j+1

(
ηj,j+1

)
e−[H(ηj,j+1)−H(η)].

For given average density, 0 ≤ ρ ≤ 1, there is a unique stationary measure, µρ, satisfying
µρ = µρe

Lt. µρ is the Gibbs measure for H − µ̄
∑

j ηj , where the chemical potential µ̄ has to be
adjusted such that the average density equals ρ. On the other hand, for non-reversible lattice
gases one immediately encounters the long-standing problem to prove the existence of a unique
stationary measure at fixed ρ. Here we simply assume such a property to be valid, including
the exponential space-mixing of µρ. We use E(·) as a generic symbol for the process expectation
and 〈·〉ρ as expectation with respect to µρ. For the ASEP the steady state is Bernoulli and
obviously our assumptions hold.

Let us consider the empirical current across the bond (j, j + 1), denoted by jj,j+1(t). This is
a sequence of δ-functions with weight 1 for a jump from j to j+ 1 and weight −1 for the reverse
jump. The time-integrated current across the bond (j, j + 1) is then

Jj,j+1(t) =

∫ t

0
ds jj,j+1(s)

with the convention J(t) = J0,1(t), j(t) = j0,1(t). The average current reads E(j(t))=〈c0,1(η)(η0−
η1)〉ρ = j(ρ). We also introduce the stationary covariance

S(j, t) = Cov(ηj(t), η0(0)) = E
(
ηj(t)η0(0)

)
− ρ2.

There is a sum rule which connects S with the variance of J(t),

Var(J(t)) =
∑
j∈Z
|j|S(j, t)−

∑
j∈Z
|j|S(j, 0). (3.1)

The proof is deferred to Appendix B.
Since J(t) has stationary increments, it is convenient to study the correlations of the incre-

ments dJ(t) = j(t)dt. As discussed in Appendix B, the covariance is given by

Cov
(
j(t), j(t′)

)
= 〈c0,1〉ρδ(t− t′) + h(t− t′).

For the continuous part we first define the generator of time reversed process, LR, through
〈f(Lg)〉ρ = 〈(LRf)g〉ρ. Its exchange rates are given by

cRj,j+1(η) =
µρ(η

j,j+1)

µρ(η)
cj,j+1

(
ηj,j+1

)
.

Hence the current function across the bond (j, j + 1) equals

rj,j+1(η) = cj,j+1(η)(ηj − ηj+1) (3.2)

and the time-reversed current function equals

rRj,j+1(η) = cRj,j+1(η
j,j+1)(ηj − ηj+1).

They satisfy 〈rj,j+1〉ρ = −〈rRj,j+1〉ρ. Then

h(t) = −
〈(
rR0,1 − j(ρ)

)
eL|t|(r0,1 − j(ρ))

〉
ρ
. (3.3)



On Time Correlations for KPZ Growth in One Dimension 13

3.1 Reversible models

While our focus is on non-reversible models, it is still instructive to first explain how fractional
Brownian motion appears for reversible lattice gases. Then rRj,j+1 = rj,j+1(η) and the smooth
part h(t) simplifies to

h(t) = −〈c0,1(η)(η0 − η1)eL|t|c0,1(η)(η0 − η1)〉ρ,

see Appendix B. Since L is a symmetric operator in the Hilbert space L2({0, 1}Z, µρ), there
exists a spectral measure ν of finite mass such that

h(t) = −
∫ ∞
0

ν(dλ)e−λ|t|. (3.4)

In particular, h is monotonically increasing with h(0) = −〈c0,1(η)2(η0 − η1)2〉ρ and h(∞) = 0.
From hydrodynamic fluctuation theory [12, 13], one knows that S(j, t) broadens diffusively as

S(j, t) ' χ(Dt)−1/2fG
(
(Dt)−1/2j

)
(3.5)

with fG the standard Gaussian, D a diffusion constant depending on ρ, and the susceptibility

χ =
∑
j∈Z

S(j, 0).

Hence, using (3.5) for large t,∑
j∈Z
|j|S(j, t) ' χ(Dt)1/2

∫
R
dx|x|fG(x).

Now,

Var(J(t)) = 〈c0,1〉ρt+

∫ t

0
ds

∫ t

0
ds′h(s− s′).

The sum rule (3.1) implies a variance of order
√
t. Thus to cancel the leading behavior propor-

tional to t, one must have∫
R
dth(t) = −〈c0,1〉ρ.

Substituting in (3.1), one arrives at

χ

∫
R
dx|x|fG(x)(Dt)1/2 ' −2

∫ t

0
ds

∫ ∞
s

duh(u),

which implies

h(t) ' −c0t−3/2, c0 = 1
8D

1/2χ

∫
R
dx|x|fG(x). (3.6)

The current correlation is negative and decays as −|t|−3/2.
With this information, one can now determine the covariance of J(t),

Cov
(
J(t)J(τt)

)
= −

∫ t

0

∫ τt

0
dsds′

(∫
R
duh(u)δ(s− s′)− h(s− s′)

)
= −

∫ τt

0
ds

(
2

∫ ∞
s

ds′h(s′)−
∫ t−s

τt−s
ds′h(s′)

)
(3.7)

with 0 ≤ τ ≤ 1. We insert the asymptotics from (3.6) in the form −c0(c1 +Dt)−3/2. Then

Cov
(
J(t)J(τt)

)
'
(
1 + τ1/2 − (1− τ)1/2

)
(Dt)1/2χ

∫ ∞
0

dxxfG(x)

for large t, which one recognizes as the covariance of fractional Brownian motion with Hurst
parameter H = 1

4 .
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3.2 Non-reversible models, zero propagation speed

For reversible lattice gases the average current j(ρ) vanishes and a localized perturbation stays
centered, compare with (3.5). For non-reversible models the average current does not vanish, in
general. A small perturbation of the steady state will propagate with velocity v(ρ) = j′(ρ), which
generically will be non-zero. The correlator is centered at v(ρ)t. If v(ρ) 6= 0, then the sum rule
implies that Var(J(t)) ∼

√
t, indicating that J(t) will be close to a Brownian motion. Fractional

Brownian motion can be seen only when the current is integrated along the ray {x = v(ρ)t}. To
properly implement such a notion requires extra considerations, which will be explained in the
next subsection. For this part we assume v(ρ) = 0. For the ASEP j(ρ) = (p − q)ρ(1 − ρ) and
our condition holds only at ρ = 1

2 .

Secondly non-reversible models are in the KPZ universality class and the covariance is ex-
pected to scale as

S(j, t) ' χ(Γt)−2/3fKPZ

(
(Γt)−2/3j

)
(3.8)

with Γ = 1
2χ

2|j′′(ρ)| according to KPZ scaling theory [36]. From the sum rule (3.1), again we
infer that∫

R
dth(t) = −〈c0,1〉ρ

with h(t) given by equation (3.3). Thus, substituting (3.8), one arrives at

χ

∫
R
dx|x|fKPZ(x)(Γt)2/3 ' −2

∫ t

0
ds

∫ ∞
s

duh(u),

which implies

h(t) ' −c0t−4/3, c0 = 1
9Γ2/3χ

∫
R
dx|x|fKPZ(x). (3.9)

The current correlation is negative and decays as −|t|−4/3. The full covariance is obtained by
the same scheme as above, see (3.7), with the result

Cov
(
J(t), J(τt)

)
' 1

2

(
1 + τ2/3 − (1− τ)2/3

)
(Γt)2/3χ

∫
R
dx|x|fKPZ(x) (3.10)

valid for large t. We recognize the covariance of fractional Brownian motion with Hurst pa-
rameter H = 1

3 . Note that the Hurst exponent for the driven lattice gas is larger than the
reversible value 1

4 . Nevertheless, the process X stat(τ) is not a fractional Brownian motion, since
its one-point distribution is known to be non-Gaussian. The non-universal prefactors in (2.6)
and (3.10) look different. But they have to agree because of the sum rule (3.1). As explained
in Corollary A.6, their equivalence can also be verified directly from the definition.

Our argument is on less secure grounds than in the reversible case. Firstly, the scaling (3.8) of
the correlator is proved only for the TASEP. Even then, no spectral theorem in the form (3.4) is
available. But if for TASEP at density 1

2 the current correlator h(t) is assumed to be increasing,
then (3.10) holds in the limit t → ∞. In Section 4 we display the results of Monte Carlo
simulations for the TASEP at density 1

2 . They very convincingly confirm h(t) < 0, strict

increase, and −t−4/3 asymptotics, see Figs. 7 and 8. For density 1
2 the theoretically predicted

parameters are Γ =
√

2 and c0 = 0.02013 . . ..
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3.3 Non-reversible models, non-zero propagation speed

We first have to generalize the sum rule to a current integrated along the ray {x = vt}, where for
notational simplicity we assume v > 0. As a start-up this will be done for the more transparent
case of a continuum stochastic field u(x, t), which is stationary in time and, for each realization,
satisfies the conservation law

∂tu(x, t) + ∂xJ (x, t) = 0. (3.11)

The random current field J (x, t) is also space-time stationary. Without loss of generality we
assume E(u(x, t)) = 0, E(J (x, t)) = 0. (3.11) implies that (−u,J ) is a curl-free vector field
on R2. Thus there is a potential, resp. height function, defined by

h(y, t) =

∫ t

0
dsJ (0, s)−

∫ y

0
dxu(x, t), (3.12)

where y ≥ 0 in accordance with v > 0. h(y, t) does not depend on the choice of the integration
path. In particular, one can integrate along the ray {x = vt}. Then

h(vt, t) =

∫ t

0
ds
(
J (vs, s)− vu(vs, s)

)
.

Along the ray {x = vt} the current is given by s 7→ J (vs, s) − vu(vs, s), which is a stationary
process in s and integrates to h(vt, t).

As before, we define S(x, t) = Cov(u(x, t), u(0, 0)). Then the sum rule (3.1) generalises to

Var(h(y, t)) =

∫
dx|y − x|S(x, t)−

∫
dx|x|S(x, 0), (3.13)

see Appendix B. If S(x, t) is peaked at vt, then the variance of the time-integrated current with
end-point (vt, t) reflects the anomalous peak broadening.

For lattice gases the position space is discrete and one has to adjust the scheme. We denote
by Jj,j+1([t

′, t]) the current across the bond j, j + 1 integrated over the time-interval [t′, t]. The
height h(y, t), y ∈ Z+, is defined in analogy to (3.12) as

h(y, t) = J0,1([0, t])−
y∑
j=1

ηj(t).

The path from (0, 0) to (0, t) to (y, t) is deformed into a staircase with step width 1. Then

h(y, 1vy) =

y∑
j=1

Xj , Xj = Jj−1,j
([

1
v (j − 1), 1v j

])
− ηj

(
1
v j
)
.

{Xj , j ∈ Z} is a stationary process and sums up to h(y, 1vy).

The sum rule (3.13) remains valid in the form

Var(h(y, t)) =
∑
j∈Z
|j − y|S(j, t)−

∑
j∈Z
|j|S(j, 0).

The covariance has the scaling form

S(j, t) ' χ(Γt)−2/3fKPZ

(
(Γt)−2/3(j − v(ρ)t)

)
. (3.14)
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Now all pieces are assembled. In the definition of Xj we set v = v(ρ). Then the sum rule yields∑
j∈Z

Cov(X0, Xj) = 0,

and using the scaling form (3.14) of S(j, t) one arrives at

Cov(X0, Xj) ∼ −|j|−4/3

for large |j|. Then as before one concludes that

Cov
(
h(v(ρ)t, t), h(v(ρ)τt, τ t)

)
' 1

2

(
1 + τ2/3 − (1− τ)2/3

)
(Γt)2/3χ

∫
R
dx|x|fKPZ(x)

in the scaling regime.

Considering arbitrary space-time rays provides a more complete picture of the current fluc-
tuations than merely considering the current across the origin. There is a special direction of
slope v(ρ)−1, along which the covariance is the same as that of fractional Brownian motion with
Hurst parameter H = 1

3 . For any v 6= v(ρ), the time-integrated current behaves like a Brownian
motion.

4 Numerical simulations

To have numerical support of our results we rely on Monte Carlo simulations. As for most of
the theory part, we consider the TASEP at density 1

2 . From previous works [24] it is known
already that the one-point distribution of the rescaled time-integrated current converges quite
fast to the asymptotically proven GUE/GOE Tracy–Widom distributions. Thus similar good
convergence is expected for the covariance and the current-current correlation.

In the first set of simulations, we consider the three initial conditions discussed in Section 3
and run the process until time tmax = 104. We measure the vector of the integrated current at
the origin J(τtmax) for τ ∈ {1/100, 2/100, . . . , 99/100, 1}. We then rescale the current process
as (2.2) and compute numerically the covariance. To facilitate the comparison of the different
initial conditions, we divide by the value at τ = 1. Therefore in the figures below we plot

τ 7→ Cov(X �(τ),X �(1))/Var(X �(1)).

Since tmax = 104 is large but not equal to infinity, we computed for comparison the same
quantities for tmax = 103 and plotted the numbers with a red dot. For the step and periodic
initial conditions we compute the numerical fit in the first and the last 10 of data according to
the scaling exponent derived heuristically in Section 3.

Step initial conditions

For step initial conditions, the number of Monte Carlo trials is 2×106 for tmax = 103 and 6×105

for tmax = 104. The fit functions in Fig. 4 are τ 7→ 0.65τ2/3 and τ 7→ 1 − cstep(1 − τ)2/3 −
0.21(1− τ).

Periodic initial conditions

For periodic initial conditions, the number of Monte Carlo trials is 106 for tmax = 103 and 4×105

for tmax = 104. The fit functions in Fig. 5 are τ 7→ 0.97τ4/3 and τ 7→ 1−cflat(1−τ)2/3−0.23(1−τ).
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Figure 4. Plot of τ 7→ Cov(X step(τ),X step(1))/Var(X step(1)). The top-left (resp. right-bottom) inset is

the log-log plot around τ = 0 (resp. τ = 1).

Figure 5. Plot of τ 7→ Cov(X flat(τ),X flat(1))/Var(X flat(1)). The top-left (resp. right-bottom) inset is

the log-log plot around τ = 0 (resp. τ = 1).

Stationary initial conditions

For periodic initial conditions, the number of Monte Carlo trials is 3×105 for tmax = 103 and 105

for tmax = 104. The fit functions in Fig. 6 is obtained from (3.10) by normalization, namely
τ 7→ 1

2(1 + τ2/3 − (1− τ)2/3).
For the stationary initial conditions, we also simulated the current-current correlations. To

measure its smooth part h(t), defined in (3.3), the TASEP is run up to time t = 50 with 50×106

Monte Carlo trials. The results are displayed in Figs. 7 and 8. The predicted power law of t−4/3,
including its prefactor, is convincingly confirmed.

A Scaling functions and limiting distributions

We recall the definitions of the GUE/GOE Tracy–Widom and the Baik–Rains distribution
functions as well as the scaling function fKPZ used for the two-point function.

Definition A.1. The GUE Tracy–Widom distribution function is defined by

FGUE(s) = det(1−K2,s)L2(R+) =
∑
n≥0

(−1)n

n!

∫
R+

dx1 · · ·
∫
R+

dxn det [K2,s(xi, xj)]1≤i,j≤n

with the kernel K2,s(x, y) =
∫
R+
dλAi(x+ s+ λ)Ai(y + s+ λ).
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Figure 6. Plot of τ 7→ Cov(X stat(τ),X stat(1))/Var(X stat(1)). The top-left inset is the log-log plot

around τ = 0 and the right-bottom inset is the log-log plot around τ = 1. The fit is made with the

function τ 7→ 1
2 (1 + τ2/3 − (1− τ)2/3).

Figure 7. The smooth part of the current-current correlations for TASEP. We plot −h(t) and the

theoretical large time behavior (3.9), namely 0.02013 · t−4/3.

Figure 8. Log-log plot of the smooth part of the current-current correlation for TASEP.

Definition A.2. The GOE Tracy–Widom distribution function is defined by

FGOE(s) = det(1−K1)L2(R+) =
∑
n≥0

(−1)n

n!

∫
R+

dx1 · · ·
∫
R+

dxn det [K1,s(xi, xj)]1≤i,j≤n

with the kernel K1,s(x, y) = Ai(x+ y + s).
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Definition A.3. The Baik–Rains distribution function is defined by

FBR(s) =
∂

∂s
(FGUE(s)g(s)),

where g(s) is given as follows

g(s) = s+

∫
R2
+

dxdyAi(x+ y + s)−
∫
R2
+

dxdyΦs(x)(1− P0K2,sP0)
−1(x, y)Ψs(y),

where Ps is the projection onto (s,∞) and

Φs(x) =

∫
R+

dyK2,s(x, y), Ψs(y) = 1−
∫
R+

dxAi(x+ y + s).

Definition A.4. The KPZ scaling function fKPZ is defined by

fKPZ(w) =
1

4

∂2

∂w2

∫
R
s2dFw(s),

where

Fw(s) =
∂

∂s

(
FGUE

(
s+ w2

)
g
(
s+ w2, w

))
,

where g(s, w) is given by

g(s, w) = e−w
3/3

(∫
R−

dxdyew(x+y)Ai(x+ y + s) +

∫
R2
+

dxdyΦw,s(x)ρs(x, y)Ψw,s(y)

)
.

Here, ρs(x, y) = (1− P0K2,sP0)
−1(x, y), and

Φw,s(x) =

∫
R−

dzew(z+s)K2,s(z, x), Ψw,s(y) =

∫
R−

dzewzAi(y + z + s).

The scaling function fKPZ(w) is even with
∫
R dwfKPZ(w)|w| = 0.287599 . . .. Remark that

g(s, 0) = g(s).
Here is another identity that allows us to compare the two formulas obtained for the stationary

case.

Lemma A.5. It holds∫
R
dx|x|fKPZ(x) =

1

2
Var(ξBR).

Proof. Using the above definitions and the fact that fKPZ is an even function, we have∫
R
dx|x|fKPZ(x) =

1

2

∫ ∞
0

dxx
∂2

∂x2

∫
R
dss2

∂2

∂s2
(
FGUE

(
s+ x2

)
g
(
s+ x2, x

))
=

1

2

∫
R
dss2

∂2

∂s2

∫ ∞
0

dxx
∂2

∂x2
(
FGUE

(
s+ x2

)
g
(
s+ x2, x

))
=

1

2

∫
R
dss2

∂2

∂s2
FGUE(s)g(s, 0) =

1

2
Var(ξBR),

where in the third step we use integration by parts twice and in the last step the fact that
E(ξBR) = 0. �
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Corollary A.6. For the stationary TASEP, the prefactors in (2.6) and (3.10) are identical.

Proof. For TASEP with stationary initial conditions and density 1/2, the parameters in (3.10)
are χ = 1/4 and Γ =

√
2. Rescaling h(0, t) = J(t) as in (2.2) we get from (3.10)

Cov
(
X stat(τ),X stat(1)

)
=

1

2

(
1 + τ2/3 − (1− τ)2/3

)
28/3Γ2/3χ

∫
R
dx|x|fKPZ(x)

=
1

2

(
1 + τ2/3 − (1− τ)2/3

)
Var(ξBR) = (2.6),

where we used Lemma A.5 in the second equality. �

B Sum rule and current-current correlations

B.1 The sum rule

We prove that

Var(h(y, t)) =
∑
j∈Z
|j − y|S(j, t)−

∑
j∈Z
|j|S(j, 0).

We use the definition (3.12). Expanding out the square yields the terms (I), (II), and (III). Let
us introduce the short hand

∑
j∈Z

gjηj(t) = η(g, t) and correspondingly
∑
j∈Z

fjJj,j+1(t) = J(f, t).

By the conservation law,

Cov(η(f, t), η(g, t)) = Cov
(
J
(
∂T∂f, t

)
, J(g, t)

)
with (∂f)j = fj+1 − fj .

Choosing gj = δ0j and fj = |j|, hence (∂T∂f)j = −2δ0j , one arrives at

(I) = Var(J0,1(t)) = 1
2

∑
j∈Z
|j|
(
S(j, t) + S(−j, t)− 2S(j, 0)

)
,

where we used stationarity in j. Next we consider the cross term starting from

Cov(η(f, t), η(g, 0)) = −Cov
(
J(f, t), η

(
∂Tg, 0

))
.

Choosing fj = δjy and −∂Tg as the indicator function of [1, . . . , y] yields

(II) = −2Cov(Jy,y+1(t), η(∂Tg, 0)) = 2
∑
j∈Z

gj
(
S(y − j, t)− S(y − j, 0)

)
.

Finally

(III) =

y∑
j=1

y∑
i=1

S(j − i, 0).

Summing all three terms establishes the claim.
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B.2 Current-current correlation

One can think of jj,j+1(t) as a point process with weights ±1. Then the covariance has a self-part,
proportional to δ(t − t′), and a continuous part. Such a decomposition holds also for current
correlations. We first consider the self-part and introduce the short hands qj = ηj(1 − ηj+1),
q̄j = (1− ηj)ηj+1, qj(η(t)) = qj(t), Jj,j+1([s, t]) = Jj,j+1(t)− Jj,j+1(s) for 0 ≤ s < t. Note that
qj − q̄j = ηj − ηj+1. Then

lim
δ→0

δ−1E
(
Ji,i+1([t, t+ δ])Jj,j+1([t, t+ δ])

)
= lim

δ→0
δ−1E

(
(qi(t)q̄i(t+ δ)− q̄i(t)qi(t+ δ))(qj(t)q̄j(t+ δ)− q̄j(t)qj(t+ δ))

)
= 〈qiqjLq̄iq̄j + q̄iq̄jLqiqj − qiq̄jLq̄iqj − q̄iqjLqiq̄j〉ρ = δi,j〈cj,j+1〉ρ.

By the same method the continuous part is obtained as

lim
δ→0

δ−2E
(
Ji,i+1([s, s+ δ]Jj,j+1([t, t+ δ])

)
= lim

δ→0
δ−1E

(
(qi(s)q̄i(s+ δ)− q̄i(s)qi(s+ δ))eL(t−s−δ)rj,j+1(η(s+ δ))

)
=
〈
(ηi − ηi+1)ci,i+1(e

L(t−s)rj,j+1)(η
j,j+1)

〉
ρ

= −
〈
rRi,i+1e

L(t−s)rj,j+1

〉
ρ
.

Here rRi,i+1 is the reverse current defined by

rRj,j+1(η) =
µs(η

j,j+1)

µs(η)
cj,j+1

(
ηj,j+1

)
(ηj − ηj+1).

Hence

E
(
ji,i+1(s)jj,j+1(t)

)
= 〈cj,j+1〉ρδi,jδ(s− t)−

〈
rRi,i+1e

L(t−s)rj,j+1

〉
ρ
.

In particular,

Cov
(
j(s), j(t)

)
= E

(
j(s)j(t)

)
− j(ρ)2 = 〈c0,1〉ρδ(s− t) + h(s− t),

where

h(t) = −
〈(
rR0,1 − j(ρ)

)
eL|t|(r0,1 − j(ρ))

〉
ρ
.
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[7] Borodin A., Corwin I., Ferrari P., Vető B., Height fluctuations for the stationary KPZ equation, Math. Phys.
Anal. Geom. 18 (2015), Art. 20, 95 pages, arXiv:1407.6977.

[8] Borodin A., Ferrari P.L., Large time asymptotics of growth models on space-like paths. I. PushASEP,
Electron. J. Probab. 13 (2008), no. 50, 1380–1418, arXiv:0707.2813.

[9] Borodin A., Ferrari P.L., Prähofer M., Sasamoto T., Fluctuation properties of the TASEP with periodic
initial configuration, J. Stat. Phys. 129 (2007), 1055–1080, math-ph/0608056.

[10] Borodin A., Gorin V., Lectures on integrable probability, arXiv:1212.3351.

[11] Burke P.J., The output of a queuing system, Operations Res. 4 (1956), 699–704.

[12] Chang C.-C., Equilibrium fluctuations of gradient reversible particle systems, Probab. Theory Related Fields
100 (1994), 269–283.

[13] Chang C.-C., Equilibrium fluctuations of nongradient reversible particle systems, in Nonlinear Stochastic
PDEs (Minneapolis, MN, 1994), IMA Vol. Math. Appl., Vol. 77, Springer, New York, 1996, 41–51.

[14] Corwin I., The Kardar–Parisi–Zhang equation and universality class, Random Matrices Theory Appl. 1
(2012), 1130001, 76 pages, arXiv:1106.1596.
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