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Some Remarks on the Total CR Q and Q’-Curvatures
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Abstract. We prove that the total CR Q-curvature vanishes for any compact strictly
pseudoconvex CR manifold. We also prove the formal self-adjointness of the P’-operator
and the CR invariance of the total Q’-curvature for any pseudo-Einstein manifold without
the assumption that it bounds a Stein manifold.
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1 Introduction

The Q-curvature, which was introduced by T. Branson [3], is a fundamental curvature quantity
on even dimensional conformal manifolds. It satisfies a simple conformal transformation formula
and its integral is shown to be a global conformal invariant. The ambient metric construction of
the Q-curvature [9] also works for a CR manifold M of dimension 2n + 1, and we can define the
CR @-curvature, which we denote by ). The CR @Q-curvature is a CR density of weight —n — 1
defined for a fixed contact form # and is expressed in terms of the associated pseudo-hermitian
structure. If we take another contact form 6 = eTf, T € C°(M), it transforms as

Q=Q+PT,

where P is a CR invariant linear differential operator, called the (critical) CR GJMS operator.
Since P is formally self-adjoint and kills constant functions, the integral

Qz@@

called the total CR @Q-curvature, is invariant under rescaling of the contact form and gives
a global CR invariant of M. However, it follows readily from the definition of the CR Q-
curvature that () vanishes identically for an important class of contact forms, namely the pseudo-
FEinstein contact forms. Since the boundary of a Stein manifold admits a pseudo-Einstein contact
form [5], the CR invariant @ vanishes for such a CR manifold. Moreover, it has been shown
that on a Sasakian manifold the CR Q-curvature is expressed as a divergence [1], and hence Q
also vanishes in this case. Thus, it is reasonable to conjecture that the total CR @Q-curvature
vanishes for any CR manifold, and our first result is the confirmation of this conjecture:

Theorem 1.1. Let M be a compact strictly pseudoconvex CR manifold. Then the total CR
Q-curvature of M vanishes: Q = 0.

For three dimensional CR manifolds, Theorem 1.1 follows from the explicit formula of the
CR Q-curvature; see [9]. In higher dimensions, we make use of the fact that a compact strictly
pseudoconvex CR manifold M of dimension greater than three can be realized as the boundary
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of a complex variety with at most isolated singularities [2, 10, 11]. By resolution of singularities,
we can realize M as the boundary of a complex manifold X which may not be Stein. In this
setting, the total CR Q-curvature is characterized as the logarithmic coefficient of the volume
expansion of the asymptotically Kdhler—Einstein metric on X [15]. By a simple argument using
Stokes’ theorem, we prove that there is no logarithmic term in the expansion.

Although the vanishing of @ is disappointing, there is an alternative @Q-like object on a CR
manifold which admits pseudo-Einstein contact forms. Generalizing the operator of Branson—
Fontana—Morpurgo [4] on the CR sphere, Case—Yang [7] (in dimension three) and Hirachi [12]
(in general dimensions) introduced the P’-operator and the @Q’-curvature for pseudo-Einstein
CR manifolds. Let us denote the set of pseudo-Einstein contact forms by PE and the space of
CR pluriharmonic functions by P. Two pseudo-Einstein contact forms 6, 0 € PE are related by
0 = Y0 for some Y € P. For afixed 6 € PE , the P’-operator is defined to be a linear differential
operator on P which kills constant functions and satisfies the transformation formula

P'f=Pf+P(fY)

under the rescaling 0 = Y. The Q’-curvature is a CR density of weight —n — 1 defined for
0 € PE, and satisfies

Q =Q +2P'T + P(T?)

for the rescaling. Thus, if P’ is formally self-adjoint on P, the total Q'-curvature

i [0

gives a CR invariant of M. In dimension three and five, the formal self-adjointness of P’ follows
from the explicit formulas [6, 7]. In higher dimensions, Hirachi [12, Theorem 4.5] proved the
formal self-adjointness under the assumption that M is the boundary of a Stein manifold X; in
the proof he used Green’s formula for the asymptotically Kahler—Einstein metric g on X, and
the global Kéahlerness of g was needed to assure that a pluriharmonic function is harmonic with
respect to g. In this paper, we slightly modify his proof and prove the self-adjointness of P’ for
general pseudo-Einstein manifolds:

Theorem 1.2. Let M be a compact strictly pseudoconvexr CR manifold. Then the P’-operator
for a pseudo-FEinstein contact form satisfies

/ (P fo— foP' 1) = 0
M

for any f1, fo € P.

Consequently, the CR invariance of @/ holds for any CR manifold which admits a pseudo-
Einstein contact form:

Theorem 1.3. Let M be a compact strictly pseudoconvexr CR manifold which admits a pseudo-
Einstein contact form. Then the total Q'-curvature is independent of the choice of 0 € PE.

We note that @/ is a nontrivial CR invariant since it has a nontrivial variational formula;
see [13]. We also give an alternative proof of Theorem 1.3 by using the characterization [12,
Theorem 5.6] of @, as the logarithmic coefficient in the expansion of some integral over a complex
manifold with boundary M.
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2 Proof of Theorem 1.1

We briefly review the ambient metric construction of the CR Q-curvature; we refer the reader
to [9, 12, 13] for detail.

Let X be an (n + 1)-dimensional complex manifold with strictly pseudoconvex CR bound-
ary M, and let r € C*°(X) be a boundary defining function which is positive in the interior X.
The restriction of the canonical bundle K+ to M is naturally isomorphic to the CR canonical
bundle Ky := A"HHTOLM)L ¢ AmHH(CT*M). We define the ambient space by X = K\ {0},
and set N = Kjr \ {0} = X|p7. The density bundles over X and M are defined by

Ew) = (KxoKx) ", &) = (Kn o Ku) """ = Ew)lu

for each w € R. We call £(w) the CR density bundle of weight w. The space of sections of E(w)
and &(w) are also denoted by the same symbols. We define a C*-action on X by dyu = A2y
for A € C* and v € X. Then a section of £(w) can be identified with a function on X which is
homogeneous with respect to this action:

E(w) = {f € C®(X)|8;f = |N*"f for X C}.

Similarly, sections of £(w) are identified with homogeneous functions on N.
Let p € £(1) be a density on X and (z',...,2""!) local holomorphic coordinates. We set
p=dz" Ao A2/ (42 g € £(0) and define

—(_qynt p o Ogp )
Jlp] = (—1)""" det <0zip 9.0.5p) "
Since J[p] is invariant under changes of holomorphic coordinates, J defines a global differential
operator, called the Monge-Ampére operator. Fefferman [8] showed that there exists p € £ (1)
unique modulo O(r"3) which satisfies J[p] = 1+ O(r"*2) and is a defining function of N'. We
fix such a p and define the ambient metric g by the Lorentz—K&hler metric on a neighborhood
of N in X which has the Kéhler form —iddp.

Recall that there exists a canonical weighted contact form 6 € I'(T*M ® £(1)) on M, and
the choice of a contact form € is equivalent to the choice of a positive section 7 € £(1), called
a CR scale; they are related by the equation @ = 76. For a CR scale 7 € £(1), we define the
CR Q-curvature by

Q= A+ log7 & € E(—n — 1),

where A = —V V! is the Kéhler Laplacian of § and 7 € £(1) is an arbitrary extension of 7.
It can be shown that @) is independent of the choice of an extension of 7, and the total CR
Q-curvature @ is invariant by rescaling of 7.

The total CR Q-curvature has a characterization in terms of a complete metric on X. We
note that the (1,1)-form —iddlog p descends to a Kihler form on X near the boundary. We

extend this Kéhler metric to a hermitian metric g on X. The Kahler Laplacian A = —gﬁvivj—.
of g is related to A by the equation

pAf=Af,  fe&(0) (2.1)

near A in X \ V. In the right-hand side, we have regarded f as a function on X.
For any contact form € on M, there exists a boundary defining function p such that

I =6, |0log p|g =1 near M in X, (2.2)



4 T. Marugame

where 9 := Re(idp) ([15, Lemma 3.1]). Let £ be the (1,0)-vector filed on X near M characterized
by

Ep=1, fJ_g/H,

where H := Kerdp € T'°X. Then, N := Re¢ is smooth up to the boundary and satisfies
Np =1, 9(N) = 0. Moreover, v := pN is (v/2)~! times the unit outward normal vector filed
along the level sets of p. By Green’s formula, for any function f on X we have

Afvoly = / vfvavoly. (2.3)
p>e p=€

Since the Monge—Ampere equation implies that g satisfies
voly, = —(n)) "1 (1 + O(p))p~ " 2dp A9 A (d9)",

the formula (2.3) is rewritten as

Afvol, = —(n!)l/ Nf-(1+0(e)e ™ A (d9)™. (2.4)
p>e p=¢€

With this formula, we prove the following characterization of Q.

Lemma 2.1 ([15, Proposition A.3]). For an arbitrary defining function p, we have

G
P /1 = W2+ 1Y

where Ip denotes the coefficient of log e in the asymptotic expansion in €.

Proof. Since the coefficient of loge in the volume expansion is independent of the choice of p
[15, Proposition 4.1], we may assume that p satisfies (2.2) for a fixed contact § on M. We take
7 € £(1) such that p = 7p. Then, 6 is the contact form corresponding to the CR scale 7|xr. By
the same argument as in the proof of [12, Lemma 3.1], we can take F € £(0), G € &(—n — 1)
which satisfy

N ~ n+1 _ ) _ _ (_1)n
A(log7 + F + Gp™*'log p) = O(p™), F =0(p), G’N_in!(n—i—l)!Q'

We set G := 711G ¢ 5(0) By (2.1) and the equation pﬁ log p =n + 1, we have
A(logp— F — Gp ! logp) =n+1+0(p™).
Then, by using (2.4), we compute as
(n+1) lp/ voly = lp/ A(logp— F — Gptt log p) vol,
p>€ p>€

— () Iy [ N(logp— F ~ Gt logp) - (L+ 0(0)e 0 A (d0)"
p=¢

”:' ! /MGe A (dB)
(-1

I
o

Thus we complete the proof. |
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Proof of Theorem 1.1. Let p be an arbitrary defining function of M, and 7 € £ (1) the density
on X defined by p = Tp. Then a := —i00logT is a closed (1, 1)-form on X. The volume form

of g is given by vol; = w™!/(n + 1)! with the fundamental 2-form w = ingQj A 6. Near the
boundary M in X, we have

w = —i00log p = —iddlog p + .

Since the logarithmic term in the volume expansion is determined by the behavior of vol, near
the boundary, we compute as

(n+1)! lp/ voly = lp/ (—iddlog p + )™t
p>€ p>e€

n+1
= lp/ ot 4 lp/
p>e P

The first term in the last line is 0 since « is smooth up to the boundary. Using —id0logp =
d(9/p) and da = 0, we also have

< > (—iddlog p)k A a7,

>6k1

lp/ (—iddlog p)* A a1k = 1p e_k/ A (AL A QTR = 0.
p>€ p=¢€

Thus, by Lemma 2.1 we obtain Q = 0. |

3 Proof of Theorem 1.2

We will recall the definitions of the P'-operator and the @'-curvature. A CR scale 7 € £(1)
is called pseudo-Einstein if it has an extension 7 € £(1) such that ddlog7 = 0 near N in X.
The corresponding contact form 6 is called a pseudo-FEinstein contact form and characterized in
terms of associated pseudo-hermitian structure; see [12, 13 14]. If 7 is a pseudo-Einstein CR
scale, another 7 is pseudo-Einstein if and only if 7 = e~ Tr for a CR . pluriharmonic function
T € P. For any f € P, we take an extension f € 8( ) such that 88f = 0 near M in X and
define

P'f=—A"! (flog?)\/\/ e&(—n—1).

We note that the germs of 7 and f along N is unique, and P’f is assured to be a density by
Af|xy = 0. The Q'-curvature is defined by

Q' = A" (log 7|y € E(—n — 1).

Here, the homogeneity of @’ follows from the fact A log 7 [ = 0.

To prove the formal self-adjointness of P’, we use its characterization in terms of the metric g.
We define a differential operator A’ by A/ f = —g% 8i87 f. Since g is Kéhler near the boundary,
A’ agrees with A near M in X.

Lemma 3.1 ([12, Lemma 4.4]). Let 7 € £(1) be a pseudo-Einstein CR scale and T € £(1)
its extension such that 00logT = 0 near N in X. Let p = p/T be the corresponding defining

function. Then, for any f € C*(X) which is pluriharmonic in a neighborhood of M in X, there
exist F,G € C®(X) such that F = O(p) and

A(flogp— F —Gp"tlogp) = (n+1)f + O (p™).

(=pn+t

D =P’ f holds.

Moreover, 77" 1G|y =
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In the statement of [12, Lemma 4.4], the Laplacian A is used, but we may replace it by A’
since they agree near the boundary in X.

Proof of Theorem 1.2. We extend f; to a function on X such that 99f; = 0 in a neighbor-
hood of M in X. Let 7 be a pseudo-Einstein CR scale and p = p/7 the corresponding defining
function. Then we have w = —i9dlog p near M in X. We take F};, G, as in Lemma 3.1 so that
u; = fijlog p— F; —Gjp™*1log p satisfies A'u; = (n+1)f;j +O(p>). We consider the coefficient
of log € in the expansion of the integral

I, = Re/ (z8f1 VAN 5”2 Aw™ + 10fo A gul Aw™ — fifo wnJrl)’
p>€

which is symmetric in the indices 1 and 2. Since dw = 0,90 f» = 0 near M in X, we have

i0f1 A Oug A W™ = d(iflgug A w") — i f100us A w" + infi0us Adw A w™ !

= d(if15u2 A w”) + fiA ugw™ 4 (cpt supp),

n+1
i0fa N Ouy Aw™ = —d (w18 f2 Aw™) + (cpt supp),

where (cpt supp) stands for a compactly supported form on X. Thus,

_ 1 ! _ n+1
Ie_/p>en+1f1(Au2 (n+1)f2)w

+ Re/ i(f10uz — u10f2) Aw" +/ (cpt supp).
p=¢

p>€

The first and the third terms contain no log terms. Since w = d(¥/p) near M in X, the second
term is computed as

Re/ i(fiOug — u1dfe) Aw" =" Re/ (z’flg(fg log p — Fy — Gop" ™ log p) A (d9)"
p=¢ p=e

—i(filogp— Fy — G1p™  log p) A fa A (dz?)") +0(e®).

The logarithmic term in the right-hand side is
log e/ (n+1)f1G29 A (d9)"™ 4 2¢ " loge Re/ if10fa A (d9)" + O(eloge).
pP=¢€ p=€

The coefficient of log e in the first term is

(—1)n+1/ P (3.1)
()2 Syt '
The second term is equal to

2¢ "logeRe /

p>€

i0f1 A Ofa A (d)™ 4 €™ 10ge/ (cpt supp).
p>e

The first term in this formula is symmetric in the indices 1 and 2 while the second term gives
no loge term. Therefore, (3.1) should also be symmetric in 1 and 2, which implies the formal
self-adjointness of P’. [ |
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4 Proof of Theorem 1.3

The formal self-adjointness of the P’-operator implies the CR invariance of the total Q’-curva-

. . . L —t
ture. When n > 2, the CR invariance can also be proved by the following characterization of @
in terms of the hermitian metric g on X whose fundamental 2-form w = ig jEHj A 0% agrees with

—i00log p near M in X:

Theorem 4.1 ([12, Theorem 5.6]). Let T € £(1) be a pseudo-Einstein CR scale and 7 € £(1)

its extension such that O0logT = 0 near N in X. Let p = p/T be the corresponding defining
function. Then we have

_ 1)
1p/ i0logp AN dlogp ANw" = ( )2Q/ (4.1)
r>€

for any defining function r.

In [12, Theorem 5.6], it is assumed that X is Stein and w = —iddlog p globally on X, but
as the logarithmic term is determined by the boundary behavior, it is sufficient to assume
w = —i0dlog p near M in X as above.

Proof of Theorem 1.3. Let 7, p be as in Theorem 4.1 and let p be the defining function

corresponding to another pseudo-Einstein CR scale 7. Then we can write as p = e p with
Y € C*®°(X) such that 9T = 0 near M in X.

Using the defining function p for r in the formula (4.1), we compute as

>€

lp/ i@logﬁ/\@logﬁ/\w”:lp/ i(0logp+ OY) A (Dlogp + OY) A w™
p>e p

:lp/ i@logp/\alogp/\w”+lp/ i0T A OY A w"
p>e p

>€

+ 2Re lp/ i0logp A OY A w".
p>e€

The second term in the last line is

lp/ iOT ANOY Aw" = lp/ iTOY Aw™ + lp/ (cpt supp) = 0.
p>€ p=€

p>€

Since w = d(¢/p) near M in X, we have
/ i0logp A OY A w™ = log e/ i0T Aw" + / (cpt supp)
p>€ p=¢ p>e€

=e " loge/ i0Y A (d9)" + / (cpt supp)
p=¢€ p>e€

=" loge/ (cpt supp) +/ (cpt supp),
p>e p>€

which implies that the third term is also 0. Thus, @/ is independent of the choice of a pseudo-
Einstein CR scale . |
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