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1 Introduction

This paper is the second one of our twin contributions to the “Special Issue on Tensor Models,
Formalism and Applications” of the SIGMA journal. In our first paper [49] the physical mo-
tivations behind the tensor models and their connection to quantum gravity are discussed. So
we advise strongly the reader not already familiar with tensor models and their relationship to
quantum gravity to read [49] first, as we shall not duplicate the corresponding material here, but
provide below only a minimal introduction to tensor models. We shall discuss in detail in this
paper only the constructive program for (Euclidean) random tensor models of general rank d,
which include as special cases vector (rank 1) and matrix (rank 2) models. For other aspects
of the burgeoning study of random tensor models and their associated field theories we refer to
the other contributions to the special SIGMA issue as well.

Tensor models were introduced as promising candidates for an ab initio quantization of gravity
[3, 4, 24, 57]. Indeed they are combinatorial objects which do not refer to any background space-
time, nor even to any background topology. However such tensors were initially introduced as
symmetric in their indices, a feature which for a long time prevented to investigate them with
rigorous analytic methods. In particular in contrast with the famous ’t Hooft 1/N expansion
for random matrix models, there was no way to probe the large N limit of such symmetric
random tensors at rank d ≥ 3. The modern reformulation [12, 27, 30, 34] unlocked the theory
by considering unsymmetrized random tensors. These objects have a larger, truly tensorial
symmetry (typically in the complex case a U(N)⊗d symmetry at rank d instead of the single U(N)
of symmetric tensors). This larger symmetry allows to probe their large N limit through 1/N
expansions of a new type [10, 11, 26, 28, 31].

Random tensor models can be further divided into fully invariant models, in which both
propagator and interaction are invariant, and tensor field theories (hereafter TFT) in which
the interaction is invariant but the propagator is not [7]. This propagator can also incorporate
a further gauge invariance to make contact with group field theory [14, 15], in which case one
calls them tensor group field theories (TGFT).

?This paper is a contribution to the Special Issue on Tensor Models, Formalism and Applications. The full
collection is available at http://www.emis.de/journals/SIGMA/Tensor Models.html
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We restrict ourselves in this paper to the relatively simple case of models with a quartic
interaction, for which the typical constructive task is to prove Borel summability of the free
energy or of the connected Schwinger functions on the “stable side” of the coupling constant.
To be non-trivial and physically interesting, such Borel summability theorems should be either
uniform in N , the size of the tensor, for tensor models, or uniform in the ultraviolet cutoff, hence
include renormalization, for TFTs or TGFTs.

Our review starts with a section on general mathematical prerequisites: quartic tensor models,
Nevanlinna theorem [58] and the intermediate field representation (IFR) plus key combinatorial
constructive tools, namely the forest and jungle formulas [2, 13]. The next section presents
three specific constructive methods adapted to tensor models: the loop vertex expansion (LVE),
which is a combination of the intermediate field representation and of the forest formula first
introduced in [46]; the multiscale loop vertex expansion (MLVE), which is a combination of the
intermediate field representation and of a level-2 jungle formula with a bosonic and a fermionic
part first introduced in [32]; and iterated Cauchy–Schwarz bounds (ICS bounds), introduced in
this context in [43] and [18], for which we provide here a slightly improved version.

Then in the last section we review the recent Borel summability results on tensor models in
increasing order of difficulty. The quartic melonic tensor model in any d [29] requires a simple
LVE and no ICS bounds. This is also the case for the melonic U(1)−T 4

3 TGFT [38]. The general
quartic tensor model in any d requires a LVE plus ICS bounds [18]. The melonic U(1) − T 4

4

TGFT requires an MLVE but still no ICS bounds [39]. Finally the melonic T 4
3 TFT requires

both MLVE and ICS bounds [19]. We discuss also briefly the case of matrix models, for which
the LVE has to be completed by an additional topological expansion in order to identify the 1/N
expansion of the model in a non-perturbative way up to finite genus g [35].

The world of tensor models and field theories is extremely vast, as tensor interactions encode
infinitely many triangulations of any piecewise linear manifold in any dimension and of a large
class of pseudo-manifolds. It also includes in particular any matrix model, not only invariant
ones, but also non-commutative field theories such as the Grosse–Wulkenhaar model which we
shall discuss briefly too. The constructive program to explore all these models at the rigorous
non-perturbative level has clearly just started. However a rich harvest of non-perturbative
Borel-summability results has already been obtained for tensor field theories. Such constructive
results essentially have no counterpart yet in the other approaches to quantum gravity. This is
very promising for the tensor track towards quantum gravity [47]. In our conclusion we indicate
what could be the next steps of this constructive program.

2 Mathematical prerequisites

2.1 Quartic tensor models

For a general introduction to tensor models we refer to [34]. We simply recall in this subsection
the notations required for the quartic models discussed thereafter, following roughly [18].

For a complex rectangular random matrix M , called a Wishart matrix, the basic invariant
homogeneous of order 2p is unique. It is Tr(MM †)p. All other polynomial invariants are linear
combinations of products of these basic bricks. In particular there is only one1 matrix model with
a connected quartic interaction, namely TrMM †MM †. The situation is completely different in
the case of tensor models of higher rank d, as there are many more available interactions and in
particular many different invariant quartic interactions.

We consider a Hermitian inner product space V of dimension N and en, n = 1, . . . , N an
orthonormal basis in V . A covariant tensor of rank d is a multilinear form T : V ⊗d → C. We

1Of course there is another quartic “disconnected” interaction, namely [TrMM†]2. We shall not consider
further such “multi-trace” models here. See however [11].
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denote its components in the canonical dual tensor product basis by

Tn1...nd ≡ T(en1 , . . . , end), T =
∑

n1,...nd

Tn1...nde
n1 ⊗ · · · ⊗ end .

A priori Tn1...nd has no symmetry properties, hence its indices have a well defined position. We
call the position of an index its color, and we denote D the set of colors {1, . . . , d}. Subsets
C ⊂ D will be called generalized colors; singleton subsets identify with the ordinary colors.

Using the canonical identification of V with its dual thanks to the Hilbert scalar product,
we can also expand the dual tensor as a conjugated multilinear map T∨ with matrix elements
T̄n̄1...n̄d in the canonical dual basis. We write all the indices in subscript, and we denote the
contravariant indices with a bar. Indices are always understood to be listed in increasing order
of their colors. We denote δnCn̄C =

∏
c∈C

δncn̄c and TrC the partial trace over the indices nc, c ∈ C.

Under unitary base change, covariant tensors transform under the tensor product of d fun-
damental representations of U(N): the group acts independently on each index of the tensor.
For U (1) · · ·U (d) ∈ U(N),

T→
(
U (1) ⊗ · · · ⊗ U (d)

)
T, T∨ → T∨

(
U (1)∗ ⊗ · · · ⊗ U (d)∗).

In components, it reads

TaD →
∑
mD

U (1)
a1m1

· · ·U (d)
admd

TmD , T̄āD →
∑
m̄D

Ū
(1)
ā1m̄1

· · · Ū (d)
ādm̄d T̄m̄D .

A tensor invariant is a polynomial in the components of the tensor and its conjugate which is
invariant under this action of the external tensor product of d independent copies of the unitary
group U(N). Tensor invariants are linear combinations of products of connected invariants
(also called bubbles or generalized traces). Such connected invariants are built by contracting
indices of the same color of a product of tensor entries into a connected graph. Hence connected
invariants are in one to one correspondence with d-regular edge-colored bipartite connected
graphs [34] and can be enumerated quite precisely [6].

The unique quadratic trace invariant is the (scalar) Hermitian pairing of T∨ and T which
reads

T∨ ·D T =
∑
nDn̄D

T̄n̄1...n̄dδn̄DnDTn1...nd ,

In arbitrary rank d, the most general quartic connected trace invariants are associated to
non trivial generalized colors, i.e., to subsets C ⊂ D, C 6= ∅, C 6= D. The connected quartic
invariant VC is

VC(T
∨,T) = TrC

[[
T∨ ·D\C T

]
·C
[
T∨ ·D\C T

]]
,

where we denoted ·C the product of operators from V ⊗C to V ⊗C . In components this invariant
writes: ∑

n,n̄,m,m̄

(
T̄n̄δn̄D\CnD\CTn

)
δnCm̄Cδn̄CmC

(
T̄m̄δm̄D\CmD\CTm

)
.

Remark that the invariant for C is the same as for its complement D\C. Hence at rank D there
are exactly 2D−1−1 quartic trace invariants. The 7 invariants at rank d = 4 are shown in Fig. 1.

A generic quartic tensor model (with standard scaling and interaction set Q) is then defined
by the moments of the (invariant) perturbed Gaussian measure:

dµ =

(∏
n

ND−1dT̄ndTn
2ıπ

)
e
−ND−1

(
T∨·DT+λ

∑
C∈Q

VC(T∨,T)
)
, (2.1)
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Figure 1. The quartic invariants of rank 4 [18]: there are four types of “melonic” ones (one of them

shown left, the others being obtained by permuting the colors) and three types of “necklaces” (one of

them shown right, the others being obtained by color permutations).

where Q is some subset of Cs. The global scaling factor ND−1 for the action is the unique one
such that the model admits a non-trivial 1/N expansion [11, 34]. Of course more general models
can be considered by giving an independent coupling to each interaction, or by considering
dimensions Nc depending on the color, or by adding the disconnected interaction [T∨ ·D T]2,
but we shall not consider them here.

The “melonic” quartic models [18] are obtained by restricting the interactions to singletons,
so that Q = {C, |C| = 1} in (2.1). In other words interaction is restricted to the d quartic
melonic invariants, one for each color.

Quartic tensor field theories have the same interactions but a non-symmetric propagator.
The simplest such models are built around the Hilbert space V := L2(Z) and as in usual field
theory, the propagator is the inverse of a Laplacian operator plus a mass term

C(nD, n̄D) =
δnD,n̄D

d∑
j=1

n2
j +m2

. (2.2)

The melonic quartic TGFT at rank d with propagator (2.2) and a unique coupling constant λ
identical for each coupling is nicknamed T 4

d . We often further simplify the model by putting
m2 = 1.

Finally tensor group field theories are built around a more general space V := L2(G) where G
is a Lie group [14, 15] or homogeneous space [40], and their propagator incorporates a Boulatov
projector

C(nD, n̄D) =

δnD,n̄Dδ
( d∑
j=1

nj

)
d∑
j=1

n2
j +m2

, (2.3)

where the indices n now run over a basis of the dual Fourier space of L2(G), and n2
j is a sloppy

notation for the Laplace–Beltrami operator on G (see [14] for the case G = SU(2)). The melonic
quartic TGFT at rank d with propagator (2.3) and Lie group G will be nicknamed G− T 4

d . For
instance in the case G = U(1) the Hilbert space V is L2(Z) as in the previous case. We often
consider discrete tensor indices as momenta, and the equivalent representation with continuous
indices in Gd as the corresponding “direct space” representation.

2.2 Borel summability

The perturbative expansion in quantum field theory is obtained by performing a Taylor ex-
pansion of the interaction, and then illegally commuting the sum with the Gaussian integral to
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obtain a series indexed by Feynman graphs. Let us return in this section to ordinary quantum
field theory, since we want to discuss the relationship between functional integrals and their per-
turbative expansion in the traditional context before turning to tensor models. The ordinary φ4

d

theory in dimension d has propagator kernel

C(x, y) =

∫
ddpeip(x−y)

(
p2 +m2

)−1

and its partition function is

Z(λ) =

∫
dµC e

−λ
∫
ddxφ4(x) =

∞∑
n=0

(−λ)n

n!

∑
G

AG, (2.4)

where G runs over labeled Feynman graphs2 with n vertices. The Feynman amplitude of G is

AG =

∫ ∏
v∈V (G)

ddxv
∏

`∈E(G)

C(xv(`), xv′(`)),

where the index v runs over the set of n vertices of G, the index ` runs over edges of G and
(v(`), v′(`)) is the pair of end vertices of edge `. Of course such amplitudes may diverge if d ≥ 2
(see, e.g., [33] for a recent review).

Interesting quantum field theories have many degrees of freedom, in which case the important
physical quantities are intensive rather than extensive quantities, such as the specific free energy
and the connected functions or cumulants Gc2p. Therefore the important quantum field theory
quantity is not Z but its logarithm. In particular the connected Green functions are obtained
from the generating functional

W (J) = log[Z(λ, J)]

through

Gc2p(x1, . . . , x2p) =
∂2pW (J)

∂J1(x1) · · · ∂J2p(x2p

∣∣∣
J=0

,

where Z(λ, J) is defined by adding a source field J to the partition function

Z(λ, J) =

∫
dµC e

∫
ddxφ(x)J(x)−λ

∫
ddxφ4(x). (2.5)

Similarly the free energy p also is deduced from the logarithm of Z, with interaction restricted
to a finite volume Λ. One should divide by the volume cutoff Λ, and finally remove this cutoff,
hence p = lim

|Λ|→∞
1
|Λ| logZΛ(λ).

The most important property of the perturbative expansion is that it allows for a quick
computation of such physical connected quantities. They are indeed given by the same sums
as (2.4), with the same amplitudes, but restricted to connected graphs. For instance the free
energy is given in perturbation theory by a sum identical to (2.4) but restricted to connected
rooted Feynman vacuum graphs, in which for each graph a particular root vertex has been fixed
to the origin. This rule accounts for the need to break the translation invariance of the theory
and divide by the volume. Most of the time in this review we shall consider for simplicity only
this free energy.

2Labeled Feynman graphs can be considered as defined by Wick contractions of labeled fields belonging to
labeled vertices. Hence we shall avoid in this brief review the subtle issue of automorphim groups of graphs and
of their corresponding symmetry factors.
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Perturbative series typically diverge. In particular for d = 0, in which AG is 1 for any G, there
are (4n− 1)!! labeled Feynman graphs with n vertices, hence the perturbative series for Z(λ) is

∞∑
n=0

(−λ)n

n!
(4n− 1)!! =

∞∑
n=0

(−λ)n

n!

(4n)!

22n(2n)!
,

which has zero radius of convergence. Up to dimension d ≤ 3 the renormalized φ4 series can be
shown rigorously to also have zero radius of convergence [17, 36], and it is believed to be also
true for d = 4, although, to our knowledge, there is no proof of this, and the best result in this
direction remains the quite old reference [16].

In the quantum field theory literature we often read that “since the perturbation series
diverges it can be asymptotic at best”, and that “perturbation theory cannot capture non-
perturbative effects, such as instantons”. Such statements are both confusing and mathemati-
cally wrong.

First, asymptoticity of a series is a very weak notion which has nothing to do with its
convergence. Every power series, no matter how convergent or horribly divergent, is asymptotic
to infinitely many smooth functions of a real-variable. Hence an asymptotic series never encodes
the full information about such a function without additional conditions. The typical example is
the function f(λ) = 0 for λ ≤ 0 and f(λ) = e−

1
λ for λ > 0 whose asymptotic series at λ = 0 is 0,

the most convergent of all series. It certainly does not encode the information to reconstruct f .

Second, as we shall clarify below, in the case of a Borel summable series, all the information
contained in the functional integral (including any non-perturbative effect) is in fact entirely
contained in the coefficients of the perturbative series. It is simply difficult to extract in practice.

To correctly relate a function to its power series, the key is to impose an analyticity condi-
tion, hence to consider functions of a complex variable. Analyticity is a very strong and rigid
condition. For instance the function 0 is the only one asymptotic to the 0 series in the class of
functions analytic in an open neighborhood of the expansion point.

Fortunately analyticity is a common feature in quantum field theory. The partition func-
tion (2.4) is usually analytic in a non-empty domain of the coupling constant. It is certainly
analytic for <λ > 0 in dimension d = 0, or if we include volume and ultra-violet cutoffs,
since in this case the functional integral is uniformly convergent. For |λ| sufficiently small this
analyticity extends to logZ, since Z is close to 1 and its logarithm well-defined; note however
that the domain of analyticity for logZ typically shrinks as cutoffs are removed.

In the super-renormalizable domain for φ4, namely in dimension 2 or 3, the point λ = 0
belongs to the boundary of the analyticity domain for the renormalized free energy [17, 36].
Nevertheless the functional integral (2.4) can be fully recovered from the perturbative series
through Borel summability [21, 44]. The most useful Borel summability theorem for quantum
field theory is due to Nevanlinna (1919) and was rediscovered by A. Sokal:

Theorem 2.1 (Nevanlinna–Sokal [58]). A function f(λ) with λ ∈ C is said to be Borel summable
in λ if

• f(λ) is analytic in a disk DR :=
{
λ | <

(
λ−1

)
> R−1

}
with R ∈ R+.

• There exists some constants K and σ such that f(λ) expands at the origin with uniform
Taylor remainder bounds in the disk DR

f(λ) =
n−1∑
k=0

fkλ
k +Rn(λ), |Rn(λ)| ≤ Kσnn!|λ|n.
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R

Figure 2. A disk for Nevanlinna’s theorem.

If f(λ) is Borel summable in λ then

B(t) =
∞∑
k=0

1

k!
fkt

k

is an analytic function for |t| < σ−1 which admits an analytic continuation in the strip {z | |=z| <
σ−1} such that |B(t)| ≤ Bet/R for some constant B and f(λ) is given by the absolutely convergent
integral

f(λ) =
1

λ

∫ ∞
0

dtB(t)e−
t
λ .

That is the Taylor expansion of f(λ) at the origin is Borel summable, and f(λ) is its Borel
sum. The set

{
λ | <

(
λ−1

)
> R−1, R ∈ R+

}
is a disk in the complex plane with center at R

2 and

of radius R
2 (see Fig. 2) as, denoting λ = R

2 + aeıγ ,

<
(
λ−1

)
> R−1 ⇔ R2

4
> a.

The important remark is that Borel summability provides a uniqueness criterion: if a power
series with coefficients an is the Taylor expansion of a Borel summable function f(λ) at λ = 0,
then f is uniquely defined by the list of an. This is the case for the partition function of
the φ4

d model with finite cutoffs, and also for the connected functions without cutoffs after
renormalization in the super-renormalizable domain d ≤ 3 [21, 44]. It is also the case for the
“infrared” limit of φ4

4 with fixed ultraviolet cutoff and at the critical point, which is a just
renormalizable marginal theory asymptotically free in the infrared direction [22].

When Borel summability holds, the perturbative expansion in fact contains (although in
a quite hidden manner) all information about the functional integral, including instanton effects
to all orders, since a good definition of these instantons is that they occur as discontinuities
between different branches of analytic continuation of the functional integral [8]. Of course
such effects are very difficult to extract in practice from the perturbative coefficients, because
analytic continuation of a function defined by its Taylor germ at a point is typically very difficult.

In summary Borel summability is a key step for the construction of a quantum field theory
model, since when it holds, it defines a unique analytic germ synthesizing Feynman’s two great
ideas: the functional integral and the Feynman graphs. It does not solve all physical issues, such
as computing the long range behavior of the model and its bound states, but it renders such
questions at least mathematically well-defined.

2.3 Intermediate field representation (IFR)

Any quartic (i.e., four-body) interaction can be decomposed as the gluing of two more ele-
mentary three body-interactions, by splitting the vertex through a so-called intermediate field.
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Figure 3. The cardioid domain.

This method (usually called Hubbard–Stratonovic transformation in condensed matter, and
Matthews–Salam representation in high energy physics) has been extremely fruitful in physics.
In the case of the ordinary φ4 theory defined by (2.5), with a slightly more adapted normalization
for the coupling λ, it consists in writing

e−
λ
2

∫
ddxφ4(x) =

∫
dν(σ)ei

√
λ
∫
ddxφ2(x)σ(x),

where dν is the normalized Gaussian measure with “ultralocal” covariance kernel δ(x− y). The
functional integral over φ becomes Gaussian, hence can be explicitly performed, leading to

Z(λ, J) =

∫
dν(σ) e〈J,C

1/2R(σ)C1/2J〉e−
1
2

Tr log(1−i
√
λC1/2σC1/2),

where we used operator notation. σ is a local multiplication operator, diagonal in direct space,
C1/2 is the square root in operator sense of the positive operator C, hence is not diagonal
in direct space3. 1 means the identity operator (with kernel δ(x − y) in direct space), and
TrK =

∫
ddxK(x, x) simply means integration of the diagonal part of a kernel K. Finally the

resolvent R(σ) is given by

R(σ) =
[
1− i

√
λC1/2σC1/2

]−1
,

and for any σ and any λ real positive it is a well defined operator norm-bounded by 1. More
precisely a moment of investigation reveals that the useful natural domain of definition and
analyticity in the λ complex plane for such a resolvent is a cardioid, pictured in Fig. 3.

This cardioid is defined, in polar coordinates λ = ρeiφ, ρ > 0, φ ∈]−π, π[ by the inequality
ρ < [cos(φ/2)]2. Indeed under this condition we have that R(σ) is a well defined operator
norm-bounded by [cos(φ/2)]−1. In expansion steps of the resolvents such as

R(σ) = 1 + i
√
λC1/2σC1/2R(σ)

the bad factor [cos(φ/2)]−1 for ‖R‖ will be always compensated by a good factor
√
ρ < cos(φ/2)

coming from the
√
λ numerator. Remark that any cardioid domain contains a Nevanlinna disk

of the type shown in Fig. 2.

3Cyclicity of the trace means we can also freely replace the operator C1/2σC1/2, by Cσ or σC, leading to
slightly shorter formulas, but this would be unwise as Hermiticity would no longer be visible.
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Figure 4. An intermediate field propagator (dashed line), a loop vertex (circle, here with 3 corners

or arcs and 3 intermediate field half-propagators) and a ciliated loop vertexwith 4 intermediate field

half-propagators and five arcs/corners.

Figure 5. A 2-point graph in the intermediate field theory, here of order 8, has a single ciliated loop

vertex.

Just like the ordinary representation, the IFR has an associated perturbation theory, ob-
tained by expanding the exponential of the (non-polynomial) interaction V = 1

2 Tr log
(
1 −

i
√
λC1/2σC1/2

)
as

e−V =
∞∑
n=0

(−V )n

n!
,

then commuting (again illegally!) integration with respect to dν and Gaussian integration over σ,
leading to

Z(λ) = 1 +

∞∑
n=1

(−1)n

n!

[
e

1
2

∫
ddx δ2

δσ(x)2 V (σ)n
]
σ=0

.

An intermediated field propagator is represented in Fig. 4 below by a dashed line, which
corresponds to the (ultra-local) covariance of a σ intermediate field. The interaction V =
1
2 Tr log

(
1− i

√
λC1/2σC1/2

)
is non polynomial, but since Tr log 1 = 0, it appears in the pertur-

bative expansion only through its functional derivatives which we call loop vertices. In contrast
with the original φ4 vertices, such loop vertices have arbitrary coordination q ≥ 1, and bear the
initial propagators of the theory on their q corners or arcs.

Several interesting remarks are in order. The IFR exchanges the traditional role of propaga-
tors and vertices. The IFR loop vertices are non-local, as they contain the propagators of the
ordinary theory. The IFR propagators in contrast are local as they correspond to the vertices of
the ordinary theory. An even deeper remark is that the cyclic character of the trace allows for
an embedding of the graphs in the plane, so that the Feynman graphs of the IFR should really
be considered as combinatorial maps.

Finally it is easy to add sources to the picture. Any connected function of order 2p is obtained
by the same expansion in which we add to the ordinary loop vertices p particular ciliated loop
vertices [29]. The cilium of the j-th ciliated vertex means a cut with two different external
variables xj , xj+1 for j = 1, . . . , p on both sides of the cilium. Apart from the cut, ciliated
vertices are similar to loop vertices and bear propagators on each of their corners.
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The 2p-point functions of the theory become sums over Feynman graphs of the intermediate
representation with exactly p ciliated vertices, as shown in Fig. 5. The order of perturbation is
simply the number of dashed lines.

2.4 The forest formula

A forest formula expands a quantity defined on n points in terms of forests built on these points.
Forest formulas, provided they have a positivity property are the key combinatorial component
of constructive field theory and were developed systematically in particular by Brydges, Battle
and Federbush. The most beautiful such formula is symmetric under action of the permutation
group on the n points. It was discovered in [13] and developed with alternative proofs in [2]4.

Consider n points which we identify with the set Vn of vertices of the complete graph Kn;
the set of pairs of such points has n(n − 1)/2 elements ` = (i, j) for 1 ≤ i < j ≤ n and can be
identified with the set En of edges ` of Kn. The forest formula is often presented as a Taylor
expansion for functions f of n(n− 1)/2 variables x`, ` ∈ En which are smooth, e.g., on an open
neighborhood of [0, 1]n(n−1)/2. Here we expose a variant borrowed from [33] close to constructive
applications.

Consider the vector space Sn of symmetric n by n matrices X = {Xij}, i, j = 1, . . . , n. It has
dimension n(n+1)/2. The set PSn of positive symmetric matrices whose diagonal coefficients are
all equal to 1 and off-diagonal elements are between 0 and 1 is compact and convex. Symmetric
matrices with diagonal elements equal to one and off-diagonal elements in [0, 1]n(n−1)/2 do not

all belong to PSn, for instance the matrix

1 1 0
1 1 1
0 1 1

 is not positive. Any matrix X ∈ PSn

can be parametrized by n(n − 1)/2 elements X`, where ` runs over the edges of the complete
graph Kn.

PSn contains as particularly interesting elements the block matrices XΠ for any partition Π
of Vn. The block matrix XΠ has entries XΠ

ij = 1 if i and j belong to the same block of the
partition Π, and 0 otherwise. Two extremal cases are the identity matrix Id, corresponding
to Xsing, that is to the maximal partition made of all singletons, and the matrix 1 with all
entries equal to one, corresponding to XVn , that is to the minimal partition made of a single
block.

Let us consider a function f defined and smooth in the interior of PSn with continuous
extensions (together with all their derivatives) to PSn itself. The forest formula can be expressed
as a multi-variate Taylor formula with integral remainder which expands such a function between
the minimal and maximal block-partition matrices 1 and Id. The important point is that the
Taylor remainder integrands stay on the PSn convex set. The precise statement is

Theorem 2.2 (the forest formula).

f(1) =
∑
F

∫
dwF ∂Ff

[
XF (wF )

]
,

where

• the sum over F is over forests over n labeled vertices i = 1, . . . , n, including the empty
forest with no edge. Such forests are exactly the acyclic edge-subgraphs of the complete
graph Kn,

4Non-symmetric versions appeared earlier in the constructive literature, but won’t be treated here (see [50] for
a recent reference).
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•
∫
dwF means integration from 0 to 1 over one parameter for each forest edge:

∫
dwF ≡∏

`∈F

∫ 1
0 dw`. There is no integration for the empty forest since by convention an empty

product is 1. A generic integration point wF is therefore made of |F| parameters w` ∈ [0, 1],
one for each ` ∈ F ,

• ∂F =
∏
`∈F

∂` means a product of first-order partial derivatives with respect to the vari-

ables X` corresponding to the edges of F . Again there is no such derivatives for the empty
forest since by convention an empty product is 1,

• XF (wF ) is defined by XFii (wF ) = 1 ∀ i, and for i 6= j, XFij (wF ) is the infimum of the w`
parameters for ` in the unique path PFi→j from i to j in F , when such a path exists. If no
such path exists, which means that i and j belong to different connected components with
respect to the forest F , then by definition XFij (wF ) = 0,

• the symmetric n by n matrix XF (wF ) defined in this way is positive, hence belongs to PSn,
for any value of wF .

Since X∅ = Id, the empty forest term in (2.2) is f(Id), hence (2.2) indeed interpolates f
between 1 and Id, staying on PSn as announced.

Proof. We would like to add a new proof to the seven proofs of [1], hence a new item among the
1001 proofs which should exist according to that reference. We thank D. Brydges for suggesting
this proof.

We recall first Kruskal’s greedy algorithm [37]. Consider a fixed connected graph G, possibly
with self-loops and multiple edges. For any Hepp sector σ, hence any complete ordering of the
edges of G, this algorithm defines a unique particular “leading tree” T (σ), which minimizes∑
`∈T

σ(`) over all trees of G, where σ(`) is the order of ` in σ. We call T (σ), the leading tree

for σ. The algorithm simply picks the first edge `1 in σ (i.e., whose order σ(`) is minimum)
which is not a self-loop. Then it picks the next edge `2 in σ that does not add a cycle to the
(usually disconnected) graph with vertex set V and edge set `1 such that the order σ(`2) is
minimal among edges with this property, and so on. Another way to explain the algorithm is
through a deletion-contraction recursion: following the ordering of the sector σ, every edge is
either deleted if it is a self-loop or contracted if it is not. The set of contracted edges is exactly
the leading tree T (σ).

Returning to the proof of the forest formula, we first bluntly develop the function f at first
order with integral remainder over all its parameters, hence over all edges of the complete
graph Kn. The result is simply in notations compatible with Theorem 2.2

f(1) =
∑
S⊂Kn

∫
dwS ∂Sf

(
Y S(wS)

)
,

where Y S
` (wS) is simply w` if ` ∈ S and 0 if ` 6∈ S.

Now for a given S we decompose the wS integrals according to all Hepp sectors of S

f(1) =
∑
S⊂Kn

∑
σ

∫
σ
dwS ∂Sf

(
Y S(wS)

)
,

and regroup all terms according to the leading forest F(S, σ) which is made of the leading
Kruskal tree in each connected component Sj of S for the order on Sj induced by σ. In this way
we get

f(1) =
∑
F

∑
S⊂Kn,σ
F(S,σ)=F

∫
σ
dwS ∂Sf

(
Y S(wS)

)
. (2.6)
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Now to analyze the result for a fixed F we remark that any edge ` ∈ Kn − F which does
not add a cycle to F cannot belong to any S in (2.6), hence the value of ∂Sf is always at 0 for
such edges. In contrary, any edge ` ∈ Kn − F which adds a cycle to F can either belong or
not belong to S in (2.6). Regrouping the corresponding two terms, we obtain a value at 0 plus
an integral of a derivative from 0 to the maximal value allowed by the condition F(S, σ) = F .
But this maximal value is nothing but XF (wF ). In this way we have summed all sectors σ
inducing a fixed Hepp sector σ̃ on F . Finally the remaining sum over σ̃ reconstructs exactly
the integration range from 0 to 1 for all edges of F .

The fact that XF (wF ) is positive for any ordering σ now stems from the fact that, for any
Hepp sector σ̃ of F it is a convex barycentric combination of block matrices

XF (wF ) = (1− w`1) Id +(w`1 − w`2)XΠ1 + (w`2 − w`3)XΠ2 + · · ·+ w`kX
Πk .

Remark however that this barycentric combination depends on σ̃. Hence XF is in PSn for
any wF , as announced, but for a different reason in each different sector (ordering) of the
parameters wF . �

We give now a useful corollary of this theorem which expands Gaussian integrals over replicas.
Consider indeed a Gaussian measure dµC of covariance Cpq on a vector variable ~τ with N
components τp. To study approximate factorization properties of the integral of a product of n
functions of the variable ~τ it is useful to first rewrite this integral using a replica trick. It means
writing the integral over n identical replicas ~τi for i = 1, . . . , n with components τp,i, with the
perfectly well-defined measure with covariance [C ⊗ 1]p,i;q,j = Cpq1ij = Cpq:

I :=

∫
dµC(~τ)

n∏
i=1

fi(~τ) =

∫
dµC⊗1(~τi)

n∏
i=1

fi(~τi).

Applying the forest formula to this Gaussian integral we obtain the following corollary

Corollary 2.3.

I =
∑
F

∫
dwF

∫
dµC⊗XF (wF )(~τi) ∂

C
F

n∏
i=1

fi(~τi),

where ∂CF means
∏

`=(i,j)∈F

(∑
p,q

∂
∂τp,i

Cpq
∂

∂τq,j

)
.

The proof follows directly from rewriting the Gaussian integral as∫
dµCf(x) = e

∂
∂τi

Cij
∂
∂τj f

∣∣∣
τ=0

.

This is the corolary used in many quantum field theory applications, such as cluster expansions
or loop vertex expansions in which the forest formula is used to decouple terms which are coupled
through propagators, i.e., through the covariance of a Gaussian measure.

2.5 Jungle formulas

The forest formula allows to test links for connecting nodes in a kind of minimal and symmetric
way. However in many physical situations, and especially in situations with many scales involved,
we would like to introduce a hierarchy between the links connecting nodes, and we would like to
test first connectedness through the most interesting links, those of the highest energy/shortest
length.

Jungle formulas [2] provide an abstract solution to this question. They are a simple genera-
lization of forest formulas.
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Definition 2.4. Let m ≥ 1 be an integer. An m-jungle over the set Vn of n labeled vertices
is a sequence F = (F1, . . . ,Fm) of forests on the complete graph Kn built on Vn such that
F1 ⊂ · · · ⊂ Fm.

Keeping the same notations than in the previous subsection we now consider a function
f(X1, . . . , Xm) defined over m copies of the previous space PSn, hence over [PSn]m, which is
smooth in the interior with continuous extension of all derivatives to the boundary. We want
to Taylor expand with priority to the first matrix X1, then to X2 and so on. That is we shall
test first how to link the vertices of Vn into larger connected components first through a forest
spanned by the links due to Taylor expansion of the off-diagonal part of X1 then complete this
forest (if it has still several connected components) by Taylor expanding in the off diagonal part
of the second of the matrix X2, but so that the new links together with the first ones still form
a forest on Vn and so on. The result is the m-level jungle formula of [2].

Theorem 2.5 (the jungle formula).

f(1) =
∑
F

∫
dwF ∂Ff

[
XF(wF )

]
, (2.7)

where

• the sum over F is over m-jungles over the set Vn of n labeled vertices Vn = {1, . . . , n},
including the empty jungle F = (F1, . . . ,Fm) with Fi = ∅ ∀ i,
•
∫
dwF ≡

∏
`∈Fm

∫ 1
0 dw` means integration from 0 to 1 over one parameter for each edge in

the final forest Fm of the jungle,

• ∂F =
m∏
k=1

∏
`∈Fk\Fk−1

∂` means a product of first-order partial derivatives with respect to the

variables Xk
` corresponding to the edges of Fk\Fk−1 (by convention F0 = ∅),

• XF(wF) is the sequence of m matrices XF,k(wF), k = 1, . . . ,m, defined by XF,k
ii (wF) = 1

∀ i, and for i 6= j, XF,k
ij (wF ) is

– 1 if i and j are connected by Fk−1,

– 0 if i and j are not connected by Fk,

– the infimum of the w` parameters for ` in the intersection of Fk\Fk−1 and the unique
path of Fk from i to j, when i and j are connected by Fk but not by Fk−1,

• the symmetric n by n matrices XF,k(wF) defined in this way are all positive, hence XF(wF)
∈ [PSn]m, for any value of wF.

The proof is an easy generalization of the proof of the forest formula. Remark that the
two-level jungle formula is a main ingredient in multiscale loop vertex expansions [32].

3 Constructive tools

3.1 The loop vertex expansion

The loop vertex expansion (LVE) combines an intermediate field functional integral represen-
tation for QFT quantities with the forest formula and a replica trick similar to the one of the
previous section. It allows the computation of connected functional QFT integrals such as the
free energy or connected Schwinger functions as convergent sums indexed by spanning trees of
arbitrary size n rather than divergent sums indexed by Feynman graphs.
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Initially introduced to analyze matrix models with quartic interactions [46], the LVE has
been extended to analyze random tensor models [18, 19, 29, 43]. In this subsection and the next
one we follow [33].

Canonical barycentric weights w(G,T ) can then be associated to any pair made of a connected
graph G and a spanning tree T ⊂ G by considering the percentage of Hepp sectors in which the
tree is leading for Kruskal’s greedy algorithm:

w(G,T ) =
N(G,T )

|E|!
,

where N(G,T ) is the number of sectors σ such that T (σ) = T .
Obviously these weights are barycentric, which simply means that∑

T⊂G
w(G,T ) = 1,

where the sum runs over all spanning trees of G. Moreover we have, in the notations of Theo-
rem 2.2 the integral representation [53].

Lemma 3.1.

w(G,T ) =

∫
dwT

∏
`∈G−T

XT
i(`)j(`)(wT ).

Proof. We introduce first parameters w` for all the edges in G− T , writing

XT
ij({w}) =

∫ 1

0
dw`

[ ∏
`′∈PTi→j

χ(w` < w`′)

]
,

where χ(· · · ) is the characteristic function of the event · · · . Then we decompose the w integrals
according to all possible orderings σ:∫ 1

0

∏
`∈G

dw`
∏
6̀∈T

[ ∏
`′∈PT`

χ(w` < w`′)

]
=
∑
σ

χ(T (σ) = T )

∫
0<wσ(|E|)<···<wσ(1)<1

∏
`∈G

dw`.

Indeed in the domain of integration defined by 0 < wσ(|E|) < · · · < wσ(1) < 1 the function∏
6̀∈T

[ ∏
`′∈PT`

χ(w` < w`′)
]

is 1 or zero depending whether T (σ) = T or not, as this function being 1

is exactly the condition for Kruskal’s algorithm to pick exactly T . Strict inequalities are easier
to use here: of course equal values of w factors have zero measure anyway. Hence∫

dwT
∏

`∈G−T
XT
i(`)j(`)(wT ) =

N(G,T )

|E|!
= w(G,T ). �

The LVE expressed any Schwinger function S as a convergent sum over trees of the interme-
diate field representation:

S =
∑
T

AT , AT =
∑
G⊃T

w(G,T )AG,

with ∑
T

|AT | < +∞.
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The usual (divergent) perturbative expansion of S is obtained by the ill defined commutation
of the sums over T and G,

S =
∑
T

( ∑
G⊃T

w(G,T )AG

)
“=”

∑
G

∑
T⊂G

w(G,T )AG =
∑
G

AG,∑
G

|AG| =∞.

We shall limit ourselves here to introduce the LVE in the particularly simple case of the
quartic N -vector models, for which the 1/N expansion is governed by rooted plane trees.

More precisely, consider a pair of conjugate vector fields {φp}, {φ̄p}, p = 1, . . . , N , with
(φ̄ · φ)2 interaction. The corresponding functional integral

Z(z,N) =

∫
dφ̄dφ

(2iπ)N
e−(φ̄·φ)+ z

2N
(φ̄·φ)2

is convergent for <z < 0. Note the slightly unusual sign convention for the interaction term.
We rewrite it, using a scalar intermediate field σ, as

Z(z,N) =

∫
dσ
e−σ

2/2

√
2π

∫
dφ̄dφ

(2iπ)N
e−(φ̄·φ)+

√
z/N(φ̄·φ)σ =

∫
dσ√
2π
e−σ

2/2−N log(1−
√
z/Nσ).

Defining τ = σ/
√
N one gets

Z(z,N) =

∫ √
Ndτ√
2π

e−N [τ2/2+log(1−
√
zτ)]. (3.1)

The two point function

G2(z,N) =
1

Z(z,N)

∫
dφ̄dφ

(2iπ)N
1

N

(∑
p

φ̄pφp

)
e−(φ̄·φ)+ z

2N
(φ̄·φ)2

,

can be deduced from the free energy by a Schwinger–Dyson equation

0 =
1

Z(z,N)

∫
dφ̄dφ

(2iπ)N
1

N

∑
p

∂

∂φp

[
φpe
−(φ̄·φ)+ z

2N
(φ̄·φ)2]

,

which yields

G2(z,N) = 1 + 2z
d

dz

(
1

N
log

∫ √
Ndτ√
2π

e−N [τ2/2+log(1−
√
zτ)]

)
. (3.2)

A simple saddle point evaluates the integral (3.1) as Ke−Nf(τc)√
f”(τc)

, where the saddle point of

f(τ) = τ2/2 + log(1−
√
zτ)] is at τc with f ′(τc) = 0 hence τc = 1

2
√
z
[1−
√

1− 4z]. Also

lim
N→∞

logZ(z,N)

N
= −f(τc),

and the two point function in the N →∞ limit is

lim
N→∞

G2(z,N) = 1 + 2z

(
−∂zf(τc)− ∂τf(τc)

dτc
dz

)
= 1− 2z

− 1
2
√
z
τc

1−
√
zτc

=
1

2z

[
1−
√

1− 4z
]
, (3.3)

which we recognize as the generating function of the Catalan numbers.
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Let us now study Borel summability in z of these quantities uniformly as N → ∞, using
the loop vertex expansion. We start from the intermediate field representation of the two-point
function (3.2) and apply the LVE to get

G2(z,N) =
∑
T

1

n!
zn
∫
dwT

∫
dµT

∏
c∈C(T )

1

1−
√
zτi(c)

, (3.4)

where in (3.4)

• the sum over T is over rooted plane trees, with one ciliated root vertex labeled i = 0 plus
n ≥ 0 ordinary vertices labeled 1, . . . , n,

•
∫
dwT as in Subsection 2.4 means

[ ∏
`∈T

∫ 1
0 dw`

]
,

• dµT is the normalized Gaussian measure on the (n+ 1)-dimensional vector field ~τ = (τi),

i = 0, 1, . . . , n, running over the vertices of T , which has covariance
XTij (wT )

N between
vertices i and j. Recall that XT (wT ) is defined in Subsection 2.4,

• the product over c runs over the set C(T ) of the 2n + 1 corners of the tree, the cilium
creating an additional corner on the plane tree, and i(c) is the index of the vertex to which
the corner c belongs.

It is now obvious why (3.3) is true; since the covariance of the τ fields vanishes as N → ∞
the limit of G2(z,N) is obtained by putting every τi(c) factor to 0 in every corner resolvent,

in which case we exactly get a weight zn(T ) for each rooted plane tree, hence we recover the
Catalan generating function (the 1/n! is canceled by relabeling of the vertices).

We can now use (3.4) to prove analyticity and Borel summability of the free energy and
correlation functions of the model in the variables z and 1/N in the cardioid domain of Fig. 3
(see [23] for an early reference to Borel summability of the 1/N expansion of vector models).

Let us set z = |z|eiπ+iφ for |φ| < π. We have
√
z = i

√
|z|eiφ/2. Each resolvent 1

1−
√
zτi(c)

is

bounded in norm by [cos(φ/2)]−1, hence using the fact that there are 2n+ 1 such resolvents, we
obtain analyticity of representation (3.4) for 4|z| < [cos(φ/2)]2, the cardioid domain of Fig. 3.

But in fact we can extend the analyticity domain into the extended cardioid domain of Fig. 6,
a domain introduced for quartic vector models in [9]. Indeed using the parametric representation
of resolvents

1

1−
√
zτ

=

∫ ∞
0

dαce
−αc(1−

√
zτ)

we can explicitly integrate over the measure dµT and get the integral representation

G2(z,N) =
∑
T

1

n!
zn
∫
dwT

[∏
c∈T

∫ ∞
0

dαce
−αc

]
e

z
2N

∑
ij

(∑
c∈i

αc
)
XTij (wT )

( ∑
c∈j

αc
)
.

The formula above can be further simplified. Putting βi =
∑

c∈i αc we have

G2(z,N) =
∑
T

1

n!
zn

[
n∏
i=0

∫ ∞
0

dβi
βdi−1
i

(di − 1)!
e−βi

]∫
dwT e

z
2N

∑
ij
βiX

T
ij (wT )βj

, (3.5)

where di is the degree of i, hence the number of corners of i.
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Figure 6. The extended cardioid domain of vector models. The crosshatching represents the analytic

continuation above the negative axis cut; there is a symmetric analytic continuation below the cut.

Setting z = |z|eiπ+iφ and β = |β|eiψ we have, for −π/2 ≤ φ+2ψ ≤ π/2 and −π/2 < ψ < π/2,
both cos(φ+ 2ψ) ≥ 0 and cosψ > 0, hence∣∣∣∣∣

[
n∏
i=0

∫ eiψ∞

0
dβi

βdi−1
i

(di − 1)!
e−βi

]
e

z
2N

∑
ij
βiX

T
ij (wT )βj

∣∣∣∣∣
≤

n∏
i=0

∫ ∞
0

d|βi|
|βi|di−1

(di − 1)!
e−|βi| cosψ ≤ (cosψ)

−
n∑
i=0

di
= (cosψ)−2n−1.

Therefore G2(z,N) is analytic in the extended cardioid C = C+ ∪ C−, where C+ is the union
of the quarter-disk 0 ≤ φ < π/2, 4|z| < 1 and of the domain π/2 ≤ φ < 3π/2, 4|z| <
[cos(φ/2− π/4)]2. C− is the complex conjugate domain.

To prove that this convergent analytic function is the Borel sum of its perturbative series at
any fixed N also requires uniform Taylor estimates of the type Kpp!|z|p for the Taylor remainder
at order p in at least a disk tangent to the imaginary axis (Nevanlinna’s criterion). They follow
from Taylor expanding the exponential of the β quadratic form with an integral remainder:

e

z
2N

∑
ij
βiX

T
ij (wT )βj

=

p−1∑
q=0

zq

q!(2N)q

[∑
ij

βix
T
ij(wT )βj

]q
+

∫ 1

0
dt

(1− t)p−1

(p− 1)!

zp

(2N)p

[∑
ij

βiX
T
ij (wT )βj

]p
e
t z

2N

∑
ij
βiX

T
ij (wT )βj

.

The sum over q, i.e., the p first terms, are exactly the perturbative expansion up to order p
hence support a Kpp!|z|p bound. The Taylor remainder term for any tree T in the disk −π/2 ≤
φ ≤ π/2, where we can take ψ = 0 can be bounded as∣∣∣∣∣

[
n∏
i=0

∫ ∞
0

βdi−1
i

(di − 1)!
dβie

−βi

]∫ 1

0
dt

(1− t)p

p!

zp

(2N)p

×
∫
dwT

[∑
ij

βiX
T
ij (wT )βj

]p
e
t z

2N

∑
ij
βiX

T
ij (wT )βj

∣∣∣∣∣∣
≤ |z|

p

p!

[
n∏
i=0

∫ ∞
0

βdi−1
i

(di − 1)!
dβie

−βi

][
n∑
i=0

βi

]2p
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=
|z|p

p!

(
n∏
i=0

1

(di − 1)!

)∫ ∞
0

dβe−ββ2p

∫
β1+···+βn=β

n∏
i=0

βdi−1
i dβi

=
|z|p

p!

(
n∏
i=0

1

(di − 1)!

)
(2p+ 2n+ 1)!

∫
u1+···+un=1

n∏
i=0

udi−1
i dui ≤ 4nKpp!|z|p.

These Taylor estimates for a single rooted plane tree can be summed over all rooted plane trees
(using the |z|n factor in (3.5)) in the half-disk defined by 16|z| < 1 and −π/2 ≤ arg z ≤ π/2
(shown in red on Fig. 6). Hence in this half-disk (which is uniform in N) we obtain the desired
Taylor estimates, which is more than enough to check that the expansions (3.4) and (3.5)
represent indeed for all N the unique Borel sum of the perturbative series.

Interesting functions are the real and imaginary parts along the real axis 0 ≤ z < 1/8 which
are

Gmean
2 (z,N) =

G2(z,N)+ +G2(z,N)−
2

, Gcut
2 (z,N) =

G2(z,N)+ −G2(z,N)−
2i

,

where G+ is analytically continued to φ = +π and G− is analytically continued to φ = −π.
Taking ψ = −π/4 in the first case and ψ = +π/4 is the second case, one obtains explicitly
convergent integral representations for these quantities, namely

Gmean
2 (z,N) =

∑
T

1

n!
zn

 ∏
i∈V (T )

∫ ∞
0

βdi−1
i

(di − 1)!
dβie

−
√

2
2
βi


×
∫
dwT cos

(2n+ 1)
π

4
+

√
2

2

∑
i

βi +
z

2N

∑
ij

βiX
T
ij (wT )βj

 ,

Gcut
2 (z,N) =

∑
T

1

n!
zn
∫
dwT

 ∏
i∈V (T )

∫ ∞
0

βdi−1
i

(di − 1)!
dβie

−
√

2
2
βi


×
∫
dwT sin

(2n+ 1)
π

4
+

√
2

2

∑
i

βi +
z

2N

∑
ij

βiX
T
ij (wT )βj

 .

where the factors (2n+1)π4 come from the rotation of the β integrals, using
∑
di = 2n+1. These

convergent integrals extend half-way to the Catalan singularity zCatalan = 1/4. Indeed bounding
the cosine or sinus function by 1 we obtain convergence, but loosing a factor (

√
2)

∑
di = 2n

√
2.

One can still check easily that the limit for N →∞ of the mean integral for positive z is the
Catalan function. Indeed the cosine function simplifies in that case. Rotating the β integrals
back in position we obtain again the factor 1 for each rooted plane tree.

The extended cardioid is an analyticity domain in z which holds for any N ≥ 1. In other
words it is common to all N -vector models, including the particular N = 1 scalar case, However
as N → ∞ we could hope for larger and larger domains of analyticity which approach the
z = 1/4 singularity when N → ∞; but we do not know, even in this simple vector model case,
how to prove this.

In the case of quartic large N matrix [46] and large N tensor models [18, 19, 29, 43], the LVE
also provides analyticity in cardioid-like domains.

The constructive treatment of renormalizable models requires a multiscale analysis, hence
a multiscale version of the loop vertex expansion (MLVE). Following [32], we sketch now how this
expansion works in the case of a super-renormalizable toy model which is a slight modification
of the vector model above.
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3.2 Multiscale loop vertex expansion

Consider the same pair of conjugate vector fields {φp}, {φ̄p}, p = 1, . . . , N , with the same
λ2

2 (φ̄ · φ)2 bare interaction as in the previous section, but with a different Gaussian measure
dµ(φ̄, φ) which breaks the U(N) invariance of the theory. It has diagonal covariance (or propa-
gator) which decreases as the inverse power of the field index:

dη(φ̄, φ) =

 N∏
p=1

p
dφ̄pdφp

2πı

 e−
∑N
p=1 pφ̄pφp ,

∫
dη(φ̄, φ)φ̄pφq =

δpq
p
.

This propagator renders the perturbative amplitudes of the model finite in the N → ∞ limit,
except for a mild divergence of self-loops which yields a logarithmically divergent sum LN =
N∑
p=1

1
p ' logN . These divergences are easily renormalized by using a vector-Wick-ordered φ4

interaction, namely 1
2 [λ(φ̄ · φ − LN )]2. Remark that this interaction (contrary to the φ4

2 case)
remains positive for λ real at all values of (φ̄, φ). The renormalized partition function of the
model is

Z(λ,N) =

∫
dη(φ̄, φ) e−

λ2

2
(φ̄·φ−LN )2

.

The intermediate field representation decomposes the quartic interaction using an intermediate
scalar field σ:

e−
λ2

2
(φ̄·φ−LN )2

=

∫
dν(σ) eıλσ(φ̄·φ−LN ),

where dν(σ) = 1√
2π
e−

σ2

2 is the standard Gaussian measure with covariance 1. Integrating over

the initial fields (φ̄p, φp) leads to

Z(λ,N) =

∫
dν(σ)

N∏
p=1

1

1− ıλσp
e
−ıλσ

p =

∫
dν(σ) e

−
N∑
p=1

log2

(
1−ıλσ

p

)
,

where log2(1− x) ≡ x+ log(1− x) = O(x2).
Applying the ordinary LVE of the previous section to this functional integral would express

logZ(λ,N) as a sum over trees, but there is no simple way to remove the logarithmic divergence
of all leaves of the tree without generating many intermediate fields in numerators which, when
integrated through the Gaussian measure, would create an apparent divergence of the series.
The MLVE is designed to solve this problem.

We fix an integerM > 1 and define the j-th slice, as made of the indices p ∈ Ij ≡ [M j−1,M j−
1]. The ultraviolet cutoff N is chosen as N = M jmax − 1, with jmax an integer. We can also fix
an infrared cutoff jmin. Hence there are jmax− jmin slices in the theory, and the ultraviolet limit
corresponds to the limit jmax →∞. The intermediate field representation writes:

Z(λ,N) =

∫
dν(σ)

jmax∏
j=jmin

e−Vj , Vj =
∑
p∈Ij

log2

(
1− ıλσ

p

)
.

The factorization of the interaction over the set of slices S = [jmin, . . . , jmax] can be encoded
into an integral over Grassmann numbers. Indeed,

a =

∫
dχ̄dχ e−χ̄aχ =

∫
dµ(χ̄, χ) e−χ̄(a−1)χ,
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where dµ(χ̄, χ) = dχ̄dχ e−χ̄χ is the standard normalized Grassmann Gaussian measure with
covariance 1. Hence, denoting Wj(σ) = e−Vj − 1,

Z(λ,N) =

∫
dν(σ)

 jmax∏
j=jmin

dµ(χ̄j , χj)

 e
−

jmax∑
j=jmin

χ̄jWj(σ)χj

.

We now rewrite the partition function as

Z(λ,N) =

∫
dνS e

−W , dνS = dν1S ({σj}) dµIS ({χ̄j , χj}), W =

jmax∑
j=jmin

χ̄jWj(σj)χj .

This is the starting point for the MLVE. The first step is to expand to infinity the exponential
of the interaction

Z(λ,N) =
∞∑
n=0

1

n!

∫
dνS (−W )n =

∞∑
n=0

1

n!

∫
dνS,V

n∏
a=1

(−Wa),

where the a-th vertex is

Wa =

jmax∑
j=jmin

Wa,j , Wa,j = χ̄ajWj(σ
a
j )χaj ,

and has now its own (replicated) bosonic and fermionic fields σaj , χ̄aj , χ
a
j and the replica measure

is completely degenerate:

dνS,V = dν1S⊗1V ({σaj }) dµIS⊗1V ({χ̄aj , χaj}).

The obstacle to factorize this integral over vertices lies now in the bosonic and fermionic
degenerate blocks 1V . In order to deal with these couplings we apply the m = 2 jungle for-
mula (2.7) with priority to the bosonic links. It means that in the measure dν one introduces
first the matrix xV with coupling parameters xab = xba, xaa = 1 between the vertex bosonic
replicas

Z(λ,N) =
∞∑
n=0

1

n!

∫
dν1S⊗xV ({σaj }) dµIS⊗1V ({χ̄aj , χaj})

n∏
a=1

− jmax∑
j=jmin

Wa,j

∣∣∣
xab=1

and apply the forest formula. We denote FB a bosonic forest with n vertices labelled {1, . . . , n},
`B a generic edge of the forest and a(`B), b(`B) the end vertices of `B. The result of the first
forest formula is

Z(λ,N) =

∞∑
n=0

1

n!

∑
FB

∫
dwFB

∫
dν1S⊗X(w`B )({σaj }) dµIS⊗1V ({χ̄aj , χaj})

× ∂FB
n∏
a=1

− jmax∑
j=jmin

Wa,j

 ,

where∫
dwFB =

∏
`B∈FB

∫ 1

0
dw`B , ∂FB =

∏
`B∈FB

 jmax∑
j,k=jmin

∂

∂σ
a(`B)
j

∂

∂σ
b(`B)
k

 ,
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and Xab(w`B ) is the infimum over the parameters w`B in the unique path in the forest FB
connecting a and b, and the infimum is set to 1 if a = b and to zero if a and b are not connected
by the forest.

The forest FB partitions the set of vertices into blocks B corresponding to its trees. Remark
that the blocks can be singletons (corresponding to the trees with no edges in FB). We denote
a ∈ B if the vertex a belongs to a bosonic block B. A vertex belongs to a unique bosonic
block. Contracting every bosonic block to an “effective vertex” we obtain a graph which we
denote {n}/FB. We introduce decoupling parameters yBB′ = yB′B for the fermionic fields χBj
corresponding to the blocks of FB (i.e., for the effective vertices of {n}/FB). Applying (a second
time) the forest formula, this time for the y’s, is exactly the level 2 jungle formula as it leads to
a set of fermionic edges LF forming a forest in {n}/FB (hence connecting bosonic blocks). We
denote LF a generic fermionic edge connecting blocks and B(LF ),B′(LF ) the end blocks of the
fermionic edge LF . We obtain

Z(λ,N) =
∞∑
n=0

1

n!

∑
FB

∑
LF

∫
dwFB

∫
dwLF

∫
dν1S⊗X(w`B )({σaj })

× dµIS⊗Y (wLF )({χ̄Bj , χBj })∂FB∂LF
∏
B

∏
a∈B

− jmax∑
j=jmin

χ̄BjWj(σ
a
j )χBj

 , (3.6)

where∫
dwLF =

∏
LF∈LF

∫ 1

0
dwLF ,

∂LF =
∏

LF∈LF

 jmax∑
j=jmin

(
∂

∂χ̄
B(LF )
j

∂

∂χ
B′(LF )
j

+
∂

∂χ̄
B′(LF )
j

∂

∂χ
B(LF )
j

) ,

and YBB′(w`F ) is the infimum over w`F in the unique path in LF connecting B and B′, this
infimum being set to 1 if B = B′ and to zero if B and B′ are not connected by LF . Note that
the fermionic edges are oriented. Expanding the sums over j in the last line of equation (3.6) we
obtain a sum over slice assignments J = {ja} to the vertices a, where ja ∈ [jmin, jmax]. Taking
into account that ∂σajW (σaja) = δjja∂σajaW (σaja) we obtain:

Z(λ,N) =
∞∑
n=0

1

n!

∑
FB

∑
LF

∑
J

∫
dwFB

∫
dwLF

×
∫
dν1S⊗X(w`B )({σaj })dµIS⊗Y (wLF )

({
χ̄Bj , χ

B
j

})
× ∂FB∂LF

∏
B

∏
a∈B

(
−χ̄BjaWja(σaja)χBja

)
.

In order to compute the derivatives in ∂LF with respect to the block fermionic fields χBj and χ̄Bj
we note that such a derivative acts only on

∏
a∈B

(
χBjaχ̄

B
ja

)
and, furthermore,

∂

∂χ̄Bj

∏
a∈B

(
χBjaχ̄

B
ja

)
=

(∑
a′∈B

δjja′
∂

∂χ̄Bja′

)∏
a∈B

(
χBjaχ̄

B
ja

)
,

∂

∂χBj

∏
a∈B

(
χBjaχ̄

B
ja

)
=

(∑
a′∈B

δjja′
∂

∂χBja′

)∏
a∈B

(
χBjaχ̄

B
ja

)
.
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It follows that the Grassmann Gaussian integral is[
e

∑
B,B′

YBB′ (w`F )
∑

a∈B,b∈B′
δjajb

∂

∂χ̄B
ja

∂

∂χB′
jb

×
∏

LF∈LF

 ∑
a∈B(LF ),b∈B′(LF )

δjajb

(
∂

∂χ̄
B(LF )
ja

∂

∂χ
B′(LF )
jb

+
∂

∂χ̄
B′(LF )
jb

∂

∂χ
B(LF )
ja

)
×
∏
B

∏
a∈B

(
χBjaχ̄

B
ja

)]
χBj ,χ̄

B
j =0

.

The sums over a ∈ B(`F ) and b ∈ B′(`F ) yield a sum over all the possible ways to hook the edge
LF ∈ LF to vertices in its end blocks. Each term represents a detailed fermionic edge `F in the
original graph (having the same w`F = wLF parameter). The sum over LF becomes therefore
a sum over detailed fermionic forests FF in the original graph (in which the bosonic blocks are
not contracted)and we obtain

Z(λ,N) =
∞∑
n=0

1

n!

∑
J

∑
J

∫
dwJ

∫
dνJ ∂J

∏
B

∏
a∈B

(
Wja(σaja)χBjaχ̄

B
ja

)
,

where

• the sum over J means
jmax∑

j1=jmin

· · ·
jmax∑

jn=jmin

,

• the sum over J runs over all two level jungles, hence over all ordered pairs J = (FB,FF )
of two (each possibly empty) disjoint forests on V , such that J̄ = FB ∪FF is still a forest
on V . The forests FB and FF are the bosonic and fermionic components of J . The edges
of J are partitioned into bosonic edges `B and fermionic edges `F ,

•
∫
dwJ means integration from 0 to 1 over parameters w`, one for each edge ` ∈ J̄ .∫
dwJ =

∏
`∈J̄

∫ 1
0 dw`. A generic integration point wJ is therefore made of |J̄ | parameters

w` ∈ [0, 1], one for each ` ∈ J̄ ,

•

∂J =
∏

`B∈FB
`B=(c,d)

(
∂

∂σcjc

∂

∂σdjd

) ∏
`F∈FF
`F=(a,b)

δjajb

(
∂

∂χ̄
B(a)
ja

∂

∂χ
B(b)
jb

+
∂

∂χ̄
B(b)
jb

∂

∂χ
B(a)
ja

)
,

where B(a) denotes the bosonic blocks to which a belongs,

• the measure dνJ has covariance X(w`B ) ⊗ 1S on bosonic variables and Y (w`F ) ⊗ IS on
fermionic variables, hence

∫
dνJ f is the value at σ = χ̄ = χ = 0 of

e

1
2

n∑
a,b=1

Xab(w`B ) ∂
∂σa
ja

∂

∂σb
jb

+
∑
B,B′

YBB′ (w`F )
∑

a∈B,b∈B′
δjajb

∂

∂χ̄B
ja

∂

∂χB′
jb f,

• Xab(w`B ) is the infimum of the w`B parameters for all the bosonic edges `B in the unique

path PFBa→b from a to b in FB. The infimum is set to zero if such a path does not exists
and to 1 if a = b,

• YBB′(w`F ) is the infimum of the w`F parameters for all the fermionic edges `F in any of

the paths PFB∪FFa→b from some vertex a ∈ B to some vertex b ∈ B′. The infimum is set to 0
if there are no such paths, and to 1 if such paths exist but do not contain any fermionic
edges.
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Remember that the symmetric n by n matrix Xab(w`B ) is positive for any value of wJ ,
hence the Gaussian measure dνJ is well-defined. The matrix YBB′(w`F ) is also positive, with all
elements between 0 and 1. Since the slice assignments, the fields, the measure and the integrand
are now factorized over the connected components of J̄ , the logarithm of Z is exactly the same
sum but restricted to the two-levels spanning trees:

logZ(λ,N) =

∞∑
n=1

1

n!

∑
J tree

∑
J

∫
dwJ

∫
dνJ ∂J

∏
B

∏
a∈B

[
Wja(σaja)χBjaχ̄

B
ja

]
, (3.7)

where the sum is the same but conditioned on J̄ = FB ∪ FF being a spanning tree on V =
[1, . . . , n]. In [32], it is proven in detail that

Theorem 3.2. The series (3.7) is absolutely convergent for λ ∈ [−1, 1] uniformly in jmax.

Theorem 3.3. The series (3.7) is absolutely convergent for λ ∈ C, λ = |λ|eıγ in the domain
|λ|2 < (cos 2γ) uniformly in jmax.

We sketch below the proof of Theorem 3.2, referring the reader to [32] for details. By Cayley’s
theorem the number of two level trees over n ≥ 1 vertices is exactly 2n−1nn−2.

The Grassmann Gaussian integral evaluates to(∏
B

∏
a,b∈B
a6=b

(1− δjajb)
)( ∏

`F∈FF
`F=(a,b)

δjajb

)(
Yb̂1...b̂k
â1...âk

+ Yâ1...b̂k
b̂1...âk

+ · · ·+ Yâ1...âk
b̂1...b̂k

)
,

where the sum runs over the 2k ways to exchange an ai and a bi. Each Yâ1...b̂k
b̂1...âk

factor is

a determinant of a matrix made of YBB′(w`F ) interpolating factors (see [32] for the precise
definition). Its absolute value is therefore bounded by 1 thanks to Hadamard’s inequality,
because the corresponding matrix is positive with diagonal entries equal to 1.

The bosonic integral is a bit more cumbersome, as one should first evaluate the effect of the
bosonic derivatives on the exponential vertex kernels Wj through the Faà di Bruno formula,
whose combinatoric is easy to control. It leads to a sum over similar exponential kernels but
multiplied by some polynomials.

To bound the remaining bosonic functional integral one first separates the exponential kernels
from the polynomials by some Cauchy–Schwarz estimate with respect to the bosonic Gaussian
measure. The exponential terms being positive, the corresponding piece is bounded by 1. The
polynomial piece is then explicitly evaluated. This generates a dangerous product of local
factorials of the number of fields in the bosonic blocks, but allows also a good factor M−j from
the propagator of scale j for each occupied bosonic scale j.

But here comes the key point. The Grassmann Gaussian integrals ensure that the occupied
scales in any bosonic block of the first forest formula are all distinct. Therefore the good factor
collected from the propagator easily beats the local factorials. The worst case is indeed when

the p occupied scales in the block are lowest, in which case
p∏
j=1

M−j = M−p(p+1)/2 which easily

beats p!.
For just renormalizable theories it is not so easy to beat the dangerous factors by the decay

of the propagators, and the constructive expansion must proceed even more carefully, essentially
expanding the functional integral in each scale in a much more detailed way.

3.3 Iterated Cauchy–Schwarz bounds

A Cauchy Schwarz bound requires to decompose an expression as a scalar product between two
halves, I = 〈S1.S2〉 =⇒ |I| ≤ 〈S1.S1〉1/2〈S2.S2〉1/2. A key problem in the LVE is to bound
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the resolvents still present in the tree amplitudes by using their uniform bound in norm (in
a cardioid domain of the coupling constant). The idea of ICS bounds is to get rid of resolvents
inductively, by applying many times this inequality. Typically at any inductive step a resolvent
is sandwiched in the scalar product between S1 and S2 and disappears in the right hand side
of the bound (thanks to the bound on its norm), resulting in tree amplitudes with at least one
resolvent less.

ICS bounds for a general quartic tensor model were introduced in [18], but we describe here
a new slightly different version. More precisely in [18] a tree amplitude of the LVE is decomposed
in two halves by identifying a pair of opposite resolvents. However in this process the two halves
may not have the same number of vertices, and the bound obtained can involve new trees of
different orders. Here we shall describe how to work at fixed order by pairing a resolvent with
its opposite corner in the tree, so that the two halves A and B remain of the same order.

Consider a tensor model with quartic interactions for generalized colors C ∈ D. Let N be the
range for each color index. The perturbative amplitudes at order n, are simply λnNF−(D−1)n,
where F is the number of faces of the graph.

Among the graphs of the IFR are in particular the trees. A planar colored tree of order n, is
a tree joining n+ 1 loop vertices, in which each edge bears a generalized color C, corresponding
to the subset C of indices of the quartic invariant for C. Such a tree has therefore exactly 2n
corners, and an amplitude NF−(d−1)n.

However in an LVE or MLVE a typical term is indexed by such planar colored trees but in
which some corners of the tree can bear resolvents operators R instead of ordinary propagators 1.
The goal of the ICBS bounds is to prove that in a cardioid domain of the coupling constant, the
amplitude for any such tree is bounded (uniformly in σ) by the supremum over all trees at the
same order n of the same amplitude but of the ordinary perturbative type, that is without any
resolvent.

A resolvent-dressed tree is a pair (T,A,A†) made of a tree T and a subset S of the corners
of T . Its amplitude is

AA,A
†

T = Tr
∏
a∈A

C1/2RC1/2
∏
a∈A†

C1/2R†C1/2
∏

a6∈A∪A†
C
∏
e

δCe ,

where the product over e runs over all edges of the tree, the edge factors are δ functions

δCe =
∏
c∈Ce

δic,jcδi′cj′c ,

where the operator δic,jcδi′cj′c joins the color indices ic and jc of the four corners touched by
edge e, and finally the trace means that indices have to be summed over all faces of the tree.

We assume that in a cardioid domain of the complex plane for the coupling constant a uni-
form N and σ-independent bound for the resolvent holds:

‖R‖ ≤ K.

The same independent bound automatically follows for the matrix coefficients of the resolvent

|Rn,n̄| ≤ K ∀n, n̄,

since any coefficient of a matrix is bounded in absolute value by its norm.

Iterated Cauchy–Schwarz bounds then allow to bound the absolute value of any resolvent-
dressed tree amplitude by the supremum over similar tree amplitudes but without any resolvent
for trees T ′ of the same order than T :
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Theorem 3.4. Under the hypotheses above, any resolvent-dressed tree AST of order n obeys the
bound∣∣AA,A†T

∣∣ ≤ K2n sup
T ′

A∅
T ′ .

Proof. Consider a dressed tree (T,A,A†) of order n with p = |A|+ |A†| resolvents. If p > 0 we
select an arbitrary corner γ containing a resolvent R of T (if the resolvent is of the conjugate
type R† the reasoning is identical). Turning around the tree, there is a unique corner γ̃ opposite
to γ, that is such that the path from γ to γ̃ has n− 1 corners whether we turn around the tree
clockwise or counterclockwise. If p = 0, we select any corner and its opposite pair.

Having selected opposite corners we can divide the tree T into two halves S1 and S2, made
of the clockwise and counterclockwise paths form γ to γ̃. Every edge from S1 to S2 is a scalar
product because of the form of the δe factors. Hence in a certain tensor product Hilbert space

of many elements we can write AA,A
†

T as

∣∣AA,A†T

∣∣ = |〈AS1RAS2〉| ≤ K〈AS1A
†
S1
〉1/2〈AS2A

†
S2
〉1/2.

In this way we have bounded the initial tree with p resolvents by the arithmetic mean of two
trees with total number of resolvents at most 2(p − 1). Iterating this bound for all trees still
containing resolvents, we obtain, after r iterations∣∣AA,A†T

∣∣ ≤∏Kkr
∏
j

|ASj |2
−r
.

It is not true that in such a process after a finite number of steps all resolvents disappear
(counterexamples are easily built). Nevertheless they rarefy at each step, and this is enough to
complete the proof of Theorem 3.4. Let us define pr the total number of resolvents contained in
all the trees Sj and mr the number of trees containing at least one resolvent. Since any tree is of
order n it can contain at most 2n resolvents, hence mr ≥ pr/(2n). Furthermore pr+1 ≤ 2pr−2mr

Therefore the sequence qr = 2−rpr satisfies qr+1 ≤ qr(1− 1
2n) hence tends to 0 as r →∞.

Now a rough relatively trivial bound to evaluate a tree with p resolvents consists in paying
a full additional factor

∏
f N

2qf for each face f meeting qf resolvents along the face. Since
a resolvent is along at most d different faces we certainly find that for any r∣∣AA,A†T

∣∣ ≤ [f(N)]p sup
T ′

A∅
T ′

for a certain function f(N). Hence by the induction

∣∣AA,A†T

∣∣ ≤ [f(N)]qr sup
T ′

A∅
T ′ ,

and letting r →∞ completes the proof of Theorem 3.4, since qr → 0 as r →∞. �

4 Results

We now review the various tensor models for which (uniform) Borel summability has been
proved. Rather than summarizing or paraphrasing the original papers, we focus on explaining
the reader which of the previous techniques are required for which model and why.
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4.1 Melonic quartic models

This is the simplest tensor model, restricted to a quartic melonic interactions, hence the set Q
of generalized colors in (2.1) is restricted to singletons. This model is fully treated in [29] via
a single loop vertex expansion and does not require any ICS bounds. The LVE graphs in which
all resolvents R are replaced by one are exactly the tree graphs of the IFR of the model, and
they coincide exactly with the melonic graphs of the initial representation of the tensor model.
Hence the LVE automatically computes the leading order of quartic melonic tensor models as
the σ = 0, R(σ) = 1 approximation of the LVE. Sub leading orders are of course obtained by
further expanding the resolvent factors of the LVE.

Why is it that the melonic quartic model does not require the technique of ICS bounds to
prove Borel summability? This is essentially because in this case the propagators of the IFR
correspond to insertions of the type 1⊗ · · · ⊗ σc ⊗ · · · ⊗ 1 which all commute.

As a result one can use the parametric representation of the resolvent

(
1 + i

√
λσ
)

=

∫ ∞
0

e−α(1+i
√
λσ)dα (4.1)

and regroup all identical colors. The bound now factorizes over the subforests of the same color
in the tree and this allows for a constructive bound of the same order than the leading melonic
graphs of the model.

4.2 General quartic models

For these models the interactions are no longer restricted to the melonic case. Intermediate
fields are matrices corresponding to generalized colors C which are not necessarily singletons.
In particular they no longer commute when the subsets C and C′ have a non-trivial intersection
C∩C′ 6= ∅. This is why the parametric representation (4.1) is not enough to get rid of resolvents
in the loop vertex expansion, and ICS bounds have to be used [18].

4.3 U(1) − T 4
3 TGFT

This field theory is built on the U(1) group, for tensors of rank 3, with quartic melonic interac-
tions and a Boulatov-type projector, hence the propagator, in momentum space is

C(n) =
δ(n1 + n2 + n3)

n2
1 + n2

2 + n2
3 + 1

for n = (n1, n2, n3) ∈ Z3.

The delta projector reduces by 1 the effective dimension of the model, hence this model has
the same power counting than a rank 2 non-commutative field theory without any Boulatov
projector, hence is fully convergent (no ultraviolet divergencies). Therefore it can be built by
a single loop vertex expansion [38].

4.4 U(1) − T 4
4 TGFT

This field theory [39] is built on the U(1) group, for tensors of rank 4, with quartic melonic
interactions and a Boulatov-type projector, hence the propagator, in momentum space is

C(n) =
δ(n1 + n2 + n3 + n4)

n2
1 + n2

2 + n2
3 + n2

4 + 1

for n = (n1, n2, n3, n4) ∈ Z4.
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Figure 7. From left to right, the divergent tadpole, the convergent tadpole and the two vacuum divergent

graphs.

The delta projector reduces by 1 the effective dimension of the model, hence this model has
the same power counting than a rank 3 quartic tensor model without any Boulatov projector,
hence requires a rather mild renormalization.

Therefore it requires a multi-loop vertex expansion. However it does not require any iterated
Cauchy–Schwarz bounds, since insertions of different colors commute! This is surprising, given
that a priori they do not commute with the C propagator, whose denominators mixes colors.
However it is a peculiarity and simplifying feature that the Boulatov projector, when combined
with quartic melonic interactions leads to a global momentum conservation rule along all the
propagators of a given loop vertex.

Indeed consider a σ insertion of color c in a loop vertex. A priori the nc index may change
into mc. However the propagators δ functions immediately before and after the insertion enforce
that nc = −

∑
c′ 6=c

nc′ . Therefore since the nc′ are conserved through the σc insertions, we obtain

that nc = mc. In fact the random intermediate field matrices σc reduce to their diagonal part
in momentum space, and the intermediate fields can therefore be considered as vectors rather
than matrices [41].

Now this conservation rule along any loop vertex ensures the commutation of all intermediate
fields along the loop vertex, hence the argument with the parametric representation of [29] can
be adapted to this situation and ICS bounds are not necessary.

4.5 T 4
3 TFT

This super-renormalizable field theory is built on the U(1) group, for tensors of rank 3, with
quartic melonic interactions and an ordinary Laplacian-based projector which in momentum
space is

C(n) =
1

n2
1 + n2

2 + n2
3 + 1

for n = (n1, n2, n3) ∈ Z3.
The model has a power counting almost similar to the one of the ordinary φ4

2 theory. It has
for each color c two vacuum divergent graphs, one linearly divergent and one logarithmically
divergent. It has also a single logarithmically divergent two-point graph (the “melonic tadpole”),
again with a single vertex, which requires a mass renormalization (see Fig. 7).

Therefore the proof of Borel summability for this model requires both a multi-loop vertex
expansion and ICS bounds [19]. Indeed insertions of intermediate fields of different colors along
a loop vertex no longer need to commute, since they do not commute with the propagators
along a given loop vertex. Indeed these propagators may have now different momenta running
through them, since there is no longer the conservation rule of the quartic melonic models with
Boulatov projectors.

An interesting aspect of the renormalization of this model is that it is performed directly in
the IFR representation. Hence the initial Tr log(1+i

√
λΣ) interaction is replaced by a subtracted
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interaction Tr log2(1 + i
√
λΣ), where log2(1 + x) := −x + log(1 + x). In addition to the ICS

bounds to get rid of resolvents in the trees created by the bosonic forest formula, there is also
a non-trivial argument to bound the non perturbative part left in the exponential by the MLVE.
This non trivial “non-perturbative” bound can be traced to the divergence of the vacuum energy
graphs, and can be considered a kind of tensor analog in the IFR representation of the famous
Nelson bound for φ4

2, which was the birth act of constructive field theory [45].

4.6 Quartic matrix model

The paper [35] deals with a Gaussian complex random matrix model with a quartic perturbation.
Its partition function is defined by the integral over complex N ×N matrices M :

Z(λ,N) =

∫
dMe−Tr(MM†− λ

2N
MM†MM†).

The model can be shown Borel summable with a single loop vertex expansion but the trees
of that expansion form only a part of the planar sector of the theory which is the leading
order at large N . To extract this leading sector is possible through an additional expansion
called the topological expansion in [35]. Starting form the LVE trees, one can perform a first
expansion step on the resolvents, testing the presence of an additional field σ. This field is then
contracted with the Gaussian measure, and the process is continued until a first non-planar
Wick contraction appear. The part of the expansion for planar graphs does not diverge since
the number of planar graphs at order n is bounded by (const)n.

Continuing this additional topological expansion until at most p+ 1 independent crossing, it
is possible to extract the complete terms of the 1/N expansion up to order p and to prove that
the remainder is still Borel summable, with a uniform bound in N−(p+1).

A similar expansion could be used for tensor models such as those of [11], which mix a melonic
sector and a planar sector behavior.

5 Conclusion: open questions

Super-renormalizable and just renormalizable tensor field theories form a rich world [5]. A key
physical issue is to move towards realistic quantum gravity models, and to better connect the
“tensor field theory” approach to other approaches to quantum gravity. In particular under-
standing which tensor models admit a realistic emergent four dimensional (Euclidean) space
time with a real time analytic continuation seems to us the key problem. However we shall not
discuss this issue here, addressing the reader to our twin review [49] and focus here only on a
brief discussion of the next technical steps of the constructive tensor program.

The next obvious step in this program is to build super-renormalizable theories with power
counting of the same level than ordinary φ4

3, namely the T 4
4 model with propagator (p2 + 1)−1.

This is well under way and it seems that it can be treated like T 4
3 by just the same 2-jungle

formula of the MLVE and ICS bounds; but the list of divergent graphs is much longer (there are
12 primitively divergent graphs) and the Tr log interaction should therefore be pushed further,
resulting in particular in much more complicated non perturbative estimates compared to T 4

3 [51].

The model U(1)− T 4
5 with Boulatov projectors has a comparable finite amount of divergent

graphs. It should be easier than T 4
4 , since intermediate fields can be represented by diagonal

matrices in the momentum basis.

The next, more difficult step is the construction of a just renormalizable model such as
the T 4

5 model or the U(1) − T 4
6 model with Boulatov projector [41, 55, 56]. Both models

are asymptotically free [5, 48, 54], hence the construction should be possible but it is not clear
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whether it can be done with the same tools or if a more advanced expansion (such as a multiscale
loop vertex expansion with higher-order jungle formulas) will be required.

Another important direction is to treat models with higher-order interactions, for instance
the just renormalizable models with six-order melonic interactions introduced in [7] and [14].
Here the starting point might be the intermediate field representation introduced in [52] and
improved in [42]. Beware however that even in zero dimension we do not know yet how to
perform a loop vertex expansion in this representation [42].

We would like to complete this review by indicating two other challenging research directions
for matrix models and non-commutative field theory

• The first direction is to extend the analyticity domain in the coupling constant of quartic
models beyond the cardioid characteristically obtained through the LVE. In the case of
vector models we already know that this is possible and that the optimal angular domain
of analyticity extends to 3π (see Fig. 6 and the last section of [33]). In matrix or tensor
models nothing of this type is known.

This is a key issue for many reasons, in particular to understand the instanton cuts which
are responsible for the usual non-perturbative effects of φ4 theory, and how they should
disappear in the limitN →∞, unveiling a new singularity at finite distance on the negative
coupling constant which is the one responsible for the single and double scaling limits of
quantum gravity in two dimensions, hence for the emergence of continuous surfaces [20].

• Construct non-perturbatively the full non-planar sector of the Grosse–Wulkenhaar mo-
del [25]. Although in a certain limit θ → ∞ of infinite non-commutativity, this sector
disappears, again it would be very interesting to understand rigorously how to construct
the full theory at finite θ. It would be extremely interesting, as the theory is asymptotically
safe, to check that this property persists at the non-perturbative level.
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