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Abstract. In this paper we obtain large z asymptotic expansions in the complex plane for
the tau function corresponding to special function solutions of the Painlevé II differential
equation. Using the fact that these tau functions can be written as n × n Wronskian
determinants involving classical Airy functions, we use Heine’s formula to rewrite them as
n-fold integrals, which can be asymptotically approximated using the classical method of
steepest descent in the complex plane.
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1 Introduction and motivation

The six Painlevé differential equations, PI–PVI, have attracted a great deal of attention in the
last decades. They feature in a large and increasing number of areas in mathematics, ranging
from random matrix theory to integrable systems (continuous as well as discrete), orthogonal
polynomials, partial differential equations and combinatorics. We refer the reader to standard
references such as [12, 17, 18, 21], as well as the digital library of mathematical functions [30,
Chapter 32], for more details and the complete list of the Painlevé equations.

Generic solutions of PI–PVI are sometimes called Painlevé transcendents, or nonlinear special
functions, and they cannot be expressed in terms of elementary or even classical special func-
tions. However, for specific values of the parameters in the differential equations, it is known
that families of rational and special function solutions exist for PII–PVI; these appear for in-
stance in the theory of semiclassical orthogonal polynomials, see for example [33] and the recent
monograph [34], and in random matrix theory, see [18, 19, 20].

These rational and special function solutions of Painlevé equations can be constructed from a
given seed function ϕ(z), with a suitable initial value of the parameters; successive application of
Bäcklund transformations [12, Section 4], [30, Section 32.7] leads to a sequence of tau functions,
that as shown by Okamoto [28] (see also Forrester and Witte [19, 20] or Clarkson [12]) have the
form of n× n Wronskian determinants

τn(z) = det

(
Dj+k

Dzj+k
ϕ(z)

)
j,k=0,1,...,n−1

with initial values τ0(z) = 1 and τ1(z) = ϕ(z). Here D is a differential operator that depends on
the particular Painlevé equation that we are considering. The solution of the Painlevé equation
(and of other associated equations) can then be written directly in terms of these tau functions.

This paper is a contribution to the Special Issue on Painlevé Equations and Applications in Memory of Andrei
Kapaev. The full collection is available at https://www.emis.de/journals/SIGMA/Kapaev.html
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In this paper we are interested in the special function solutions of the second Painlevé equa-
tion, denoted PII,

q′′ = zq + 2q3 + α, α ∈ C. (1.1)

These special function solutions of PII can be written in terms of standard Airy functions;
more precisely, the general seed function is given by

ϕ(z) = C1 Ai
(
−2−1/3z

)
+ C2 Bi

(
−2−1/3z

)
, (1.2)

where C1 and C2 are constants, and the tau function is the n× n Wronskian determinant

τn(z) = det

(
dj+k

dzj+k
ϕ(z)

)
j,k=0,1,...,n−1

, n ≥ 1, (1.3)

with τ0(z) := 1. As shown in [13, Theorems 4 and 7], the functions

pn(z) = −2
d2

dz2
log τn(z), qn(z) =

d

dz
log

τn−1(z)

τn(z)
, σn(z) =

d

dz
log τn(z) (1.4)

are special function (Airy) solutions of the P34 equation

pn
d2pn
dz2

=
1

2

(
dpn
dz

)2

+ 2p3
n − zp2

n −
(
α+ 1

2

)2
2

, (1.5)

the PII equation (1.1) and the symmetric SII equation

(
d2σn
dz2

)2

+ 4

(
dσn
dz

)3

+ 2
dσn
dz

(
z

dσn
dz
− σn

)
=

1

4

(
α+ 1

2

)2
, (1.6)

respectively, with α = n− 1
2 .

The Airy solutions are used in the recent work of Clarkson, Loureiro and Van Assche [15],
in the asymptotic analysis of the partition function and free energy in the cubic Hermitian
random matrix model by Bleher, Deaño and Yattselev [3, 4, 5], and in the study of multiple
orthogonal polynomials with a cubic potential in the complex plane by Van Assche, Filipuk and
Zhang [35]. In random matrix theory, the pure Ai case of PII special function solutions arises
in the calculation of averages of powers of the characteristic polynomial in the GUE (Gaussian
unitary ensemble), see [19, Proposition 28]. The asymptotic behavior of these Airy solutions has
been investigated recently by Clarkson in [13], but the asymptotic results are restricted to the
real line, and only even values of n in the oscillatory regime are included. Asymptotic results for
the seed case can also be found in [17, Chapter 11], and Its and Kapaev in [23, Proposition 4.3]
characterize rational and Airy solutions of PII as those that do not exhibit asymptotic elliptic
behavior in the complex plane.

The aim of this paper is to obtain large z asymptotic approximations for τn(z) corresponding
to special function solutions of PII. As a direct consequence of (1.4), the analysis of τn(z) leads
directly to asymptotics for the Painlevé functions pn(z), qn(z) and σn(z). The methodology is
related to ideas used for the large n asymptotics for rational solutions (of PII–PIV) by several
authors, including Balogh, Bertola and Bothner [1], Bertola and Bothner [2], Bothner, Miller
and Sheng [8], Buckingham [9], Buckingham and Miller [10, 11]. Next we summarise the main
steps:
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1. Relate the entries of the Wronskian determinant (1.3), which are Airy functions, with the
moments of a suitably chosen weight function w(t, z),

µm(z) =

∫
Γ
tmw(t, z)dt, m = 0, 1, 2, . . . ,

where Γ is a suitable contour on the real line or in the complex plane. Namely, if

dm

dzm
ϕ(z) = βm

∫
Γ
tmw(t, z)dt = βmµm(z),

for m ≥ 0 and some constant β, then we can write

τn(z) = det
(
βj+kµj+k(z)

)n−1

j,k=0
= βn(n−1) det (µj+k(z))

n−1
j,k=0 = βn(n−1)Dn(z),

for n ≥ 1, with D0(z) := 1.

It is worth mentioning that often there are several possible weight functions and contours,
and some choices may be simpler and/or impose restrictions on parameters.

2. Apply the classical Heine’s formula [22, Corollary 2.1.3], [31, Section 2.2], that gives a mul-
tiple integral representation for the Hankel determinant obtained before:

Dn(z) =
1

n!

∫
Γn

∆n(t)2
n∏
k=1

w(tk, z)dtk, ∆n(t) =
∏

1≤j<k≤n
(tk − tj).

3. Apply the (classical) method of steepest descent to this n-fold integral, to obtain the
leading asymptotic behavior in different sectors of the complex z plane. The details of this
classical asymptotic method in one variable can be found in many references, for instance
[7, 27, 29, 32], and in the multivariate context, we refer the reader to [6], [7, Chapter 8]
or [16]. For convenience, we detail the calculation instead of just writing the leading term
in the asymptotic expansion given in [16, equation (1.61)]; the main technical details will
depend on the different sectors where the variable z grows large in C, which will condition
the deformation of Γ that is needed, as well as the value of the constants in the seed
function, that lead to very different asymptotic behaviors.

Remark 1.1. We observe that in principle the leading term in the asymptotic expansion could
also be obtained using the Toda equation satisfied by the tau functions τn(z). This is a general
type of identity that relates consecutive tau functions, and that for PII reads

τn+1(z)τn−1(z)

τn(z)2
=

d2

dz2
log τn(z), n ≥ 0, (1.7)

see other examples in [19, 20].

Making a suitable ansatz of the leading term in the large z asymptotic expansion allows to
construct a proof by induction, see [14, Proposition 5.2] for an example in PIV. However, we
find that this methodology does not give a very precise estimate of the subleading terms or the
order of the error terms, and also it poses problems in the oscillatory regime, where the leading
term as z →∞ is usually the result of combinations of different exponential contributions, that
are difficult to keep track of in this Toda equation. For this reason, we prefer to calculate the
expansions using steepest descent of the integral arising from Heine’s formula. Once the general
structure of the asymptotic expansion for τn(z) is proved, (1.7) may be used to identify the
coefficients therein.
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2 Main results

In the study of the asymptotic behavior of the tau function (1.3) we distinguish, much like in
the case of classical Airy functions, two regimes: non-oscillatory (exponential) and oscillatory
(trigonometric). Furthermore, in the first case it is enough to obtain asymptotics in the sector
| arg(−z)| < π

3 , since we can use the following rotational symmetries of the seed function (1.2):

Lemma 2.1. The Airy seed function ϕ(z) given by (1.2) satisfies the following identities:

ϕ
(
e±

2πi
3 z
)

= C̃1±Ai
(
−2−1/3z

)
+ C̃2±Bi

(
−2−1/3z

)
,

with new constants

C̃1± =
C1

2
e±

πi
3 +

3C2

2
e∓

πi
6 , C̃2± =

C1

2
e∓

πi
6 +

C2

2
e±

πi
3 .

The tau function then satisfies

τn
(
e±

2πi
3 z
)

= e±
2πi
3
n(n−1)τn(z).

Proof. The proof is a straightforward manipulation of standard formulas for Airy functions, in
particular

Bi(z) = e−
πi
6 Ai

(
e−

2πi
3 z
)

+ e
πi
6 Ai

(
e

2πi
3 z
)
,

Ai
(
e∓

2πi
3 z
)

= 1
2e∓

πi
3 (Ai(z)± i Bi(z)) ,

see [30, formulas (9.2.10) and (9.2.11)]. The transformation for τn(z) follows directly from the
properties of the seed function. �

Having this result, it is enough to study the tau functions in two different sectors of C:

• the non-oscillatory sector | arg(−z)| < π
3 ,

• the real axis, where oscillatory behavior occurs.

Once the asymptotic behavior is determined in these sectors, the results in the rotated ones
follows directly by changing the constants suitably, according to Lemma 2.1.

Our main result about the asymptotic behavior of Airy-type solutions of PII is given in the
two theorems below. We present the general result together with a number of consequences,
and we highlight the case C2 = 0 (when the seed function contains only Ai functions), which is
particularly important in applications, because it has a distinguished asymptotic behavior, an
extended non-oscillatory sector and particular importance in applications coming from ortho-
gonal polynomials and random matrix theory.

2.1 Non-oscillatory regime

Theorem 2.2. For n ≥ 1, if we define

Kn =
2−

3n2

4
−n

6

π
n
2

, (2.1)

then the function τn(z) has the following asymptotic behavior as |z| → ∞:
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1. If C2 6= 0, in the sector | arg(−z)| < π
3 ,

τn(z) = Kn(−z)−
n2

4

n∑
r=0

An,r(z)e
√
2

3
(n−2r)(−z)

3
2 , (2.2)

where

An,r(z) ∼ (−z)
3
2
r(n−r)

∞∑
j=0

a
(j)
n,r

(−z)3j/2

and the leading coefficient is

a(0)
n,r = (−1)br/2c2(n−r)( 5r

2
+1)Cr1C

n−r
2 G(r + 1)G(n− r + 1),

in terms of the Barnes G function, G(n) =
n−2∏
k=0

k!, see [30, Section 5.17].

2. If C2 = 0, in the sector | arg(−z)| < π,

τn(z) = Kn(−z)−
n2

4 An,n(z)e−
√
2

3
n(−z)

3
2 . (2.3)

From this theorem and the symmetry relations in Lemma 2.1, we can draw a number of
consequences. Firstly, we can determine asymptotically free of poles regions in the complex
plane for the special function solutions of PII:

Corollary 2.3. If C2 6= 0, then the Airy solutions of PII are tronquée solutions (asymptotically
free of poles) in the sectors

Sk =

{
−π

3
+

2kπ

3
< arg(−z) < π

3
+

2kπ

3
, k ∈ Z

}
.

If C2 = 0, then the Airy solutions of PII are tronquée solutions in the sector

S = {| arg(−z)| < π}.

This result proves a conjecture by Clarkson [13, p. 99]. Using these asymptotic expansions,
we can determine the asymptotic behavior of the Painlevé functions in (1.4).

Corollary 2.4. For n ≥ 1, the functions qn(z), pn(z) and σn(z) in (1.4) admit asymptotic
expansions of the following form:

1. If C2 6= 0, as |z| → ∞ with | arg(−z)| < π
3 ,

σn(z) = −n(−z)1/2

√
2

− n2

4z
+

√
2n(4n2 + 1)

32(−z)5/2
+O

(
(−z)−4

)
,

pn(z) = − n√
2(−z)1/2

− n2

2z2
− 5n(4n2 + 1)

√
2

32(−z)7/2
+O

(
(−z)−5

)
,

qn(z) =
(−z)1/2

√
2

+
2n− 1

4z
−
√

2(12n2 − 12n+ 5)

32(−z)5/2
+O

(
(−z)−4

)
.

2. If C2 = 0, as |z| → ∞ with | arg(−z)| < π,

σn(z) =
n(−z)1/2

√
2

+
n2

4z
−
√

2n(4n2 + 1)

32(−z)5/2
+O

(
(−z)−4

)
,

pn(z) =
n√

2(−z)1/2
− n2

2z2
+

5n(4n2 + 1)
√

2

32(−z)7/2
+O

(
(−z)−5

)
,

qn(z) = −(−z)1/2

√
2

+
2n− 1

4z
+

√
2(12n2 − 12n+ 5)

32(−z)5/2
+O

(
(−z)−4

)
.
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2.2 Oscillatory regime

The behavior of τn(z) in the oscillatory regime is particularly interesting. Figs. 1 and 2 show
the τn(z) functions for different values of n, on the positive real axis, with C2 = 0. It is apparent
that in the even case there is a leading algebraic term, with oscillations of small amplitude
superimposed, whereas in the odd case the leading term is itself oscillatory with increasing
amplitude (except when n = 1). Theorem 2.5 makes this idea more precise.

Theorem 2.5 (oscillatory regime). For n ≥ 1 and z ∈ R+, the function τn(z) has the following
asymptotic behavior as z →∞:

τ2s(z) = K2sz
−s2
[
B2s,s(z) + 2

s−1∑
r=0

(B2s,r(z) cos(ψ2s,r(z)) + D2s,r(z) sin(ψ2s,r(z)))

]
,

τ2s−1(z) = 2K2s−1z
− (2s−1)2

4

s−1∑
r=0

(B2s−1,r(z) cos(ψ2s−1,r(z)) + D2s−1,r(z) sin(ψ2s−1,r(z))) ,

where Kn is given by (2.1), the phase function is

ψn,r(z) = (n− 2r)

(√
2z3/2

3
+
nπ

4

)
(2.4)

and

Bn,r(z) ∼Mn,rz
3
2 r(n−r)

∞∑
j=0

b
(j)
n,r

z
3j
2

, Dn,r(z) ∼Mn,rz
3
2 r(n−r)

∞∑
j=0

d
(j)
n,r

z
3j
2

,

with

Mn,r = (−1)r(n−r)2
5
2
r(n−r)G(r + 1)G(n− r + 1), (2.5)

and leading terms

b(0)
n,r =

bn/2c∑
p=0

(−1)pC2p
1 Cn−2p

2

min(2p,n−r)∑
q=max(0,2p−r)

(−1)q
(

r

2p− q

)(
n− r
q

)
,

d(0)
n,r =

bn/2c−1∑
p=0

(−1)p−1C2p+1
1 Cn−2p−1

2

min(2p+1,n−r)∑
q=max(0,2p+1−r)

(−1)q
(

r

2p+ 1− q

)(
n− r
q

)
. (2.6)

Remark 2.6. The general formula for the coefficients b
(0)
n,r and d

(0)
n,r is cumbersome, but it can

be easily evaluated with symbolic software, and in many cases the sums reduce to just a few
terms. Furthermore, several important simplifications can be made if C2 = 0 (pure Ai function

in the seed): in this case, only the term p = bn/2c survives, b
(0)
2s−1,r = d

(0)
2s,r = 0, and

b
(0)
2s,r = (−1)sC2s

1

2s−r∑
q=max(0,2s−r)

(−1)q
(

r

2p− q

)(
n− r
q

)
,

d
(0)
2s−1,r = (−1)sC2s−1

1

2s−r−1∑
q=max(0,2s−r−1)

(−1)q
(

r

2p+ 1− q

)(
n− r
q

)
.
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Figure 1. Plots of τ1(z) (left), τ3(z) (centre), τ5(z) (right). In all cases C2 = 0.

Figure 2. Plots of τ2(z) (left), τ4(z) (centre), τ6(z) (right). In all cases C2 = 0.

As before, from this result about the tau function, we can deduce the asymptotic behavior
of the Painlevé functions in the oscillatory regime.

Corollary 2.7. For n ≥ 1 and s ≥ 1, the functions qn(z), pn(z) and σn(z) in (1.4) admit the
following asymptotic expansions as z → ∞, excluding arbitrarily small but fixed neighborhoods
of the poles of the leading terms in the approximations:

1. If C2 6= 0, then

σ2s(z) =
s2

2z
+

s

2z

b
(0)
2s,s−1 sin(ψ2s,s−1(z))− d(0)

2s,s−1 cos(ψ2s,s−1(z))

b
(0)
2s,s

+O
(
z−5/2

)
,

σ2s−1(z) =

√
z

2

−b(0)
2s−1,s−1 sin(ψ2s−1,s−1(z)) + d

(0)
2s−1,s−1 cos(ψ2s−1,s−1(z))

b
(0)
2s−1,s−1 cos(ψ2s−1,s−1(z)) + d

(0)
2s−1,s−1 sin(ψ2s−1,s−1(z))

+O
(
z−1
)
,

with coefficients given by (2.6) and phase function (2.4). Also,

p2s(z) = −
√

2s√
z

b
(0)
2s,s−1 cos(ψ2s,s−1(z)) + d

(0)
2s,s−1 sin(ψ2s,s−1(z))

b
(0)
2s,s

+O
(
z−2
)
,

p2s−1(z) = z

1 +

(
(b

(0)
2s−1,s−1 sin(ψ2s−1,s−1(z))− d(0)

2s−1,s−1 cos(ψ2s−1,s−1(z))

b
(0)
2s−1,s−1 cos(ψ2s−1,s−1(z)) + d

(0)
2s−1,s−1 sin(ψ2s−1,s−1(z))

)2


+O
(
z−1/2

)
, (2.7)
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and

qn(z) = (−1)n
√
z

2

−b(0)
2s−1,s−1 sin(ψ2s−1,s−1(z)) + d

(0)
2s−1,s−1 cos(ψ2s−1,s−1(z))

b
(0)
2s−1,s−1 cos(ψ2s−1,s−1(z)) + d

(0)
2s−1,s−1 sin(ψ2s−1,s−1(z))

+O
(
z−1
)
, (2.8)

where s =
⌈
n
2

⌉
.

2. If C2 = 0, then

σ2s(z) =
s2

2z
− s

2z
sin(ψ2s,s−1(z)) +O

(
z−5/2

)
,

σ2s−1(z) =

√
z

2
cot(ψ2s−1,s−1(z)) +O

(
z−1
)
.

Also,

p2s(z) =

√
2s√
z

cos(ψ2s,s−1(z)) +O
(
z−2
)
,

p2s−1(z) =
z

sin2(ψ2s−1,s−1(z))
+O

(
z−1/2

)
, (2.9)

and

qn(z) = (−1)n
√
z

2
cot(ψ2s−1,s−1(z)) +O

(
z−1
)
, s =

⌈n
2

⌉
. (2.10)

We note that this is in accordance with the results in [13, Theorems 5, 8 and 9], but it also
extends the asymptotic results to the complex plane, and it includes the case of n odd in the
oscillatory regime. Furthermore, it provides more precise estimates of the remainder terms.

It is worth mentioning that in the reference [26], Kuijlaars, Its and Östensson consider the
asymptotics (for real z) of a one parameter family of solutions of P34, depending on a parameter
that is related to α in (1.5). This family is relevant in the analysis of critical edge behavior in
unitary random matrix ensembles [25], and it includes the Airy solutions as a particular case.
The results in (2.9) agree with Theorem 1.2 in [26], for the asymptotic behavior of the tronquée
solutions of the P34 equation1.

Remark 2.8. In order to give the leading asymptotic behavior it is enough to keep a few terms
in the previous expansion, namely r = 0 in the non-oscillatory regime, and r = s (if n = 2s is
even), and r = s−1 (if n = 2s−1 is odd) in the oscillatory regime. We have opted to present the
full expansion because in order to examine the asymptotic behavior of solutions of the Painlevé
equations σn(z), pn(z) and qn(z), in particular in the oscillatory regime, higher order terms are
needed. Also, these extra terms give exponential contributions that are important in the Stokes
phenomenon for the Ai solution, we refer the reader to the discussion in Appendix A.

1In the notation of [26], we have b = s2 = (−1)n, in terms of the standard Stokes multipliers for PII. Since
the restriction b > 0 applies in the steepest descent analysis of the Riemann–Hilbert problem, we only recover the
case of even n for Airy solutions, with b = 1 and β0 = 0. We also note that the parameter α in [26] corresponds
to −α/2 − 1/4 = −n/2 in our notation, and a change of variables is needed as well in the solutions of P34.
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3 Proof of Theorem 2.2

We recall the classical integral representations of the Airy functions

Ai(z) =
1

2πi

∫ ∞eπi/3

∞e−πi/3
exp

(
1
3 t

3 − zt
)
dt,

Bi(z) =
1

2π

(∫ ∞e−πi/3

−∞
+

∫ ∞eπi/3

−∞

)
exp

(
1
3 t

3 − zt
)
dt, (3.1)

for z ∈ C, see [30, formulas (9.5.4) and (9.5.5)]. Bearing in mind the form of the seed func-
tion (1.2), we take the weight function

w(t, z) = exp
(

1
3 t

3 + 2−1/3zt
)
, (3.2)

and for m ≥ 0 we define the moments

µAi
m (z) =

C1

2πi

∫ ∞eπi/3

∞e−πi/3
tmw(t, z)dt,

µBi
m (z) =

C2

2π

(∫ ∞e−πi/3

−∞
+

∫ ∞eπi/3

−∞

)
tmw(t, z)dt.

Then, we have ϕ(z) = µAi
0 (z) + µBi

0 (z), cf. (1.2), and as a direct consequence,

dk

dzk
ϕ(z) = 2−

k
3
[
µAi
k (z) + µBi

k (z)
]
, k ≥ 0.

The Wronskian determinant constructed from the seed function and the Hankel determinant
for the weight function (3.2) are therefore related as follows:

τn(z) = det

(
dj+k

dzj+k
ϕ(z)

)n−1

j,k=0

= 2−
n(n−1)

3 det
(
µAi
j+k(z) + µBi

j+k(z)
)n−1

j,k=0
.

Consider now that we have a total of r Airy Ai integrals in the determinant, 0 ≤ r ≤ n, and
consequently n− r Airy Bi integrals. Then

τn(z) =
2−

n(n−1)
3

(2π)n

n∑
r=0

Cr1C
n−r
2

ir
Dn,r(z), (3.3)

where the Hankel determinants Dn,r(z) can be written, following the standard theory [22, Corol-
lary 2.1.3], as n-fold integrals:

Dn,r(z) =
1

n!

∫
· · ·
∫

∆n(t)2
n∏
k=1

w(tk, z)dtk, ∆n(t) =
∏

1≤j<k≤n
(tk − tj), (3.4)

where r integrals are taken along the path corresponding to Ai and n− r along the one for Bi,
and we denote t = (t1, t2, . . . , tn). Note that the integrand is symmetric in the n variables (the
Vandermonde determinant may change sign when permuting variables, but it appears squared),
therefore we can suppose, without loss of generality, that the first r integrals correspond to Ai
and the last n− r integrals to Bi, and then sum over the possible permutations.

Using the scaled variables t = 2−1/6√ρu, where

z = −ρeiα, ρ ≥ 0, |α| < π

3
,
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cf. [7, Section 7.3], we obtain

Dn,r(z) =

(
2−1/6ρ1/2

)n2

n!

(
n

r

)∫
Γα

· · ·
∫

Γα

∆n(u)2 exp

(
ρ3/2

√
2
φ(u)

)
n∏
k=1

duk,

where the phase function is

φ(u) =
n∑
k=1

[
1

3
u3
k − eiαuk

]
,

and Γα is any smooth infinite path that joins the sectors ∞e−πi/3 and ∞eπi/3 (for the Ai case)
and the sectors −∞ and ∞e±πi/3 (for the Bi case).

Clearly, the gradient and Hessian of this function are

∇φ(u) =
(
u2

1 − eiα, . . . , u2
n − eiα

)
, Hφ(u) = 2 diag(uk)k=1,...,n.

The stationary points

u∗ = (u±, . . . , u±), u± = ±eiα/2.

(with any combination of signs) are non-degenerate, since detHφ(u∗) 6= 0.

For |α| < π
3 , the main contribution to each Bi integral is given by the stationary point uk−,

since Re(φ(uk−)) > 0 and Re(φ(uk+)) < 0, and it will appear doubled because of the two paths
joining −∞ and∞e±πi/3 in (3.1); for the Ai integrals, the relevant stationary point is uk+, since
path deformation through uk− would change the asymptotic behavior (from exponentially de-
creasing to exponentially increasing). Therefore, for the asymptotic analysis we need to consider
stationary points of the form

u(r) = (u+, . . . , u+︸ ︷︷ ︸
r times

, u−, . . . , u−︸ ︷︷ ︸
n−r times

). (3.5)

We add and subtract the value of the phase function at this point, to obtain

Dn,r(z) =

(
2−1/6ρ1/2

)n2

r!(n− r)!
exp

(
ρ3/2

√
2
φ(u(r))

)

×
∫

Γα

· · ·
∫

Γα

∆n(u)2 exp

(
ρ3/2

√
2

[
φ(u)− φ

(
u(r)

)]) n∏
k=1

duk.

By analyticity of the integrand in all the variables uk, the precise structure of these global
paths is not relevant for the analysis, as long as they connect the correct sectors in the complex
plane, since we can deform the contours sequentially in the different variables. We will use this
freedom to integrate along the paths of steepest descent through the points u(r). These paths,
denoted here by Γα, are implicitly given by the equation

Imφ(u) = Imφ
(
u(r)

)
,

and then it follows that the function φ(u)− φ(u(r)) is real-valued on Γα. The paths of steepest
descent are difficult to describe globally for general values of α, see the discussion in [7, Sec-
tion 7.3], however, for asymptotic approximations we only need their existence around the
stationary points.
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We isolate the stationary points by fixing δ > 0 and two discs D
(
u(r), δ

)
of radius δ; then we

define

Γα,δ = Γα ∩D
(
u(r), δ

)
,

that is, small portions of the steepest descent path around the stationary points. Then as z →∞
in the sector that we are considering, we have

Dn,r(z) = exp

(√
2

3
(n− 2r)(−z)3/2

)
[In,r(z) + En,r(z)], (3.6)

where

In,r(z) =

(
2−1/6ρ1/2

)n2

r!(n− r)!

∫
Γα,δ

∆n(u)2 exp

(
ρ3/2

√
2

[
φ(u)− φ

(
u(r)

)]) n∏
k=1

duk,

and En,r(z) is the remainder.
It is important to note that we need to choose δ > 0 in such a way that the remainder En,r(z)

is exponentially small with respect to all the exponential terms that are present in (3.6), that

is, En,r(z) = o
(

exp
(
−
√

2n
3 (−z)3/2

))
as |z| → ∞. Computing such a δ explicitly is complicated

in general, but it is clear that for large enough |z|, such a choice is always possible, given that
the phase function is real (and decaying) along the path of steepest descent.

We apply a final change of variables to transform the exponential terms in the integral into
Gaussians, which is a particular case of Morse lemma in the literature [16, Chapter 1, Section 2]:
for each 1 ≤ k ≤ n, we define

φ(u)− φ
(
u(r)

)
= −

n∑
k=1

v2
k.

This change of variable can be written by components, and as vk → 0 we have

uk = u+ + ie−
αi
4 vk +

e−iα

6
v2
k +O

(
v3
k

)
, uk = u− + e−

αi
4 vk +

e−iα

6
v2
k +O

(
v3
k

)
.

This maps the contour Γα,δ onto [−ε, ε]n on the real axis, for some ε > 0. Then, with
an exponentially small error again, we can extend the integrals to the whole real axis, using

a standard estimate: for ε > 1, C = ρ3/2√
2
> 0, and f analytic, even and with at most polynomial

growth, we have∫ ∞
−∞

f(v)e−Cv
2
dv −

∫ ε

−ε
f(v)e−Cv

2
dv = 2

∫ ∞
ε

f(v)e−Cv
2
dv ≤ 2

∫ ∞
ε

f(v)e−Cvdv.

The last integral can be written in terms of incomplete Gamma functions (see [30, Sections 8.2
and 8.11] for definitions and asymptotics) and a similar argument can be used in n variables,
taking the Vandermonde determinant as the function f . If we make ε large enough, we have
a remainder that is exponentially small with respect to all the terms in (3.6).

In order to study the Vandermonde determinant, we split it in three parts, separating those
terms that combine two u+ or two u− values and then a final one that mixes positive and
negative stationary points:

∆n(u)2 =
∏

1≤j<k≤r
(uk − uj)2

∏
r+1≤j<k≤n

(uk − uj)2
∏

1≤j≤r,r+1≤k≤n
(uk − uj)2.
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This term, together with the differentials, becomes

∆n(u)2
n∏
k=1

duk = 22r(n−r)e
πi
2
r2−αi

4
(n2+6r(n−r))

×
∏

1≤j<k≤r
(vk − vj)2

∏
r+1≤j<k≤n

(vk − vj)2Ξ(v)
n∏
k=1

dvk,

where

Ξ(v) = 1 +

n∑
k=1

akvk +

n∑
j,k=1

bj,kvjvk + · · · , |v| → 0,

for some coefficients ak and bj,k whose exact form is not relevant for the leading term in the
asymptotic expansion. This leads to two decoupled Selberg integrals, and writing everything
together we obtain

In,r(z) =
(
2−1/6ρ1/2

)n2

exp

(√
2(n− 2r)

3
(−z)3/2 −

(
n2

4
+

3r(n− r)
2

)
αi +

r2πi

2

)

× 2(n−r)(2r+1)Sr(z)Sn−r(z)

r!(n− r)!
(
1 +O

(
ρ−3/2

))
, (3.7)

where

Sd =

∫
Rd

∆d(v)2
d∏

k=1

e−Cv
2
kdvk =

(2π)d/2

(2C)d2/2

d∏
k=1

k! =
(2π)d/2

(2C)d2/2
G(d+ 2), (3.8)

for d ≥ 1 and ReC > 0, in terms of the Barnes G function, see [30, Section 5.17]. Identifying
C = ρ3/2/

√
2 and z = −ρ eiα, we have

In,r(z) = 2−
5n2

12
+n

2
+(n−r)( 5

2
r+1)π

n
2 (−z)−

n2

4
− 3

2
r(n−r)G(r + 1)G(n− r + 1)

× exp

(√
2(n− 2r)

3
(−z)3/2 +

r2πi

2

)(
1 +O

(
(−z)−3/2

))
.

Combining the powers of 2 and π with the prefactor in (3.3) and summing over r, we arrive
at the leading term in (2.2).

This calculation gives very relevant information about the remainder as well: the order of
the error in (3.7) comes from the fact that any term beyond the leading one in the differentials
or in the Vandermonde will produce linear terms in the components vk (which integrate to 0
against the Gaussian because of symmetry) and then quadratic terms, which, using the formula∫

R
v2
ke
−Cv2kdvk =

1

2C

∫
R

e−Cv
2
kdvk, ReC > 0,

will contribute to an error of order O
(
ρ−3/2

)
as ρ → ∞, since in our situation we have

C = ρ3/2/
√

2. This is true for higher order terms as well, so each exponential level in (2.2)
contains in fact a full asymptotic expansion in inverse powers of (−z)3/2, which appears in the
coefficients An,r(z) in (2.2).

In the case C2 = 0 we have no Bi integrals, so we take r = n, and all integrals will involve
the stationary point u+ only. The calculation is analogous and the leading term follows from
this substitution into (2.2), which gives (2.3); furthermore, following the standard asymptotic
theory of the Airy Ai function, see for example [27, Section 4.7], the expansion holds in the
larger sector | arg(−z)| < π.
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4 Proof of Theorem 2.5

In the oscillatory regime, the asymptotic analysis is similar, but slightly more complicated
because both Ai and Bi integrals need to be evaluated both at u+ and at u−, which for z > 0
have exponential contributions with the same real part. We will highlight the main differences
with respect to the non-oscillatory case.

We start the calculation with (3.3) and (3.4) as before. Assuming that z > 0, we make the
change of variables t = 2−1/6z1/2u, and we have

Dn,r(z) =

(
2−1/6z1/2

)n2

n!

(
n

r

)∫
Γα

· · ·
∫

Γα

∆n(u)2 exp

(
ρ3/2

√
2
φ(u)

)
n∏
k=1

duk, (4.1)

where the phase function is now

φ(u) =
n∑
k=1

[
1

3
u3
k + uk

]
,

with stationary points u∗ = (±i, . . . ,±i). By symmetry, we can consider without loss of gener-
ality the stationary point u(r) in (3.5) again, and sum in r over the

(
n
r

)
possible permutations.

Adding and subtracting the phase function at (3.5), we obtain

Dn,r(z) =

(
2−1/6z1/2

)n2

n!

(
n

r

)
× exp

(√
2i

3
(n− 2r)z3/2

)∫
Γn

∆n(u)2 exp

(
z3/2

√
2

[
φ(u)− φ(u(r))

]) n∏
k=1

duk.

As before, we isolate these points by fixing δ > 0 and two discs D
(
u(r), δ

)
of radius δ around

the stationary points in each of the variables uk. We take Γδ = Γ ∩ D
(
ur, δ

)
, where Γ is the

corresponding path of steepest descent. Then as z →∞ we have

Dn,r(z) = exp

(√
2i

3
(n− 2r)z3/2

)
[In,r(z) + En,r(z)],

where

In,r(z) =

(
2−1/6z1/2

)n2

r!(n− r)!

∫
Γδ

∆n(u)2 exp

(
z3/2

√
2

[
φ(u)− φ

(
u(r)

)]) n∏
k=1

duk,

and En,r(z) is the remainder.

In the analysis of the Vandermonde determinant, it is convenient to split the different cases
depending on which stationary point is considered, using the index r, and not in terms of Ai
and Bi functions. Note that in the non-oscillatory case, both ideas are equivalent, since each
Airy function requires only one of the stationary points (u+ for Ai and u− for Bi). In the
oscillatory regime, however, we have (independently of the parameter r), p integrals of type Ai
and n− p integrals of type Bi, with 0 ≤ p ≤ n, and any integral around the stationary point −i
has different orientation depending if we are integrating along the Ai or the Bi contour: the
contour for an integral along an Ai contour is oriented from right to left, and each one of them
adds a −1 factor. In order to quantify this, for any given p, we need to count all possible
configurations where we have q integrals of Ai type in the last n− r cases (where the point −i
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is taken into account) and therefore p− q integrals of Ai type in the first r cases, for any value
of q from 0 to p. We define

Hn,r,p =

min(p,n−r)∑
q=max(0,p−r)

(
r

p− q

)(
n− r
q

)
(−1)q,

where the limits of summation are set so that all binomial numbers are well defined.
Writing together all the contributions and summing over p, we have

In,r(z) = (−4)r(n−r) exp

[
(n− 2r)i

(√
2z3/2

3
+
nπ

4

)]
Sr(z)Sn−r(z)

r!(n− r)!

n∑
p=0

Hn,r,p

×
(
2−1/6z1/2

)n2(
1 +O

(
z−3/2

))
,

in terms of Selberg integrals (3.8) again. This leads to

In,r(z) = 2−
5n2

12
+n

2 π
n
2 z−

n2

4
− 3

2
r(n−r) exp

[
(n− 2r)i

(√
2z3/2

3
+
nπ

4

)]
Mn,r

n∑
p=0

Hn,r,p

×
(
1 +O

(
z−3/2

))
,

where the coefficient Mn,r is given by (2.5). The powers of 2 and π can then be combined and
simplified using (3.3), which relates τn(z) and Dn(z), and (4.1).

Finally, the asymptotic expansion can be written in terms of sines and cosines, instead of
complex exponentials, noting that Hn,n−r,p = (−1)pHn,r,p, for 0 ≤ r ≤ n, and grouping terms
depending on the parity of p. The proof of this symmetry relation can be obtained by writing
the different cases: if p ≤ n− r and p− r ≤ 0, then

Hn,r,p =

p∑
q=0

(
r

p− q

)(
n− r
q

)
(−1)q,

and

Hn,n−r,p =

p∑
q=0

(
n− r
p− q

)(
r

q

)
(−1)q =

p∑
q=0

(
n− r
q

)(
r

p− q

)
(−1)p−q = (−1)pHn,r,p,

where we have reversed the order inside the sum (i.e., q 7→ p − q). If p ≤ n − r and p − r ≥ 0,
then

Hn,r,p =

p∑
q=p−r

(
r

p− q

)(
n− r
q

)
(−1)q,

and

Hn,n−r,p =

r∑
q=0

(
n− r
p− q

)(
r

q

)
(−1)q =

r∑
q=0

(
n− r

p− r + q

)(
r

r − q

)
(−1)r−q

=

p∑
s=p−r

(
n− r
s

)(
r

p− s

)
(−1)p−s = (−1)pHn,r,p,

reversing the sum in the first step and shifting q = s− p+ r in the second one.
The case p > n− r can be proved in a similar way.
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5 Proof of Corollaries 2.4 and 2.7

In the non-oscillatory regime, we can derive asymptotic expansions for the Painlevé functions
σn(z), pn(z) and qn(z) in (1.4) quite straightforwardly. We will use the asymptotic expansions
for τn(z) and (1.4), observing that differentiation is permitted since τn(z) is an analytic function
of z inside the relevant sectors, see [29, Section 1.8]. In the oscillatory regime, one would need
to open a sector around the positive real axis; this calculation is similar to the oscillatory case,
writing z = ρeiα, |α| < π

3 and considering both stationary points.

Suppose first that C2 6= 0. Instead of working directly with the asymptotic expansion (2.2),
it is simpler to pick the leading term therein, corresponding to r = 0, i.e.

τn(z) = KnAn,0(z)e
√
2

3
n(−z)

3
2 +O

(
e
√
2

3
(n−2)(−z)

3
2
)

as |z| → ∞ in the sector | arg(−z)| < π
3 . Using this result, we can deduce the form of the

asymptotic expansion for the function σn(z), which is

σn(z) =
τ ′n(z)

τn(z)
=

K−1∑
k=0

sn,k(−z)
1
2−

3k
2 +O

(
(−z)

1
2−

3K
2

)
, K ≥ 1. (5.1)

Then, substituting this expansion into the differential equation (1.6), we can identify the
coefficients sn,k. Then, we can compute

pn(z) = −2σ′n(z) = −2
K−1∑
k=0

pn,k(−z)−
1
2−

3k
2 +O

(
(−z)

1
2−

3K
2

)
,

where the coefficients pn,k follow easily from sn,k. Finally, from (1.4) again, we have

qn(z) = σn−1(z)− σn(z) =
K−1∑
k=0

qn,k(−z)−
1
2−

3k
2 +O

(
(−z)

1
2−

3K
2

)
,

with coefficients that follow from sn,k once again.

In the case C2 = 0, we can use a similar argument, but with the form

τn(z) = KnAn,n(z)e−
√

2
3
n(−z)

3
2 .

The negative exponential term naturally leads to changes in the coefficients, but the form of
the asymptotic expansion is the same.

In the oscillatory regime, calculations are more delicate, and the main difficulty is to establish
a general pattern for the asymptotic expansion, as we did before in (5.1). The reason for
this is that in Theorem 2.5 there is a clear leading term, but as we expand further, different
trigonometric functions will be involved. These higher order terms can be computed using
symbolic software, but for brevity we will give only the leading terms.

The leading terms in Theorem 2.5 clearly correspond to r = s if n = 2s is even, and to
r = s− 1 if n = 2s− 1 is odd. For s ≥ 1, we have

σ2s(z) =
τ ′2s(z)

τ2s(z)
=
s2

2z
+

s

2z

b
(0)
2s,s−1 sin(ψ2s,s−1(z))− d(0)

2s,s−1 cos(ψ2s,s−1(z))

b
(0)
2s,s

+O
(
z−5/2

)
,

with coefficients given by (2.6) and phase function (2.4).
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If C2 = 0, this expression simplifies considerably, since only the term p = s survives, and

then b
(0)
2s,s = −b(0)

2s,s−1 = C2s
1 and d

(0)
2s,s−1 = 0, so

σ2s(z) =
s2

2z
− s

2z
sin(ψ2s,s−1(z)) +O

(
z−5/2

)
.

This is in agreement with [13, Theorem 9], correcting the phase function. In the odd case,
we have

σ2s−1(z) =

√
z

2

−b(0)
2s−1,s−1 sin(ψ2s−1,s−1(z)) + d

(0)
2s−1,s−1 cos(ψ2s−1,s−1(z))

b
(0)
2s−1,s−1 cos(ψ2s−1,s−1(z)) + d

(0)
2s−1,s−1 sin(ψ2s−1,s−1(z))

+O
(
z−1
)
.

If C2 = 0, this expression simplifies again

σ2s−1(z) =

√
z

2
cot(ψ2s−1,s−1(z)) +O

(
z−1
)
.

In both cases, the asymptotic approximation is valid away from the zeros of the denominators
that appear in the leading terms, we refer the reader to [29, Chapter 1, Section 8.1] for the general
theory.

Similar calculations lead to the asymptotic expansions for pn(z), although care is needed
because the leading terms may come from subleading ones before, as a result of differentiation of
the trigonometric functions. Straightforward manipulations, using the fact that pn(z) = −2σ′n(z)
and qn(z) = σn−1(z) − σn(z), for n ≥ 1, which follows from (1.4), lead to (2.7), (2.8), (2.9),
and (2.10).

Higher order terms in these asymptotic expansions can be computed by using the corre-
sponding differential equations. This is quite straightforward in the non-oscillatory regime, but
more involved in the oscillatory one, since several trigonometric functions with different phase
functions intervene.

A Stokes phenomenon for the Ai solution

The case C2 = 0, where the seed function only contains the Airy Ai functions, is especially
relevant both because of its asymptotic behavior and in applications. It is interesting to observe
that in this case we have strong asymptotics for τn(z) in the whole cut plane | arg(−z)| < π
involving only one exponential factor, see (2.3); however, we can also use the rotational symmetry
given by Lemma 2.1, to study the asymptotics in the regions 0 < arg z < 2π

3 and−2π
3 < arg z < 0.

This calculation uses a different seed function in the original sector | arg(−z)| < π
3 and it gives

subdominant exponential terms. These do not affect the leading asymptotic behavior, but they
give a non-linear Stokes phenomenon for this family of solutions of PII, in the spirit of Its and
Kapaev [24], see also [17, Chapter 11].

For instance, if we consider the sector 0 < arg z < 2π
3 and the seed function with C̃1 = 1 and

C̃2 = 0 (corresponding to the pure Airy Ai function in this rotated sector), we have from (2.3)
the following asymptotic approximation

τn(z) = Kn(−z)−
n2

4 An,n(z)e−
√
2

3
n(−z)

3
2

= (−1)bn/2cKnG(n+ 1)(−z)−
n2

4
(
1 +O

(
(−z)−

3
2
))

e−
√
2

3
n(−z)

3
2 .

However, applying Lemma 2.1, we can use τn(z) = e
2πi
3
n(n−1)τn

(
ze

2πi
3

)
, and then the seed

function in the region | arg(−z)| < π
3 is ϕ

(
ze

2πi
3

)
, with constants

C1 = 1
2e−

πi
3 , C2 = 1

2e
πi
6 .
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After simplification, the first two coefficients An,0

(
ze

2πi
3

)
and An,1

(
ze

2πi
3

)
give

τn(z) = (−1)bn/2cKnG(n+ 1)(−z)−
n2

4 e−
√
2

3
n(−z)

3
2

×

[
1 + (−1)n

2
5n−7

2 i(−z)
3
2

(n−1)

Γ(n)
e

2
√
2

3
(−z)

3
2

] (
1 +O

(
(−z)−

3
2
))
.

Other exponentially small contributions can be calculated in a similar way. As a consequence,
we have a similar Stokes phenomenon for the Painlevé functions:

σn(z) = −n(−z)1/2

√
2

[
1 + (−1)n+1 2

5n−5
2 i

Γ(n+ 1)
(−z)

3
2

(n−1)e
2
√
2

3
(−z)

3
2

] (
1 +O

(
(−z)−

3
2
))
,

pn(z) = − n√
2(−z)1/2

[
1 + (−1)n+1 2

5n
2
−2i

Γ(n)
(−z)

3
2
ne

2
√
2

3
(−z)

3
2

] (
1 +O

(
(−z)−

3
2
))
,

and

qn(z) =
(−z)1/2

√
2

[
1 + (−1)n+1 2

5n−5
2 i

Γ(n)
(−z)

3
2

(n−1)e
2
√
2

3
(−z)

3
2

] (
1 +O

(
(−z)−

3
2
))
,

for n ≥ 1.
Similar calculations can be carried out in the sector 4π

3 < arg z < 2π, using the seed function

ϕ
(
ze−

2πi
3

)
with constants

C1 = 1
2e

πi
3 , C2 = 1

2e−
πi
6 .

As mentioned before, these extra exponential terms are not strictly needed in the non-
oscillatory regime | arg(−z)| < π, but they become relevant when one examines the transition
between exponential and trigonometric behavior.

An alternative way to calculate these subleading exponential terms would be to extend the
asymptotic expansion obtained in the oscillatory regime, with trigonometric functions, to a wider
sector in C around the positive real axis. Then in the overlapping region between non-oscillatory
and oscillatory behavior the two asymptotic expansions should coincide, and it would be possible
to extract the subleading terms.
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PIV, PII and the GUE, Comm. Math. Phys. 219 (2001), 357–398, math-ph/0103025.

[20] Forrester P.J., Witte N.S., Application of the τ -function theory of Painlevé equations to random matrices:
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