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Abstract. In this paper we compute the asymptotic behavior of the recurrence coeffi-
cients for polynomials orthogonal with respect to a logarithmic weight w(x)dx = log 2k

1−xdx
on (−1, 1), k > 1, and verify a conjecture of A. Magnus for these coefficients. We use
Riemann–Hilbert/steepest-descent methods, but not in the standard way as there is no
known parametrix for the Riemann–Hilbert problem in a neighborhood of the logarithmic
singularity at x = 1.
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1 Introduction

In this paper we consider the sequence of polynomials {pn(x)} that are orthonormal with respect
to a logarithmic measure w(x)dx on [−1, 1) and 0 elsewhere∫ 1

−1
pi(x)pj(x)w(x)dx = δij ,

where

w(x) = log
2k

1− x
.

We will only consider the case k > 1, for which the measure is strictly positive on its support,
w(x) > c > 0 for x ∈ [−1, 1).

The polynomials {pn(x)} obey the well-known three term recurrence relation

xpn(x) = bnpn+1(x) + anpn(x) + bn−1pn−1(x),

where the recurrence coefficients an ∈ R, bn > 0 are of particular interest.

Remark 1.1. Note that the notation for an, bn in this paper is the same as the notation in
[7, 9], but the reverse of the notation in [13, 14].

Logarithmic singularities like the ones exhibited in the above weight present various obsta-
cles to the asymptotic analysis of the associated polynomials {pn(x)} and their recurrence co-
efficients. The standard Riemann–Hilbert approach requires that explicit local solutions can be
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found in the neighborhood of singularities of the underlying measure for the associated Riemann–
Hilbert problem. Because no such local solution is known near x = 1 for the logarithmic case,
the standard approach cannot be applied directly.

The approach in this paper hinges instead on a comparison with the Legendre polyno-
mials {p̃n} which are orthogonal with respect to the weight

w̃(x) =

{
1, for x ∈ [−1, 1],

0, otherwise,

and which have recurrence coefficients ãn, b̃n. The asymptotics of ãn and b̃n are well known.
We have, from [13],

ãn = 0, b̃n =
1

2
+

1

16n2
+O

(
1

n3

)
.

The result of this comparison, and the main result of this paper is that

Theorem 1.2. As n → ∞, the differences between the log-orthogonal coefficients and the Le-
gendre coefficients have the following asymptotic behavior

an − ãn =
2C

(n log n)2
+O

(
1

n2(log n)3

)
, (1.1)

bn − b̃n =
C

(n log n)2
+O

(
1

n2(log n)3

)
, (1.2)

where C = − 3
32 ≈ −0.094. In particular this implies that, as n → ∞, the recurrence coeffi-

cients an, bn have the following asymptotic behavior

an =
2C

(n log n)2
+O

(
1

n2(log n)3

)
,

bn =
1

2
+

1

16n2
+

C

(n log n)2
+O

(
1

n2(log n)3

)
.

This result, and more, was conjectured by Alphonse Magnus in [14], up to the precise value
for the constant C. We are indebted to his work, which provided the inspiration for the above
result. For the weight w(x) = − log x on [0, 1], in particular, Magnus conjectured that as n→∞

an =
1

2
− 1

8n2
− 2C

(n log n)2
+ o

(
1

n2(log n)2

)
, (1.3)

bn =
1

4
− 1

32n2
+

C

(n log n)2
+ o

(
1

n2(log n)2

)
, (1.4)

and on numerical grounds he conjectured further that C ∼ −0.044. The weight − log x on [0, 1]
corresponds to the case k = 1 for which our analysis is not yet complete. Nevertheless, our
prelimary calculations confirm (1.3) and (1.4) with stronger estimates O

(
1

n2(logn)3

)
on the error

terms, and with the explicit value −3/64 for C. As −3/64 ∼ −0.047 this is close to Magnus’s
conjectured value.

The proof proceeds as follows: The polynomials {pn} have a well-known expression in terms
of the solution Y of a Riemann–Hilbert problem due to Fokas–Its–Kitaev, see Section 3.1.
We follow a now standard series of transformations as in [7, 13], that transform the original
Riemann–Hilbert problem for Y into a modified problem that is close to a Riemann–Hilbert
problem whose asymptotics can be inferred directly.
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Here is where our analysis diverges from the standard analysis. The standard analysis com-
pares the modified Riemann–Hilbert problem to a model Riemann–Hilbert problem (parametrix)
that explicitly solves the Riemann–Hilbert problem locally around the critical points at the edge
of the measure. The new difficulty of our problem is that no explicit local solution is known
near the logarithmic singularity. The main new feature of our analysis is that, for the problem
at hand, no local solution is needed.

The strategy here is to compare the modified Riemann–Hilbert problem above to the corre-
sponding modified Riemann–Hilbert problem for the Legendre case. In the standard approach,
a comparison is made by examining the quotient of solutions to two Riemann–Hilbert problems
as the solution to a Riemann–Hilbert problem in its own right. However, for the case at hand,
the log singularity renders this approach ineffective. Instead we compare the problems through
the operator theory that underlies Riemann–Hilbert problems, see Section 4, or see [10] for more
details.

In Theorem 4.4 we prove a general and very useful formula that allows for an effective
comparison of two Riemann–Hilbert problems on the same contour. In our case, where we
compare the log case with the Legendre case, this formula can be approximated by quantities
solely related to the Legendre case, for which the asymptotics are well known, and this leads,
eventually, to the formulas (1.1) and (1.2). It is a remarkable, and unexpected, development
that the log problem can be approximated adequately by the Legendre problem.

The proof is laid out within this paper as follows:

• In Section 2, we prove several preliminary properties and estimates on the auxilliary func-
tions that will arise in our analysis.

• In Section 3, we introduce the Riemann–Hilbert problem for the orthogonal polynomials
and transform this problem into one which can be controlled as n→∞.

• In Section 4, we prove bounds, uniform in n, on the resolvent operators that are associated
with the Riemann–Hilbert problem in the standard way and prove Theorem 4.4.

• In Section 5, we calculate the asymptotics of the recurrence coefficients by combining the
results of the previous sections with calculations derived from the known asymptotics of
Legendre quanties.

• The above calculations are given in Appendices A, B, and C.

Note that the case k = 1 corresponding to the weight log 2
1−x on the interval [−1, 1), for

which w(x) > 0 on its support, but for which w(x) > c > 0 fails, is not considered in this paper.
Recall that questions concerning orthogonal polynomials on the line with respect to a measure
of compact support correspond to questions involving associated orthogonal polynomials on the
unit circle, where the vanishing of the weight log 2

1−x at the point −1 corresponds to a Fisher–
Hartwig singularity for the related problem on the circle, see [8]. The methods in this paper do
not extend immediately to cover this case, but will be addressed in a future paper.

This paper is in the line of questioning concerning the effect that singularities and zeroes
in the measure have on the asymptotic behavior of orthogonal polynomials. Here we have in
mind the extensive history of the problem dating originally back to the work of Szegő, proving
the strong limit theorem for Toeplitz determinants for non-vanishing smooth weights on the
circle without singularities [15], and whose result has been extended to include a wide class of
algebraic singularities, in particular, by the work of M.E. Fisher and R.E. Hartwig, see [8] for a
history. Of additional interest is the recent work of Barry Simon et al. concerning sum laws of
Szegő type where zeros of the form e−1/x2

, for example, in the weight are investigated (see [2] for
an up to date discussion). The logarithimic singularities explored in this paper are of practical
interest in both physics and mathematics as described in [14, 16].
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2 The φ function and the Szegő function

In this section, we introduce several functions central to our analysis and detail their properties.

2.1 The map φ and the Szegő function F

The first part of our work closely follows the work from the papers [9, 13, 17], and uses the
Riemann–Hilbert approach to orthogonal polynomials, first put forward by Fokas, Its, and Ki-
taev [11]. We apply similar sets of transformations to the Riemann–Hilbert problems associated
with the weights w and w̃,

Y → T → Q, Ỹ → T̃ → Q̃.

The problems Q and Q̃ are then close in a “certain” sense, allowing the comparison. The prob-
lem Q̃ can be asymptotically solved as in [13], as repeated in the appendix, also see Section B.1.

In the calculations that follow
(
z2 − 1

)1/2
refers to the branch of the square root of z2 − 1

that is analytic in C\[−1, 1] and is positive for z > 1. For z ∈ (−1, 1),
(
z2 − 1

)1/2
± refers to the

boundary value of
(
z2−1

)
as z′ → z with z′ ∈ C± respectively, C± = {z = x±iy |x ∈ R, y > 0}.

Additionally, when x > 0,
√
x will refer to the positive square root of x.

The map

φ(z) = z +
(
z2 − 1

)1/2
, z ∈ C\[−1, 1]

plays a key role in the transformations Y → T and Ỹ → T̃ . In particular φ plays the role of
normalizing these problems at infinity. The function φ has the following properties,

Proposition 2.1. The function φ, and its boundary values, φ±, on the interval [−1, 1] have the
following properties:

0) φ(z) is analytic for z ∈ C\[−1, 1], (2.1)

1) φ(z) = 2z +O

(
1

z

)
as z →∞, (2.2)

2) φ(z) = 1 +
√

2(z − 1)1/2 +O(z − 1) as z → 1, (2.3)

3) φ(z) = −1 +
√

2i(z + 1)1/2 +O(z + 1) as z → −1, (2.4)

4) φ(z) = φ(z), (2.5)

5) |φ(z)| > 1, (2.6)

6) φ±(x) = x± i
√

1− x2, (2.7)

7) φ+(x)φ−(x) = 1, (2.8)

8) |φ±(x)| = 1. (2.9)

The function (z−1)1/2 in (2.3) is analytic in C\(−∞, 1] and positive for z > 1 and the function
(z + 1)1/2 in (2.4) is analytic in C\(−1,∞] and is positive imaginary from z < −1.

Proof. We will prove statement (2.6); the remaining statements follow directly from the defi-
nition of φ.

First note that for all z ∈ C\[−1, 1],

φ(z)×
(
z −

(
z2 − 1

)1/2)
= z2 −

(
z2 − 1

)
= 1.
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Therefore φ(z) 6= 0. The function 1
φ is therefore analytic in the region C\[−1.1]. By proper-

ty (2.2), we see that 1
φ(z) → 0 as z → ∞, and by property (2.9), we see that

∣∣ 1
φ(z)

∣∣ → 1

as z → [−1, 1]. Therefore, the maximum modulus principle guarantees that
∣∣ 1
φ(z)

∣∣ < 1 for
z ∈ C\[−1, 1] and so |φ(z)| > 1 in the same region. �

For the log-orthogonal polynomial case, we make use of the associated Szegő function F
similar to the non-Legendre cases analyzed in [13],

F (z) = exp

(z2 − 1
)1/2 ∫ 1

−1

logw(s)(
s2 − 1

)1/2
+

d̄s

s− z

 ,

where

d̄s :=
ds

2πi

and similarly d̄t, d̄z, . . . mean dt
2πi ,

dz
2πi , . . . . In the calculations that follow we shall use the

following lemma repeatedly without further comment:

Lemma 2.2. The function w(s) = log 2k
1−s has an analytic extension from [−1, 1) to C\[1,∞)

where log takes on its principle value.

The function L(s) := logw(s) has an analytic extension from (−1, 1) to C\((−∞, 1 − 2k] ∪
[1,∞)), where again log takes its principle value.

Proof. The proof is left to the reader. �

Proposition 2.3. The function F , and its boundaray values, F±, on the interval [−1, 1] have
the following properties:

0) F (z) is analytic for z ∈ C\[−1, 1], (2.10)

1) F (z) = F∞ +
F1

z
+O

(
1

z2

)
as z →∞, for suitable constants F∞, F1 ∈ R, (2.11)

2)
F 2

w
(z) = 1∓ iπ

w(z)
− π2

2w2(z)
+O

(
1

w3(z)

)
uniformly as z → 1, (2.12)

3)
F 2

w
(z) = 1 +O(|z + 1|1/2) uniformly as z → −1, (2.13)

4) F (z) = F (z), (2.14)

5) F+(x)F−(x) = w(x). (2.15)

Proof. With the exception of statements (2.3) and (2.4) of Proposition 2.1, the above state-
ments are straightforward to prove. Statements (2.12) and (2.13) are proven in Appendix A.1
as Proposition A.1 and Proposition A.3. �

Additionally, as a consequence of Proposition 2.3, the Szegő function satisfies.

Proposition 2.4.

F 2

w+
(x) +

F 2

w−
(x)− 2 = − 3π2

log2 2k
|x−1|

+O

(
1

log3 |1− x|

)
for x > 1 as x→ 1.
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Proof. As the estimate in statement (2.12) of Proposition 2.3 is uniform in 0 < |θ| < π, we can
compute for x > 1, x→ 1,

F 2

w+
(x) +

F 2

w−
(x)− 2 = − iπ

w+(x)
+

iπ

w−(x)
− π2

log2 2k
|x−1|

+O

(
1

log3 |1− x|

)
=
iπ(−w− + w+)

w+(x)w−(x)
− π2

log2 2k
|x−1|

+O

(
1

log3 |1− x|

)
= − 2π2

w+(x)w−(x)
− π2

log2 2k
|x−1|

+O

(
1

log3 |1− x|

)
= − 3π2

log2 2k
|x−1|

+O

(
1

log3 |1− x|

)

as x→ 1. �

We will also need the following technical estimate on the difference F 2

w±
(1 + r) − F 2

w±
(1 + r̃)

for r, r̃ > 0 suitably small and close together. This estimate is needed to estimate the integral
in Proposition 5.4.

Proposition 2.5. Fix R > 0 and suppose r, r̃ > 0 obey

r, r̃ = O

(
1

n2

)
, n

(r
r̃
− 1
)
∈ [−R,R].

Then

F 2

w+
(1 + r)− F 2

w+
(1 + r̃) +

F 2

w−
(1 + r)− F 2

w−
(1 + r̃) = OR

(
1

n log3 n

)
.

Proof. See Proposition A.4. �

3 The Riemann–Hilbert approach

In this section we define the main Riemann–Hilbert problem and transform the problem into
a form which is amenable to asymptotic analysis.

Remark 3.1. The notation On is used as follows. For matrices

A(z) = A(n)(z) =

(
A

(n)
11 (z) A

(n)
12 (z)

A
(n)
21 (z) A

(n)
22 (z)

)
, B(z) =

(
B11(z) B12(z)
B21(z) B22(z)

)

we say A(z) = On(B(z)) as z → z0 if, for each pair i, j = 1, 2, and for any n > 0, there exists ε
and cn such that∣∣A(n)

ij (z)
∣∣ 6 cn|Bij(z)|

for all |z− z0| 6 ε. Similarly, for scalar functions An(z) and B(z), we say that An(z) = O(B(z))
if there exists cn such that

|An(z)| 6 cn|B(z)|
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3.1 Riemann–Hilbert problem for Y

We will denote by πn(x) = xn + · · · , π̃n = xn + · · · the monic, orthogonal polynomials associ-
ated with the weights w, w̃ respectively. The polynomials {πn} are described by the following
Riemann–Hilbert problem introduced by Fokas, Its, and Kitaev [11] (see also [7]) for a 2×2
matrix valued function Y (z) = Y (n)(z):

(a)

Y (n)(z) is analytic for z ∈ C\[−1, 1]. (3.1)

(b) Y (n) has boundary values, Y± := lim
z→x,z∈C±

Y (z), for x ∈ R pointwise almost everywhere

and in the following L2 sense:

for any R > 1, lim
ε↓0

∫ R

−R
|Y (x± iε)− Y±(x)|2dx = 0

and

Y
(n)

+ (x) = Y
(n)
− (x)

(
1 w(x)
0 1

)
for x ∈ (−1, 1). (3.2)

(c) Y (n) has the following asymptotics as z →∞

Y (n)(z) =

(
I +On

(
1

z

))(
zn 0
0 z−n

)
. (3.3)

Of course, for |x| > 1, Y+(x) = Y−(x) = Y (x).

Define the Cauchy operator, C[−1,1] by

C[−1,1]f =

∫ 1

−1

f(s)

s− z
d̄s

and let C±[−1,1] denote its boundary values from C± respectively. We give a brief summary of the
properties of the Cauchy operator and its boundary values on general contours in Section 4.2.

Proposition 3.2 (Fokas–Its–Kitaev). Let γn > 0 be the leading coefficient of pn, the orthonor-
mal polynomials with respect to the weight w, pn = γnπn. The function

Y (n)(z) =

(
πn(z) (C[−1,1]πnw)(z)

2πiγ2
n−1πn−1(s) 2πiγ2

n−1(C[−1,1]πn−1w)(z)

)
(3.4)

uniquely solves the RHP for Y (n).

Proof. Aside from some special attention that must be paid to the L2 sense in which the
boundary values Y± are achieved, the proof proceeds as in [7]. The L2 condition in (3.2) plays
the following key role in proving uniqueness:

Note that, by the L2 condition in (3.2), for any a, b ∈ R

lim
ε↓0

∫ b

a
|detY (x± iε)− detY±(x)| dx

= lim
ε↓0

∫ b

a
|Y11Y22(x± iε)− (Y11Y22)±(x)− (Y12Y21(x± iε)− (Y12Y21)±(x))|dx = 0.
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0

z − 1 = reiθ

C1

C2

2eiθ

2

Figure 1. Definition of C1, C2.

However, the jump condition in (3.2) implies detY+(x) = detY−(x) for almost all x ∈ R.
Therefore,

lim
ε↓0

∫ b

a
detY (x+ iε) = lim

ε↓0

∫ b

a
detY (x− iε)

and it follows, by standard calculations, that
∫
C detY (z)dz = 0 for all closed contours C ⊂ C.

Hence detY (z) is entire by Morera’s theorem. Condition (3.3) and Liouville’s theorem then
implies that detY (z) = 1 for all z. In particular, Y (z) is invertible for all z ∈ C\[−1, 1].

Let Ỹ be a second solution to the RHP (3.1)–(3.3) and define H(z) = Ỹ (z)Y −1(z), and
repeating the same argument, we find that H(z) is entire, and H(z) → I as z → ∞ and hence
H(z) = 1 for all z and therefore Y = Ỹ .

We must also demonstrate that the function Y (n)(z) defined in (3.4) achieves its boundary
values in the aforementioned L2 sense. A standard argument as in [13] shows that

(d) Y (n) has the following uniform asymptotics as z → −1, z ∈ C\[−1, 1]

Y (n)(z) = On

(
1 log(|z + 1|)
1 log(|z + 1|)

)
. (3.5)

We must also analyze Y (z) for z near 1. Let z = 1 + reiθ where r > 0 and −π < θ < π, and
recall from Lemma 2.2 that w(s) has to analytic extension in C\[1,∞). The following estimate
holds uniformly for −π < θ < π,∣∣∣∣∫ 1

−1

πn(s)w(s)

s− z
d̄s

∣∣∣∣ =

∣∣∣∣∫ 1

−1

πn(s)w(s)

s− 1− reiθ
d̄s

∣∣∣∣ =

∣∣∣∣∫ 2

0

πn(1− s)w(1− s)
s+ reiθ

d̄s

∣∣∣∣
=

∣∣∣∣∫
C1

πn(1− s)w(1− s)
s+ reiθ

d̄s+

∫
C2

πn(1− s)w(1− s)
s+ reiθ

d̄s

∣∣∣∣ ,
where C1, C2 are depicted in Fig. 1. The integrand is clearly bounded over C2 is clearly analytic
and hence the integral of C2 is O(1)∣∣∣∣∫

C1

πn(1− s)w(1− s)
s+ reiθ

d̄s

∣∣∣∣ 6 cn ∫
C1

∣∣∣∣w(1− s)
s+ reiθ

∣∣∣∣ |ds|.
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Making the change of variables s = reiθt,

cn

∫
C1

∣∣∣∣w(1− s)
s+ reiθ

∣∣∣∣ |ds| = cn

∫ 2/r

0

∣∣∣∣w(1− reiθt)
reiθt+ reiθ

∣∣∣∣ rdt
= cn

∫ 2/r

0

∣∣∣∣w(1− reiθt)
t+ 1

∣∣∣∣ dt = cn

∫ 2/r

0

∣∣∣∣∣ log reiθt
2k

t+ 1

∣∣∣∣∣ dt
6 cn

∫ 2/r

0

∣∣∣∣ log t

t+ 1

∣∣∣∣ dt+ cn log r

∫ 2/r

0

∣∣∣∣ 1

t+ 1

∣∣∣∣ dt
6 cn

∫ 1

0

∣∣∣∣ log t

t+ 1

∣∣∣∣dt+ cn

∫ 2/r

1

∣∣∣∣ log t

t+ 1

∣∣∣∣dt+On
(

log2 r
)

6 cn log r

∫ 2/r

1

∣∣∣∣ 1

t+ 1

∣∣∣∣ dt+On
(

log2 t
)

= On
(

log2 r
)

proving∣∣∣∣∫ 1

−1

πn(s)w(s)

s− z
d̄s

∣∣∣∣ = On
(

log2 |z − 1|
)

uniformly for z ∈ C\[−1, 1], as z → 1. Therefore,

(e) Y (n) has the following uniform asymptotics as z → 1, z ∈ C\[−1, 1]

Y (n)(z) = On

(
1 log2(|z − 1|)
1 log2(|z − 1|)

)
. (3.6)

Lastly, note that the function Y (n)(z) clearly is continuous up to the boundary for all x ∈
R\{−1, 1} from the properties of the Cauchy operator. Therefore, combining (3.5) and (3.6), it
is clear that Y achieves its boundary values Y± in the L2 sense described in (3.2). �

Let σ3 refer to the 3rd Pauli matrix

σ3 =

(
1 0
0 −1

)
.

The recurrence coefficients an, bn associated with the polynomials {πn} have the following
expressions in terms of the solution Y (n)(z):

Proposition 3.3. Let Y
(n)

1 be the coefficient of 1
z in the Laurent expansion Y (n)(z)z−nσ3 =

I +
Y

(n)
1
z +O

(
1
z2

)
as z →∞. Then

an =
(
Y

(n)
1

)
11
−
(
Y

(n+1)
1

)
11
, b2n−1 =

(
Y

(n)
1

)
12

(
Y

(n)
1

)
21
,

and

1 =
(
Y

(n)
1

)
12

(
Y

(n+1)
1

)
21
.

Proof. See [7]. �

References for the calculations that follow are [7, 9, 13, 17].
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3.2 The transformation Y → T

The first step in the asymptotic analysis of Y , is to provide a reformulation of the RHP described
by (3.1)–(3.3) in terms of a RHP normalized at infinity, and now with a bounded, but highly
oscillatory, jump function.

Remark 3.4. In the standard Riemann–Hilbert theory, the RHP is converted to a problem
involving a bounded singular operator on the contour. The replacement of the unbounded jump
( 1 w

0 1 ) with a bounded jump makes it possible to apply Riemann–Hilbert theory directly.

Recall the definitions of φ and F from Section 2 and define

T (z) =

(
2n

F∞

)σ3

Y (z)

(
F (z)

φn(z)

)σ3

, z ∈ C\[−1, 1]. (3.7)

Since Y , φ, and F are all analytic in the region C\[−1, 1], T clearly satisfies the same analyticity
condition (3.1) as Y .

For x ∈ (−1, 1)

T+(x) =

(
2n

F∞

)σ3

Y+(x)

(
F+(x)

φn+(x)

)σ3

=

(
2n

F∞

)σ3

Y−(x)

(
1 w(x)
0 1

)(
F+(x)

φn+(x)

)σ3

= T−(x)

(
F−(x)

φn−(x)

)−σ3
(

1 w(x)
0 1

)(
F+(x)

φn+(x)

)σ3

= T−(x)


F+

F−

(
φ−
φ+

)n φn−φ
n
+

F+F−
w

0
F−
F+

(
φ+

φ−

)n
 = T−(x)

F
2
+

w
φ−2n

+ 1

0
F 2
−
w
φ−2n
−

 ,

where we have used property (2.8) of Proposition 2.1 and property (2.15) of Proposition 2.3.
Combining property (2.2) of Proposition 2.1 and property (2.11) of Proposition 2.3 with (3.7),
we see that

T (z) = I +On

(
1

z

)
as z →∞

Finally by properties (2.3) and (2.4) of Proposition 2.1 and properties (2.12) and (2.13) of
Proposition 2.3 and by conditions (3.5) and (3.6) of the RHP for Y , we see that

T (z) = On

(
1 log(|z + 1|)
1 log(|z + 1|)

)
as z → −1,

T (z) = On

(
log1/2(|z − 1|) log3/2(|z − 1|)
log1/2(|z − 1|) log3/2(|z − 1|)

)
as z → 1.

To summarize, T (z) solves the following standard RHP:

(a) T (z) is analytic for z ∈ C\[−1, 1],

(b) T (n) has continuous boundary values for x ∈ (−1, 1), which we denote by T
(n)
+ (x) and

T
(n)
− (x) and

T+(x) = T−(x)

F
2
+

w
φ−2n

+ 1

0
F 2
−
w
φ−2n
−

 for x ∈ (−1, 1), (3.8)
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−1 1
1 + δ

Σ1

Σ2

Ω0

Ω1

Ω2

+

−

+

−

+

−
−
+

Figure 2. Definition of Σ = Σ1 ∪ Σ2 ∪ [−1, 1] ∪ [1 + δ, 1].

(c) T (z) has the following asymptotics as z →∞

T (z) = I +On

(
1

z

)
as z →∞,

(d) T (n) has the following asymptotics as z → −1

T (z) = On

(
1 log(|z + 1|)
1 log(|z + 1|)

)
,

(e) T (n) has the following asymptotics as z → 1

T (z) = On

(
log1/2(|z − 1|) log3/2(|z − 1|)
log1/2(|z − 1|) log3/2(|z − 1|)

)
.

It follows from the definitions of T (3.7) and the fact that det(Y ) ≡ 1 that det(T ) ≡ 1.

Remark 3.5. Properties (2.12) and (2.13) of Proposition 2.3 imply that F 2

w is bounded uniformly
as we approach the interval [−1, 1] and therefore the jump matrix for T in (3.8) is indeed
bounded.

3.3 The transformation T → Q

The transformations in these sections are well known to those familiar with the Riemann–Hilbert
approach to orthogonal polynomials. The next transformation is a slight modification of the
typical “lens” transformation. The difference is that it collects factors in the upper and lower
lips near the singularity at 1. For our particular weight, these factors cancel each other to leading
order, due to Proposition 2.4. We “deform” the RHP on [−1, 1] to a problem on the oriented
contour Σ as depicted in Fig. 2.

The transformation in this section is based on the factorization of the jump matrix of T
in (3.8) into a product of 3 matrices on (−1, 1):F

2
+

w
φ−2n

+ 1

0
F 2
−
w
φ−2n
−

 =

 1 0
F 2
−
w
φ−2n
− 1

( 0 1
−1 0

) 1 0
F 2

+

w
φ−2n

+ 1

 .
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Since F , φ are analytic in C\[−1, 1], and, by Lemma 2.2, log 2k
1−s has a unique analytic continu-

ation to C\[1,∞), the matrix valued function 1 0
F 2

w
φ−2n(z) 1


is an analytic function on C\[−1,∞) and, by Remark 3.5 and Proposition 2.1 is continuous up
to the boundary. Now define

Q(z) =



T (z) for z ∈ Ω0,

T (z)

 1 0

−F
2

w
φ−2n 1

 for z ∈ Ω1,

T (z)

 1 0

F 2

w
φ−2n 1

 for z ∈ Ω2.

(3.9)

A straightforward calculations shows Q = Q(n) solves the following RHP:

(a) Q(z) is analytic for z ∈ C\Σ,

(b) Q has continuous boundary values for s ∈ Σ\{−1, 1} and Q+(s) = Q−(s)vΣ(s), s ∈ Σ,
where

vΣ(s) =



 1 0

F 2

w
φ−2n 1

 for s ∈ Σ1 ∪ Σ2, 1 0(
F 2

w+
+
F 2

w−

)
φ−2n 1

 for s ∈ [1, 1 + δ],(
0 1

−1 0

)
for s ∈ [−1, 1],

(c) as z →∞

Q(z) = I +
Q1

z
+On

(
1

z2

)
,

(d) Q has the following asymptotics as z → −1

Q(z) = On

(
log(|z + 1|) log(|z + 1|)
log(|z + 1|) log(|z + 1|)

)
, (3.10)

(e) Q has the following asymptotics as z → 1

Q(z) = On

(
log3/2(|z − 1|) log3/2(|z − 1|)
log3/2(|z − 1|) log3/2(|z − 1|)

)
. (3.11)

The endpoint conditions in (3.10) and (3.11) guarantee that the solution Q to the above RHP
achieves its boundary values in the L2 sense. The same argument as in Proposition 3.2 proves
that this solution is unique. Therefore, any solution to the above RHP must be the solution we
obtain from the RHP for Y through the transformations (3.7) and (3.9).
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3.4 The associated Legendre problem, Q̃

The same steps as in Section 3.3 can be repeated for the problem with the Legendre weight
w̃(s) = 1, s ∈ [−1, 1], in which case all of the above calculations hold true provided we take
F ≡ 1.

This results in the following RHP on Σ for Q̃ = Q̃(n):

(a)

Q̃(z) is analytic for z ∈ C\Σ. (3.12)

(b) Q̃ has continuous boundary values for x ∈ Σ\{−1, 1} and Q̃+(s) = Q̃−(s)vΣ(s)

ṽΣ(s) =



(
1 0

φ−2n 1

)
for s ∈ Σ1 ∪ Σ2,(

1 0

2φ−2n 1

)
for s ∈ [1, 1 + δ],(

0 1

−1 0

)
for s ∈ [−1, 1],

(3.13)

(c) as z →∞

Q̃(z) = I +
Q̃1

z
+On

(
1

z2

)
,

(d) Q̃ has the following asymptotics as z → −1

Q̃(z) = On

(
log(|z + 1|) log(|z + 1|)
log(|z + 1|) log(|z + 1|)

)
,

(e) Q̃ has the following asymptotics as z → 1

Q̃(z) = On

(
log(|z − 1|) log(|z − 1|)
log(|z − 1|) log(|z − 1|)

)
. (3.14)

3.5 A formula for recurrence coefficients

Proposition 3.6. The following formulas hold for the recurrence coefficients in terms of the
modified RHPs Q, Q̃,

an − ãn =
(
Q

(n)
1

)
11
−
(
Q̃

(n)
1

)
11
−
((
Q

(n+1)
1

)
11
−
(
Q̃

(n+1)
1

)
11

)
,

b2n−1 − b̃2n−1 =
((
Q

(n)
1

)
12
−
(
Q̃

(n)
1

)
12

)((
Q

(n)
1

)
21
−
(
Q

(n+1)
1

)
21

)
+
(
Q̃

(n)
1

)
12

[(
Q

(n)
1

)
21
−
(
Q

(n+1)
1

)
21
−
((
Q̃

(n)
1

)
21
−
(
Q̃

(n+1)
1

)
21

)]
.

Proof. Note, from Proposition 3.3, that the recurrence coefficients an, bn are related to the
RHP for Y via the formulas

an =
(
Y

(n)
1

)
11
−
(
Y

(n+1)
1

)
11
, (3.15)

b2n−1 =
(
Y

(n)
1

)
12

(
Y

(n)
1

)
21
, (3.16)
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and, again from Proposition 3.3, Y satisfies the following symmetry relation:

1 =
(
Y

(n)
1

)
12

(
Y

(n+1)
1

)
21
. (3.17)

Now for z sufficiently large (outside of the contour Σ)(
2n

F∞

)σ3

Y (z)

(
F (z)

φn(z)

)σ3

= Q(z)

and (
I +

Y1

z
+On

(
z−2
))

znσ3 =

(
F∞
2n

)σ3
(
I +

Q1

z
+On

(
z−2
))(φn(z)

F (z)

)σ3

.

By Propositions 2.1 and 2.3

φ(z) = 2z +On
(
z−1
)
,

F (z) = F∞ +
F1

z
+On

(
z−2
)
.

Hence

φn(z)

F (z)
=

2n

F∞ + F1
z +On

(
z−2
)zn +On

(
zn−2

)
=

2n

F∞
zn − 2nF1

F 2
∞
zn−1 +On

(
zn−2

)
,

F (z)

φn(z)
=

F∞

2nzn +On
(
zn−2

) +
F1

2nzn+1 +On(zn−1)
+On

(
zn−2

)
=
F∞
2n

z−n +
F1

2n
z−n−1 +On

(
z−n−2

)
.

So (
I +

Y1

z
+On

(
z−2

))
znσ3 =

(
F∞
2n

)σ3
(
I +

Q1

z
+On

(
z−2

))
×

((
2n

F∞

)σ3

+
1

z

(
−2nF1

F 2
∞

0

0 F1
2n

)
+On

(
z−2

))
znσ3 ,

Y1

z
=

1

z

(
F∞
2n

)σ3

Q1

(
2n

F∞

)σ3

+
1

z

− F1

F∞
0

0
F1

F∞

 ,

Y1 =

(
F∞
2n

)σ3

Q1

(
2n

F∞

)σ3

+

− F1

F∞
0

0
F1

F∞

 ,

and so the formula for the recurrence coefficients in (3.15)–(3.16) can be expressed in terms of
the RHP for Q by

an =
(
Q

(n)
1

)
11
−
(
Q

(n+1)
1

)
11
, b2n−1 =

(
Q

(n)
1

)
12

(
Q

(n)
1

)
21
.

The symmetry consideration (3.17) becomes

1 = 4
(
Q

(n)
1

)
12

(
Q

(n+1)
1

)
21

and so

an =
(
Q

(n)
1

)
11
−
(
Q

(n+1)
1

)
11
,
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b2n−1 −
1

4
=
(
Q

(n)
1

)
12

((
Q

(n)
1

)
21
−
(
Q

(n+1)
1

)
21

)
.

The same formulas hold for ãn and b̃2n−1, replacing Q1, Y1 with Q̃1, Ỹ1. Therefore,

an − ãn =
(
Q

(n)
1

)
11
−
(
Q̃

(n)
1

)
11
−
((
Q

(n+1)
1

)
11
−
(
Q̃

(n+1)
1

)
11

)
b2n−1 − b̃2n−1 =

(
Q

(n)
1

)
12

((
Q

(n)
1

)
21
−
(
Q

(n+1)
1

)
21

)
−
(
Q̃

(n)
1

)
12

((
Q̃

(n)
1

)
21
−
(
Q̃

(n+1)
1

)
21

)
=
((
Q

(n)
1

)
12
−
(
Q̃

(n)
1

)
12

)((
Q

(n)
1

)
21
−
(
Q

(n+1)
1

)
21

)
+
(
Q̃

(n)
1

)
12

[(
Q

(n)
1

)
21
−
(
Q

(n+1)
1

)
21
−
((
Q̃

(n)
1

)
21
−
(
Q̃

(n+1)
1

)
21

)]
as desired. �

4 A comparison of resolvents

In this section we develop the machinery that will allow us to compare two Riemann–Hilbert
problems using non-local information.

4.1 Comparing Riemann–Hilbert problem through the Cauchy transform

For a bounded, oriented, rectifiable contour Σ, consider CΣ acting on Lp(Σ), 1 6 p < ∞, as
follows

(CΣf)(z) =

∫
Σ

f(s)

s− z
d̄s,

where recall d̄s = ds
2πi . For almost all z ∈ Σ, the limits

(C±Σ f)(z) := lim
z′→z±

∫
σ

f(s)

s− z′
d̄s

exist. Furthermore,

(C+f)(z)− (C−f)(z) = f(z)

for almost all z ∈ Σ, and

(C+f)(z) + (C−f)(z) = iHf(z),

where H is the Hilbert transform

Hf(z) := lim
ε→0

∫
Σ

|z−z′|>ε

f(z′)

z′ − z
dz′

π
,

which exists for almost all z ∈ Σ. An oriented, rectifiable contour Σ is called Carleson (or
Ahlfors–David) if

KΣ = sup
z∈Σ
r>0

|Ur(z) ∩ Σ|
r

<∞,

where Ur(z) denotes a ball of radius r centered at z.
The fundamental theorem, starting with the work of Calderon [3], continuing through the

work of Coifman, Meyer, and McIntosh [5], and culminating in the work of Guy David [6], is
the following: The operators C±Σ are bounded from L2(Σ)→ L2(Σ) (and in fact in Lp(Σ) for all
1 < p < ∞) if and only if Σ is Carleson. Note, in particular, that the contour in this paper is
clearly Carleson.

We will say that a pair of functions A± ∈ Lp(Σ) belongs to ∂C(Lp(Σ)) iff A± = C±Σ f for
some (unique) f ∈ Lp(Σ).
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Proposition 4.1. Let Σ be a Carleson curve, and let A± ∈ I + ∂C(Lp(Σ)) and B± ∈ I +
∂C(Lq(Σ)) for 1 < p, q < ∞ where 1 > 1

r = 1
p + 1

q . Then if A(z), B(z) are the extensions
of A±, B± respectively, then (AB)(z) is the extension of

(AB)± ∈ I + ∂C
(
Lp(Σ) + Lq(Σ) + Lr(Σ)

)
.

If Σ is compact, then

(AB)± ∈ I + ∂C
(
Lr(Σ)

)
.

Proof. Suppose f ∈ Lp(Σ) and g ∈ Lq(Σ), then f(Hg), (Hf)g ∈ Lr(Σ), and

i

2
[(CΣf(Hg) + CΣ(Hf)g)] (z)

=

∫
Σ
f(s) lim

ε→0

(∫
|s−t|>ε

g(t)
d̄t

t− s

)
d̄s

s− z
+

∫
Σ

lim
ε→0

(∫
|s−t|>ε

f(s)
d̄s

s− t

)
g(t)

d̄t

t− z

= lim
ε→0

∫
s,t∈Σ
|s−t|>ε

f(s)g(t)

t− s

(
1

s− z
− 1

t− z

)
d̄sd̄t = lim

ε→0

∫
s,t∈Σ
|s−t|>ε

f(s)g(t)
1

s− z
1

t− z
d̄sd̄t

= (CΣfCΣg)(z),

where we have used the fact that the Hilbert transform converges in Lp(Σ) and Lq(Σ). Therefore,
if A± = I +C±Σ f and B± = I +C±Σ g, (and hence A = I +CΣf , B = I +CΣg), then (AB)(z) is
the extension of

(AB)± = I + C±Σ f + C±Σ g + C±Σ fC
±
Σ g = I + C±Σ

(
f + g +

i

2
(f(Hg) + (Hf)g)

)
and, since f ∈ Lp(Σ), g ∈ Lq(Σ),

f + g +
i

2
(f(Hg) + (Hf)g) ∈ Lp(Σ) + Lq(Σ) + Lr(Σ),

which completes the proof. �

Remark 4.2. Note in the case r = 1 that ∂C(L1(Σ)) is not contained in L1(Σ).

Remark 4.3. Suppose A± ∈ I + ∂C(Lp(Σ)) and suppose that A−1
± (x) exists a.e. and lies in

I + ∂C(Lq(Σ)), 1
r = 1

p + 1
q 6 1. Let A(z), B(z) be the analytic extensions of A±, A

−1
± off Σ

respectively. Then A(z) is invertible in C\Σ and A−1(z) = B(z). Indeed by Proposition 4.1
(AB)± = I + C±Σh for some h ∈ Lp(Σ) + Lq(Σ) + Lr(Σ), but (AB)+ = (AB)− = I and so
h = C+

Σh− C
−
Σh = 0. Thus AB(z) = A(z)B(z) = I.

Theorem 4.4. Suppose vA, vB ∈ L∞(Σ) and A± solves the RHP:

A+(x) = A−(x)vA(x), for x ∈ Σ, A± ∈ I + ∂C
(
Lp(Σ)

)
,

and B± the RHP:

B+(x) = B−(x)vB(x), for x ∈ Σ, B± ∈ I + ∂C
(
Lp(Σ)

)
.

Suppose further that v−1
B ∈ L∞(Σ) and B−1

± ∈ I + ∂C(Lq(Σ)) where 1
p + 1

q = 1, then if A,B are
the analytic extensions of A± and B± respectively,

AB−1 = I + CΣA−
(
vAv

−1
B − I

)
B−1
− .
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Proof. The following calculation holds almost everywhere on Σ,

C+
ΣA−

(
vAv

−1
B − I

)
B−1
− = C−ΣA−

(
vAv

−1
B − I

)
B−1
− +A−

(
vAv

−1
B − I

)
B−1
−

= C−ΣA−
(
vAv

−1
B − I

)
B−1
− +A+B

−1
+ −A−B−1

− .

Therefore, almost everywhere on Σ,

I + C+
ΣA−

(
vAv

−1
B − I

)
B−1
− −A+B

−1
+ = I + C−ΣA−

(
vAv

−1
B − I

)
B−1
− −A−B−1

− . (4.1)

However, using Proposition 4.1,

I + C±ΣA−
(
vAv

−1
B − I

)
B−1
− −

(
AB−1

)
± ∈ ∂C

(
L1(Σ)

)
.

Thus

I + C±ΣA−
(
vAv

−1
B − I

)
B−1
− −

(
AB−1

)
± = C±Σh

for some h ∈ L1(Σ) + Lp(Σ) + Lq(Σ). However, (4.1) then implies that h ≡ 0, and therefore

I + CΣA−
(
vAv

−1
B − I

)
B−1
− −AB−1 ≡ 0

completing the proof. �

Proposition 4.4 clearly implies for z ∈ C\Σ,

A(z) = B(z) +
[
CΣA−

(
vAv

−1
B − I

)
B−1
−
]
(z)B(z)

= B(z) +
[
CΣB−

(
vAv

−1
B − I

)
B−1
−
]
(z)B(z)

+
[
CΣ(A− −B−)

(
vAv

−1
B − I

)
B−1
−
]
(z)B(z).

If it is possible to control the L2(Σ) difference A− − B− then quantities related to A away
from the contour Σ can be estimated by quantities that only rely on B and the jump func-
tions vA, vB. The results of this section will lay the groundwork of controlling this difference,
with the remainder of the work being done in the following section.

For compact Σ and f ∈ Lp(Σ), p > 1, we have that (CΣf)(z) = O
(

1
z

)
as z → ∞. The

contour Σ defined in Section 3 is clearly compact, we will use this fact repeatedly without
further comment.

4.2 The resolvent bounds

Let h, f refer to matrix valued functions, h ∈ L∞(Σ) and f ∈ L2(Σ), and define the operator
Ch acting on L2(Σ) by

(Chf)(x) = C−Σ (f(h− I))(x) = lim
z→x−

∫
Σ

f(s)(h(s)− I)

s− z
d̄s for x ∈ Σ.

Clearly Ch is bounded from L2(Σ) → L2(Σ). The importance of this definition lies in its role
within the general theory of Riemann–Hilbert problems, see for example [4, 10] and the references
therein. In particular, let µ be any L2(Σ) solution of the equation

(1− CvΣ)µ = I. (4.2)

Note that I ∈ L2(Σ) since Σ is bounded. If 1−CvΣ is an invertible operator from L2(Σ) to L2(Σ),
then

µ = (1− CvΣ)−1I (4.3)
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is the unique solution to (4.2). In this case the unique solution X to the RHP normalized at
infinity with jump vΣ is given by

X(z) = I + CΣ(µ(vΣ − I)).

Our first step to controlling the difference Q − Q̃, will be showing that the resolvent in (4.3)
is bounded uniformly of n for the following modified version of the Legendre Riemann–Hilbert
problem:

Define, as in (3.13), for the same contour Σ, and subcontours Σ1, Σ2 as depicted in Fig. 2,

ṽΣ =



(
1 0

φ−2n(s) 1

)
for s ∈ Σ1 ∪ Σ2,(

1 0

2φ−2n(s) 1

)
for s ∈ [1, 1 + δ],(

0 1

−1 0

)
for s ∈ [−1, 1],

then we have the following theorem:

Theorem 4.5. The operator 1−CṽΣ is invertible for all n > 0. Moreover (1−Cv̂Σ
)−1 is bounded

uniformly of n in operator norm from L2(Σ)→ L2(Σ).

Proof. The following proposition follows from Proposition 2.14 from [10], see also [4].

Proposition 4.6. A family of operators (1− Chn)−1 is bounded uniformly with respect to n if
and only if the inhomogeneous RHP

m+(s) = m−(s)hn(s) + g(s) for s ∈ Σ, m± ∈ ∂C
(
L2(Σ)

)
is (uniquely) solvable for all g ∈ L2(Σ) with ||m±||L2 6 c||g||L2 with c independent of both n
and g.

We want to apply Proposition 4.6 to hn = ṽΣ. To this end, suppose a solution m±(s) =
m±(g, n, s) exists to

m+(s) = m−(s)ṽΣ(s) + g(s) for s ∈ Σ, m± ∈ ∂C
(
L2(Σ)

)
and note m(z) := (CΣf)(z) for z ∈ C\Σ is the analytic continuation of m±. It will follow from
the calculation below that such a solution indeed exists. For z ∈ C\[−1, 1], let

ṽ(z) =

(
1 0

φ−2n(z) 1

)
and, in the notation of Fig. 2, set

t(z) =


m(z)− CΣg̃(z) for z ∈ Ω0,

m(z)ṽ(z)− CΣg̃(z) for z ∈ Ω1,

m(z)ṽ−1(z)− CΣg̃(z) for z ∈ Ω2,

where

g̃(s) =


g(s) for s ∈ Σ1,

g(s)ṽ−1(s) for s ∈ Σ2,

g(s)ṽ−1(s) for s ∈ [1, 1 + δ],

0 for s ∈ [−1, 1].
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Since ṽ(s) is uniformly bounded, it is clear that ‖g̃‖L2(Σ) 6 c‖g‖L2(Σ), and it is also clear that
‖m±‖L2(Σ) 6 c‖t±‖L2(Σ) + c‖g‖L2(Σ). For s ∈ Σ1,Σ2, or [1, 1 + δ], straightforward calculations
will show that t+(s) = t−(s). Therefore t(z) is actually analytic for z ∈ C\[−1, 1]. Lastly, for
z ∈ (−1, 1), first note that g̃ = 0, and therefore C+

Σ g̃ = C−Σ g̃, which we label CΣg̃. Another
calculations shows:

t+ = t−


(
φ−
φ+

)n
1

0

(
φ+

φ−

)n
+ CΣg̃


(
φ−
φ+

)n
1

0

(
φ+

φ−

)n
+ g

(
1 0

φ−2n
+ 1

)
− CΣg̃.

So t(z) solves a RHP:

(a)

t(z) is analytic for z ∈ C\[−1, 1], (4.4)

(b) for x ∈ (−1, 1),

t+(x) = t−(x)


(
φ−
φ+

)n
1

0

(
φ+

φ−

)n
+ ĝ(x), (4.5)

(c) as z →∞

t(z) = On

(
1

z

)
, (4.6)

where

ĝ = CΣg̃


(
φ−
φ+

)n
1

0

(
φ+

φ−

)n
+ g

(
1 0

φ−2n
+ 1

)
− CΣg̃.

Since the restriction of CΣ to [−1, 1] is bounded as an operator from L2(Σ) to L2([−1, 1]), and
since |φ±(x)| = 1 for x ∈ [−1, 1]. It is clear that ‖ĝ‖L2([−1,1]) 6 c‖g‖L2(Σ).

Next, let

u(z) = t(z)φnσ3(z)

it is clear that ‖t±‖L2([−1,1]) 6 ‖u±‖L2([−1,1]). The jump conditions becomes

u+(x) = u−(x)

(
1 1
0 1

)
+ ĝφnσ3

+

for x ∈ [−1, 1], and, as z →∞,

u(z) = t(z)φnσ3(z) = On

(
1

z

)(
zn +On(zn−1) 0

0 z−n +On
(
z−n−1

))
= On

(
zn−1 z−n−1

zn−1 z−n−1

)
.
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In particular, a solution to the RHP described below can be transformed in a bounded fashion
to the solution m,

u(z) is analytic in C\[−1, 1],

u+(x) = u−(x)

(
1 1
0 1

)
+ ĝφnσ3

+ (x) for x ∈ [−1, 1],

u(z) = On

(
zn−1 z−n−1

zn−1 z−n−1

)
as z →∞.

This RHP can be solved as follows. Let ĝ = (ĝ1, ĝ2) and u = (u1, u2) where ĝ1, ĝ2, u1, u2 are
the column vectors of ĝ and u. Then

u1+ = u1− + ĝ1φ
n
+, u2+ = u2− + u1− + ĝ2φ

n
+.

Thus, since u1 = On(zn−1) as z →∞, any polynomial pn−1 with deg(pn−1) 6 n− 1 provides a
potential solution for u1 through Plemelj’s formula,

u1(z) = pn−1(z) +

∫ 1

−1

ĝ1(s)φn+(s)

s− z
d̄s (4.7)

and, since u2 = On
(
z−n−1

)
, if the solution exists, it must be, again by Plemelj’s formula,

u2 =

∫ 1

−1

u1−(s) + ĝ2(s)φ−n+ (s)

s− z
d̄s

= −1

z

∫ 1

−1

(
u1−(s) + ĝ2(s)φ−n+ (s)

) ∞∑
k=0

(s
z

)k
d̄s. (4.8)

The condition u2 = On
(
z−n−1

)
is therefore equivalent to a system of n equations for the n

coefficients of pn−1. Specifically, we have∫ 1

−1
sk
(
u1−(s) + ĝ2(s)φ−n+

)
ds = 0 for 0 6 k 6 n− 1,∫ 1

−1
skpn−1(s)ds = −

∫ 1

−1

(
C−Σ ĝφ

n
+

)
(s) + ĝ2(s)φ−n+ ds for 0 6 k 6 n− 1. (4.9)

As det
( ∫ 1
−1 s

k+jds
)n−1

k,j=0
6= 0, equation (4.9) is a system of n independent, linear equations for

the n unknowns, a0, a1, . . . , an−1, where

pn−1(s) = a0 + a1s+ · · ·+ an−1s
n−1.

It follows that the solution u exists and is unique. Moreover,∫ 1

−1
sk
(
u1−(s) + ĝ2(s)φ−n+

)
ds = 0 for 0 6 k 6 n− 1,∫ 1

−1
Pk(s)

(
pn−1(s) + C−[−1,1](ĝ1φ

n
+) + ĝ2(s)φ−n+

)
ds = 0.

For all polynomials with deg(Pk) = k 6 n− 1∫ 1

−1

(
|pn−1|2(s) + pn−1(s)C−[−1,1](ĝ1φ

n
+) + pn−1(s)ĝ2(s)φ−n+

)
ds = 0,



Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight 21

||pn−1||2L2(−1,1) = −
∫ 1

−1
pn−1(s)

(
C−[−1,1](ĝ1φ

n
+) + ĝ2(s)φ−n+

)
ds

6 ||pn−1||L2 ||C−[−1,1](ĝ1φ
n
+) + ĝ2φ

−n
+ ||L2 .

So, using the fact that |φ+| = 1 and the boundedness of the Cauchy operator, we have

||pn−1||L2 6 c||ĝ2||L2 .

Most importantly, we notice that c is independent of n. Therefore, by using the boundedness of
the Cauchy transform and the fact that |φ±| = 1, as well as (4.7) and (4.8), we see that,

||(u1, u2)±||L2([−1,1]) 6 c
′′||ĝ||L2(Σ) 6 c

′′′||g||L2(Σ),

where all the constants are independent of n. Up until now, we have been assuming solutions m
and t existed. However, reversing our construction,

t(z) = u(z)φ−nσ3

is a solution to the RHP for t, (4.4)–(4.6) with ‖t±‖L2([−1,1]) 6 ‖u±‖L2([−1,1]) 6 c‖g‖L2(Σ), and

m(z) =


t(z) + CΣg̃(z) for z ∈ Ω0,

(t(z) + CΣg̃(z))ṽ−1(z) for z ∈ Ω1,

(t(z) + CΣg̃(z))ṽ(z) for z ∈ Ω2

solves

m(z) is analytic in C\Σ,
m+(s) = m−(s)ṽΣ(s) + g(s) for s ∈ Σ,

m(z) = On

(
1

z

)
as z →∞ (4.10)

and satisfies ‖m±‖L2(Σ) 6 c‖t‖L2([−1,1]) + c‖g̃‖L2(Σ) 6 c‖g‖L2(Σ).
All that remains is to show m±(z) ∈ ∂C(L2(Σ)). To that end, let µ̃(s) = m−(s) and define

for z ∈ C\Σ,

H(z) := (CΣ(µ̃(ṽΣ − I) + g))(z). (4.11)

Then for s ∈ Σ

H+(s) = ((C+
Σ µ̃(ṽΣ − I) + g))(s) = ((C−Σ µ̃(ṽΣ − I) + g))(s) + µ̃(s)(ṽΣ(s)− I)) + g(s)

= H−(s) +m+ −m−.

Therefore

H+ −m+ = H− −m−.

It follows from the same argument as in Proposition 3.2 that the function H(z)−m(z) is entire.
From (4.10) and (4.11), H(z)−m(z) = On

(
1
z

)
as z →∞. Thus, by Liouville’s theorem,

m(z) ≡ H(z) = (CΣ(µ̃(ṽΣ − I) + g))(z)

and so

m± ∈ ∂C(L2(Σ))

concluding the proof of Theorem 4.5. �
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Theorem 4.5 has, as a corollary, the equivalent result for the modified log-orthogonal problem:

Theorem 4.7. The operator 1− CvΣ is uniformly invertible for all sufficiently large n.

Proof. Note that

vΣ − ṽΣ =



 0 0(
F 2

w
− 1

)
φ−2n 0

 for s ∈ Σ1 ∪ Σ2, 0 0(
F 2

w+
+
F 2

w−
− 2

)
φ−2n 0

 for s ∈ [1, 1 + δ],

0 for s ∈ [−1, 1].

So it follows from Propositions 2.1 and 2.3 that

‖vΣ − ṽΣ‖L∞(Σ) → 0,

which, in particular, implies that

‖CvΣ − CṽΣ‖L2→L2 → 0.

Combined with Theorem 4.5, we see that∥∥(CvΣ − CṽΣ)(1− CṽΣ)−1
∥∥
L2→L2 → 0. (4.12)

Writing

(1− CvΣ) (1− CṽΣ)−1 = 1− (CvΣ − CṽΣ) (1− CṽΣ)−1 (4.13)

and using (4.12), we see that for n sufficiently large, the series

(
1− (CvΣ − CṽΣ)(1− CṽΣ)−1

)−1
=

∞∑
k=0

[
(CvΣ − CṽΣ)(1− CṽΣ)−1

]k
converges in operator norm and∥∥(1− (CvΣ − CṽΣ)(1− CṽΣ)−1

)−1∥∥
L2→L2 6 C <∞.

It follows from (4.13) that (1− CvΣ)−1 exists and is given by

(1− CvΣ)−1 = (1− CṽΣ)−1
(
1− (CvΣ − CṽΣ)(1− CṽΣ)−1

)−1

for n sufficiently large and hence

‖(1− CvΣ)−1‖L2→L2 6
∥∥(1− CṽΣ)−1

∥∥
L2→L2

∥∥(1− (CvΣ − CṽΣ)(1− CṽΣ)−1
)−1∥∥

L2→L2

6 C
∥∥(1− CṽΣ)−1

∥∥
L2→L2 .

So by Theorem 4.5, (1−CvΣ)−1 is bounded in operator norm uniformly for n sufficiently large. �

Remark 4.8. In fact, a standard RHP argument shows that (1−CvΣ)−1 exists and is bounded
in L2 → L2 for all n > 0. The point of the above theorem is that the bound is independent of n.
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4.3 A formula for Q1 − Q̃1

Proposition 4.9.

Q1 − Q̃1 = −
∫

Σ
µ(vΣ − ṽΣ)µ̃−1d̄z, (4.14)

where

µ = (1− CvΣ)−1I, µ̃ = (1− CṽΣ)−1I.

Proof. The functions µ and µ̃ are given in terms of the RHP solutions Q and Q̃, see [10], by

µ = Q−, µ̃ = Q̃−,

and so

Q± = I + C±Σ (µ(vΣ − I)),

and it is straightforward to show that

Q̃−1
± = I + C±Σ

((
v−1

Σ − I
)
µ̃−1

)
.

However µ̃ = Q̃− ∈ L2(Σ) and det
(
Q̃±
)
≡ 1, therefore µ̃−1 ∈ L2(Σ) and clearly v−1

Σ ∈ L∞(Σ),

and so Q̃−1
± ∈ I + ∂C(L2(Σ)). From Theorem 4.4, we have

Q(z)Q̃−1(z) = I + CΣQ−
(
vΣṽ

−1
Σ − I

)
Q̃−1
− , (4.15)

but

vΣṽ
−1
Σ (s)− I =



(
0 0(

F 2

w (s)− 1
)
φ−2n(s) 0

)
for s ∈ Σ1 ∪ Σ2(

0 0(
F 2

w+
(s) + F 2

w−
(s)− 2

)
φ−2n(s) 0

)
for s ∈ 1 + δ, 1]

0 for s ∈ [−1, 1]

= vΣ − ṽΣ. (4.16)

Therefore

CΣQ−
(
vΣṽ

−1
Σ − I

)
Q̃−1
− = CΣµ−(vΣ − ṽΣ)µ̃−1

− = −1

z

∫
Σ
µ−(vΣ − ṽΣ)µ̃−1d̄s+O

(
z−2
)

as z →∞. Therefore

I +
Q1 − Q̃1

z
+O

(
z−2
)

= QQ̃−1(z) = I − 1

z

∫
Σ
µ−(vΣ − ṽΣ)µ̃−1d̄s+O

(
z−2
)
.

So

Q1 − Q̃1 = −
∫

Σ
µ−(vΣ − ṽΣ)µ̃−1d̄s,

which completes the proof. �
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Remark 4.10. The goal of this section is to develop the machinery that allows effective com-
parison of the difference of the RHPs Q and Q̃. As mentioned in the introduction, the stan-
dard approach of comparing the RHPs for Q, Q̃ by their quotient breaks down. Indeed, for
x ∈ [1, 1 + δ],

(
QQ̃−1

)
+

= Q−

 1 0(
F 2

w+
+
F 2

w−

)
φ−2n 1

( 1 0
−2φ−2n 1

)
Q̃−1
−

= Q−Q̃
−1
− Q̃−

 1 0(
F 2

w+
+
F 2

w−
− 2

)
φ−2n 1

 Q̃−1
−

= Q−Q̃−

(
I +

(
F 2

w+
+
F 2

w−
− 2

)
φ−2n

(
Q̃12Q̃22 −Q̃2

12

Q̃2
22 −Q̃12Q̃22

)
−

)
.

So QQ̃−1 is the solution to a standard RHP on Σ with jump

J := I +

(
F 2

w+
+
F 2

w−
− 2

)
φ−2n

(
Q̃12Q̃22 −Q̃2

12

Q̃2
22 −Q̃12Q̃22.

)
−
. (4.17)

Typically, we would like to draw conclusions about QQ̃−1 by demonstrating that ‖J−I‖L∞ → 0.
However, while the jump functions associated withQ, Q̃ are close in an L∞ sense, and specifically,
near the point 1,(

F 2

w+
(z) +

F 2

w−
(z)− 2

)
φ−2n(z) =

c

log2(|z − 1|)
+O

(
1

log3(|z − 1|)

)
, as z → 1,

this behavior is counteracted by the singular behavior of Q̃. From (3.14), we have that Q̃12, Q̃22 =
On(log(|z − 1|)) as z → 1. More is true, in fact, Q̃12, Q̃22 = cn log(|z − 1|)(1 + o(1)) as z → 1
where cn ∼ cn1/2, which we will not prove, but which can be inferred from the behavior of µ̃
described in Section B.1. Therefore, from (4.17), it is clear that

‖J‖L∞([1,1+δ]) 6→ 0 as n→∞.

Thus it is not clear how to proceed in an analysis of the quotient QQ̃−1. Ultimately, this
difficulty motivated our examination of the difference Q− Q̃.

Remark 4.11. We note that formulae (4.15) and (4.16) can be used, in principle, not only to
derive our basic formula (4.14), but also to obtain asymptotic information about the orthogonal
polynomials for general values of z, not just for z = ∞. Certainly for general z the analysis
should go through as long as z is at a fixed distance away from the interval [−1, 1], but as z
approaches the end points ±1, in particular, technical difficulties arise that we have not yet been
able to address. Also, as z → ∞, one can, in principle, use (4.15) and (4.16) to obtain lower
order terms for the recurrence coefficients, but again certain technical difficulties arise that we
have not yet overcome.

5 Conclusion of the proof of Theorem 1.2

In this section we combine the previous results of the paper in order to prove the main result,
Theorem 1.2.
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5.1 Calculation of the integral in (4.14)

The integral in (4.14) involves both µ̃ and µ. The asymptotics of µ̃ are known, see [13], or
Appendix B.1 for a summary. Theorems 4.5 and 4.7 together with the known asymptotics of µ̃
give us control over µ in an L2(Σ) sense, which will be sufficient for our purposes.

Namely, in Proposition B.2 we prove:

Proposition 5.1. The functions µ, µ̃ obey the following estimates:∣∣∣∣µ̃(n)
(
v

(n)
Σ − ṽ(n)

Σ

)∣∣∣∣
L2(Σ)

= O

(
1

n1/2 log2 n

)
, (5.1)

∣∣∣∣µ(n) − µ̃(n)
∣∣∣∣
L2(Σ)

= O

(
1

n1/2 log2 n

)
, (5.2)

∣∣∣∣µ̃(n)
(
v

(n)
Σ − ṽ(n)

Σ

)
− µ̃(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

)∣∣∣∣
L2(Σ)

= O

(
1

n3/2 log2 n

)
, (5.3)

∣∣∣∣(µ(n) − µ̃(n)
)
−
(
µ(n+1) − µ̃(n+1)

)∣∣∣∣
L2(Σ)

= O

(
1

n3/2 log2 n

)
. (5.4)

Proof. See Proposition B.2. �

Proposition 5.1 together with Theorems 4.5 and 4.7 allow us to estimate the integral in (4.14)
by a similar integral involving only Legendre quantities. This is done through the following
proposition:

Proposition 5.2. The integrals can be estimated by

−
∫

Σ
µ(vΣ − ṽΣ)µ̃−1d̄s = −

∫
Σ
µ̃(vΣ − ṽΣ)µ̃−1d̄s+O

(
1

n log4 n

)
and

−
∫

Σ
µ(n)

(
v

(n)
Σ − ṽ(n)

Σ

)(
µ̃(n)

)−1
d̄s+

∫
Σ
µ(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

)(
µ̃(n+1)

)−1
d̄s

= −
∫

Σ
µ̃(n)

(
v

(n)
Σ − ṽ(n)

Σ

)(
µ̃(n)

)−1
d̄s+

∫
Σ
µ̃(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

)(
µ̃(n+1)

)−1
d̄s

+O

(
1

n2 log4 n

)
.

Proof. Recall that det(µ), det(µ̃) = det(Q−), det(Q̃−) = 1. Therefore the norms (5.2) and (5.4)
also imply∣∣∣∣(vΣ − ṽΣ)µ̃−1

∣∣∣∣
L2(Σ)

= O

(
1

n1/2 log2 n

)
,

∣∣∣∣(v(n)
Σ − ṽ(n)

Σ

)(
µ̃(n)

)−1 −
(
v

(n+1)
Σ − ṽ(n+1)

Σ

)(
µ̃(n+1)

)−1∣∣∣∣
L2(Σ)

= O

(
1

n3/2 log2 n

)
,

and therefore,

−
∫

Σ
µ(vΣ − ṽΣ)µ̃−1d̄s = −

∫
Σ
µ̃(vΣ − ṽΣ)µ̃−1d̄s−

∫
Σ

(µ− µ̃) (vΣ − ṽΣ)µ̃−1d̄s,

and by (5.1) and (5.2),∣∣∣∣∫
Σ
µ̃(vΣ − ṽΣ)

(
µ−1 − µ̃−1

)
d̄s

∣∣∣∣ 6 ‖µ̃(vΣ − ṽΣ)‖L2(Σ)

∥∥µ−1 − µ̃−1
∥∥
L2(Σ)

= O

(
1

n log4 n

)
.
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So

−
∫

Σ
µ̃(vΣ − ṽΣ)µ−1d̄s = −

∫
Σ
µ̃(vΣ − ṽΣ)µ̃−1d̄s+O

(
1

n log4 n

)
.

Somewhat similarly,

−
∫

Σ
µ(n)

(
v

(n)
Σ − ṽ(n)

Σ

)(
µ̃(n)

)−1
d̄s+

∫
Σ
µ(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

)(
µ̃(n+1)

)−1
d̄s

= −
∫

Σ
µ̃(n)

(
v

(n)
Σ − ṽ(n)

Σ

)(
µ̃(n)

)−1
d̄s+

∫
Σ
µ̃(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

)(
µ̃(n+1)

)−1
d̄s

−
∫

Σ

(
µ(n) − µ̃(n)

)((
v

(n)
Σ − ṽ(n)

Σ

)(
µ̃(n)

)−1 −
(
v

(n+1)
Σ − ṽ(n+1)

Σ

)(
µ̃(n+1)

)−1)
d̄s

−
∫

Σ

(
µ(n) − µ̃(n) −

(
µ(n+1) − µ̃(n+1)

))(
v

(n+1)
Σ − ṽ(n+1)

Σ

)(
µ̃(n+1)

)−1
d̄s.

Now, by (5.2) and (5.3),∣∣∣∣∫
Σ

(
µ(n) − µ̃(n)

)((
v

(n)
Σ − ṽ(n)

Σ

)(
µ̃(n)

)−1 −
(
v

(n+1)
Σ − ṽ(n+1)

Σ

)(
µ̃(n+1)

)−1)
d̄s

∣∣∣∣
6
∣∣∣∣µ(n) − µ̃(n)

∣∣∣∣
L2(Σ)

∣∣∣∣(v(n)
Σ − ṽ(n)

Σ

)(
µ̃(n)

)−1 −
(
v

(n+1)
Σ − ṽ(n+1)

Σ

)(
µ̃(n+1)

)−1∣∣∣∣
L2(Σ)

= O

(
1

n2 log4 n

)
,

and by (5.1) and (5.4),∣∣∣∣∫
Σ

(
µ(n) − µ̃(n) −

(
µ(n+1) − µ̃(n+1)

))
(v

(n+1)
Σ − ṽ(n+1)

Σ )
(
µ̃(n+1)

)−1
d̄s

∣∣∣∣
6
∣∣∣∣(µ(n) − µ̃(n)

)
−
(
µ(n+1) − µ̃(n+1)

)∣∣∣∣
L2(Σ)

∣∣∣∣µ̃(n+1)
(
v

(n+1)
Σ − ṽ(n+1)

Σ

)∣∣∣∣
L2(Σ)

= O

(
1

n2 log4 n

)
.

Therefore, we see that

−
∫

Σ
µ(n)

(
v

(n)
Σ − ṽ(n)

Σ

)(
µ̃(n)

)−1
d̄s+

∫
Σ
µ(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

)(
µ̃(n+1)

)−1
d̄s

= −
∫

Σ
µ̃(n)

(
v

(n)
Σ − ṽ(n)

Σ

)(
µ̃(n)

)−1
d̄s+

∫
Σ
µ̃(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

)(
µ̃(n+1)

)−1
d̄s

+O

(
1

n2 log4 n

)
,

which completes the proof of Proposition 5.2. �

The integrals in Proposition 5.2 can be computed asymptotically using the known asymptotics
of µ̃, yielding:

Proposition 5.3.∫
Σ
µ̃(z)(vΣ(z)− ṽΣ(z))µ̃−1(z)d̄z =

3

16n log2 n

(
1 −i
−i −1

)
+O

(
1

n log3 n

)
.

Proof. See Proposition C.3. �
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Proposition 5.4.∫
Σ
µ̃(n)(z)

(
v

(n)
Σ (z)− ṽ(n)

Σ (z)
)(
µ̃(n)

)−1
(z)d̄z

−
∫

Σ
µ̃(n+1)(z)

(
v

(n+1)
Σ (z)− ṽ(n+1)

Σ (z)
)(
µ̃(n+1)

)−1
(z)d̄z

=
3

16n2 log2 n

(
1 −i
−i −1

)
+O

(
1

n2 log3 n

)
.

Proof. See Proposition C.4. �

Combining the results of this section, we can compute the difference Q
(n)
1 − Q̃(n)

1 asymptoti-
cally,

Proposition 5.5. The difference Q1−Q̃1 := Q
(n)
1 −Q̃

(n)
1 has the following asymptotic expansions

Q1 − Q̃1 =
3

16n log2 n

(
−1 i
i 1

)
+O

(
1

n log3 n

)
, (5.5)

Q
(n)
1 − Q̃(n)

1 −
(
Q

(n+1)
1 − Q̃(n+1)

1

)
=

3

16n2 log2 n

(
−1 i
i 1

)
+O

(
1

n2 log3 n

)
. (5.6)

Proof. Combining Propositions 4.9, 5.2, and 5.3,

Q1 − Q̃1 = −
∫

Σ
µ̃(vΣ − ṽΣ)µ−1d̄z = −

∫
Σ
µ̃(vΣ − ṽΣ)µ̃−1d̄z +O

(
1

n log3 n

)
=

3

16n log2 n

(
−1 i
i 1

)
+O

(
1

n log3 n

)
demonstrating (5.5). Similarly, combining Propositions 4.9, 5.2, and 5.4,

Q
(n)
1 − Q̃(n)

1 −
(
Q

(n+1)
1 − Q̃(n+1)

1

)
= −

∫
Σ
µ̃(n)

(
v

(n)
Σ − ṽ(n)

Σ

)(
µ(n)

)−1
d̄z +

∫
Σ
µ̃(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

)(
µ(n+1)

)−1
d̄z

= −
∫

Σ
µ̃(n)

(
v

(n)
Σ − ṽ(n)

Σ

)(
µ̃(n)

)−1
d̄z

+

∫
Σ
µ̃(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

)(
µ̃(n+1)

)−1
d̄z +O

(
1

n2 log3 n

)
=

3

16n2 log2 n

(
−1 i
i 1

)
+O

(
1

n2 log3 n

)
demonstrating (5.6). �

5.2 Computing the asymptotic behavior of an, bn

Proof of Theorem 1.2. Recall that by Proposition 3.6,

an − ãn =
(
Q

(n)
1

)
11
−
(
Q̃

(n)
1

)
11
−
((
Q

(n+1)
1

)
11
−
(
Q̃

(n+1)
1

)
11

)
,

b2n−1 − b̃2n−1 =
((
Q

(n)
1

)
12
−
(
Q̃

(n)
1

)
12

)((
Q

(n)
1

)
21
−
(
Q

(n+1)
1

)
21

)
+
(
Q̃

(n)
1

)
12

[(
Q

(n)
1

)
21
−
(
Q̃

(n)
1

)
21
−
((
Q

(n+1)
1

)
21
−
(
Q̃

(n+1)
1

)
21

)]
.



28 T.O. Conway and P. Deift

The calculation for an − ãn is read directly from Proposition 5.5

an − ãn =

(
3

16n2 log2 n

(
−1 i
i 1

)
+O

(
1

n2 log3 n

))
11

= − 3

16n2 log2 n
+O

(
1

n2 log3 n

)
.

To calculate b2n−1 − b̃2n−1, note from (B.6) and (B.10) that as z →∞,

Q̃(n) = S(n)(z) = R(n)(z)N(z)

=

(
1 +

R1(z)

n
+O

(
1

n2

))
a+ a−1

2

a− a−1

2i
a− a−1

−2i

a+ a−1

2

 . (5.7)

From (B.11),

R(n)(z) = I +
R1(z)

n
+ ∆(z),

where R1, ∆(z) are analytic in for z ∈ C\ΣS and

|R1(z)| 6 c

|z|
and |∆(z)| 6 c

|z|n2
as z →∞.

We can write N(z) = I + N1
z + O

(
z−2
)

and N(z) =
(
N11(z) N12(z)
N21(z) N22(z)

)
. So, in particular, Q̃1 =

N1 +O
(

1
n

)
and

N12(z) =
a(z)− a−1(z)

2i
=

1

2i

((
z − 1

z + 1

)1/4

−
(
z + 1

z − 1

)1/4
)

=
1

2i

(z − 1)1/2 − (z + 1)1/2(
z2 − 1

)1/4 =
1

2i

(
1− 1

z

)1/2 − (1 + 1
z

)1/2(
1− 1

z2

)1/4
=

1

2i

(
1− 1

2z
− 1− 1

2z
+O

(
z−2
)) (

1 +O
(
z−2
))

=

(
− 1

2iz
+O

(
z−2
))

from which it follows that(
Q̃1

)
12

= − 1

2i
+O

(
1

n

)
. (5.8)

Combining Proposition 5.5 with (5.7) we see that

Q
(n)
1 −Q(n+1)

1 = Q̃
(n)
1 − Q̃(n+1)

1 +O

(
1

n2 log2 n

)
= lim

z→∞
z
(
R(n)(z)−R(n+1)(z)

)
N(z) +O

(
1

n2 log2 n

)
= O

(
1

n2

)
. (5.9)

Using Propositions 3.6 and 5.5, and substituting in (5.8) and (5.9), we see that

b2n−1 − b̃2n−1 =
((
Q

(n)
1

)
12
−
(
Q̃

(n)
1

)
12

)((
Q

(n)
1

)
21
−
(
Q

(n+1)
1

)
21

)
+
(
Q̃

(n)
1

)
12

[(
Q

(n)
1

)
21
−
(
Q̃

(n)
1

)
21
−
((
Q

(n+1)
1

)
21
−
(
Q̃

(n+1)
1

)
21

)]
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= O

(
1

n log2 n

)
·O
(

1

n2

)
+

(
− 1

2i
+O

(
1

n

))
×
(

3

16n2 log2 n

(
−1 i
i 1

)
+O

(
1

n2 log3 n

))
21

=
3

32n2 log2 n
+O

(
1

n2 log3 n

)
. (5.10)

Next, note that

b2n−1 − b̃2n−1 =
(
bn−1 − b̃n−1

)(
bn−1 + b̃n−1

)
=
(
bn−1 − b̃n−1

)(
2b̃n−1 + bn−1 − b̃n−1

)
.

Recall that b̃n−1 = 1
2 +O

(
1
n2

)
. Therefore

b2n−1 − b̃2n−1 =
(
bn−1 − b̃n−1

)(
1 +

(
bn−1 − b̃n−1

)
+O

(
1

n2

))
. (5.11)

By definition, bn−1 > 0, so
(
1 +

(
bn−1 − b̃n−1

)
+ O

(
1
n2

))
> 1

2 − ε, which combined with (5.10)
and (5.11), first demonstrates

bn−1 − b̃n−1 = O

(
1

n2 log2 n

)
,

which, substituted into (5.11) and using (5.10) a second time, gives

bn−1 − b̃n−1 =
3

32n2 log2 n
+O

(
1

n2 log3 n

)
concluding the proof of Theorem 1.2. �

A Asymptotics of the Szegő function

A.1 Asymptotics of F

The following proves assertion (2.12) of Proposition 2.3

Proposition A.1. For z ∈ C±,

F 2

w
(z) =

(
1∓ iπ

w(z)
− π2

2w2(z)
+O

(
1

w3(z)

))
as z → 1.

Proof. Let z = 1 + reiθ where 0 < |θ| < π, r → 0. We will first prove that∫ 1

−1

logw(s)(
s2 − 1

)1/2
+

d̄s

s− z
=

1√
2
r−1/2e−iθ/2

(
1

2
log log

k

reiθ
− π2

4

1

log2 k
reiθ

+O

(
1

log3 r

))
,

where O
(

1
log3 r

)
is uniform in 0 < |θ| < π. Note that∫ 1

−1

logw(s)(
s2 − 1

)1/2
+

d̄s

s− z
= −i

∫ 1

−1

logw(s)√
1− s2

d̄s

s− z
(A.1)

= −i
(∫ 1

−1

logw(s)√
2
√

1− s
d̄s

s− z
+

∫ 1

−1
logw(s)

[
1√

1− s2
− 1√

2
√

1− s

]
d̄s

s− z

)
.
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A calculation shows that∫ 1

−1
logw(s)

[
1√

1− s2
− 1√

2
√

1− s

]
d̄s

s− z
(A.2)

=

∫ 0

−1
logw(s)

[ √
1− s

2
√

1 + s+
√

2(1 + s)

]
d̄s

s− z
+

∫ 1

0
logw(s)

[ √
1− s

2
√

1 + s+
√

2(1 + s)

]
d̄s

s− z
.

The first integral is clearly bounded as z → 1. The second integral is easily seen to be controlled
via the following lemma:

Lemma A.2. Let f(x) be an absolutely continuous function on the interval [a, 1] with f(1) = 0
and with a derivative f ′(x) ∈ Lp([a, 1]) for some p > 1. Then∫ 1

a
f(s)

d̄s

s− z
= O(1), as z → +1

for z ∈ C\[a, 1].

Proof.∫ 1

a

f(s)d̄s

s− z
=

∫ 1

a

f(s)− f(1)d̄s

s− z
= −

∫ 1

a

∫ 1

s

f ′(t)dtd̄s

s− z

=

∫ 1

a

∫ t

a

d̄s

z − s
f ′(t)dt = − 1

2πi

∫ 1

a
f ′(t) (log(z − t)− log(z − a)) dt.

Therefore∣∣∣∣∫ 1

a

f(s)d̄s

s− z

∣∣∣∣ 6 ‖f ′‖Lp([a,1]) × ‖log(z − t)− log(z − a)‖Lq([a,1]) = O(1),

where 1
q = 1− 1

p . Here we have used the fact that log(z− t)− log(z−a) is in Lq([a, 1]) uniformly
as z → +1, z ∈ C\[a, 1], for all q <∞. �

Applying Lemma A.2 to (A.2) and combining with (A.1),∫ 1

−1

logw(s)(
s2 − 1

)1/2
+

d̄s

s− z
= − i√

2

∫ 1

−1

logw(s)√
1− s

d̄s

s− z
+O(1)

as z → 1 uniformly for z ∈ C±. Recall z = 1 + reiθ and make the change of variables t = 1− s,
then

− i√
2

∫ 1

−1

logw(s)√
1− s

d̄s

s− z
=

i√
2

∫ 2

0

logw(1− t)√
t

d̄t

t+ reiθ
.

From Lemma A.2, w(1 − t) is analytic for s ∈ C\(−∞, 0] and logw(1 − t) is analytic in the
region C\((−∞, 0] ∪ [2k,∞)), so

i√
2

∫ 2

0

logw(1− t)√
t

d̄t

t+ reiθ
=

i√
2

(∫
C1

+

∫
C2

)
logw(1− t)

t1/2
d̄t

t+ reiθ
,

where the contours C1, C2 are depicted in Fig. 3 for 0 < θ < π; there is an analogous picture for
−π < θ < 0. Here t1/2 = |t|1/2eiθ/2 where −π < θ < π is the analytic continuation of

√
t from

(0,∞) to C\(−∞, 0]. The integral over the contour C2 is bounded away from all singularities of
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0

z − 1 = reiθ

C1

C2

2eiθ

2

Figure 3. Definition of C1, C2.

the integrand, and thus, by dominated convergence, tends uniformly in 0 < |θ| < π as r → 0 to∫
C2

logw(1− t) d̄t

t3/2
,

which is finite. Therefore,∫ 1

−1

logw(s)(
s2 − 1

)1/2
+

d̄s

s− z
=

i√
2

∫
C1

logw(1− t)
t1/2

d̄t

t+ reiθ
+O(1).

Making the change of variables t = reiθu, u > 0, γ =
√
u,

i√
2

∫
C1

logw(1− t)
t1/2

d̄t

t+ reiθ
=
ir−1/2e−iθ/2√

2

∫ 2/r

0
logw(1− reiθu)

d̄u

u3/2 + u1/2

=
√

2ir−1/2e−iθ/2
∫ √2r−1/2

0
logw

(
1− reiθγ2

) d̄γ

γ2 + 1

=
√

2ir−1/2e−iθ/2
∫ √2r−1/2

0
log

(
log

2k

r
− 2 log γ − iθ

)
d̄γ

γ2 + 1

=
√

2ir−1/2e−iθ/2

∫ ( r
2k )

1/4

0
+

∫ ( r
2k )
−1/4

( r
2k )

1/4
+

∫ √2r−1/2

( r
2k )
−1/4


× log

(
log

2k

r
− 2 log γ − iθ

)
d̄γ

γ2 + 1

=
√

2ir−1/2e−iθ/2(N1(r) +N2(r) +N3(r)). (A.3)

When γ 6
(
r

2k

)1/4
, we have that log 2k

r 6 −4 log γ. So as −2 log γ > 0,

|N1(r)| =

∣∣∣∣∣∣
∫ ( r

2k )
1/4

0
log

(
log

2k

r
− 2 log γ − iθ

)
d̄γ

γ2 + 1

∣∣∣∣∣∣
6

∣∣∣∣∣∣
∫ ( r

2k )
1/4

0
log

(
log

2k

r
− 2 log γ

)
d̄γ

γ2 + 1

∣∣∣∣∣∣
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+

∣∣∣∣∣∣
∫ ( r

2k )
1/4

0
log

(
1− iθ

log 2k
r − 2 log γ

)
d̄γ

γ2 + 1

∣∣∣∣∣∣ .
As log 2k

r − 2 log γ > log 2k
r → ∞ as r → ∞, the integrand in the second integral is bounded

above and therefore

|N1(r)| 6 1

2π

∫ ( r
2k )

1/4

0

∣∣∣∣log

(
log

2k

r
− 2 log γ

)∣∣∣∣ dγ

γ2 + 1
+O

(
r1/4

)
.

| log x| is an increasing function when x > 1, therefore since log 2k
r 6 −4 log γ and log 2k

r −
2 log γ > 1 as r → 0,

|N1(r)| 6 1

2π

∫ ( r
2k )

1/4

0
log (−6 log γ)

dγ

γ2 + 1
+O

(
r1/4

)
6

1

2π

∫ ( r
2k )

1/4

0
log (−6 log γ) dγ +O

(
r1/4

)
Integrating by parts,∫ ( r

2k )
1/4

0
log(−6 log γ)dγ = log(−6 log γ)γ

∣∣∣∣r1/4/(2k)1/4

0

−
∫ r1/4/(2k)1/4

0

1

log γ
dγ

= O
(
r1/4 log(− log r)

)
,

and so

|N1(r)| = O
(
r1/4 log(− log r)

)
. (A.4)

Now,

|N3(r)| =

∣∣∣∣∣
∫ √2r−1/2

( r
2k )
−1/4

log

(
log

2k

r
− 2 log γ − iθ

)
d̄γ

γ2 + 1

∣∣∣∣∣ ,
which, after the change of variables y = 1

γ , becomes∣∣∣∣∣∣
∫ ( r

2k )
1/4

r1/2/
√

2
log

(
log

2k

r
+ 2 log y − iθ

)
d̄y

y2 + 1

∣∣∣∣∣∣
6

1

2π

∫ ( r
2k )

1/4

r1/2/
√

2

∣∣∣∣log

(
log

2k

r
+ 2 log y − iθ

)∣∣∣∣ dy

y2 + 1

6
1

2π

∫ ( r
2k )

1/4

r1/2/
√

2

∣∣∣∣∣12 log

((
log

2k

r
+ 2 log y

)2

+ θ2

)

+ i arg

((
log

2k

r
+ 2 log y − iθ

))∣∣∣∣ dy

y2 + 1

6
1

4π

∫ ( r
2k )

1/4

r1/2/
√

2

∣∣∣∣∣log

((
log

2k

r
+ 2 log y

)2

+ θ2

)∣∣∣∣∣ dy

y2 + 1
+O

(
r1/4

)
.

When r1/2
√

2
6 y 6

(
r

2k

)1/4
, we have that −2 log y + log 2k

2 6 log 2k
r 6 −4 log y. So

|N3(r)| 6 1

4π

∫ ( r
2k )

1/4

r1/2/
√

2

(∣∣ log
(
(−2 log y)2 + θ2

)∣∣+

∣∣∣∣∣log

((
log

2k

2

)2

+ θ2

)∣∣∣∣∣
)

dy

y2 + 1
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6
1

4π

∫ ( r
2k )

1/4

r1/2/
√

2

∣∣log
(
4 log2 y + θ2

)∣∣ dy

y2 + 1
+O

(
r1/4

)
6

1

4π

∫ ( r
2k )

1/4

r1/2/
√

2

∣∣log
(
4 log2 y

)∣∣ dy

y2 + 1

+
1

2π

∫ ( r
2k )

1/4

r1/2/
√

2

∣∣∣∣log

(
1 +

θ2

4 log2 y

)∣∣∣∣ dy

y2 + 1
+O

(
r1/4

)
6

1

2π

∫ ( r
2k )

1/4

r1/2/
√

2
log (−2 log y)

dy

y2 + 1
+O

(
r1/4

)
= O

(
r1/4 log(− log r)

)
, (A.5)

where, in the final step, we use the same argument as in the proof of (A.4).

When
(
r

2k

)1/4
6 γ 6

(
r

2k

)−1/4
, we have | log γ| 6 1

4

∣∣log 2k
reiθ

∣∣. Therefore for γ in this region,
we can use the power series expansion for the logarithm

log

(
log

2k

r
− 2 log γ − iθ

)
= log

(
log

2k

reiθ
− 2 log γ

)
= log log

2k

reiθ
+ log

(
1− 2 log γ

log 2k
reiθ

)

= log log
2k

reiθ
− 2 log γ

log 2k
reiθ

− 2 log2 γ

log2 2k
reiθ

+O

(
log3 γ

log3 r

)
,

where again the term O
(

log3 γ
log3 r

)
is uniform in θ. Therefore

N2(r) =

∫ ( r
2k )
−1/4

( r
2k )

1/4

[
log log

2k

reiθ
− 2 log γ

log 2k
reiθ

− 2 log2 γ

log2 2k
reiθ

+O

(
log3 γ

log3 r

)]
d̄γ

γ2 + 1

= log log
2k

reiθ

∫ ( r
2k )
−1/4

( r
2k )

1/4

d̄γ

γ2 + 1
− 1

log 2k
reiθ

∫ ( r
2k )
−1/4

( r
2k )

1/4

2 log γd̄γ

γ2 + 1

− 1

log2 2k
reiθ

∫ ( r
2k )
−1/4

( r
2k )

1/4

2 log2 γd̄γ

γ2 + 1
+

1

log3 r

∫ ( r
2k )
−1/4

( r
2k )

1/4

O
(
log3 γ

)
γ2 + 1

= log log
2k

reiθ

∫ ∞
0

d̄γ

γ2 + 1
− 1

log 2k
reiθ

∫ ∞
0

2 log γd̄γ

γ2 + 1

− 1

log2 2k
reiθ

∫ ∞
0

2 log2 γd̄γ

γ2 + 1
+O

(
1

log3 r

)
. (A.6)

The first integral in (A.6) is easily calculated∫ ∞
0

d̄γ

γ2 + 1
=

1

2πi
arctan γ

∣∣∣∣∞
0

=
1

4i
. (A.7)

The second integral, after a change of variables η = 1
γ , satisfies∫ ∞

0

log γd̄γ

γ2 + 1
= −

∫ ∞
0

log ηd̄η

η2 + 1
,

and so∫ ∞
0

log γd̄γ

γ2 + 1
= 0. (A.8)
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The final integral can be calculated by the method of residues, which yields:

2

∫ ∞
0

log2 γd̄γ

γ2 + 1
=
π2

8i
. (A.9)

Combining (A.6) with (A.7), (A.8), and (A.9), we see that

N2(r) =
1

4i
log log

2k

reiθ
− π2

8i

1

log2 2k
reiθ

+O

(
1

log3 r

)
, (A.10)

and combining (A.3) with (A.4), (A.5), and (A.10), we see that∫ 1

−1

logw(s)(
s2 − 1

)1/2
+

d̄s

s− z

=
1√
2
r−1/2e−iθ/2

(
1

2
log log

2k

reiθ
− π2

4

1

log2 2k
r

+O

(
1

log3 r

))
+O(1). (A.11)

Now note that for z = 1 + reiθ,(
z2 − 1

)1/2
=
√

2r1/2eiθ/2 +O(r). (A.12)

So combining (A.11) and (A.12) with the definition of F , we see that

logF (z) =
1

2
log log

2k

reiθ
− π2

4

1

log2 2k
reiθ

+O

(
1

log3 r

)
,

and so

F 2(z) = log
2k

reiθ

(
1− π2

2

1

log2 2k
reiθ

+O

(
1

log3 r

))
.

Now for z = 1 + reiθ ∈ C±, and recalling that log always refers to the principle branch,

log
2k

reiθ
= log

2k

rei(θ∓π)
∓ iπ = log

2k

−reiθ
∓ iπ = w(z)∓ iπ

from which it follows that

F 2

w
(z) = 1∓ iπ

w(z)
− π2

2w2(z)
+O

(
1

w3(z)

)
uniformly for z ∈ C± as z → 1, which completes the proof of Proposition A.1. �

The following proves assertion (2.13) of Proposition 2.3

Proposition A.3.

F 2

w
(z) = 1 +O

(
|z + 1|1/2

)
as z → −1, z ∈ C\[−1, 1].
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Proof. Note that as z → −1, uniformly for z ∈ C\[−1, 1],∫ 1

−1

logw(s)(
s2 − 1

)1/2
+

d̄s

s− z
=

∫ 1

−1

logw(−1)(
s2 − 1

)1/2
+

d̄s

s− z
+

∫ 1

−1

logw(s)− log(w(−1))(
s2 − 1

)1/2
+

d̄s

s− z
.

By the proof of Lemma A.2, the second integral is easily seen to be O(1). Therefore∫ 1

−1

logw(s)(
s2 − 1

)1/2
+

d̄s

s− z
=

∫ 1

−1

logw(−1)(
s2 − 1

)1/2
+

d̄s

s− z
+O(1)

=
1

2
logw(−1)

∫
C

1

(s2 − 1)1/2

d̄s

s− z
+O(1),

where C refers to any clockwise contour containing [−1, 1] but not the point z. Letting C go to
infinity, a residue calculation gives

1

2
logw(−1)

∫
C

1(
s2 − 1

)1/2 d̄s

s− z
=

1

2

logw(−1)(
z2 − 1

)1/2 .
Thus

F 2(z) = exp

2
(
z2 − 1

)1/2 ∫ 1

−1

logw(s)(
s2 − 1

)1/2
+

d̄s

s− z

 = exp
(

logw(−1) +O
(
|z + 1|1/2

))
= w(−1) +O

(
|z + 1|1/2

)
,

and so

F 2

w
(z) = 1 +O

(
|z + 1|1/2

)
as z → −1, z ∈ C\[−1, 1], which proves Proposition A.3. �

A.2 Estimate on F 2

w
(1 + r)− F 2

w
(1 + r̃), r, r̃ > 0

Proposition A.4. Fix R > 0 and suppose r, r̃ > 0 obey

r, r̃ = O

(
1

n2

)
, n

(r
r̃
− 1
)
∈ [−R,R].

Then

F 2

w+
(1 + r)− F 2

w+
(1 + r̃) +

F 2

w−
(1 + r)− F 2

w−
(1 + r̃) = OR

(
1

n log3 n

)
.

Remark A.5. Notice that if r = O
(

1
n2

)
, then Proposition 2.4 implies F 2

w+
(1 + r) + F 2

w−
(1 +

r)− 2 = O
(

1
log2 n

)
. Also notice that 1

log2 n
− 1

log2(n+c)
= O

(
1

n log3 n

)
. Therefore we would expect

F 2

w+
(1+r)− F 2

w+
(1+r̃)+ F 2

w−
(1+r)− F 2

w−
(1+r̃) = O

(
1

n log3 n

)
for sufficiently close r, r̃. Proposition A.4

makes this rigorous.

Proof. We define a = a(r, r̃) := n
(
r
r̃ − 1

)
. Clearly r

r̃ = 1 + a
n . In the calculations that follow,

we assume without loss of generality that r > r̃, and hence a > 0. First, note that

logF (1 + r) =
(
(1 + r)2 − 1

)1/2 ∫ 1

−1

logw(s)(
s2 − 1

)1/2
+

d̄s

s− (1 + r)
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=
(√

2r1/2 +O
(
r3/2

)) ∫ 1

−1

logw(s)(
s2 − 1

)1/2
+

d̄s

s− (1 + r)
. (A.13)

By (A.11), which holds uniformly for z ∈ C±, we have∫ 1

−1

logw(s)

(s2 − 1)
1/2
+

d̄s

s− (1 + r)
= O

(
r−1/2 log log r

)
,

and so, since r = O
(
n−2

)
,

logF (1 + r) =
√

2r1/2

∫ 1

−1

logw(s)

(s2 − 1)
1/2
+

d̄s

s− (1 + r)
+O

(
log logn

n2

)
.

Therefore

log
F (1 + r)

F (1 + r̃)
=
√

2r1/2

∫ 1

−1

logw(s)(
s2 − 1

)1/2
+

d̄s

s− (1 + r)

−
√

2r̃1/2

∫ 1

−1

logw(s)(
s2 − 1

)1/2
+

d̄s

s− (1 + r̃)
+O

(
log logn

n2

)
. (A.14)

In (A.14),

√
2r1/2

∫ 1

−1

logw(s)(
s2 − 1

)1/2
+

d̄s

s− (1 + r)
−
√

2r̃1/2

∫ 1

−1

logw(s)(
s2 − 1

)1/2
+

d̄s

s− (1 + r̃)

= −
√

2ir1/2

∫ 1

−1

logw(s)√
1− s2

d̄s

s− (1 + r)
+
√

2ir̃1/2

∫ 1

−1

logw(s)√
1− s2

d̄s

s− (1 + r̃)
.

Making the change of variables t = 1− s,

−
√

2ir1/2

∫ 1

−1

logw(s)√
1− s2

d̄s

s− (1 + r)
+
√

2ir̃1/2

∫ 1

−1

logw(s)√
1− s2

d̄s

s− (1 + r̃)

= −
√

2ir1/2

∫ 0

2

logw(1− t)√
t(2− t)

−d̄t

−t− r
+
√

2ir̃1/2

∫ 0

2

logw(1− t)√
t(2− t)

−d̄t

−t− r̃

=
√

2ir1/2

∫ 2

0

logw(1− t)√
t(2− t)

d̄t

t+ r
−
√

2ir̃1/2

∫ 2

0

logw(1− t)√
t(2− t)

d̄t

t+ r̃

= ir1/2

∫ 2

0

logw(1− t)√
t

d̄t

t+ r
− ir̃1/2

∫ 2

0

logw(1− t)√
t

d̄t

t+ r̃
+ iH(r, r̃), (A.15)

where

H(r, r̃) :=
√

2

[
r1/2

∫ 2

0

logw(1− t)√
t(2− t)

d̄t

t+ r
− r̃1/2

∫ 2

0

logw(1− t)√
t(2− t)

d̄t

t+ r̃

]

−
[
r1/2

∫ 2

0

logw(1− t)√
t

d̄t

t+ r
− r̃1/2

∫ 2

0

logw(1− t)√
t

d̄t

t+ r̃

]
.

The same calculations as in the proof of Proposition A.1 show that

H(r, r̃) = r1/2

∫ 2

0
logw(1− t)

[ √
t√

2
√

2− t+ (2− t)

]
d̄t

t+ r
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− r̃1/2

∫ 2

0
logw(1− t)

[ √
t√

2
√

2− t+ (2− t)

]
d̄t

t+ r̃

=
(
r1/2 − r̃1/2

) ∫ 2

0
logw(1− t)

[ √
t√

2
√

2− t+ (2− t)

]
d̄t

t+ r

+ r̃1/2

∫ 2

0
logw(1− t)

[ √
t√

2
√

2− t+ (2− t)

](
d̄t

t+ r
− d̄t

t+ r̃

)
.

So

|H(r, r̃)| 6
∣∣r1/2 − r̃1/2

∣∣ ∫ 2

0
| logw(1− t)|

[ √
t√

2
√

2− t+ (2− t)

]
dt

t

+ r̃1/2

∫ 2

0
| logw(1− t)|

[ √
t√

2
√

2− t+ (2− t)

]
|r̃ − r|dt

|t+ r| · |t+ r̃|

6 c1r̃
1/2

∣∣∣∣∣r1/2

r̃1/2
− 1

∣∣∣∣∣+ r̃1/2 |r̃ − r|
r̃

∫ 2

0
| logw(1− t)|

[ √
t√

2
√

2− t+ (2− t)

]
dt

t

6 c1r̃
1/2

∣∣∣∣∣r1/2

r̃1/2
− 1

∣∣∣∣∣+ c2r̃
1/2
∣∣∣r
r̃
− 1
∣∣∣ = O

(
n−2

)
.

Making the changes of variables t→ rt and t→ r̃t in (A.15) within the respective integrals,
we have

ir1/2

∫ 2

0

logw(1− t)√
t

d̄t

t+ r
− ir̃1/2

∫ 2

0

logw(1− t)√
t

d̄t

t+ r̃

= ir1/2

∫ 2/r

0

logw(1− rt)√
rt

d̄t

t+ 1
− ir̃1/2

∫ 2/r̃

0

logw(1− r̃t)√
r̃t

d̄t

t+ 1

= i

∫ 2/r

0

logw(1− rt)√
t

d̄t

t+ 1
− i
∫ 2/r

0

logw(1− r̃t)√
t

d̄t

t+ 1
− i
∫ 2/r̃

2/r

logw(1− r̃t)√
t

d̄t

t+ 1

= i

∫ 2/r

0
(logw(1− rt)− logw(1− r̃t)) d̄t

t3/2 + t1/2
− i
∫ 2/r̃

2/r

logw(1− r̃t)√
t

d̄t

t+ 1
. (A.16)

Note that, as log k 6 log 2k
r̃t 6 log k

1+O( 1
n)

for t ∈ [2
r ,

2
r̃ ], we have∣∣∣∣∣

∫ 2/r̃

2/r

logw(1− r̃t)√
t

d̄t

t+ 1

∣∣∣∣∣ 6
∥∥∥∥ 1√

t

1

t+ 1

∥∥∥∥
L∞(2/r,2/r̃)

∫ 2/r̃

2/r
|logw(1− r̃t)| d̄t

6 cr3/2

∣∣∣∣2r̃ − 2

r

∣∣∣∣ = cr1/2
∣∣∣r
r̃
− 1
∣∣∣ = O

(
n−2

)
.

To estimate the remaining term in (A.16),

i

∫ 2/r

0
(logw(1− rt)− logw(1− r̃t)) d̄t

t3/2 + t1/2

= i

∫ 2/r

0
log

(
w(1− rt)
w(1− r̃t)

)
d̄t

t3/2 + t1/2
. (A.17)

Now, for t ∈ [0, 2
r ],

w(1− rt)
w(1− r̃t)

=
log
(

2k
rt

)
log
(

2k
r̃t

) = 1 +
log
(

2k
rt

)
− log

(
2k
r̃t

)
log
(

2k
r̃t

)
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= 1 +
log r̃

r

log
(

2k
r̃t

) = 1 +
log
(
1 + a

n

)
log
(

2k
r̃t

) = 1 +
a

n log
(

2k
r̃t

) +O
(
n−2

)
.

So

log

(
w(1− rt)
w(1− r̃t)

)
=

a

n log
(

2k
r̃t

) +O
(
n−2

)
. (A.18)

Substituting (A.18) into (A.17) yields

i

∫ 2/r

0

(
a

n log
(

2k
r̃t

) +O
(
n−2

)) d̄t

t3/2 + t1/2

= i

∫ r−1/2

r1/2

a

n log
(

2k
r̃t

) d̄t

t3/2 + t1/2
+ E(r) +O

(
n−2

)
,

where

E(r) = i

∫ r1/2

0

a

n log
(

2k
r̃t

) d̄t

t3/2 + t1/2
+ i

∫ 2/r

r−1/2

a

n log
(

2k
r̃t

) d̄t

t3/2 + t1/2
.

Now ∣∣∣∣∣
∫ r1/2

0

a

n log
(

2k
r̃t

) d̄t

t3/2 + t1/2

∣∣∣∣∣ 6
∫ r1/2

0

c

n| log r|
dt

t1/2
6

cr1/4

n log r
= O

(
n−3/2

)
.

Similarly∣∣∣∣∣
∫ 2/r

r−1/2

a

n log
(

2k
r̃t

) d̄t

t3/2 + t1/2

∣∣∣∣∣ 6
∫ 2/r

r−1/2

c

n| log r|
dt

t3/2
6

cr1/4

n log r
= O

(
n−3/2

)
.

Therefore,

|E(r)| = O
(
n−3/2

)
,

and so

i

∫ 2/r

0

(
a

n log
(

2k
r̃t

) +O
(
n−2

)) d̄t

t3/2 + t1/2

= i

∫ r−1/2

r1/2

a

n log
(

2k
r̃t

) d̄t

t3/2 + t1/2
+O

(
n−3/2

)
= i

∫ r−1/2

r1/2

a

n log
(

2k
r̃

)
− n log t

d̄t

t3/2 + t1/2
+O

(
n−3/2

)
= i

∫ r−1/2

r1/2

a

n log
(

2k
r̃

) 1

1− log t

log
(

2k
r̃

) d̄t

t3/2 + t1/2
+O

(
n−3/2

)
, (A.19)

but t ∈ [r1/2, r−1/2] and so | log t| 6 1
2 log 1

r 6
1
2 log 2k

r . Therefore, (A.19) is

ia

n log
(

2k
r̃

) ∫ r−1/2

r1/2

(
1 +

log t

log
(

2k
r̃

) +O

(
log2 t

log2
(

2k
r̃

))) d̄t

t3/2 + t1/2
+O

(
n−3/2

)
.
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Making the change of variables γ = t1/2, this becomes

2ia

n log
(

2k
r̃

) ∫ r−1/4

r1/4

(
1 +

2 log γ

log
(

2k
r̃

) +O

(
log2 γ

log2
(

2k
r̃

))) d̄γ

γ2 + 1
+O

(
n−3/2

)
=

2ia

n log
(

2k
r̃

) (∫ r−1/4

r1/4

d̄γ

γ2 + 1
+

∫ r−1/4

r1/4

2 log γ

log
(

2k
r̃

) d̄γ

γ2 + 1

)
+O

(
1

n log3 n

)

=
2ia

n log
(

2k
r̃

) (∫ ∞
0

d̄γ

γ2 + 1
+

∫ ∞
0

2 log γ

log
(

2k
r̃

) d̄γ

γ2 + 1

)
+O

(
1

n log3 n

)
.

So, using the same calculations of the above integrals, see (A.7) and (A.8), as in the proof of
Proposition A.1,

i

∫ 2/r

0

(
logw(1− rt)− logw(1− r̃t)

) d̄t

t3/2 + t1/2
=

a

2n log 2k
r̃

+O

(
1

n log3 n

)
. (A.20)

So, combining (A.13), (A.15), (A.16), and (A.20), we obtain

log

(
F 2(1 + r)

F 2(1 + r̃)

)
= 2 log

F (1 + r)

F (1 + r̃)
=

a

n log 2k
r̃

+O

(
1

n log3 n

)
,

which implies

F 2(1 + r)

F 2(1 + r̃)
= exp

(
a

n log 2k
r̃

+O

(
1

n log3 n

))
= 1 +

a

n log 2k
r̃

+O

(
1

n log3 n

)
.

Now,

F 2

w±
(1 + r)− F 2

w±
(1 + r̃) =

F 2(1 + r)− F 2(1 + r̃)

w±(1 + r)
+ F 2(1 + r̃)

(
1

w±(1 + r)
− 1

w±(1 + r̃)

)
=
F 2(1 + r̃)

w±(1 + r)

(
F 2(1 + r)

F 2(1 + r̃)
− 1

)
+
F 2(1 + r̃)

w±(1 + r)

(
1− w±(1 + r)

w±(1 + r̃)

)
=
F 2(1 + r̃)

w±(1 + r)

(
a

n log 2k
r

+O

(
1

n log3 n

)
+ 1− w±(1 + r)

w±(1 + r̃)

)
,(A.21)

where

w±(1 + r)

w±(1 + r̃)
=

log 2k
r ± iπ

log 2k
r̃ ± iπ

= 1 +
log 2k

r − log 2k
r̃

log 2k
r̃ ± iπ

= 1 +
log r̃

r

log 2k
r̃ ± iπ

= 1 +
a

n
(
log 2k

r̃ ± iπ
) +O

(
n−2

)
,

so

a

n log 2k
r

+ 1− w±(1 + r)

w±(1 + r̃)
=

a

n log 2k
r̃

− a

n
(

log 2k
r̃ ± iπ

)
=

±iπa
n log 2k

r̃

(
log 2k

r̃ ± iπ
) = ± iπa

n log2 2k
r̃

+O

(
1

n log3 n

)
. (A.22)

Substituting (A.22) into (A.21),

F 2

w±
(1 + r)− F 2

w±
(1 + r̃) =

F 2(1 + r̃)

w±(1 + r)

(
± iπa

n log2 2k
r̃

+O

(
1

n log3 n

))
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=

(
± iπa

n log2 2k
r̃

+O

(
1

n log3 n

))(
1 +O

(
1

log n

))
,

where we have used Proposition A.1. So, in particular

F 2

w+
(1 + r)− F 2

w+
(1 + r̃) +

F 2

w−
(1 + r)− F 2

w−
(1 + r̃) = O

(
1

n log3 n

)
,

which concludes the proof of Proposition 2.5. �

B A summary of Legendre asymptotics

In this appendix we prove a series of L2 estimates, ultimately allowing us to replace the integral
in Proposition 4.9 with an integral only involving Legendre quantities, as in Proposition 5.2.

B.1 A summary of Legendre asymptotics

In [13] the authors derive the asymptotics of the solution S(z) = S(n)(z) to the RHP (ΣS , vS):

(a)

S(z) is analytic for z ∈ C\ΣS , (B.1)

(b) S satisfies the following jump relation on s ∈ ΣS

S+(s) = S−(s)vS(s), (B.2)

(c) S(z) has the following behavior at infinity

S(z) =

(
I +O

(
1

z

))
, as z →∞, (B.3)

(d) S(z) has the following behavior as z → 1

S(z) = O

(
log |z − 1| log |z − 1|
log |z − 1| log |z − 1|

)
, (B.4)

(e) S(z) has the following behavior as z → −1

S(z) = O

(
log |z + 1| log |z + 1|
log |z + 1| log |z + 1|

)
, (B.5)

where ΣS is depicted in Fig. 5,

vS(s) =



(
1 0

φ(s)−2n 1

)
for s in the upper and lower lips,(

0 1

−1 0

)
for s ∈ [−1, 1].

The asymptotics are derived for z in the regions A, B, C, D, and E, see Fig. 6. We will
summarize the necessary results in this section.
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−1 1

Σ

1 + δ

Figure 4. Depiction of Σ.

−1 1

ΣS

Figure 5. Depiction of ΣS .

Recall that Q̃ is the solution to (3.12)–(3.14) (Σ, ṽΣ). S is the solution to (B.1)–(B.5) (ΣS , vS).
See Figs. 4 and 5 for depictions of the contours Σ and ΣS . The RHP for S differs from the RHP
for Q̃ near the point 1, but the problems are related via the deformation:

Q̃(z) =



S(z)

(
1 0

φ−2n(z) 1

)
for z ∈ Ω′1,

S(z)

(
1 0

−φ−2n(z) 1

)
for z ∈ Ω′2,

S(z) otherwise,

(B.6)

where the regions Ω′1 and Ω′2 are depicted in Fig. 7.
For z ∈ C\[−1, 1], we define, as in [13],

N(z) =


a+ a−1

2

a− a−1

2i
a− a−1

−2i

a+ a−1

2

 ,

where

a := a(z) =

(
z − 1

z + 1

)1/4

,

where a(z) is analytic for z ∈ C\[−1, 1] and a(z) > 0 when z > 1. Let Uδ(s) refer to the closed
ball of radius δ centered as s = ±1. The regions B and C are given by B = Uδ(1)\ΣS and
C = Uδ(−1)\ΣS respectively. We define

f(z) =
log2 φ(z)

4
.
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−1 1

A

C B
D

E

Uδ(1)Uδ(−1)

Figure 6. Definition of the regions A, B, C, D, and E.

−1

ΣS

Σ\(ΣS ∩ Σ)

Ω′1

Ω′2

Figure 7. Definition of the regions Ω′1, Ω′2.

f(z) is analytic in a neighborhood of 1 and

f(1) = 0,

f(z) =
1

2
(z − 1) +O

(
|z − 1|2

)
as z → 1,

f(−z) = −1

2
(z + 1) +O

(
|z + 1|2

)
as z → −1. (B.7)

So, in particular, we can pick δ sufficiently small so that f(z) is locally conformal for z ∈ B,
which clearly also implies f(−z) will be locally conformal in C. We define

Ψ(ζ) =



(
I0

(
2ζ1/2

)
i
πK0

(
2ζ1/2

)
2πiζ1/2I ′0

(
2ζ1/2

)
−2ζ1/2K ′0

(
2ζ1/2

))
for | arg(ζ)| < 2π/3,(

1
2H

(1)
0

(
2(−ζ)1/2

)
1
2H

(2)
0 (2(−ζ1/2))

πζ1/2
(
H

(1)
0

)′(
2(−ζ)1/2

)
πζ1/2

(
H

(2)
0

)′(
2(−ζ)1/2

))
for 2π/3 < arg ζ < π,(

1
2H

(2)
0

(
2(−ζ)1/2

)
−1

2H
(1)
0 (2(−ζ1/2))

−πζ1/2
(
H

(2)
0

)′(
2(−ζ)1/2

)
πζ1/2

(
H

(1)
0

)′(
2(−ζ)1/2

))
for −π < arg ζ < −2π/3,

(B.8)

for ζ ∈ C\Γ, and where Γ is defined in Fig. 8. The contour ΣS is chosen within Uδ(1), (resp. −1)
to be the preimage of Γ under the map n2f(z) (resp. n2f(−z)). Therefore, around the point −1,
Σ is the preimage of Γ under the map n2f(−z) as well. In other words

n2f(−(Σ ∩ Uδ(−1))) ⊂ Γ for all n. (B.9)
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0

Γ

π
3

Figure 8. Definition of Γ.

−1 1

ΣR

Figure 9. Depiction of ΣR.

In (B.8), I0, K0 refer to the modified Bessel functions of the first and second kinds with

parameter 0, and H
(1)
0 , H

(2)
0 refer to the Hankel functions of the first and second kinds, see, for

instance, [1]. As before, the square root in the above definition is given by its principle value.
For any fixed δ sufficiently small, the following holds uniformly,

S(n)(z) =


R(n)(z)N(z) for z ∈ A ∪D ∪ E,
R(n)(z)E(z)(2πn)σ3/2Ψ

(
n2f(z)

)
φ−nσ3(z) for z ∈ B,

σ3R
(n)(−z)E(−z)(2πn)σ3/2Ψ

(
n2f(−z)

)
φ−nσ3(−z)σ3 for z ∈ C,

(B.10)

where R(n)(z) is bounded, analytic in C\ΣR, with ΣR depicted in Fig. 9, and

R(n)(z) = I +
R1(z)

n
+O

(
1

n2

)
uniformly in z ∈ C\ΣR,

where R1(z) is an n-independent, bounded, analytic function for z ∈ C\ΣR. Additionally∣∣∣∣R(n)(z)− I − R1(z)

n

∣∣∣∣ 6 1

n2|z|
. (B.11)

Finally, E(z) is defined by (see Remark B.1)

E(z) = N(z)
1√
2

(
1 −i
−i 1

)
f(z)σ3/4.
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E(z) is analytic and bounded for z ∈ B and has determinant 1. It follows, in particular, that
E−1(z) is also analytic and bounded for z ∈ B.

Remark B.1. We use slightly different notation than in [13] in a few ways,

• We refer to R(z) as R(n)(z) to emphasize its dependence on n.

• The neighborhoods Uδ and Ũδ we refer to as Uδ(1) and Uδ(−1) respectively.

• The matching factor En(z) in [13] we write En(z) = E(z)(2πn)σ3/2, where E(z) is clearly
independent of n.

In estimating the integral

−
∫

Σ
µ(s)(vΣ(s)− ṽΣ(s))µ̃−1(s)d̄s

we need asymptotic information about the function µ̃. However, since vΣ(s) − ṽΣ(s) is identi-
cally 0 for s ∈ (−1, 1) and is strictly lower triangular otherwise, we actually only need information
about µ̃’s second column. To that end, let µ̃2, Q̃2, and S2 refer to the second columns of the
matrices µ̃, Q̃, and S.

It is clear from the RHP for Q̃, (3.12)–(3.14), that Q̃2 is actually analytic in C\[−1, 1], and
it is clear from the deformation (B.6) that Q̃2 = S2. Similarly, S2 is analytic in C\[−1, 1].
Therefore, for z ∈ Σ\[−1, 1],

µ̃2(z) =
(
Q̃2(z)

)
− = Q̃2(z) = S2(z).

For z ∈ (Σ ∩ Σ2)\[−1, 1], µ̃2(z) = S+(z) = S−(z) and hence, in evaluating µ̃2(z) we can, when
convenient, use either applicable expression from (B.8) or (B.10).

We will always pick the “outside” interpretation for S2(z) in such cases. When z ∈ Σ\(ΣS∩Σ)
(see again Fig. 7), we are outside of the contour ΣS . It follows from (B.10), uniformly as n→∞
for z ∈ Σ\[−1, 1],

µ̃2(z) =



R(n)(z)

a− a
−1

2i
a+ a−1

2


for z ∈ Σ\([−1, 1] ∪ Uδ(1) ∪ Uδ(−1)),

R(n)(z)E(z)(2πn)σ3/2Ψ2

(
n2f(z)

)
φn(z)

for z ∈ (Σ\[−1, 1]) ∩ Uδ(1),

−σ3R
(n)(−z)E(−z)(2πn)σ3/2Ψ2

(
n2f(−z)

)
φn(−z)

for z ∈ (Σ\[−1, 1]) ∩ Uδ(−1),

(B.12)

where

Ψ2(ζ) =

(
i
πK0

(
2ζ1/2

)
−2ζ1/2K ′0

(
2ζ1/2

)) .
Note, from the properties of the modified Bessel function K0, that Ψ2(ζ) has an analytic exten-
sion to C\(−∞, 0]. From (B.10) and (B.12), we have

µ̃(z) =


R(n)(z)E(z)(2πn)σ3/2Ψ

(
n2f(z)

)
φ−nσ3(z)

for (Σ\[−1, 1]) ∩ Uδ(1),

−σ3R
(n)(−z)E(−z)(2πn)σ3/2Ψ

(
n2f(−z)

)
φ−nσ3(−z)σ3

for z ∈ (Σ\[−1, 1]) ∩ Uδ(−1),

(B.13)
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where

Ψ =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
, Ψ12(ζ) =

i

π
K0

(
2ζ1/2

)
, Ψ22(ζ) = −2ζ1/2K ′0

(
2ζ1/2

)
.

We will repeatedly make use of the following asymptotic estimates for the functions Ψ12, Ψ22:

Ψ12(ζ),Ψ22(ζ),Ψ′12(ζ),Ψ′22(ζ) = O
(
ζ1/4e−2ζ1/2)

as ζ →∞, uniformly for | arg ζ| < π,

Ψ12(ζ) = O (log ζ) as ζ → 0, Ψ22(ζ) = O(1) as ζ → 0,

Ψ′12(ζ) = O

(
1

ζ

)
as ζ → 0, Ψ′22(ζ) = O

(
1

ζ

)
as ζ → 0. (B.14)

These estimates follow from [1] formulas (9.6.11), (9.6.13), (9.6.27), (9.7.2), (9.7.4), and the fact
that K0 is a solution to the modified Bessel equation

x2K ′′0 (x) + xK ′0(x)− x2 = 0.

For clarity, we depict the contours in which µ̃ is given by different expansions, see (B.12), in
Figs. 10, 11, and 12. Note that (Σ\[−1, 1])∩Uδ(1) = [1+δ, 1]. In all instances where we integrate
over the contour Σ, the integral over [−1, 1] will not contribute.

It will be routine in the calculations that follow to break up an integral over Σ into an
integral over (Σ\[−1, 1])∩U1/n(1), an integral over (Σ\[−1, 1])∩U1/n(−1), and an integral over
Σ\([−1, 1]∪U1/n(1)∪U1/n(−1)), where U1/n(s) denotes a ball of radius 1/n centered at s = ±1.
This decomposition is shown in Fig. 13.

B.2 Some important norms

Proposition B.2. The functions µ, µ̃ obey the following estimates:

∣∣∣∣µ̃(n)
(
v

(n)
Σ − ṽ(n)

Σ

)∣∣∣∣
L2(Σ)

= O

(
1

n1/2 log2 n

)
, (B.15)

∣∣∣∣µ(n) − µ̃(n)
∣∣∣∣
L2(Σ)

= O

(
1

n1/2 log2 n

)
, (B.16)

∣∣∣∣µ̃(n)
(
v

(n)
Σ − ṽ(n)

Σ

)
− µ̃(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

)∣∣∣∣
L2(Σ)

= O

(
1

n3/2 log2 n

)
, (B.17)

∣∣∣∣(µ(n) − µ̃(n)
)
−
(
µ(n+1) − µ̃(n+1)

)∣∣∣∣
L2(Σ)

= O

(
1

n3/2 log2 n

)
. (B.18)

Proof. Recall that δ > 0 is fixed as n → ∞ and that vΣ(s) − ṽΣ(s) ≡ 0 for s ∈ [−1, 1] and
U1/n(s) refers to the ball of radius 1/n centered at s = ±1. We have that

∣∣∣∣µ̃ (vΣ − ṽΣ)
∣∣∣∣2
L2(Σ)

=

∫
Σ\[−1,1]

|µ̃ (vΣ − ṽΣ)|2 |ds|

=

(∫
(Σ\[−1,1])∩U1/n(1)

+

∫
(Σ\[−1,1])∩U1/n(−1)

+

∫
Σ\([−1,1]∪U1/n(−1)∪U1/n(1))

)
|µ̃ (vΣ − ṽΣ)|2 |ds|

= I1 + I2 + I3. (B.19)

First we will bound

I3 =

∫
Σ\([−1,1]∪U1/n(−1)∪U1/n(1))

|µ̃ (vΣ − ṽΣ)|2 |ds|,
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−1 1
1 + δ

Figure 10. Depiction of Σ\([−1, 1] ∪ Uδ(1) ∪ Uδ(−1)).

−1 1
1 + δ

Figure 11. Depiction of (Σ\[−1, 1]) ∩ Uδ(1).

−1 1
1 + δ

Figure 12. Depiction of (Σ\[−1, 1]) ∩ Uδ(−1).

which will be done by first proving L∞ bounds on µ̃2 and φ−2n. From (B.12),

sup
z∈[1+1/n,1+δ]

|µ̃2(z)| = sup
1
n
6z−16δ

∣∣R(n)(z)E(z)(2πn)σ3/2Ψ2(n2f(z))φn(z)
∣∣

6 cn1/2 sup
1
n
6z−16δ

∣∣Ψ2

(
n2f(z)

)
φn(z)

∣∣
= cn1/2 sup

1
n
6z−16δ

∣∣Ψ2

(
n2f(z)

)
e2(n2f(z))1/2∣∣

= cn1/2 sup
O(n)6y6O(n2)

∣∣∣∣∣Ψ12(y)e2y1/2

Ψ22(y)e2y1/2

∣∣∣∣∣ ,
where y = n2f(z). Substituting in the asymptotics of Ψ as in (B.14), we see that

sup
z∈[1+1/n,1+δ]

|µ̃2(z)| = O(n) (B.20)



Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight 47

1 + δU1/n(−1) U1/n(1)

Figure 13. Decomposition of Σ\[−1, 1] into Σ\([−1, 1]∪U1/n(1)∪U1/n(−1)) and (Σ\[−1, 1])∩U1/n(1)

and (Σ\[−1, 1]) ∩ U1/n(−1).

Similarly

sup
z∈(Σ\[−1,1])∩(Uδ(−1)\U1/n(−1))

|µ̃2(z)|

6 cn1/2 sup
z∈(Σ\[−1,1])∩(Uδ(−1)\U1/n(−1))

∣∣Ψ2(n2f(z))e2(n2f(z))1/2∣∣
= cn1/2 sup

O(n)6|y|6O(n2)
arg y=±2π/3

∣∣∣∣∣Ψ12(y)e2y1/2

Ψ22(y)e2y1/2

∣∣∣∣∣ ,
where in the last step we have used the fact that n2f(−Σ ∩ Uδ(−1)) ⊂ Γ for any choice of n,
see (B.9). Once again, substituting in the asymptotics for Ψ from (B.14),

sup
z∈(Σ∩Uδ(−1))\U1/n(−1)

|µ̃2(z)| = O(n). (B.21)

Lastly, it is clear from (B.12) that µ̃2 is uniformly bounded for z ∈ Σ\([−1, 1]∪Uδ(−1)∪Uδ(1)).
Combining this with (B.20) and (B.21), if we are at least a distance 1/n from ±1 on Σ\[−1, 1],
then |µ̃| 6 cn, that is,

‖µ̃2‖L∞(Σ\([−1,1]∪U1/n(−1)∪U1/n(1)) = O(n). (B.22)

Similarly, we prove an L∞ bound on the function φ(z): A straightforward calculation using
properties (2.3) and (2.4) of Proposition 2.1 shows that

inf
z∈(Σ\[−1,1])∩(Uδ(−1)\U1/n(−1))

|φ(z)| = 1 +
c√
n
, for some c > 0 (B.23)

and, since the contour Σ\([−1, 1] ∪ Uδ(−1) ∪ Uδ(1)) is bounded away from the interval [−1, 1],
property (2.6) of Proposition 2.1 implies

inf
z∈Σ\([−1,1]∪Uδ(−1)∪Uδ(1))

|φ(z)| = 1 + c, for some fixed c > 0. (B.24)

Equations (B.23) and (B.24) together imply∥∥φ−1(z)
∥∥
L∞(Σ\([−1,1]∪U1/n(1)∪U1/n(−1)))

6 1− c√
n

for some c > 0,∥∥φ−2n(z)
∥∥
L∞(Σ\([−1,1]∪U1/n(1)∪U1/n(−1)))

6 c1e
−c2n1/2

. (B.25)
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So, using the fact that F 2

w is bounded, (B.22), and (B.25),

|µ̃ (vΣ − ṽΣ)|2 = |(0, µ̃2) (vΣ − ṽΣ)|2 = O
(
e−cn

1/2)
uniformly for s ∈ Σ\([−1, 1] ∪ U1/n(−1) ∪ U1/n(1)) and so

I3 = O
(
e−cn

1/2)
. (B.26)

Turning to I1 and using (B.13),

I1 =

∫
U1/n(1)∩Σ

|µ̃ (vΣ − ṽΣ)|2 |ds| =
∫ 1+ 1

n

1
|µ̃ (vΣ − ṽΣ)|2 ds

=

∫ 1+ 1
n

1

∣∣∣∣∣R(n)(s)E(s)(2πn)σ3/2Ψ
(
n2f(s)

)
φ−nσ3(s)

(
0 0(

F 2

w+
(s) + F 2

w−
(s)− 2

)
φ−2n 0

)∣∣∣∣∣
2

ds

=

∫ 1+ 1
n

1

∣∣∣∣(I +O

(
1

n

))
E(s)(2πn)σ3/2Ψ

(
n2f(s)

)(0 0
1 0

)∣∣∣∣2
×
∣∣∣∣(F 2

w+
(s) +

F 2

w−
(s)− 2

)
φ−n(s)

∣∣∣∣2 ds

6 cn
∫ 1+ 1

n

1

∣∣∣∣(Ψ12

(
n2f(s)

)
0

Ψ22

(
n2f(s)

)
0

)∣∣∣∣2 ∣∣∣∣F 2

w+
(s) +

F 2

w−
(s)− 2

∣∣∣∣2 ds.

By Proposition 2.4,

F 2

w+
(s) +

F 2

w−
(s)− 2 = O

(
1

log2 |s− 1|

)
as s→ 1,

so for |s− 1| 6 1
n ,

F 2

w+
(s) +

F 2

w−
(s)− 2 = O

(
1

log2 n

)
. (B.27)

So

cn

∫ 1+ 1
n

1

∣∣∣∣(Ψ12

(
n2f(s)

)
0

Ψ22

(
n2f(s)

)
0

)∣∣∣∣2 ∣∣∣∣F 2

w+
(s) +

F 2

w−
(s)− 2

∣∣∣∣2 ds

6 c
n

log4 n

∫ 1+ 1
n

1

∣∣∣∣(Ψ12

(
n2f(s)

)
0

Ψ22

(
n2f(s)

)
0

)∣∣∣∣2 ds.

Making the substitution y = n2f(s),

c
n

log4 n

∫ 1+ 1
n

1

∣∣∣∣(Ψ12

(
n2f(s)

)
0

Ψ22

(
n2f(s)

)
0

)∣∣∣∣2 ds

= c
n

log4 n

∫ n2f(1+ 1
n

)

0

∣∣∣∣(Ψ12(y) 0
Ψ22(y) 0

)∣∣∣∣2 df−1
( y
n2

)
.

Using (B.7), we see that n2f(1 + 1
n) = O(n) and df−1

( y
n2

)
= 2dy

n2

(
1 +O

(
1
n

))
. Therefore,

c
n

log4 n

∫ n2f(1+ 1
n

)

0

∣∣∣∣(Ψ12(y) 0
Ψ22(y) 0

)∣∣∣∣2 df−1
( y
n2

)
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6
c

n log4 n

∫ n2f(1+ 1
n

)

0

∣∣∣∣(Ψ12(y) 0
Ψ22(y) 0

)∣∣∣∣2 dy =
c

n log4 n
,

where we have used that Ψ12,Ψ22 ∈ L2(0,∞), which is clear from (B.14). So we have proved

I1 = O

(
1

n log4 n

)
. (B.28)

Similarly

I2 =

∫
(Σ∩U1/n(−1))\[−1,1]

|µ̃ (vΣ − ṽΣ)|2 |ds| =
∫

(Σ∩U1/n(−1))\[−1,1]
|µ̃ (vΣ − ṽΣ)|2 |ds|

=

∫
(Σ∩U1/n(−1))\[−1,1]

∣∣∣∣∣∣σ3R
(n)(−s)E(−s)(2πn)σ3/2Ψ

(
n2f(−s)

)
φ−nσ3(−s)σ3

×

 0 0(
F 2

w
(s)− 1

)
φ−2n(s) 0

∣∣∣∣∣∣
2

|ds|

6 cn
∫

(Σ∩U1/n(−1))\[−1,1]

∣∣∣∣(Ψ12

(
n2f(−s)

)
0

Ψ22

(
n2f(−s)

)
0

)∣∣∣∣2 ∣∣∣∣(F 2

w
(s)− 1

)
φ−n(−s)

∣∣∣∣2 |ds|
6 cn

∫
(Σ∩U1/n(−1))\[−1,1]

∣∣∣∣(Ψ12

(
n2f(−s)

)
0

Ψ22

(
n2f(−s)

)
0

)∣∣∣∣2 ∣∣∣∣F 2

w
(s)− 1

∣∣∣∣2 |ds|.
By Proposition 2.3,

F 2

w
(s)− 1 = O

(
|s+ 1|1/2

)
, as s→ −1,

and so for |s+ 1| 6 1
n ,∣∣∣∣F 2

w
(s)− 1

∣∣∣∣ = O
(
n−1/2

)
, (B.29)

and so

cn

∫
(Σ∩U1/n(−1))\[−1,1]

∣∣∣∣(Ψ12

(
n2f(−s)

)
0

Ψ22

(
n2f(−s)

)
0

)∣∣∣∣2 ∣∣∣∣F 2

w
(s)− 1

∣∣∣∣2 |ds|
6 c

∫
(Σ∩U1/n(−1))\[−1,1]

∣∣∣∣(Ψ12

(
n2f(−s)

)
0

Ψ22

(
n2f(−s)

)
0

)∣∣∣∣2 |ds|.
Making the change of variables y = n2f(−s), and using (B.7),

c

∫
(Σ∩U1/n(−1))\[−1,1]

∣∣∣∣(Ψ12

(
n2f(−s)

)
0

Ψ22

(
n2f(−s)

)
0

)∣∣∣∣2 |ds|
=

c

n2

(
1 +O

(
1

n

))∫
n2f(−(Σ∩U1/n(−1))\[−1,1])

∣∣∣∣(Ψ12(y) 0
Ψ22(y) 0

)∣∣∣∣2 |dy|.
Recall that n2f(−(Σ ∩ Uδ(−1))) ⊂ Γ, see (B.9), therefore

c

n2

(
1 +O

(
1

n

))∫
n2f(−(Σ∩U1/n(−1))\[−1,1])

∣∣∣∣(Ψ12(y) 0
Ψ22(y) 0

)∣∣∣∣2 |dy|
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=
c

n2

∫
06|y|6O(n)
| arg y|=2π/3

∣∣∣∣(Ψ12(y) 0
Ψ22(y) 0

)∣∣∣∣2 |dy| 6 c

n2
,

where the asymptotics of Ψ12, Ψ22 in (B.14) imply Ψ12(y),Ψ22(y) ∈ L2(C0), where C0 is the
contour | arg y| = 2π/3. This proves

I2 = O

(
1

n2

)
. (B.30)

Thus combining (B.19), (B.28), (B.30), and (B.26), we see that

∣∣∣∣µ̃(n)
(
v

(n)
Σ − ṽ(n)

Σ

)∣∣∣∣2
L2(Σ)

= O

(
1

n log4 n

)
,

∣∣∣∣µ̃(n)
(
v

(n)
Σ − ṽ(n)

Σ

)∣∣∣∣
L2(Σ)

= O

(
1

n1/2 log2 n

)
,

thus proving (B.15).

The equation (B.16) is a relatively straightforward consequence of (B.15) as follows

µ− µ̃ = (1− CvΣ)−1I − (1− CṽΣ)−1I = (1− CvΣ)−1(CvΣ − CṽΣ)(1− CṽΣ)−1I

= (1− CvΣ)−1(CvΣ − CṽΣ)µ̃ = (1− CvΣ)−1C−Σ (µ̃(vΣ − ṽΣ)).

Therefore, using the fact that C−Σ and (1 − CvΣ)−1 are both bounded as L2 → L2 operators
uniformly in n, we see that

∥∥µ− µ̃∥∥
L2 6

∥∥(1− CvΣ)−1
∥∥
L2→L2

∥∥C−Σ∥∥L2→L2

∥∥µ̃(vΣ − ṽΣ)
∥∥
L2 = O

(
1

n1/2 log2 n

)
,

thus proving (B.16).

As in the proof of (B.15), we have that∣∣∣∣µ̃(n)
(
v

(n)
Σ − ṽ(n)

Σ

)
− µ̃(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

)∣∣∣∣2
L2(Σ)

=

∫
Σ∩U1/n(1)

+

∫
Σ∩U 1

n
(−1)

+

∫
Σ\(U 1

n
(−1)∪U 1

n
(1))


×
∣∣µ̃(n)

(
v

(n)
Σ − ṽ(n)

Σ

)
− µ̃(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

)∣∣2|ds| = I1 + I2 + I3, (B.31)

and the same estimates as before imply

I3 = O
(
e−cn

1/2)
. (B.32)

For I1, we see that

I1 =

∫ 1+ 1
n

1

∣∣µ̃(n)
(
v

(n)
Σ − ṽ(n)

Σ

)
− µ̃(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

)∣∣2ds

=

∫ 1+ 1
n

1

∣∣∣∣∣
(
I +

R1(s)

n
+O

(
1

n2

))
E(s)(2πn)σ3/2Ψ2

(
n2f(s)

)
φn(s)

×

 0 0(
F 2

w+
(s) +

F 2

w−
(s)− 2

)
φ−2n 0

− ((n)↔ (n+ 1)
)∣∣∣∣∣

2

ds



Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight 51

=

∫ 1+ 1
n

1

∣∣∣∣∣
(
I +

R1(s)

n
+O

(
1

n2

))
E(s)(2πn)σ3/2

(
Ψ12

(
n2f(s)

)
0

Ψ22

(
n2f(s)

)
0

)

×
(
F 2

w+
(s) +

F 2

w−
(s)− 2

)
φ−n −

(
(n)↔ (n+ 1)

)∣∣∣∣∣
2

ds. (B.33)

Making the substitution y = n2f(s), and defining s = sn(y) = f−1
1

( y
n2

)
, where f−1

1 denotes the
inverse of f1 in the neighborhood B where it is conformal, (B.33) becomes

∫ n2f(1+ 1
n)

0

∣∣∣∣(I +
R1(s)

n
+O

(
1

n2

))
E(s)(2πn)σ3/2

(
Ψ12(y) 0
Ψ22(y) 0

)
×
(
F 2

w+
(s) +

F 2

w−
(s)− 2

)
e−2y1/2 −

(
I +

R1(s)

n+ 1
+O

(
1

n2

))
E(s)(2π(n+ 1))σ3/2

×

Ψ12

(
(n+ 1)2

n2
y

)
0

Ψ22

(
(n+ 1)2

n2
y

)
0

(F 2

w+
(s) +

F 2

w−
(s)− 2

)
e−2n+1

n
y1/2

∣∣∣∣∣∣∣∣
2

df−1
1

( y
n2

)

= 2πn

∫ n2f(1+ 1
n)

0

∣∣∣∣∣
(
I +

R1(s)

n
+O

(
1

n2

))
E(s)

(
1 0

0
1

2πn

)(
Ψ12(y) 0
Ψ22(y) 0

)
×
(
F 2

w+
(s) +

F 2

w−
(s)− 2

)
e−2y1/2

−
(
I +

R1(s)

n+ 1
+O

(
1

n2

))
E(s)


√
n+ 1

n
0

0
1

2π
√
n(n+ 1)



×

Ψ12

(
(n+ 1)2

n2
y

)
0

Ψ22

(
(n+ 1)2

n2
y

)
0

(F 2

w+
(s) +

F 2

w−
(s)− 2

)
e−2n+1

n
y1/2

∣∣∣∣∣∣∣∣
2

df−1
1

( y
n2

)
. (B.34)

First note that n2f(1 + 1
n) = O(n) and for |y| 6 cn, df−1

1

( y
n2

)
= dy

n2

(
1 + O

(
1
n

))
. As in (B.27),∣∣ F 2

w+
(s) + F 2

w−
(s)− 2

∣∣ 6 c
log2 n

. Therefore (B.34) is

∫ O(n)

0

∣∣∣∣∣
(
I +

R1(s)

n
+O

(
1

n2

))
E(s)

(
1 0

0
1

2πn

)(
Ψ12(y) 0
Ψ22(y) 0

)
e−2y1/2

−
(
I +

R1(s)

n+ 1
+O

(
1

n2

))
E(s)

2π

√
n+ 1

n
0

0
1

2π
√
n(n+ 1)



×

Ψ12

(
(n+ 1)2

n2
y

)
0

Ψ22

(
(n+ 1)2

n2
y

)
0

 e−2n+1
n
y1/2

∣∣∣∣∣∣∣∣
2

dy O

(
1

n log4 n

)
. (B.35)

Now R1 and E are uniformly bounded functions, and Ψ12, Ψ22 are L2(0,∞) functions. Therefore,
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performing the subtraction in (B.35) term by term, (B.35) is∫ O(n)

0

∣∣∣∣O( 1

n

)(
Ψ12(y) 0
Ψ22(y) 0

)
e−2y1/2

∣∣∣∣2 dy O

(
1

n log4 n

)

+

∫ O(n)

0

∣∣∣∣∣∣∣∣
(

Ψ12(y) 0
Ψ22(y) 0

)
e−2y1/2 −

Ψ12

(
(n+ 1)2

n2
y

)
0

Ψ22

(
(n+ 1)2

n2
y

)
0

 e−2n+1
n
y1/2

∣∣∣∣∣∣∣∣
2

dy O

(
1

n log4 n

)

= O

(
1

n3 log4 n

)
+

∫ O(n)

0

∣∣∣∣∣∣
∫ (n+1)2

n2 y

y

d

dx

((
Ψ12(x) 0
Ψ22(x) 0

)
e−2x1/2

)
dx

∣∣∣∣∣∣
2

dy O

(
1

n log4 n

)

= O

(
1

n3 log4 n

)
+

∫ O(n)

0

∣∣∣∣∣∣∣
(n+ 1)2 − n2

n2
y sup(

y,
(n+1)2

n2 y
) d

dx

((
Ψ12(x) 0
Ψ22(x) 0

)
e−2x1/2

)∣∣∣∣∣∣∣
2

dy

×O
(

1

n log4 n

)
. (B.36)

Now, Ψ2(x) = O(log x) and Ψ′2(x) = O
(

1
x

)
as x→ 0 and Ψ2,Ψ

′
2(x) = O

(
x1/4e−2x1/2)

as x→∞,
see (B.14). As a consequence,

y sup(
y,

(n+1)2

n2 y
) d

dx

((
Ψ12(x) 0
Ψ22(x) 0

)
e−2x1/2

)
=

{
O(1) for all y,

O
(
y1/4e−4y1/2)

as y →∞,

and thus∥∥∥∥∥∥∥y sup(
y,

(n+1)2

n2 y
) d

dx

((
Ψ12(x) 0
Ψ22(x) 0

)
e−2x1/2

)∥∥∥∥∥∥∥
L2(0,∞)

= O(1),

and so

∫ O(n)

0

∣∣∣∣∣∣∣
(n+ 1)2 − n2

n2
y sup(

y,
(n+1)2

n2 y
) d

dx

((
Ψ12(x) 0
Ψ22(x) 0

)
e−2x1/2

)
dx

∣∣∣∣∣∣∣
2

dy

6
c

n2

∫ ∞
0

∣∣∣∣∣∣∣y sup(
y,

(n+1)2

n2 y
) d

dx

((
Ψ12(x) 0
Ψ22(x) 0

)
e−2x1/2

)
dx

∣∣∣∣∣∣∣
2

dy = O

(
1

n2

)
,

and hence, by (B.36),

I1 = O

(
1

n3 log4 n

)
. (B.37)

A similar calculation shows

I2 = O

(
1

n4

)
. (B.38)
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Thus combining (B.31), (B.37), (B.38), and (B.32), we see that∣∣∣∣µ̃(n)
(
v

(n)
Σ − ṽ(n)

Σ

)
− µ̃(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

)∣∣∣∣2
L2(Σ)

= O

(
1

n3 log4 n

)
,

∣∣∣∣µ̃(n)
(
v

(n)
Σ − ṽ(n)

Σ

)
− µ̃(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

)∣∣∣∣
L2(Σ)

= O

(
1

n3/2 log2 n

)
,

thus proving (B.17).
To move from (B.17) to (B.18), we proceed as follows(

µ(n) − µ̃(n)
)
−
(
µ(n+1) − µ̃(n+1)

)
=
((

1− C
v

(n)
Σ

)−1
I −

(
1− C

ṽ
(n)
Σ

)−1
I
)
−
((

1− C
v

(n+1)
Σ

)−1
I −

(
1− C

v
(n+1)
Σ

)−1
I
)

=
(
1− C

v
(n)
Σ

)−1
C−Σ µ̃

(n)
(
v

(n)
Σ − ṽ(n)

Σ

)
−
(
1− C

v
(n+1)
Σ

)−1
C−Σ µ̃

(n+1)
(
v

(n+1)
Σ − ṽ(n+1)

Σ

)
=
((

1− C
v

(n)
Σ

)−1 −
(
1− C

v
(n+1)
Σ

)−1)
C−Σ µ̃

(n)
(
v

(n)
Σ − ṽ(n)

Σ

)
+
(
1− C

v
(n+1)
Σ

)−1
C−Σ
(
µ̃n
(
v

(n)
Σ − ṽ(n)

Σ

)
− µ̃(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

))
. (B.39)

Now, by (B.17) and the boundedness of the operators C−Σ and (1− C
v

(n+1)
Σ

)−1, we see that

∥∥(1− C
v

(n+1)
Σ

)−1
C−Σ
(
µ̃n
(
v

(n)
Σ − ṽ(n)

Σ

)
− µ̃(n+1)

(
v

(n+1)
Σ − ṽ(n+1)

Σ

))∥∥
L2

= O
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(B.40)

and ((
1− C
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(n)
Σ
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Σ
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,

where
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
 0 0

F 2
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(
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)
0
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6 c
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)∥∥
L∞(Σ\[−1,1])

. (B.41)

When z ∈ (Σ\[−1, 1]) ∩ Uδ(1), φ(z) = 1 +
√

2(z − 1)1/2 +O(z − 1), letting y = n2(z − 1),

φ−2n(z)
(
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)
(z) =

(
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√

2
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( y
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2
√
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( y
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n
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(
y1/2

n

))
.
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Since z ∈ (Σ\[−1, 1]) ∩ Uδ(1), Re(y1/2) > ε > 0. Therefore y1/2e−2
√

2y1/2
6 c <∞, so∣∣φ−2n(z)

(
1− φ−2

)
(z)
∣∣ 6 c

n
, for z ∈ (Σ\[−1, 1]) ∩ Uδ(1).

The same argument shows the same bound around the point −1. Since |φ(z)| > 1 + δ > 1 when
z ∈ Σ\([−1, 1] ∪ Uδ(1) ∪ Uδ(−1)),∣∣φ−2n(z)

(
1− φ−2

)
(z)
∣∣ 6 ce−nδ, for z ∈ Σ\([−1, 1] ∪ Uδ(1) ∪ Uδ(−1))

Therefore,∥∥φ−2n
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= O

(
1

n

)
,

which, combined with (B.41), implies∥∥v(n)
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.

Therefore∥∥((1− C
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)∥∥
L2(Σ)

=
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∥∥
L2(Σ)→L2(Σ)

×
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. (B.42)

So, combining (B.39), (B.40), and (B.42), we see that∣∣∣∣(µ(n) − µ̃(n)
)
−
(
µ(n+1) − µ̃(n+1)

)∣∣∣∣
L2(Σ)

= O

(
1

n3/2 log2 n

)
as desired. �

C Leading order asymptotics of the difference formula

In this appendix we calculate the integrals that arise in Proposition 5.2.

C.1 Some preliminaries

Proposition C.1. The following bounds hold∫ 1+1/n

1

∣∣∣∣Ψ2
12

(
n2f(s)

)(F 2

w+
(s) +

F 2

w−
(s)− 2

)∣∣∣∣ |ds| = O

(
1

n2 log2 n

)
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1
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(
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1
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)∣∣∣∣ |ds| = O

(
1

n2 log2 n

)
, (C.1)

furthermore∫ 1+1/n

1
Ψ2
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n2f(s)

)(F 2

w+
(s) +

F 2
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)
d̄s =

3

16πin2 log2 n
+O

(
1

n2 log3 n

)
. (C.2)
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Proof. Recall that by Proposition 2.4, as s→ 1,

F 2

w+
(s) +

F 2

w−
(s)− 2 = − 3π2

log2 2k
1−s

+O

(
1

log3 |1− s|

)
.

In particular, note that for 1 6 s 6 1 + 1/n, that∣∣∣∣F 2

w+
(s) +

F 2

w−
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∣∣∣∣ = O

(
1

log2 n
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.

Therefore∫ 1+1/n
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where we have used the fact that

f(z) =
z − 1

2
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(
(z − 1)2

)
,

and that Ψ12(y) ∈ L2(0,∞). Similar arguments show the other estimates in (C.1).
Paying more attention, we can make the calculation (C.2),∫ 1+1/n
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=
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Note that for 0 6 t 6 n, −∞ < log t
2k < log n, and
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where the integrability of (C.4) follows from the asymptotics of Ψ12(y) in (B.14). Thus
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Therefore, picking up from (C.3),
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=
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K0(y) is exponentially decaying for y >> 0, see [1, formula (9.7.2)]. Therefore
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where we have used the fact that
∫∞

0 K2
0 (v)vdv = 1

2 , see [12]. We have proved (C.2). �

Additionally, we have the following matrix calculation:

Proposition C.2.
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Proof.
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C.2 The first integral
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Proof. As in the proof of Proposition B.2, we have∫
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Now, note that by the n-independence and analyticity of the functions E(z), E−1(z), for z ∈
(1, 1 + 1/n),
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Therefore, subtracting term by term in (C.7), (C.7) becomes
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n2f(z)

)
0 0

)
E−1(1)

[(
F 2

w+
(z) +

F 2

w−
(z)− 2

)
d̄z

]
+O

(
1

n2 log2 n

)
= 2πn

∫ 1+ 1
n

1
E(1)

(
0 1
0 0

)
E−1(1)

[
Ψ2

12

(
n2f(z)

)(F 2

w+
(z) +

F 2

w−
(z)− 2

)
d̄z

]
+O

(
1

n2 log2 n

)
= 2πnE(1)

(
0 1
0 0

)
E−1(1)

∫ 1+ 1
n

1
Ψ2

12

(
n2f(z)

)(F 2

w+
(z) +

F 2

w−
(z)− 2

)
d̄z

+O

(
1

n2 log2 n

)
,

which, by (C.2), is

2πnE(1)

(
0 1
0 0

)
E−1(1)

(
3

16πin2 log2 n
+O

(
1

n2 log3 n

))
=

3

8in log2 n
E(1)

(
0 1
0 0

)
E−1(1) +O

(
1

n log3 n

)
.

Substituting in (C.5),

3

8in log2 n
E(1)

(
0 1
0 0

)
E−1(1) +O

(
1

n log3 n

)
=

3

8in log2 n

1√
2

(
1 −i
−i 1

)(
0 1
0 0

)
1√
2

(
1 i
i 1

)
+O

(
1

n log3 n

)
(C.9)

=
3

16in log2 n

(
i 1
1 −i

)
+O

(
1

n log3 n

)
=

3

16n log2 n

(
1 −i
−i −1

)
+O

(
1

n log3 n

)
,

which is the right-hand side of (C.6).
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All that remains is to show that I2 is of lower order. Following the same steps as the lead up
to (C.7),

I2 = −2πn

∫
(Σ\[−1,1])∩U1/n(−1)

σ3

(
1 +O

(
1

n

))
E(−z)

(
1 0

0
1

2πn

)

×
(
−Ψ12Ψ22

(
n2f(−z)

)
Ψ2

12

(
n2f(−z)

)
−Ψ2

22

(
n2f(−z)

)
Ψ12Ψ22

(
n2f(−z)

))
×

( 1

2πn
0

0 1

)
E−1(−z)

(
1 +O

(
1

n

))
σ3

[(
F 2

w
(z)− 1

)]
d̄z.

Therefore,

|I2| 6 cn
∫

(Σ\[−1,1])∩U1/n(−1)

∣∣∣∣(−Ψ12Ψ22

(
n2f(−z)

)
Ψ2

12

(
n2f(−z)

)
−Ψ2

22

(
n2f(−z)

)
Ψ12Ψ22

(
n2f(−z)

))∣∣∣∣
×
∣∣∣∣(F 2

w
(z)− 1

)∣∣∣∣ |dz|.
As in (B.29), for |z + 1| 6 1

n ,∣∣∣∣(F 2

w
(z)− 1

)∣∣∣∣ = O
(
n−1/2

)
,

and so

|I2| 6 cn1/2

∫
(Σ\[−1,1])∩U1/n(−1)

∣∣∣∣(−Ψ12Ψ22

(
n2f(−z)

)
Ψ2

12

(
n2f(−z)

)
−Ψ2

22

(
n2f(−z)

)
Ψ12Ψ22

(
n2f(−z)

))∣∣∣∣ |dz|.
Letting y = n2f(−z), in which case we have, as before, dz = 2dy

n2

(
1 +O

(
1
n

))
, and recalling that

n2f(−(Σ ∩ U1/n(−1))) ⊂ Γ,

|I2| 6 cn−3/2

∫
06|y|6O(n)
arg y=±2π/3

∣∣∣∣(−Ψ12Ψ22(y) Ψ2
12(y)

−Ψ2
22(y) Ψ12Ψ22(y)

)∣∣∣∣ |dy| = O
(
n−3/2

)
,

where we have used the fact that Ψ12,Ψ22 ∈ L2(C0), where C0 is the contour | arg y| = 2π/3,
see (B.14). Therefore we see that∫

Σ
µ̃(vΣ − ṽΣ)µ̃−1d̄z = I1 +O

(
n−3/2

)
=

3

16n log2 n

(
1 −i
−i −1

)
+O

(
1

n log3 n

)
,

where we have used (C.9). Thus we have proved Proposition C.3. �

C.3 The second integral

Proposition C.4.∫
Σ
µ̃(n)(z)

(
v

(n)
Σ (z)− ṽ(n)

Σ (z)
)(
µ̃(n)

)−1
(z)d̄z

−
∫

Σ
µ̃(n+1)(z)

(
v

(n+1)
Σ (z)− ṽ(n+1)

Σ (z)
)(
µ̃(n+1)

)−1
(z)d̄z

=
3

16n2 log2 n

(
1 −i
−i −1

)
+O

(
1

n2 log3 n

)
. (C.10)
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Proof. While not sufficient to prove the above, note that

3

16n log2 n

(
1 −i
−i −1

)
− 3

16(n+ 1) log2(n+ 1)

(
1 −i
−i −1

)
=

3

16n2 log2 n

(
1 −i
−i −1

)
+O

(
1

n2 log3 n

)
.

So this proposition essentially asserts that the leading order of the difference (C.10) is the
difference of the leading orders of the two terms, which are computed in (C.6).

We have, as before,∫
Σ
µ̃(n)(z)

(
v

(n)
Σ (z)− ṽ(n)

Σ (z)
)(
µ̃(n)

)−1
(z)d̄z

−
∫

Σ
µ̃(n+1)(z)

(
v

(n+1)
Σ (z)− ṽ(n+1)

Σ (z)
)(
µ̃(n+1)

)−1
(z)d̄z = I1 + I2 + I3,

where I1, I2, I3 refer to the difference of the integrals of the above over [1, 1 + δ], Σ∩U1/n(−1),
and Σ\(U1/n(1) ∩ U1/n(−1)) respectively. The same argument as in Proposition B.2 shows

I3 = O
(
e−cn

1/2)
.

Following the same steps as in Proposition C.3, but this time using the more precise expansion
R(n)(z) = I + R1(z)

n +O
(

1
n2

)
in the expression for µ̃, we see,

−
∫ 1+ 1

n

1
µ̃(n)(z)

(
vΣ(z)(n) − ṽ(n)

Σ (z)
)(
µ̃(n)

)−1
(z)d̄z

= −2πn

∫ 1+ 1
n

1

(
1 +

R1(z)

n
+O

(
1

n2

))
E(z)

(
1 0

0
1

2πn

)

×
(

Ψ12Ψ22

(
n2f(z)

)
−Ψ2

12

(
n2f(z)

)
Ψ2

22

(
n2f(z)

)
−Ψ12Ψ22

(
n2f(z)

))( 1

2πn
0

0 1

)

× E−1(z)

(
1− R1(z)

n
+O

(
1

n2

))[(
F 2

w+
(z) +

F 2

w−
(z)− 2

)]
d̄z,

and therefore,

−
∫ 1+ 1

n

1
µ̃(n)(z)

(
v

(n)
Σ (z)− ṽ(n)

Σ (z)
)(
µ̃(n)

)−1
(z)d̄z

+

∫ 1+ 1
n+1

1
µ̃(n+1)(z)

(
v

(n+1)
Σ (z)− ṽ(n+1)

Σ (z)
)(
µ̃(n+1)

)−1
(z)d̄z

= −2πn

∫ 1+ 1
n

1

(
1 +

R1(z)

n
+O

(
1

n2

))
E(z)

(
1 0

0
1

2πn

)

×
(

Ψ12Ψ22

(
n2f(z)

)
−Ψ2

12

(
n2f(z)

)
Ψ2

22

(
n2f(z)

)
−Ψ12Ψ22

(
n2f(z)

))
×

( 1

2πn
0

0 1

)
E−1(z)

(
1− R1(z)

n
+O

(
1

n2

))
×
[(

F 2

w+
(z) +

F 2

w−
(z)− 2

)]
d̄z

+ 2π(n+ 1)

∫ 1+ 1
n+1

1

(
1 +

R1(z)

n+ 1
+O

(
1

n2

))
E(z)

1 0

0
1

2π(n+ 1)


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×
(

Ψ12Ψ22

(
(n+ 1)2f(z)

)
−Ψ2

12

(
(n+ 1)2f(z)

)
Ψ2

22

(
(n+ 1)2f(z)

)
−Ψ12Ψ22

(
(n+ 1)2f(z)

))

×

 1

2π(n+ 1)
0

0 1

E−1(z)

(
1− R1(z)

(n+ 1)
+O

(
1

n2

))

×
[(

F 2

w+
(z) +

F 2

w−
(z)− 2

)]
d̄z. (C.11)

Now, let y1 = n2f(z) and y2 = (n+ 1)2f(z), note that if z ∈ [1, 1 + 1/n] then 0 < y1, y2 < cn.
Let f−1

1 refer to the inverse of f within a neighborhood of 1. Then for z ∈ [1, 1 + 1/n], and some
constant a,

dz =
1

n2

(
f−1

1

)′ ( y1

n2

)
dy1 =

2dy1

n2

(
1 +

ay1

n2
+O

(
1

n2

))
,

dz =
1

(n+ 1)2

(
f−1

1

)′( y2

(n+ 1)2

)
dy2 =

2dy2

(n+ 1)2

(
1 +

ay2

(n+ 1)2
+O

(
1

n2

))
.

Making the substitution y1 = n2f(z) in the first integral of (C.11) and y2 = (n+ 1)2f(z) in the
second, we obtain

−4π

n

∫ n2f(1+ 1
n)

0

(
1 +

R1

(
f−1

1

( y1

n2

))
n

+O

(
1

n2

))
E
(
f−1

1

( y1

n2

))
×

(
1 0

0
1

2πn

)(
Ψ12Ψ22(y1) −Ψ2

12(y1)
Ψ2

22(y1) −Ψ12Ψ22(y1)

)( 1

2πn
0

0 1

)

× E−1
(
f−1

1

( y1

n2

))(
1−

R1

(
f−1

1

( y1

n2

))
n

+O

(
1

n2

))

×

[(
F 2

w+

(
f−1

1

( y1

n2

))
+
F 2

w−

(
f−1

1

( y1

n2

))
− 2

)(
1 +

ay1

n2
+O

(
1

n2

))]
d̄y1

+
4π

n+ 1

∫ (n+1)2f(1+ 1
n+1)

0

(
1 +

R1

(
f−1

1

( y2

(n+1)2

))
n+ 1

+O

(
1

n2

))
E

(
f−1

1

(
y2

(n+ 1)2

))

×

1 0

0
1

2π(n+ 1)

(Ψ12Ψ22(y2) −Ψ2
12(y2)

Ψ2
22(y2) −Ψ12Ψ22(y2)

)( 1
2π(n+1) 0

0 1

)

× E−1

(
f−1

1

(
y2

(n+ 1)2

))(
1−

R1

(
f−1

1

( y2

(n+1)2

))
n+ 1

+O

(
1

n2

))

×

[(
F 2

w+

(
f−1

1

(
y2

(n+ 1)2

))
+
F 2

w−

(
f−1

1

(
y2

(n+ 1)2

))
− 2

)
×
(

1 +
ay2

(n+ 1)2
+O

(
1

n2

))
d̄y2. (C.12)

Note that (n+1)2f
(
1+ 1

n+1

)
= O(n) and (n+1)2f

(
1+ 1

n+1

)
−n2f

(
1+ 1

n

)
= O(1). Therefore,

since all of the terms in the above integrands are bounded for large y, and since Ψ12, Ψ22 rapidly
decay for large argument, we can replace the limits of the second integral in (C.12) with the
limits of the first and pick up an error that is exponentially small in n. Next, recall that

f−1(y)− 1 = 2y + ay2 +O
(
y3
)
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and y is in the region
∣∣f−1

( y
n2

)
− 1
∣∣ 6 1

n , with

f−1
( y
n2

)
f−1

( y
(n+1)2

) =
2 y
n2

(
1 +O

(
1
n

))
2 y

(n+1)2

(
1 +O

(
1
n

)) = 1 +O

(
1

n

)
.

So, by Proposition 2.5, we see that

F 2

w+

(
f−1

1

( y
n2

))
+
F 2

w−

(
f−1

1

( y
n2

))
− F 2

w+

(
f−1

1

(
y

(n+ 1)2

))
+
F 2

w−

(
f−1

1

(
y

(n+ 1)2

))
= O

(
1

n log3 n

)
.

Next, using the analyticity of E, R1,

E
(
f−1

1

( y
n2

))
− E

(
f−1

1

(
y

(n+ 1)2

))
= O

(
1

n2

)
and (

1 +
R1

(
f−1

1

( y2

n2

))
n

)
−

(
1 +

R1

(
f−1

1

( y2

(n+1)2

))
n+ 1

)
= O

(
1

n2

)
,

and clearly(
1 0

0
1

2πn

)
−

1 0

0
1

2π(n+ 1)

 = O

(
1

n2

)
.

Thus, subtracting (C.12) term by term, (C.12) is(
−4π

n
+

4π

n+ 1

)∫ n2f(1+ 1
n)

0

(
1 +O

(
1

n

))
E
(
f−1

1

( y
n2

))
×

(
1 0

0
1

2πn

)(
Ψ12Ψ22(y) −Ψ2

12(y)
Ψ2

22(y) −Ψ12Ψ22(y)

)( 1

2πn
0

0 1

)

× E−1
(
f−1

1

( y
n2

))(
1 +O

(
1

n

))
×
[(

F 2

w+

(
f−1

1

( y
n2

))
+
F 2

w−

(
f−1

1

( y
n2

))
− 2

)]
d̄y

+
4π

n
O

(
1

n2

)∥∥∥∥(Ψ12Ψ22(y) −Ψ2
12(y)

Ψ2
22(y) −Ψ12Ψ22(y)

)
×
(
F 2

w+

(
f−1

1

( y
n2

))
+
F 2

w−

(
f−1

1

( y
n2

))
− 2

)∥∥∥∥
L1(0,n2f(1+ 1

n
))

+
4π

n
O

(
1

n log3 n

)∥∥∥∥(Ψ11Ψ22(y) −Ψ2
12(y)

Ψ2
22(y) −Ψ12Ψ22(y)

)∥∥∥∥
L1(0,n2f(1+1/n))

. (C.13)

The function F 2

w+
+ F 2

w−
−2 is bounded in compact sets and Ψ12, Ψ22 are both L2(0,∞), therefore

the L1 norms are both bounded uniformly of n. Therefore (C.13) is

− 4π

n(n+ 1)

∫ n2f(1+ 1
n)

0

(
1 +O

(
1

n

))
E
(
f−1

1

( y
n2

))
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×

(
1 0

0
1

2πn

)(
Ψ11Ψ22(y) −Ψ2

12(y)
Ψ2

22(y) −Ψ12Ψ22(y)

)(
1

2πn 0
0 1

)
× E−1

(
f−1

1

( y
n2

))(
1 +O

(
1

n

))
×
[(

F 2

w+

(
f−1

1

( y
n2

))
+
F 2

w−

(
f−1

1

( y
n2

))
− 2

)]
d̄y +O

(
1

n2 log3 n

)
. (C.14)

Inverting the change of variables y = n2f(z), (C.14) becomes

− 2πn

n+ 1

∫ 1+ 1
n

1

(
1 +O

(
1

n

))
E(z)

(
1 0

0
1

2πn

)

×
(

Ψ12Ψ22

(
n2f(z)

)
−Ψ2

12

(
n2f(z)

)
Ψ2

22

(
n2f(z)

)
−Ψ12Ψ22

(
n2f(z)

))( 1

2πn
0

0 1

)
E−1(z)

(
1 +O

(
1

n

))
×
[(

F 2

w+
(z) +

F 2

w−
(z)− 2

)]
d̄z +O

(
1

n2 log3 n

)
. (C.15)

However, the integral here is exactly 1
n+1 times the integral in (C.7), and therefore (C.15)

evaluates to

1

n+ 1

(
3

16n log2 n

(
1 −i
−i −1

)
+O

(
1

n log3 n

))
=

3

16n2 log2 n

(
1 −i
−i −1

)
+O

(
1

n2 log3 n

)
, (C.16)

which is the right-hand side of (C.10).
To conclude the proof we need to show the contribution from the left endpoint, I2, is of lower

order. Following the same steps as those leading up to (C.11), we have

I2 = −2πn

∫
(Σ\[−1,1])∩U1/n(−1)

σ3

(
1 +

R1(−z)
n

+O

(
1

n2

))
E(−z)

(
1 0

0
1

2πn

)

×
(
−Ψ12Ψ22

(
n2f(−z)

)
Ψ2

12

(
n2f(−z)

)
−Ψ2

22

(
n2f(−z)

)
Ψ12Ψ22

(
n2f(−z)

))
×

( 1

2πn
0

0 1

)
E−1(−z)

(
1− R1(−z)

n
+O

(
1

n2

))
σ3

[(
F 2

w
(z)− 1

)]
d̄z

+ 2π(n+ 1)

∫
(Σ\[−1,1])∩U1/n(−1)

σ3

(
1 +

R1(−z)
n+ 1

+O

(
1

n2

))
E(−z)

1 0

0
1

2π(n+ 1)


×
(
−Ψ12Ψ22

(
(n+ 1)2f(−z)

)
Ψ2

12

(
(n+ 1)2f(−z)

)
−Ψ2

22

(
(n+ 1)2f(−z)

)
Ψ12Ψ22

(
(n+ 1)2f(−z)

))

×

 1

2π(n+ 1)
0

0 1

E−1(−z)
(

1− R1(−z)
(n+ 1)

+O

(
1

n2

))
σ3

[(
F 2

w
(z)− 1

)]
d̄z.(C.17)

Subtracting (C.17) term by term,

|I2| 6 c
∫

(Σ\[−1,1])∩U1/n(−1)

∣∣∣∣(−Ψ12Ψ22

(
n2f(−z)

)
Ψ2

12

(
n2f(−z)

)
−Ψ2

22

(
n2f(−z)

)
Ψ12Ψ22

(
n2f(−z)

))∣∣∣∣ ∣∣∣∣F 2

w
(z)− 1

∣∣∣∣ |dz|
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+ cn

∫
(Σ\[−1,1])∩U1/n(−1)

∣∣∣∣(−Ψ12Ψ22

(
(n+ 1)2f(−z)

)
Ψ2

12

(
(n+ 1)2f(−z)

)
−Ψ2

22

(
(n+ 1)2f(−z)

)
Ψ12Ψ22

(
(n+ 1)2f(−z)

))
−
(
−Ψ12Ψ22

(
n2f(−z)

)
Ψ2

12

(
n2f(−z)

)
−Ψ2

22

(
n2f(−z)

)
Ψ12Ψ22

(
n2f(−z)

))∣∣∣∣ ∣∣∣∣F 2

w
(z)− 1

∣∣∣∣ |dz|. (C.18)

Recall from (B.29) that for |z + 1| 6 1
n ,∣∣∣∣F 2

w
(z)− 1

∣∣∣∣ = O
(
n−1/2

)
. (C.19)

Making the change of variables y = n2f(−z) and using (C.19), (C.18) becomes

cn−5/2

∫
06|y|6O(n)
arg y=±2π/3

∣∣∣∣(−Ψ12Ψ22(y) Ψ2
12(y)

−Ψ2
22(y) Ψ12Ψ22(y)

)∣∣∣∣ |dy|
+ cn−3/2

∫
06|y|6O(n)
arg y=±2π/3

∣∣∣∣∣∣∣∣
−Ψ12Ψ22

(
(n+ 1)2

n2
y

)
Ψ2

12

(
(n+ 1)2

n2
y

)
−Ψ2

22

(
(n+ 1)2

n2
y

)
Ψ12Ψ22

(
(n+ 1)2

n2
y

)


−
(
−Ψ12Ψ22(y) Ψ2

12(y)
−Ψ2

22(y) Ψ12Ψ22(y)

)∣∣∣∣ |dy|
6 c1n

−5/2 + c2n
−5/2

∫
06|y|6O(n)
arg y=±2π/3

∣∣∣∣∣∣∣y sup(
y,

(n+1)2

n2 y
) d

dx

(
−Ψ12Ψ22 (x) Ψ2

12(x)
−Ψ2

22(x) Ψ12Ψ22(x)

)∣∣∣∣∣∣∣ |dy|.
Recall that Ψ2(y) = O(log y) and Ψ′2(y) = O

(
1
y

)
as y → 0, and Ψ2(y),Ψ′2(y) = O

(
e−cy

1/2)
as

y →∞, see (B.14). Therefore

∫
06|y|<∞

arg y=±2π/3

∣∣∣∣∣∣∣y sup(
y,

(n+1)2

n2 y
) d

dx

(
−Ψ12Ψ22 (x) Ψ2

12(x)
−Ψ2

22(x) Ψ12Ψ22(x)

)∣∣∣∣∣∣∣ |dy| = O(1),

and so

|I2| = O
(
n−5/2

)
,

which, together with (C.16) implies∫
Σ
µ̃(n)(z)

(
v

(n)
Σ (z)− ṽ(n)

Σ (z)
)(
µ̃(n)

)−1
(z)d̄z

−
∫

Σ
µ̃(n+1)(z)

(
v

(n+1)
Σ (z)− ṽ(n+1)

Σ (z)
)(
µ̃(n+1)

)−1
(z)d̄z

=
3

16n2 log2 n

(
1 −i
−i −1

)
+O

(
1

n2 log3 n

)
completing the proof of Proposition C.4. �
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