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Abstract. Associated to a symmetric space there is a canonical connection with zero torsion
and parallel curvature. This connection acts as a binary operator on the vector space of
smooth sections of the tangent bundle, and it is linear with respect to the real numbers.
Thus the smooth section of the tangent bundle together with the connection form an algebra
we call the connection algebra. The constraints of zero torsion and constant curvature makes
the connection algebra into a Lie admissible triple algebra. This is a type of algebra that
generalises pre-Lie algebras, and it can be embedded into a post-Lie algebra in a canonical
way that generalises the canonical embedding of Lie triple systems into Lie algebras. The
free Lie admissible triple algebra can be described by incorporating triple-brackets into the
leaves of rooted (non-planar) trees.
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1 Introduction

The connection algebra of a smooth manifold with an affine connection is the vector space
of smooth sections of the tangent bundle with the connection viewed as an R-linear binary
operator. On a Euclidean space this algebra is a pre-Lie algebra, and on a Lie group it is
a post-Lie algebra. Understanding the connection algebra is interesting by itself, and it also
has potential applications for developing algorithms for numerical integration. In the case of
pre-Lie algebras, [6] and [4] have demonstrated its relation to numerical integration and B-series.
Methods for numerical integration on Lie groups developed in [16] and [13] laid the foundation for
LB-series, a generalization of B-series for which the underlying algebraic structure is a post-Lie
algebra [7, 9].

Pre-Lie algebras were first defined by Gerstenhaber [10] and Vinberg [27]. Chapoton and
Livernet proved in [5] that the free pre-Lie algebra is given as the span of non-planar rooted
trees. Another proof of this was given by Löfwall and Dzhumadil’daev in [8]. Post-Lie algebras
were first described by Vallette in [26], but this structure also appears in the D-algebra described
in [21]. In [19, 26], it is also shown that the free post-Lie algebra is given as the free Lie algebra
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over the planar rooted trees. An explicit basis and the dimension of the graded components are
given in [18].

Symmetric spaces are the natural next level of complexity beyond Lie groups. Due to No-
mizu [22], there is a canonical connection associated to a symmetric space with zero torsion and
parallel curvature. In this article we will focus on the type of algebra defined by this connection,
a type of algebra we have named Lie admissible triple (LAT) algebra. Geometric integration
algorithms have recently been introduced for symmetric spaces [17]. The analysis of numeri-
cal algorithms on symmetric spaces motivates the study of (Lie)–Butcher series on symmetric
spaces. In the present work, we characterise the free algebra generated by the canonical connec-
tion on symmetric spaces. This is a first step in developing a comprehensive theory for series
developments on symmetric spaces.

When investigating connection algebras, it is convenient to define a triple-bracket as the
skew-symmetrization of the associator. Geometrically this is the Ricci identity [24]. A LAT
algebra is defined by two relations, both best described using the triple-bracket.

A key question when investigating an algebraic structure is what the free object looks like.
The main result of this article provides a basis for the free LAT algebra. This is presented in
Theorem 3.6. To be able to describe the free LAT algebra it is necessary to have a description
of the free algebra, which is the linear span of the free magma. The free algebra is commonly
described by planar rooted trees, but when working with the triple-bracket this description is
inconvenient. We present an alternative basis for the free algebra that works well with the triple-
bracket. Theorem 5.1 provides the theoretical link between the planar rooted trees and this new
basis. This theorem is purely combinatorical and might be interesting beyond the context of
this article.

The article is organised as follows: Section 2 introduces the concept of connection algebras
and reviews some of the known results in this area. The link between symmetric spaces and LAT
algebras will also be made clear. In Section 3, we discuss tensor-algebras, D-algebras and the
free algebra, the goal being to state the main result in Theorem 3.6. The proof of this theorem
will be given later in the paper, but the tools developed in this section is already enough to give
a simple proof of the known fact that the free pre-Lie algebra can be described by non-planar
rooted trees, see Theorem 3.5.

While the main goal of the next four sections are to provide a proof of the main theorem,
these sections do contain some results that are interesting on their own. In Section 4, in Propo-
sition 4.2, we provide a Hall basis for Lie triple systems. In Section 5, we present an alternative
basis for the free tensor algebra. This basis consists of elements that combine symmetric and
skew-symmetric parts under a few simple conditions that ensure uniqueness, see Theorem 5.1.
Section 6 utilizes this theorem to provide a basis for the free algebra that is convenient when
working with the LAT relations, before we finally prove the main theorem in Section 7.

In the last section, Section 8, we relate LAT algebras to post-Lie algebras by an embedding
that generalize the standard embedding of a Lie triple system into a Z2-graded Lie algebra
provided by Jacobson in 1951 [14]. This result is presented in Theorem 8.6.

2 The connection algebra

Consider a (real) smooth manifold M and denote by XM = Γ(TM) the vector space of smooth
vector fields on M . Let ∇ be an affine connection on M . Then (XM ,∇) will be an algebra
over R which we will call the connection algebra ofM . Two important geometric objects related
to the connection are the curvature

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]JZ,
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and the torsion

T (X,Y ) = ∇XY −∇YX − [X,Y ]J ,

where [ , ]J is the Jacobi–Lie bracket of vector fields. Since we will work with the connection as
a product in a non-associative algebra it will be convenient to introduce an alternative notation.
We let X � Y := ∇XY whenever the latter is defined, but we will also use notation � for
a binary product in a purely algebraic setting. The (negative) associator of � is given by
ass(x, y, z) = x� (y � z)− (x� y)� z and we define the triple-bracket as

[x, y, z] := ass(x, y, z)− ass(y, x, z),

and we immediately note that

R(X,Y )Z − T (X,Y )� Z = [X,Y, Z].

This relation is called the Ricci identity, although it is often stated in the torsion free case [3, 24].
The Bianchi identities are two fundamental relations connecting the torsion and the Riman-

nian curvature tensor of a manifold. For X,Y, Z ∈ XM , we have

0 =
∑

⟲(X,Y,Z)

T (T (X,Y ), Z) + (∇XT )(Y,Z)−R(X,Y )Z, (1 Bianchi),

0 =
∑

⟲(X,Y,Z)

(∇XR)(Y,Z)−R(X,T (Y, Z)), (2 Bianchi),

where
∑

⟲ means the sum over all cyclic permutation of the indicated arguments.

2.1 Some algebras related to constant curvature and torsion

Various geometries are related to properties of the triple-bracket of the connection:

� A pre-Lie algebra is (A,�) where [x, y, z] ≡ 0. A manifold has a pre-Lie connection on XM

if and only if M is locally an Abelian Lie group, i.e., locally a Euclidean space.

� A Lie admissible algebra is (A,�) where [x, y, z] + [y, z, x] + [z, x, y] ≡ 0. The bracket
defined by the skew product [x, y] := x � y − y � x is a Lie bracket if and only if (A,�)
is Lie admissible. A connection algebra is Lie admissible if and only if the connection is
torsion free, T = 0, in which case X � Y − Y �X = [X,Y ]J (see [20, Proposition 2.13]).
This carries little geometric information, since any connection has a related torsion free
connection with the same geodesics.

� A post-Lie algebra is (A,�, [ , ]) where [ , ] is a Lie bracket and where � and [ , ]
relate as

[x, y]� z = [x, y, z], x� [y, z] = [x� y, z] + [y, x� z].

A connection algebra (XM ,∇) is post-Lie if R ≡ 0 and ∇T ≡ 0, in which case there are two
Lie brackets on the vector fields [X,Y ] = −T (X,Y ) and [X,Y ]J = X�Y −Y �X+[X,Y ].
A post-Lie connection exists on XM if and only ifM is locally a Lie group. More generally,
a post-Lie structure exists on an anchored vector bundle if and only if the bundle is an
action Lie algebroid [19].

In this paper, we are interested in the canonical connection on a locally symmetric space
(such as the Levi-Civita connection on a Riemannian symmetric space). This is a connection
where T ≡ 0 and ∇R ≡ 0.
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Remark 2.1. For any locally symmetric space, there is a canonical connection such that∇R = 0
and T = 0. Equivalently, any manifold with such a connection is a locally symmetric space.
A locally symmetric space is a (globally) symmetric space if it is connected, simply connected
and geodesically complete [15, 22].

Definition 2.2 (LAT). An algebra (A,�) is called a Lie admissible triple algebra if the triple
bracket verifies

[x, y, z] + [y, z, x] + [z, x, y] ≡ 0, (2.1)

w � [x, y, z]− [w � x, y, z]− [x,w � y, z]− [x, y, w � z] ≡ 0. (2.2)

A connection algebra with T = 0 verifies (2.1), hence [X,Y, Z] = R(X,Y )Z and ∇R = 0
is expressed in (2.2). So the algebra of a torsion free connection with constant curvature is
a Lie admissible triple algebra. On the other hand, if the connection algebra is LAT, then
equation (2.1) implies that the connection is torsion free and then equation (2.2) gives exactly
constant curvature. The proposition below follows.

Proposition 2.3. A connection algebra (XM ,�) is LAT if and only if the manifold (M,∇) is
a locally symmetric space.

Lemma 2.4 (LTS). If (A,�) is an LAT then (A, [ , , ]) is a Lie triple system (LTS), defined
as a vector space with a tri-linear bracket satisfying

[x, y, z] = −[y, x, z], (2.3)

0 = [x, y, z] + [y, z, x] + [z, x, y], (2.4)

[u, v, [x, y, z]] = [[u, v, x], y, z] + [x, [u, v, y], z] + [x, y, [u, v, z]]. (2.5)

Proof. Equation (2.3) follows from the definition of the triple bracket, (2.4) is (2.1), while (2.5)
follows from (2.2) by a tedious but straightforward computation. ■

Lie triple systems have been studied extensively in relation to symmetric spaces, see, for
instance, [15] and [2]. Just as the tangent space of a Lie group has the structure of a Lie
algebra, Lie triple systems appear as the tangent space of symmetric spaces. In recent years,
the theory of post-Lie algebras has been developed in different directions. Post-Lie algebras
form a refinement of Lie algebras, enriching them with structures relating to connections and
geodesics. In this paper, we study the new concept of Lie admissible triple algebras, which in
many ways relate to Lie triple systems similarly to the relationship between post-Lie algebras
and Lie algebras.

Note 2.5. The algebraic structure we call Lie admissible triple has previously appeared in the
context of integrable systems under the name G-algebra, although with different sign on the
associator [11, 25].

3 Tensors, trees and the free Lie admissible triple algebra

The free Lie admissible triple algebra LAT(C) over the set C is defined by the universal prop-
erty: If A is a Lie admissible triple algebra and f : C → A, then there exists a unique algebra
homomorphism ϕ such that the diagram below commutes:

C LAT(C)

A.

f
ϕ

The main result of this article is stated in Theorem 3.6 at the end of this section. In this
theorem, we provide a basis for LAT(C) in terms of rooted trees and triple-brackets.
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3.1 Tensor algebra

Consider a vector space W over a field K with a basis C. Let T (W ) be the free tensor algebra
over W , that is

T (W ) =
∞⊕
i=0

W⊗i = K ⊕W ⊕ (W ⊗W )⊕ (W ⊗W ⊗W )⊕ · · · .

The natural basis for T (W ) is given by all elements on the form

x1 ⊗ x2 ⊗ · · · ⊗ xk, xi ∈ C, k ∈ N.

For simpler notation, we will denote the tensor product between elements by a simple dot:
x · y := x⊗ y. Since the tensor product is associative but not commutative, the basis elements
of T (W ) can be thought of as all the words over the alphabet C, and the number of basis elements
in the graded componentW⊗k is given by the number of words of length k one can make from the
elements in C which is nk, where n := |C|. If ω is a word in T (W ), we will write |ω| = k meaning
that the length of the word ω is k. We extend this definition to any element of homogeneous
degree in T (W ) with respect to the tensor product; if ω ∈ W⊗k, then |ω| = k, even if ω is not
a word, but a linear combination of such.

Since the tensor algebra is associative, we may define a Lie bracket by

[x, y] = x · y − y · x (3.1)

for x, y ∈ T (W ). In addition, we may define a map s called a symmetrization map by

s(x1 · · ·xk) =
1

k!

∑
σ∈Sk

σ(x1 · · ·xk),

where x1, . . . , xk ∈ C and Sk is the symmetric group acting by permuting the elements of the
words of length k. Let J̃ be the ideal in T (W ) generated by the Lie bracket [ , ]. An important
relation between permutations of words and the bracket is given in the following proposition.

Proposition 3.1. For any ω ∈ T (W ) with |ω| = k and any permutation ρ ∈ Sk, we have

ω − ρ(ω) ∈ J̃ .

Proof. First notice that for a, b ∈ C and a word ω ∈ T (W ), we have

a · b · ω − b · a · ω = [a, b] · ω ∈ J̃ .

This implies that the statement is true for words of length 2. Assume true for |ω| < k and
consider

a · ω − a · ρ(ω) = a · (ω − ρ(ω)) ∈ J̃ .

Any permutation σ can be given as a composition of permutations that leave the first position
fixed and the permutation that switch the first two positions and leave the rest fixed, hence we
get

a · ω − σ(a · ω) ∈ J̃

and the proposition follows by induction. ■
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3.2 D-algebra

The algebra of covariant derivations from a general connection has the structure of an enveloping
algebra of a post-Lie algebra, called a D-algebra [21]. We need this basic structure in order to
understand the free LAT.

For an algebra (A,�), let (T (A), ·) denote the tensor algebra. Let D(A) = (T (A), ·,�) be
defined by extending � to T (A) as

x� (u·v) = (x� u) · v + u·(x� v), (Leibniz rule) (3.2)

(x·u)� v = x� (u� v)− (x� u)� v = ass(x, u, v), (3.3)

for all x ∈ A and u, v ∈ D(A).

Note 3.2. D(A) is introduced in [21] with the name D-algebra. It forms the enveloping algebra
of the post-Lie algebra (g,�, [ , ]), where g = Lie(A) ⊂ D(A) and [ , ] is defined as in
equation (3.1). The rich algebraic structure of the D-algebra is studied in [9, 19, 21].

3.3 Trees and the free algebra

Let (Alg(C),�) denote the free algebra (non-associative, non-commutative) over a set of gener-
ators C, also referred to as a set of colours, or sometimes an alphabet. The free magma Mag(C)
is the set of all bracketed expressions in the generators,

Mag({ }) = { , � , ( � )� , � ( � ), . . . }.

We identify Mag(C) with planar binary trees, where the leaves are coloured from C and the
internal nodes represent �. Alg(C) is the linear space where the trees in Mag(C) form a basis,
called the monomial basis.

Another basis for Alg(C) we call the tree basis, is given by
−−→
Tree(C), the planar (or ordered)

trees where all nodes are coloured from C. We define
−−→
Tree(C) ⊂ Alg(C) as

−−→
Tree(C) =

{
(t1 ·t2 · · · tk)� c | t1, . . . , tk ∈

−−→
Tree(C), k ≥ 0, c ∈ C

}
.

The trees are graphically represented as branches t1, . . . , tk attached to the root c. For k = 0

we get C ⊂
−−→
Tree(C) and build up general trees by recursion:

−−→
Tree({ }) =

{
, , , , . . . ,

−→

,

−→

, . . .
}
,

where the arrow indicates that the branches are ordered. The arrow is omitted in the graphical
presentation if the tree is symmetric with respect to branch permutations. We can rewrite from
tree basis to monomial basis using (3.2) and (3.3), e.g.,

−→

= ass
(
, ,

)
= ass( , � , ) = � (( � )� )− ( � ( � ))� .

In the tree basis, the product in Alg(C) is expressed as left grafting [1, 21]. For t, t1, . . . , tk ∈
−−→
Tree(C), c ∈ C, (3.2) and (3.3) give

t� ((t1 ·t2 · · · tk)� c) = (t·t1 ·t2 · · · tk)� c+ ((t� t1)·t2 · · · tk)� c+ · · ·
+ (t1 ·t2 · · · (t� tk))� c,
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as shown in this example

� =
−−→

+

−→

+

−→

.

Below, in Corollary 3.4, we show that any permutation of branches in a tree can be expressed
via an iterated triple bracket. The simplest example is

−→
−
−→

= ass( , , )− ass( , , ) = [ , , ].

3.4 Free pre-Lie

Recall that an algebra is pre-Lie if [ , , ] ≡ 0. Thus, the free pre-Lie is the free algebra divided
by this relation:

Definition 3.3 (free pre-Lie). The free pre-Lie algebra is preLie(C) := Alg(C)/J , where J is
the ideal generated by the triple bracket.

We revisit the classical characterisation of the free pre-Lie algebra [5, 8]. Let Tree(C) be the

non-planar trees over C, obtained by forgetting the ordering of branches in
−−→
Tree(C) and (TC ,▶)

the linear span of Tree(C) with product ▶ being grafting without branch ordering, as

▶ = + 2 .

In this non-planar case, the enveloping algebra is the symmetric algebra S(TC). S(TC) acts on TC
as (3.2) and (3.3), forgetting the ordering. Define the projection π : D(Alg(C)) → S(TC) by for-
getting the ordering. This is a homomorphism for both products � and ·, and is uniquely defined
from the universal property of D(Alg(C)). The following result is a corollary to Proposition 3.1.

Corollary 3.4. For any ω ∈ D(Alg(C)), |ω| = k, r ∈ Alg(C) and any permutation ρ ∈ Sk,
we have

ω � r − ρ(ω)� r ∈ J .

Proof. By Proposition 3.1, we have ω−ρ(ω) ∈ J̃ ⊂ D(Alg(C)). Then ω−ρ(ω) must be a linear
combination of elements on the form u · [y, z] ·v for u, v ∈ D(Alg(C)) and y, z ∈ Alg(C). By (3.2)
and (3.3), we may rewrite (u · [y, z] · v) � r into something only depending on �, and by the
observation

[y, z]� w = [y, z, w], ∀ y, z, w ∈ Alg(C),

it follows that ω � r − ρ(ω)� r ∈ J . ■

Theorem 3.5 (free pre-Lie algebra).

0 J Alg(C) TC 0ι π

is a short exact sequence, hence preLie(C) = (TC ,▶).

Proof. Since π is a homomorphism for � and π([x, y, z]) = π
(
(x·y) � z − (y ·x) � z

)
= 0, we

must have π(J ) = 0. If π(a) = 0, then a must be a sum of differences of equivalent trees with
permuted branches, and Corollary 3.4 implies a ∈ J , so the sequence is exact. ■
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3.5 Free Lie admissible triple algebras

The free Lie admissible triple algebra is the quotient LAT(C) = Alg(C)/I, where I is the two
sided ideal generated by (2.1) and (2.2). Let H(S) denote a Hall basis for the Lie triple system
generated by S, henceforth called the “Hall triple set”, see Definition 4.1.

Theorem 3.6. A basis for LAT(C) = Alg(C)/I is the smallest subset B ⊂ Alg(C) such that

B = H(S),

where

S = {s(b1 · b2 · · · bk)� c | b1, . . . , bk ∈ B, c ∈ C, k ≥ 0}

are symmetrised trees of basis elements.

The proof will be presented in Section 7. We present the basis explicitly. For C = { }, the
basis elements are up to order 5:

B =
{
, , , , , , , , [ , , ],

, , , , [ , , ] ▷ , , , , , , [ , , ], [ , , ], [ , , ], . . .
}
,

where non-planar trees are identified with the corresponding symmetrised sum of planar trees

:=
1

2

(−→
+

−→)
, =

1

3

(−−→
+

−−→

+

−−→)
, etc.

The dimensions of the first graded components are given as 1, 1, 2, 5, 13, 34, 96, 263, . . . .
From order 5 and higher, we get trees where the leaves can be from the Hall triple set:[

, ,
]
� , s

(
·
[
, ,

])
� , etc.

However, due to (2.2), we never get trees with internal nodes from the Hall triple set.
Summary: The basis B for LAT(C) consists of

� Trees with internal nodes from C and leaves from the Hall triple set of trees.

� The Hall triple set of trees.

4 Hall basis for free Lie triple system

Recall that an LTS is a vector space with a tri-linear bracket satisfying (2.3)–(2.5). We construct
a Hall basis for LTS(C), the free LTS over a set C. A classical result [14, 15] states that an LTS
can always be embedded in a Lie algebra (g, [ , ]) as a subspace closed under the triple bracket
[a, b, c] := [[a, b], c]. In particular, LTS(C) can be embedded in Lie(C), the free Lie algebra [23]
over C. Lie(C) has a Z2 grading where Lie monomials with an odd (resp. even) degree have
grade 1 (resp. 0). The odd monomials span LTS(C). In particular, any odd monomial can be
rewritten as a sum of iterated triple brackets. For example, using the Jacobi rule and skew
symmetry of [ , ], we find

[[[a, b], [c, d]], e] = [a, b, [c, d, e]]− [c, d, [a, b, e]].
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Hence any Hall basis for Lie(C) yields a basis for LTS(C), by restricting to the odd monomials.
However, such bases will in general contain odd monomials which are not simple iterated triple
brackets, but must be rewritten as sums of triple brackets. For example, the Lyndon basis [23]
for Lie({a, b, c, d, e}) contains the odd monomial [[[a, e], [c, d]], b].

To obtain a basis for LTS(C) consisting of only triple brackets, we propose a Hall-type basis
obtained directly on LTS(C), independent of an embedding in Lie(C). Let (Mag3(C), [ , , ])
denote the triple magma over C, i.e., all possible iterated triple brackets formed from C. This
can be represented as planar ternary trees with leaves coloured by C. Let | | : Mag3(C) → Z
be the grading |c| = 1 for c ∈ C and |[a, b, c]| = |a| + |b| + |c| for general a, b, c. Let Alg3(C)
denote the vector space spanned by Mag3(C) over some field K, and let M ⊂ Alg3(C) be the
ideal generated by the Lie triple relations (2.3)–(2.5).

Definition 4.1 (Hall triple set). We define the Hall triple set H as

� C ⊂ H ⊂ Mag3(C).
� H has a total ordering < such that |u| < |v| implies u < v. The ordering on the same
grade is arbitrary, e.g., a lexicographical rule.

� [u, v, w] ∈ H if and only if u, v, w ∈ H, u > v ≤ w and one of the following hold:

– either u ∈ C,
– or u = [a, b, c] where c ≤ v.

Proposition 4.2. H is a basis for the free Lie triple system LTS(C).

Proof. First, we show by induction in the grading that any monomial in Alg3(C) can be
expressed as a sum of the Hall elements added with terms contained in M. We introduce
a rewriting based on (2.3)–(2.5). Given a monomial [u, v, w]. As induction hypothesis, we
assume u, v, w ∈ H.

(1) Using (2.3) and (2.4), rewrite [u, v, w] so that the smallest element is in the middle:

(a) If u = v, [u, v, w] 7→ 0.

(b) If u < v, [u, v, w] 7→ −[v, u, w].

(c) If u > v > w, [u, v, w] 7→ [u,w, v]− [v, w, u].

After this, we have obtained terms of the form [u, v, w], where u > v ≤ w. If u ∈ C or
u = [a, b, c], where c ≤ v this is Hall, and we stop.

(2) For [u, v, w], where u > v ≤ w, u = [a, b, c] and c > v, rewrite using (2.5):

[[a, b, c], v, w] 7→ [a, b, [c, v, w]]− [c, [a, b, v], w]− [c, v, [a, b, w]]. (4.1)

Repeat (1) and (2) on the three terms in (4.1) until all terms are Hall.

We need to show that this rewriting will always stop.

Consider the first term on the right in (4.1), [a, b, [c, v, w]]. If c ∈ C or if c = [c′, c′′, c′′′]
with c′′′ ≤ v then [a, b, [c, v, w]] ∈ H. To see this, recall we have assumed u = [a, b, c] ∈ H, so
a = [a′, a′′, a′′′] with a′′′ > b is not possible. Furthermore, b < a and b ≤ c implies b < [c, v, w],
and we have c > v ≤ w, which shows that it is Hall. If c = [c′, c′′, c′′′] with c > v, we use the
induction hypothesis to write [c, v, w] as a sum of Hall elements hi ∈ H, hi > b. This yields Hall
elements [a, b, hi] ∈ H.

Now we continue to rewrite the two rightmost terms in (4.1). We will argue that the Hall
elements [a, b, hi] ∈ H produced from the first term cannot reappear in the rewriting of the last
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two terms. If this is so, each round of rewriting removes some Hall words completely from the
remaining terms, and the iteration must eventually stop.

To see that [a, b, hi] ∈ H will not reappear, we first consider the second term [c, [a, b, v], w].
Rewriting could give [[a, b, v], c, w] or [[a, b, v], w, c]. However, since v < c and v ≤ w, we will
never use (4.1) and get back terms of the form [a, b, [. . . ]].

The last term is [c, v, [a, b, w]], where v < c and v ≤ w, thus v < [a, b, w]. The smallest term
is v in the middle, so we will not use rewriting (c) and get back terms with a, b moved to the
left, hence [a, b, [. . . ]] can not reappear.

This shows that H spans LTS(C). To see that H is a basis, we note that the rewrit-
ing rules guarantee that (2.3)–(2.5) hold for all a, b, x, y, z ∈ H. By tri-linearity, these rela-
tions must also hold in the span of H, and hence H is a basis for the quotient LTS(C) =
Alg3(C)/⟨(2.3), (2.4), (2.5)⟩. ■

Definition 4.3. Given a totally ordered set C, let H : Alg3(C) → Alg3(C) be the linear projection
that rewrites any element of Mag3(C) into a sum of Hall elements according to the algorithm
described in the proof above, i.e., such that ker(H) = M and Im(H) = LTS(C).

For LTS({a, b}), the Hall triple set up to order 7 is

H = {a, b, [baa], [bab], [[baa]aa], [[baa]ab], [[baa]bb], [[bab]bb], [ba[baa]], [ba[bab]], [[[baa]aa]aa],
[[[baa]aa]ab], [[[baa]aa]bb], [[[baa]ab]bb], [[[baa]bb]bb], [[[bab]bb]bb], [ba[[baa]aa]],

[ba[[baa]ab]], [ba[[baa]bb]], [ba[[bab]bb]], [ba[ba[baa]]], [ba[ba[bab]]], [[baa]a[baa]],

[[baa]b[baa]], [[bab]b[baa]], [[baa]a[bab]], [[baa]b[bab]], [[bab]b[bab]], . . . }.

The dimensions of the graded components, 2, 2, 6, 18, 56, 186, . . . are computed by the classical
Witt formula for odd grades, see A001037.

5 OSBB-words: a basis for the free tensor algebra

In this section, consider a vector space W over a field K with a totally ordered basis C, and
let ≺ denote the total order on C. Let T (W ) be the free tensor algebra over W , equipped with
the structure and notation introduced in Section 3.1.

Recall from Section 3.3 that one way to generate the planar rooted trees is to graft an ordered
forest (or a word) onto a root. If instead this process is done by only grafting unordered forests
s(x1 · · ·xk) onto a root, we would generate the non-planar rooted trees, which is a basis for
the free pre-Lie algebra. This algebra is defined by the relation [ , , ] = 0, hence the triple-
brackets together with non-planar trees should in some sense be sufficient to describe the full
free algebra Alg(C). The triple-bracket can be described by grafting a bracket [x, y] onto a tree;
[x, y]� z = [x, y, z].

The motivation to continue this journey of combinatorics on the tensor algebra is to be able to
generate a basis for the free algebra using triple-brackets and non-planar trees instead of planar
trees, which corresponds to a basis on the free tensor algebra using symmetrized elements and
brackets. This alternative basis on the tensor algebra is presented in Theorem 5.1 below, after
we have developed some language.

� Symmetric word: Let x1, . . . , xk, k ≥ 0 be elements from the set C. The element s(x1 · · ·xk)
is called a symmetric word. Note that the empty word is a symmetric word.

� Symmetric-bracket word: If y, z ∈ C, then the element s(x1 · · ·xk) · [y, z] is called a sym-
metric-bracket word.

https://oeis.org/A001037
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� SBB-word An element ω = ω1 · · ·ωs is called a symmetric-bracket-block word, or an SBB-
word, if ωi is a symmetric-bracket word for 1 ≤ i < s and ωs is a symmetric word. As
long as ωs is non-empty, we say that ω has s blocks, where ωi is a block of ω for 1 ≤ i ≤ s.
If ωs is the empty word, ω has s− 1 blocks.

� OSB-word: A symmetric-bracket word s(x1 · · ·xk) · [y, z] is ordered if z ≺ y and z ⪯ xi
for all i, where ≺ is the given total order on C. We abbreviate ordered symmetric-bracket
word to OSB-word.

� OSBB-word: An element ω = ω1 · · ·ωs is called an ordered symmetric-bracket-block word,
or an OSBB-word, if ω is an SBB-word, and in addition ωi is ordered for 1 ≤ i < s.

We make a clarifying note on the use of the word word. A word is an element of the natural
basis of T (W ). The list above contains five special types of elements of homogeneous degree
in T (W ) which are strictly speaking not words, but since they are closely associated concepts,
we have chosen to name them this way.

Theorem 5.1. Let C be a basis of some vector space W , and let ≺ be a total order on C. Then
the OSBB-words over C form a basis of the free tensor algebra T (W ).

Before we are ready to prove this theorem, we need to prove the weaker claim that any word
in T (W ) can be written as a linear combination of SBB-words.

Proposition 5.2. Any word can be rewritten as a sum of SBB-words.

Proof. This is immediately true for words of length 1. Assume true for words of length less
than k and let ω ∈ T (W ) be any word of length k. Then ω − s(ω) ∈ J̃ by Proposition 3.1.
We get

ω = s(ω) + (ω − s(ω)) = s(ω) + ν,

where ν is a linear combination of elements on the form ν1 · [x, y] · ν2 with both |ν1| < k and
|ν2| < k, hence we can rewrite them as a sum of SBB-words by assumption. ■

Proof of Theorem 5.1. Step 1. Prove that any word can be written as a sum of OSBB-words.
By Proposition 5.2, it is sufficient to show that this is possible for any SBB-word. Assume this is
true for SBB-words of length less than k and let ω be a SBB-word of length k. Then ω = ω1 · · ·ωs.
Assume that ω1 = s(x1 · · ·xn · u) · [y, z] with u ≺ z ≺ y. The Jacobi identity gives

u · [y, z] = [y, z] · u− y · [z, u] + [z, u] · y + z · [y, u]− [y, u] · z =: J(u ≺ z ≺ y).

Then we can write

ω1 =
1

n+ 1

(
s(x1 · · ·xn) · u · [y, z] +

n∑
i=1

s(x1 · · · x̂i · · ·xn · u) · xi · [y, z]

)

=
1

n+ 1
s(x1 · · ·xn) · J(u ≺ z ≺ y) +

n∑
i=1

(
1

n+ 1
ω1 + νi(x1 · · ·xn · u) · [y, z]

)
,

where νi(x1 · · ·xn · u) ∈ J̃ is the terms you get from rewriting s(x1 · · · x̂i · · ·xn · u) · xi −
s(x1 · · ·xn · u) according to Proposition 3.1. Solving for ω1, we get

ω1 = s(x1 · · ·xn) · J(u ≺ z ≺ y) +
∑
i

νi(x1 · · ·xn · u) · [y, z] (5.1)

= s(x1 · · ·xn) · ([y, z] · u− y · [z, u] + [z, u] · y + z · [y, u]− [y, u] · z) +
∑
i

νi · [y, z].

We need to show that each of these parts resolve into OSBB-words when concatenated with
ω2 · · ·ωs.
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� The terms [z, u] · y and [y, u] · z in J(u ≺ z ≺ y) are similar and give words on the form
η ·p ·ω2 · · ·ωs, where p is either y or z. Notice that η is an OSB-word and |p ·ω2 · · ·ωs| < k
and can therefore be written as a OSBB-word by assumption.

� The term [y, z] · u from J(u ≺ z ≺ y) gives us a SB-word s(x1 · · ·xn) · [y, z] connected
to a word u · ω2 · · ·ωs. The latter part has length smaller than k and can be written as
a OSBB-word by assumption. If s(x1 · · ·xn) · [y, z] is not ordered, we find the smallest
element xi and rewrite as above, but for xi instead of u. Since repeating this process
reduces the length of the word by one, hence the first block will resolve into an OSB-word
in the end, while the rest is a word of length shorter than k and can therefore be rewritten
as an OSBB-word.

� Consider y · [z, u]. By Proposition 3.1, we get s(x1 · · ·xn) ·y · [z, u] = s(x1 · · ·xn ·y) · [z, u]+
η · [z, u]. The first term is OSB. We can write η as a sum of SBB-words by Proposition 5.2,
η = η1 · · · ηr. Since |η2 · · · ηr · [z, u] · ω2 · · ·ωs| < k, we can rewrite this as a sum of OSBB-
words by assumption. If η1 is not ordered, we detect the smallest element and redo this
process. Since this reduces the length of the first block, the process must terminate. The
case z · [y, u] is the same.

� Lastly, consider νi(x1 · · ·xn · u). We rewrite this as a sum of SBB-words η1 · · · ηr. Again
η2 · · · ηr · [y, z] ·ω2 · · ·ωs has length shorter than k and can be rewritten as an OSBB-word
by assumption. If η1 is not OSB, we detect the smallest element and redo this process.
Since the length of η1 is reduced by each iteration, it must terminate.

Step 2. Prove that the rewriting is unique. Let αk(n) denote the number of OSBB-words of
length k made from n letters where the letters can be used any number of times. For convenience,
let α0(n) = 1 for all n. We need to show that αk(n) = nk. First, note the following recursive
formula for αk(n):

αk(n) =

(
k + (n− 1)

(n− 1)

)
+

k∑
i=2

(
n−1∑
j=1

(n− j)

(
(i− 2) + (n− j)

(n− j)

))
αk−i(n). (5.2)

Each part is explained as follows:

�

(k+(n−1)
(n−1)

)
is the number of symmetric words we can make of length k from n letters.

� The i denotes the length of the first block in an OSBB-word that is not symmetric, hence
the shortest possible length of the first block is 2 in the case it is just a bracket.

� The j denotes the number of the last letter in the bracket of the first block with the
enumeration being given by the order on the letters, counting from the smallest letter as
number 1, and the largest letter is then number n. Notice that j only counts until n− 1,
since there must at least be one larger letter available to put in the bracket.

� (n − j)
((i−2)+(n−j)

(n−j)

)
is the number of OSB-words of length i with the last letter of the

bracket being number j counting from smallest to largest. The factor (n− j) corresponds

to choosing a larger letter to be the first letter in the bracket, and
((i−2)+(n−j)

(n−j)

)
corresponds

to choosing letters for the symmetric part, all of which is larger or equal to the last letter
of the bracket.

� If we ignore the n, we can read the formula as: The number of OSBB-words of length k
is equal to the number of symmetric words of length k plus the number OSB-words of
length i times the number of OSSB-words of length k − i for each 2 ≤ i ≤ k, that is, for
each possible length of the first block.
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We want to prove that αk(n) = nk by induction on k. First, note that clearly α1(n) = n.
Assume that αr(n) = nr for all r < k, and note that by (5.2), we have

αk−1(n) =

(
(k − 1) + (n− 1)

(n− 1)

)
+

k−1∑
i=2

(
n−1∑
j=1

(n− j)

(
(i− 2) + (n− j)

(n− j)

))
αk−1−i(n). (5.3)

By assumption, αk−i(n) = nk−i as long as i is positive, hence nαk−1−i(n) = αk−i(n). We note
that the coefficient of αk−1−i(n) in (5.3) is equal to the coefficient of αk−i(n) in (5.2). These
observations let us rewrite αk(n) as

αk(n) = nαk−1(n) +

n−1∑
j=1

(n− j)

(
(k − 2) + (n− j)

(n− j)

)
+

(
k + (n− 1)

(n− 1)

)

− n

(
(k − 1) + (n− 1)

(n− 1)

)
.

Here
∑n−1

j=1 (n− j)
((k−2)+(n−j)

(n−j)

)
is the term in (5.2) corresponding to the term in the summation

when i = k which can not be captured in αk−1(n), and the last two terms correspond to the
first term in (5.2) and the first term in (5.3). By assumption, nαk−1(n) = nk, and the rest
of the terms cancel by Lemma A.1, hence we have αk(n) = nk, and the theorem follows by
induction. ■

5.1 An order on the OSBB-words

To construct OSBB-words, we depend on a total order on the elements we construct the words
with. We want to use OSBB-words to construct a basis for the free algebra, but then we must
construct a total order on the basis simultaneously. We start by constructing a general order on
the OSBB-words, depending on the order of the elements the words are made from.

Definition 5.3. Let W be a vector space with a basis C and a total order ≺=≺C on C. Define
a total order ≺∆=≺∆C on the set of OSBB-words in T (W ) by

(i) Compare symmetric words: Let ω = s(x1 · · ·xn) and η = s(y1 · · · ym) be two symmetric
words and let the indexing be such that x1 ⪰ · · · ⪰ xn and y1 ⪰ · · · ⪰ ym. We set ω ≻∆ η if

� n > m, or

� |ω| = |η|, xi = yi for i < j and xj ≻ yj .

(ii) Compare OSB-words: Let ω = s(x1 · · ·xn) · [u, v] and η = s(y1 · · · ym) · [w, z] be two
ordered symmetric-bracket words and let the indexing be such that x1 ⪰ · · · ⪰ xn and
y1 ⪰ · · · ⪰ ym. We set ω ≻∆ η if

� n > m, or

� n = m and v ≻ z, or

� n = m, v = z and u ≻ w, or

� n = m, v = z, u = w, and s(x1 · · ·xn) ⪰∆ s(y1 · · · ym).

(iii) Compare symmetric word and OSB-word: Let ω = s(x1 · · ·xn) · [u, v] be an OSB-word and
η = s(y1 · · · ym) a symmetric word, again assuming the xi’s and yi’s are listed in decreasing
order. Then ω ≻∆ η if and only if

� |ω| > |η|.
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(iv) Compare OSBB-words: let ω = ω1 · · ·ωk and η = η1 · · · ηr be two OSBB-words. Let
ω ≻∆ η if

� |ω| > |η|, or
� |ω| = |η|, ωi = ηi for i < j and ωj ≻∆ ηj .

The following lemma is a generalization of a normal quality of the lexicographical order on
words: if one letter in a word is replaced by a smaller letter (lets say we replace an “A” with
a “B”) the resulting word would be smaller. When considering OSBB-words, the case becomes
a bit more technical, since replacing letters with smaller letters means the resulting word need
not be an OSBB-word.

An OSBB-word ω will consist of |ω| elements from the underlying algebra put together
by s, [ , ] and ·. If ω = s

(
x11 · · ·x1n1

)
·
[
y1, z1

]
· · · s

(
xk1 · · ·xknk

)
we introduce the notation

ω̄
(
u1, . . . , u|ω|

)
= s
(
u1 · · ·un1

)
·
[
un1+1, un1+2

]
· · · s

(
u|ω|−nk

· · ·u|ω|
)
, by which we mean: maintain

the same structure of the word with respect to s, [ , ] and ·, but exchange the i’th input
with ui. Notice that ω̄

(
u1, . . . , u|ω|

)
need not be an OSBB-word since the condition that the

second argument of each bracket must be minimal in its block might not be satisfied.

Lemma 5.4. Let ω = ω̄
(
u1, . . . , u|ω|

)
be an OSBB-word, and let vi ⪯ ui for all i. Rewrite

ω̄
(
v1, . . . , v|ω|

)
as a linear combination of OSBB-words. Then each term η in this linear expan-

sion satisfies η ⪯∆ ω.

Proof. We do this by induction on the length |ω|. The statement is clearly true for |ω| = 1,
and assume it is true whenever |ω| < k. Consider the case |ω| = k. We introduce the notation
{ui ↔ vi} to mean that ui is replaced by vi. Notice that rewriting ω̄

(
u1, . . . , {ui ↔ vi}, . . . , u|ω|

)
as a sum of OSBB-words ηj , then changing {ul ↔ vl} in each of the OSBB-words ηj and then
rewriting all those terms as OSBB-words will give the same result as rewriting ω̄

(
u1, . . . , {ui ↔

vi}, . . . , {ul ↔ vl}, . . . , u|ω|
)
into a linear combination of OSBB-words directly. This is because

we have equality at each step, and the rewriting into OSBB-words is unique. Hence it is sufficient
to show that the lemma holds when ui = vi for all i except one. Furthermore, if ω = ω1 · · ·ωs

and we exchange an element from another block than ω1, by assumption the lemma holds for
the OSBB-word ω2 · · ·ωs, and we get η = ω1 · η0 where η0 is the result after solving the reduced
problem. Then η0 ⪯∆ ω2 · · ·ωs implies η ⪯∆ ω.

Let ω1 = s(x1 · · ·xn) · [y, z].

� Let z̃ ⪯ z, then ω̃1 · s(x1 · · ·xn) · [y, z̃] is an ordered-symmetric-bracket block and ω̃1 ·
ω2 · · ·ωs ⪯∆ ω.

� Let ỹ ⪯ y, then ω̃1 · s(x1 · · ·xn) · [ỹ, z] is either an OSB-word, equal to zero (if ỹ = z), or
ω̃1 = −s(x1 · · ·xn) · [z, ỹ] is an OSB-word. In all cases ω̃1 · ω2 · · ·ωs ⪯∆ ω.

� If x̃i ⪯ xi, we must rewrite s(x1 · · · {xi ↔ x̃i} · · ·xn) · [y, z] · ω2 · · ·ωs as a sum of OSBB-
words. If x̃i ⪰ z, we are done. If not, we must consider equation (5.1) from the proof
of Theorem 5.1. By inspection, we can see that the first block after rewriting will either
have x̃i as the last term of the bracket or have shorter length than ω1, and we get η ⪯∆ ω.

This concludes the proof. ■

6 Using OSBB-words to build bases for the free algebra

The basis B of LAT(C) presented in Theorem 3.6 is not naturally compatible with the tree basis
−−→
Tree(C) of the free algebra. In fact, it is not a priori clear that the elements of B are linearly
independent in Alg(C) as the elements in B could be very complicated to write in the basis
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−−→
Tree(C). By using Theorem 5.1, we will be able to construct a basis for Alg(C) in which B is
a subset, hence we conclude at the end of this section that the suggested basis for LAT(C) is at
least a linearly independent set.

6.1 An ordered basis of Alg(C)

The tree basis for the free algebra Alg(C) is the set of planar rooted trees colored by the set C.
Any tree τ in this basis will have a specific number of vertices, and we let |τ |V denote this

number: The number of vertices | |V of a tree in
−−→
Tree(C) is given by

� |c|V = 1 for any c ∈ C, and

� |(t1 · · · tn)� c|V = 1 + |t1|V + · · ·+ |tn|V for t1, . . . , tn ∈
−−→
Tree(C).

Then the free algebra Alg(C) is a naturally graded vector space

Alg(C) ∼=
∞⊕
i=1

Vi,

where Vk is the vector space spanned by all the trees with k vertices. This definition can
immediately be generalized to the standard basis elements of the D-algebra by |t1 · · · tn|V =
|t1|V + · · ·+ |tn|V . Furthermore, it is clear that rewriting an element ω from the standard basis
preserves both the length of the word |ω| and the number of vertices |ω|V , hence | |V is well
defined for OSBB-words of elements on which | |V is well defined. Lastly, if ω is an OSBB-word
and c ∈ C, we may define |ω � c|V = 1 + |ω|V , something that corresponds to the notion that
ω � c ∈ Vk where k = 1 + |ω|V .

Let C be a totally ordered set. Consider the following set S ⊂ Alg(C):

� if c ∈ C then c ∈ S,
� if ω is an OSBB-word of elements from S, then ω � c ∈ S,

where we use the order ≺S defined by ω � c1 ≺S η � c2 if

(i) |ω|V < |η|V , or
(ii) |ω|V = |η|V and ω ≺∆ η, or

(iii) ω = η and c1 < c2.

Proposition 6.1. The set S is a basis for Alg(C).

Proof. By induction on | |V . Since c ∈ S for any c ∈ C, and this is a basis for V1, we see that
the elements in S with |x|V = 1 is indeed a basis for V1. Assume that the elements y ∈ S with
|y|V = j is an ordered basis for Vj for all j < k. Thus by assumption, any tree in the tree basis
of Vj can be written uniquely as a linear combination of elements in S.

Step 1. Show that any element in Vk can be written uniquely as a linear combination of
elements in S. Let x ∈ Vk be a planar rooted tree in the tree basis for Alg(C). Then x =
(t1 · · · tn) � c. By assumption, each ti can be uniquely rewritten as a linear combination of S
giving x =

∑
i ai(ωi � c), where ai ∈ R and ωi are words of elements form S satisfying |ωi| = n

and |ωi|V = k−1. By Theorem 5.1, each of these words ωi can be uniquely rewritten as a linear
combination of OSBB-words, since ωi is a word of elements yij from S with

∣∣yij∣∣V < k, and these
are ordered by assumption. this means that any element in Vk can be uniquely written as a
linear combination of elements from S.

Step 2. Show that the order ≺S is well defined on elements in Vk. Let x, y ∈ S be two
elements with |x|V = |y|V = k. Then x = ω � c1 and y = η � c2 for some OSBB-words ω and η
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of elements in S with less than k vertices. We may compare x and y by comparing ω and η
using ≺∆ and by comparing c1 and c2 using the given total order on C. Notice that the order
on S prioritize the number of vertices, hence x is clearly comparable to any z ∈ Vj for j < k.

By induction on the number of vertices, the elements x of S with |x|V = i is an ordered basis
of Vi for any i, hence S is a totally ordered basis for Alg(C). ■

6.2 An ordered basis for Alg(C) that contains B

We will now define another basis for the free algebra that is the one that most closely capture the
important features for understanding the Lie admissible triple algebra. Although the basis S
does give an understanding of the intrinsic relations that follows from the definition of the
triple-bracket, it is not a convenient basis when working with the LAT-relations.

Definition 6.2. Define a map ψ by

ψ : S −→ Alg(C),
c 7−→ c,

s(x1 · · ·xn)� c 7−→ s(ψ(x1) · · ·ψ(xn))� c,

(s(x1 · · ·xn) · [y, z] · ω)� c 7−→ s(ψ(x1) · · ·ψ(xn))� [ψ(y), ψ(z), ψ(ω � c)]

and extend to Alg(C) by linearity.

Proposition 6.3. The map ψ is a linear automorphism of Alg(C).
Proof. To prove this, we start by showing that ψ(x) = x + q where q is a linear combination
of elements in S that is smaller than x. This is clearly true for c ∈ V1. Assume this is true for
y ∈ Vj with j < k, and let x ∈ Vk. There are two cases:

� If x = s(x1 · · ·xn) � c, we have ψ(x) = s(ψ(x1) · · ·ψ(xn)) � c. By assumption, ψ(xi) =
xi + qi, and since all the terms in qi are smaller than xi by assumption, we immediately
have ψ(x) = x+ q, where all the terms in q are smaller than x.

� If x = (s(x1 · · ·xn) · [y, z] ·ω)�c, we have ψ(x) = s(ψ(x1) · · ·ψ(xn))� [ψ(y), ψ(z), ψ(ω�c)].
By assumption, ψ(xi) = xi + qi, ψ(y) = y + p, ψ(z) = z + r and ψ(ω � c) = ω � c+ s. It
is clear that the terms in s has the form η � c. We need to show that if x̃i ⪯ xi, ỹ ⪯ y,
z̃ ⪯ z and η ⪯∆ ω, then

s(x̃1 · · · x̃n) · [ỹ, z̃] · η ⪯∆ s(x1 · · ·xn) · [y, z] · ω.

This follows from Lemma 5.4.

This means that the map ψ acts as an upper triangular matrix with 1’s on the diagonal on each
graded component Vi with respect to the ordered basis S. Clearly such a matrix is invertible,
hence ψ is an automorphism. ■

Let D be defined as the image of S by the map ψ. Then D is a basis of Alg(C). We may
define D iteratively by

(i) if c ∈ C, then c ∈ D,

(ii) if x = s(x1 . . . xn)� c, where xi ∈ D, then x ∈ D,

(iii) if x = s(x1 . . . xn)� [y1, y2, y3], where xi, yj ∈ D with y1 > y2 and y2 ≤ xi for i = 1, . . . , n
and j = 1, 2, 3, then x ∈ D.

It is sufficient to compare this definition with the image of ψ to see that the two definitions of D
are the same. The set D is a totally ordered set by ψ(x) ≺ ψ(y) if and only if x ≺S y.

Corollary 6.4. The set B from Theorem 3.6 is linearly independent in Alg(C).
Proof. Observe that B ⊂ D. ■
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7 Proof of Theorem 3.6

To prove Theorem 3.6, we will construct a linear map ϕ : Alg(C) → Alg(C) such that ker(ϕ) = I
and Im(ϕ) = span{B}. The map will be defined explicitly (or iteratively) on the basis D.

Let πD be a linear projection defined by

πD : Alg(C) −→ Alg(C),
c 7−→ c

[x1, x2, x3] 7−→ [πD(x1), πD(x2), πD(x3)],

s(x1 · · ·xn)� c 7−→ s(πD(x1) · · ·πD(xn))� c,

s(x1 · · ·xn)� [y1, y2, y3] 7−→ πD

(∑
I,J,K

[s
(
xi1 · · ·xi|I|

)
� y1, s(xj1 · · ·xj|J|)� y2,

s(xk1 · · ·xk|K|)� y3]

)
,

where I, J , K are pairwise disjoint subsets of {1, . . . , n} such that I ∪ J ∪K = {1, . . . , n}, and
for any s < t we have is < it, js < jt and ks < kt. Observe that Im(πD) contains no elements
on the form s(x1 · · ·xn)� [y1, y2, y3]. Define a set

D̄ = {x ∈ D | x = s(x1 · · ·xn)� c, xi ∈ D} ⊂ D

and note that (Im(πD), [ , , ]) ⊂ Alg3(D̄), hence we may define a Hall map H as in Defini-
tion 4.3 and restrict it to the image of πD.

Let πH be the projections defined by

πH : Im(πD) −→ Alg(C),
c 7−→ c,

[x1, x2, x3] 7−→ H([πH(x1), πH(x2), πH(x3)]),

s(x1 · · ·xn)� c 7−→ s(πH(x1) · · ·πH(xn))� c.

Note 7.1. The notation πD and πH is chosen for the following reasons: Firstly, they are both
linear projections, which we indicate by the letter π. The projection πD is constructed to account
for the relation (2.2), which is a derivation property by the triangle product on the triple-bracket,
hence the letter D. In particular, this choice is not connected to the set D. The letter H in πH
is there to indicate its relation with Hall bases.

Proposition 7.2. For any x ∈ Alg(C), we have x− πD(x) ∈ I.

By Lemma B.1, we know that

(x1 · · ·xn)� [r1, r2, r3]

−
∑
I,J,K

[(
xi1 · · ·xi|I|

)
� r1,

(
xj1 · · ·xj|J|

)
� r2,

(
xk1 · · ·xk|K|

)
� r3

]
∈ I,

where I, J , K are pairwise disjoint subsets of {1, . . . , n} such that I ∪ J ∪K = {1, . . . , n}, and
for any s < t we have is < it, js < jt and ks < kt. In this proof we will always let I, J and K
denote a triplet of sets with these properties.

Proof. By induction on |x|V : If |x|V = 1, we have x ∈ C and x − πD(x) = x − x = 0 ∈ I.
Assume x− πD(x) ∈ I when |x|V < k, then consider the case |x|V = k. By linearity of πD, we
may assume x ∈ D. If x = s(x1 · · ·xn)� c, we have

x− πD(x) =

n∑
i=1

s(πD(x1) · · · (xi − πD(xi)) · · ·xn)� c.
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Since |xi|V < k, we have xi−πD(xi) ∈ I, hence also x−πD(x) ∈ I. If x = s(x1 · · ·xn)�[r1, r2, r3],
we have

x− πD(x) = s(x1 · · ·xn)� [r1, r2, r3]

− πD

(∑
I,J,K

[
s
(
xi1 · · ·xi|I|

)
� r1, s

(
xj1 · · ·xj|J|

)
� r2, s

(
xk1 · · ·xk|K|

)
� r3

])
= s(x1 · · ·xn)� [r1, r2, r3]

−
∑
I,J,K

[
s
(
xi1 · · ·xi|I|

)
� r1, s

(
xj1 · · ·xj|J|

)
� r2, s

(
xk1 · · ·xk|K|

)
� r3

]
+
∑
I,J,K

[
s
(
xi1 · · ·xi|I|

)
� r1, s

(
xj1 · · ·xj|J|

)
� r2, s

(
xk1 · · ·xk|K|

)
� r3

]
− πD

(∑
I,J,K

[s
(
xi1 · · ·xi|I|

)
� r1, s

(
xj1 · · ·xj|J|

)
� r2, s

(
xk1 · · ·xk|K|

)
� r3]

)
= α+

∑
I,J,K

[βI − πD(βI), βJ , βK ] + [πD(βI), βJ − πD(βJ), βK ]

+ [πD(βI), πD(βJ), βK − πD(βK)],

where

α = s(x1 · · ·xn)� [r1, r2, r3]

−
∑
I,J,K

[
s
(
xi1 · · ·xi|I|

)
� r1, s

(
xj1 · · ·xj|J|

)
� r2, s

(
xk1 · · ·xk|K|

)
� r3

]
∈ I

by Lemma B.1 and

βI = s
(
xi1 · · ·xi|I|

)
� r1, βJ = s

(
xj1 · · ·xj|J|

)
� r2, βK = s

(
xk1 · · ·xk|K|

)
� r3.

Since |βt|V < p, we have βt − πD(βt) ∈ I for t = I, J,K, hence x− πD(x) ∈ I. ■

Proposition 7.3. If x ∈ Im(πD), then x− πH(x) ∈ I.

Proof. If |x|V = 1, we have x − πH(x) = 0 ∈ I by definition, since x ∈ C. Assume the
proposition holds for all x with |x|V < k, then consider the case |x|V = k. If x = s(x1 · · ·xn)�c,
we have

x− πH(x) =

n∑
i=1

s(πH(x1) · · · (xi − πH(xi)) · · ·xn)� c,

where |xi|V < k, hence xi − πH(xi) ∈ I by assumption, and we get x − πH(x) ∈ I. If x =
[x1, x2, x3], we have

x− πH(x) = [x1, x2, x3]− H([πH(x1), πH(x2), πH(x3)])

= [x1, x2, x3]− [πH(x1), πH(x2), πH(x3)] + [πH(x1), πH(x2), πH(x3)]

− H([πH(x1), πH(x2), πH(x3)])

= [x1 − πH(x1), x2, x3] + [πH(x1), x2 − πH(x2), x3]

+ [πH(x1), πH(x2), x3 − πH(x3)] + ([πH(x1), πH(x2), πH(x3)]

− H([πH(x1), πH(x2), πH(x3)])).

Since xi − πH(xi) ∈ I by assumption and

[πH(x1), πH(x2), πH(x3)]− H([πH(x1), πH(x2), πH(x3)]) ∈ I

by the definition of H, we conclude that x−πH(x) ∈ I. The proposition follows by induction. ■
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Let ϕ := πH ◦ πD.

Lemma 7.4. The ideal I is the kernel of ϕ.

Proof. Step 1. It is clear by the definition of πD that ϕ(x) can never contain a term or a factor
of a term on the form

(y1 · · · yn)� [r1, r2, r3]

and hence ϕ(x) can never contain a factor satisfying

u� [v, w, z]− [u� v, w, z]− [v, u� w, z]− [v, w, u� z].

It is also clear by the definition of πH that ϕ(x) can not contain a non-Hall triple-bracket as
a term or a factor of a term, hence ϕ(x) can never contain a factor of the form

[u, v, w] + [v, w, u] + [w, u, v].

We conclude that either ϕ(x) = 0 or ϕ(x) /∈ I.
Step 2. Let x ∈ I and assume ϕ(x) ̸= 0. By Propositions 7.2 and 7.3, we know that

x − ϕ(x) ∈ I, but by step 1 we have ϕ(x) /∈ I. This is a contradiction and we conclude that
ϕ(x) = 0, which proves that I ⊂ ker(ϕ).

Step 3. Now, let x be any element in ker(ϕ). By Propositions 7.2 and 7.3, we know that
x− ϕ(x) ∈ I, but ϕ(x) = 0, hence x ∈ I and I ⊂ ker(ϕ). ■

Lemma 7.5. The image of ϕ is equal to the span of B.

Proof. By induction on | |V . If x ∈ B with |x|V = 1, then ϕ(x) = x since ϕ(c) = c for all
elements c ∈ C.

(i) If x = s(x1 · · ·xn)� c, we have by induction

ϕ(x) = s(ϕ(x1) · · ·ϕ(xn))� c = s(x1 · · ·xn)� c = x.

(ii) If x = [x1, x2, x3], we have by induction

ϕ(x) = [ϕ(x1), ϕ(x2), ϕ(x3)] = [x1, x2, x3] = x.

Hence we get ϕ(x) = x for all x ∈ B which proves that B ⊂ Im(ϕ). Notice that for |x|V = 1 we
have ϕ(x) ∈ span{B}. Assume ϕ(y) ∈ span{B} for all y ∈ D with |y|V < k and let x ∈ D with
|x|V = k. If x = s(x1 · · ·xn)� c, we get ϕ(x) = s(ϕ(x1) · · ·ϕ(xn))� c and since |xi|V < |x|V , we
have ϕ(xi) ∈ span{B} by assumption, and then ϕ(x) must be in the span of B.

If x = s(x1 · · ·xn)� [y1, y2, y3], we have

ϕ(x) =
∑
i∈I

H([ϕ(αi), ϕ(βi), ϕ(γi)]),

where αi, βi and γi are as described in the definition of πD and i ∈ I is any indexing of these
elements. Since |αi|V < |x|V , |βi|V < |x|V and |γi|V < |x|V for all i ∈ I, we know that
ϕ(αi) ∈ span{B}, ϕ(βi) ∈ span{B} and ϕ(γi) ∈ span{B} for all i ∈ I, and furthermore, by the
definition of H we know that H([ϕ(αi), ϕ(βi), ϕ(γi)]) will be a Hall Lie triple element of elements
from B, hence it is itself in B. This means that ϕ(x) ∈ span{B} for all x ∈ D, and since D is
a basis of Alg(C), we know that Im(ϕ) ⊂ span{B}. ■
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Proof of Theorem 3.6. Since ϕ is a linear map, we have

Im(ϕ) ∼= Alg(C)/ ker(ϕ).

By Lemma 7.5, Im(ϕ) = span{B}, and by Lemma 7.4, ker(ϕ) = I. By definition, LAT(C) ∼=
Alg(C)/I and we have

LAT(C) ∼= span{B}.

Furthermore, by Corollary 6.4 we know that the set B is linearly independent, hence B is a basis
for the free Lie admissible triple algebra. ■

8 Embedding of LAT into post-Lie

Let L be a Lie algebra with an involutive automorphism σ : L → L, that is an isomorphism
satisfying σ2(x) = x for all x ∈ L. Then L decomposes into L = L− ⊕L+ where L− := {x ∈ L |
σ(x) = −x} and L+ := {x ∈ L | σ(x) = x}. We observe that

[L+,L+] ⊂ L+, [L−,L+] ⊂ L−, [L−,L−] ⊂ L+.

In other words, L is a Z2-graded Lie algebra, and we may define a triple-bracket

[ , , ] : L− × L− × L− → L−

by [x, y, z] := [[x, y], z]. This makes L− into a Lie triple system, defined in Lemma 2.4. The
following proposition is originally due to Jacobson [14], and improved by Yamaguti [28].

Proposition 8.1. Let T be a Lie triple system. For x, y ∈ T let Dx,y be the linear transformation
Dx,y(z) = [x, y, z]. Let Der(T ) be the subspace of all linear transformations of T spanned by Dx,y,
and let L be the direct sum vector space Der(T ) ⊕ T . Then L becomes a Z2-graded Lie algebra
with the bracket

[(A, x), (B, y)] = (A ◦B −B ◦A+Dx,y, A(y)−B(x)).

The map σ defined by σ((A, x)) = (A,−x) is an involutive automorphism.

Proof. See [15, Proposition 2.3]. ■

Remark 8.2. Let L = Der(T )⊕ T be as in the proposition above, but define the bracket by

[(A, x), (B, y)] = (−A ◦B +B ◦A+Dx,y, B(x)−A(y)).

This will also define a Lie algebra, and σ : (A, x) 7→ (A,−x) is an involutive automorphism of
this Lie algebra as well.

It is natural to ask how this theorem extends to Lie admissible triple algebras. The relation
between LAT and Z2-graded Lie algebras have been examined in [11, 25]. This embedding can
be further specialized by demanding that the Z2-graded Lie algebra has a post-Lie structure,
and that the products of the Lie admissible triple algebra agrees with the post-Lie product.

Proposition 8.3. Let (A, [ , ],▶) be a post-Lie algebra. Define a product � by

x� y = x ▶ y +
1

2
[x, y],

then (A,�) is Lie admissible. The skew associator is

ass�(x, y, z)− ass�(y, x, z) = −1

4
[[x, y], z].
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Proof. See [19, Proposition 2.7]. ■

Proposition 8.4. Let (A, [ , ],▶) be a post-Lie algebra. Define a product � by

x� y = x ▶ y +
1

2
[x, y],

then (A,�) is a Lie admissible triple algebra.

Proof. Define

[x, y, z] := ass�(x, y, z)− ass�(y, x, z).

By Proposition 8.3 above, we know that

[x, y, z] + [y, z, x] + [z, x, y] = −1

4
([[x, y], z] + [[y, z], x] + [[z, x], y]) = 0.

We need to show that � acts as a derivation on [ , , ],

w � [x, y, z] = w ▶

(
−1

4
[[x, y], z]

)
+

1

2
[w,−1

4
[[x, y], z]]

= −1

4
([w ▶ [x, y], z] + [[x, y], w ▶ z]) +

1

2

(
−1

4
([[w, [x, y]], z] + [[x, y], [w, z]])

)
= −1

4

(
[[w ▶ x, y], z] + [[x,w ▶ y], z] + [[x, y], w ▶ z]

+
1

2
([[[w, x], y], z] + [[x, [w, y]], z] + [[x, y], [w, z]])

)
= −1

4

(
[[w ▶ x, y], z] +

1

2
[[[w, x], y], z]

)
− 1

4

(
[[x,w ▶ y], z] +

1

2
[[x, [w, y]], z]

)
− 1

4

(
[[x, y], w ▶ z] +

1

2
[[x, y], [w, z]]

)
= [w � x, y, z] + [x,w � y, z] + [x, y, w � z]. ■

Example 8.5. Let (A,�) be a LAT-algebra, hence it is also a Lie admissible algebra. Define
[x, y] = x� y− y� x for all x, y ∈ A, then (A, [ , ]) is a Lie algebra. For any Lie algebra if we
define x ▶ y := [y, x], we get a post-Lie algebra, hence (A, [ , ],▶) is a post-Lie algebra where
x ▶ y = y � x− x� y.

This is not the embedding we are interested in, as this is not related to the Lie triple embed-
ding in Proposition 8.1. What we want is to embed the Lie triple algebra (A, [ , , ]) into a Lie
algebra L = Der(A)⊕A, and then extend the Lie admissible triple operator � to an operator ▶
on L in such a way that

(i) (L, [ , ],▶) is a post-Lie algebra,

(ii) and the post-Lie operator reduces to the LAT operator when restricted to A, i.e.,

▶
∣∣
A = �.

If we let (L, [ , ]) be the standard Lie algebra embedding of the Lie triple system (A, [ , , ]),
where (A,�) is a LAT algebra. Using the post-Lie relations, we see that the extension must
satisfy

x ▶ y = x� y,

Dx,y ▶ z = [x, y] ▶ z = [x, y, z] = Dx,y(z),

x ▶ Dy,z = x ▶ [y, z] = [x ▶ y, z] + [y, x ▶ z] = Dx▶y,z +Dy,x▶z,

Dx,y ▶ Du,v = [x, y] ▶ [u, v] = [[x, y, u], v] + [u, [x, y, v]] = D[x,y,u],v +Du,[x,y,v].
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Theorem 8.6. Let (A,�) be a Lie admissible triple algebra with triple-bracket

[x, y, z] = ass�(x, y, z)− ass�(y, x, z).

For each pair x, y ∈ A, define

Dx,y : A −→ A, z 7−→ [x, y, z]

and let Der(A) = {Dx,y | x, y ∈ A}. Let L = Der(A)⊕A, and let x, y ∈ A and A,B ∈ Der(A).
Define a bracket by

[x, y] = Dx,y, [A, x] = −A(x), [A,B] = −A ◦B +B ◦A.

Extend � to all of L by

x ▶ y = x� y, A ▶ x = A(x),

(x ▶ A)(y) = x ▶ A(y)−A(x ▶ y), A ▶ B = A ◦B −B ◦A.

Then (L, [ , ],▶) is a Z2-graded post-Lie algebra.

For the sake of convenience, we will write ass▶(x, y, z)− ass▶(y, x, z) = [x, y, z].

Proof. (L, [ , ]) is a Z2-graded Lie algebra by Proposition 8.1 and Remark 8.2. Throughout
this proof, let x, y, z, w, t ∈ A and A,B,C ∈ Der(A). From the definition of (x ▶ A), we get

(x ▶ Dy,z)(w) = x ▶ (Dy,z(w))−Dy,z(x ▶ w) = x ▶ [y, z, w]− [y, z, x ▶ w]

= [x ▶ y, z, w] + [y, x ▶ z, w] = (Dx▶y,z +Dy,x▶z)(w),

which gives the equality

x ▶ Dy,z = Dx▶y,z +Dy,x▶z. (8.1)

From the definition of A ▶ B, we get

(Dx,y ▶ Dz,w)(t) = (Dx,y ◦Dz,w −Dz,w ◦Dx,y)(t) = [x, y, [z, w, t]]− [z, w, [x, y, t]]

= [[x, y, z], w, t] + [z, [x, y, w], t] = (D[x,y,z],w +Dz,[x,y,w])(t),

which gives the equality

Dx,y ▶ Dz,w = D[x,y,z],w +Dz,[x,y,w]. (8.2)

We need to verify that the post-Lie relations are satisfied for all combinations of inputs from
Der(A) and A.

(i) Using (8.1), we get

x ▶ [y, z] = x ▶ Dy,z = Dx▶y,z +Dy,x▶z = [x ▶ y, z] + [y, x ▶ z].

(ii) By the definition of x ▶ A, we get

x ▶ [A, y] = −x ▶ (A(y)) = −(x ▶ A)(y)−A(x ▶ y) = [x ▶ A, y] + [A, x ▶ y].

(iii) Follows from skew symmetry and the relation above

x ▶ [y,A] = −x ▶ [A, y] = −[x ▶ A, y]− [A, x ▶ y] = [x ▶ y,A] + [y, x ▶ A].
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(iv) Let B = Dy,z. Using (i) and (ii), we can compute

x ▶ [A,B] = x ▶ [A, [y, z]] = x ▶ ([[A, y], z] + [y, [A, z]])

= [x ▶ [A, y], z] + [[A, y], x ▶ z] + [x ▶ y, [A, z]] + [y, x ▶ [A, z]]

= [[x ▶ A, y], z] + [[A, x ▶ y], z] + [[A, y], x ▶ z] + [x ▶ y, [A, z]]

+ [y, [x ▶ A, z]] + [y, [A, x ▶ z]]

= [x ▶ A, [y, z]] + [A, [x ▶ y, z]] + [A, [y, x ▶ z]]

= [x ▶ A,B] + [A, x ▶ B].

(v) Let A = Dz,w, then by (8.2), we get

A ▶ [x, y] = Dz,w ▶ Dx,y = D[z,w,x],y +Dx,[z,w,y] = [A ▶ x, y] + [x,A ▶ y].

(vi) Let A = Dw,t and B = Dy,z, then

A ▶ [B, x] = −[w, t, [y, z, x]] = −[[w, t, y], z, x]− [y, [w, t, z], x]− [y, z, [w, t, x]]

= [A ▶ B, x] + [B,A ▶ x].

(vii) From skew symmetry and the relation above gives

A ▶ [x,B] = −A ▶ [B, x] = −[A ▶ B, x]− [B,A ▶ x] = [A ▶ x,B] + [x,A ▶ B].

(viii) A ▶ [B,C] = −[A, [B,C]] = −[[A,B], C]− [B, [A,C]] = [A ▶ B,C] + [B,A ▶ C].
(ix) [x, y] ▶ z = Dx,y(z) = [x, y, z].
(x) From the definition of (x ▶ A)(y), we have (x ▶ A)(y)− x ▶ A(y)+A(x ▶ y) = 0, hence

we get

[A, x] ▶ y = −A(x) ▶ y + ((x ▶ A)(y)− x ▶ A(y) +A(x ▶ y))

= −(A ▶ x) ▶ y + (x ▶ A) ▶ y − x ▶ (A ▶ y) +A ▶ (x ▶ y) = [A, x, y].

(xi) By skew symmetry and the relation above, we get

[x,A] ▶ y = −[A, x] ▶ y = −[A, x, y] = [x,A, y].

(xii) By the Jacobi identity, we have [B, [A, x]]− [[B,A], x]− [A, [B, x]] = 0, hence

[A,B] ▶ x = [A,B] ▶ x− ([B, [A, x]]− [[B,A], x]− [A, [B, x]])

= [A, [B, x]] + [A,B] ▶ x− [B, [A, x]] + [[B,A], x]

= A ▶ (B ▶ x)− (A ▶ B) ▶ x−B ▶ (A ▶ x) + (B ▶ A) ▶ x = [A,B, x].

(xiii) Let A = Dz,w, then by repeatedly using (8.1), we get

[x, y,A] = x ▶ (y ▶ Dz,w)− (x ▶ y) ▶ Dz,w − y ▶ (x ▶ Dz,w) + (y ▶ x) ▶ Dz,w

= x ▶ (Dy▶z,w +Dz,y▶w)− (D(x▶y)▶z,w +Dz,(x▶y)▶w)

− y ▶ (Dx▶z,w +Dz,x▶w) + (D(y▶x)▶z,w +Dz,(y▶x)▶w)

= Dx▶(y▶z),w −D(x▶y)▶z,w −Dy▶(x▶z),w +D(y▶x)▶z,w

+Dz,x▶(y▶w) −Dz,(x▶y)▶w −Dz,y▶(x▶w) +Dz,(y▶x)▶w

+Dy▶z,x▶w +Dx▶z,y▶w −Dx▶z,y▶w −Dy▶z,x▶w

= D[x,y,z],w +Dz,[x,y,w].
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By (8.2), we have

[x, y] ▶ A = Dx,y ▶ Dz,w = D[x,y,z],w +Dz,[x,y,w] = [x, y,A].

(xiv) From (iv), we have x ▶ [A,B]− [x ▶ A,B]− [A, x ▶ B] = 0, hence we get

[A, x] ▶ B = [A, x] ▶ B + (x ▶ [A,B]− [x ▶ A,B]− [A, x ▶ B])

= −(A ▶ x) ▶ B − x ▶ (A ▶ B) + (x ▶ A) ▶ B +A ▶ (x ▶ B) = [A, x,B].

(xv) By skew symmetry and the relation above, we get

[x,A] ▶ B = −[A, x] ▶ B = −[A, x,B] = [x,A,B].

(xvi) The Jacobi identity gives [B, [A,C]]− [[B,A], C]− [A, [B,C]] = 0, and we get

[A,B] ▶ C = −[[A,B], C]− ([B, [A,C]]− [[B,A], C]− [A, [B,C]])

= −(A ▶ B) ▶ C −B ▶ (A ▶ C) + (B ▶ A) ▶ C +A ▶ (B ▶ C)

= [A,B,C]. ■

Remark 8.7. There is a way to get a post-Lie structure associated to a homogeneous space
by considering a sub-bundle of the tangent bundle of the frame bundle [12]. The construction
of a post-Lie algebra on this bundle is very similar to the construction of a post-Lie algebra on
Der(A)⊕A presented in Theorem 8.6.

For a Lie admissible triple algebra A, let g(A) be the associated Z2-graded post-Lie algebra
of A.

Corollary 8.8. Let B be the basis of LAT(C) given in Theorem 3.6. Let B̂ be defined by

(i) if x ∈ B then x ∈ B̂, and
(ii) if x, y ∈ B with x > y, then [x, y] ∈ B̂.

Then B̂ is a basis for g(LAT(C)).

Proof. By Theorem 8.6, g(LAT(C)) = LAT(C) ⊕ Der(LAT(C)) where Der(LAT(C)) = {[x, y] |
x, y ∈ LAT(C)}. By Theorem 3.6, we know that B is a basis for LAT(C), and by definition of
Der(LAT(C)) we get that {[x, y] | x, y ∈ B, x > y} is a basis of Der(LAT(C)). ■

A Appendix

Lemma A.1. For all positive integers n and k, the following relation holds:

n−1∑
j=1

(n− j)

(
(k − 2) + (n− j)

(n− j)

)
+

(
k + (n− 1)

(n− 1)

)
= n

(
(k − 1) + (n− 1)

(n− 1)

)
. (A.1)

Proof. Let βk(n) be given as the left-hand side of (A.1). Notice that this equation is trivially
true for all k when n = 1, and assume that is true for all k when n < N for some integer N .
Notice that

βk(N − 1) =

N−2∑
j=1

(N − 1− j)

(
(k − 2) + (N − 1− j)

(N − 1− j)

)
+

(
k + (N − 2)

(N − 2)

)
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=

N−1∑
j=2

(N − j)

(
(k − 2) + (N − j)

(N − j)

)
+

(
k + (N − 2)

(N − 2)

)

= βk(N)− (N − 1)

(
(k − 2) + (N − 1)

(N − 1)

)
−
(
k + (N − 1)

(N − 1)

)
+

(
k + (N − 2)

(N − 2)

)
.

Rewriting this equality and using the assumption, we get

βk(N) = (N − 1)

(
k +N − 3

N − 2

)
+ (N − 1)

(
k +N − 3

N − 1

)
+

(
k +N − 1

N − 1

)
−
(
k +N − 2

N − 2

)
.

Using Pascal’s rule,
(
m
r

)
=
(
m−1
r

)
+
(
m−1
r−1

)
, we get

βk(N) = (N − 1)

(
k +N − 2

N − 1

)
+

(
k +N − 2

N − 1

)
= N

(
(k − 1) + (N − 1)

(N − 1)

)
and the lemma follows by induction on n. ■

B Appendix

Recall

x� (uv) = (x� u)v + u(x� v),

(xu)� v = x� (u� v)− (x� u)� v

for x ∈ Alg(C) and u, v ∈ D(Alg(C)).

Lemma B.1. Let x0, . . . , xn, r1, r2, r3 ∈ Alg(C). Then

(x1 · · ·xn)� [r1, r2, r3]

−
∑
I,J,K

[(
xi1 · · ·xi|I|

)
� r1,

(
xj1 · · ·xj|J|

)
� r2,

(
xk1 · · ·xk|K|

)
� r3

]
∈ I,

where I, J , K are pairwise disjoint subsets of {1, . . . , n} such that I ∪ J ∪K = {1, . . . , n}, and
for any s < t we have is < it, js < jt and ks < kt.

Proof. If n = 1, this is true by definition of I. Assume it is true for n = k, then we get

(x0x1 · · ·xk)� [r1, r2, r3] = x0 � ((x1 · · ·xk)� [r1, r2, r3])

−
k∑

s=1

(x1 · · · (x0 � xs) · · ·xk)� [r1, r2, r3],

and we know that

(x1 · · ·xk)� [r1, r2, r3]

−
∑
I,J,K

[(
xi1 · · ·xi|I|

)
� r1,

(
xj1 · · ·xj|J|

)
� r2,

(
xk1 · · ·xk|K|

)
� r3

]
∈ I

(x1 · · · (x0 � xs) · · ·xk)� [r1, r2, r3]

−
∑
I,J,K

[(
x̃i1 · · · x̃i|I|

)
� r1,

(
x̃j1 · · · x̃j|J|

)
� r2,

(
x̃k1 · · · x̃k|K|

)
� r3

]
∈ I,
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where x̃t = xt whenever t ̸= s and x̃s = x0 � xs. We also have∑
I,J,K

(
x0 � [

(
xi1 · · ·xi|I|

)
� r1,

(
xj1 · · ·xj|J|

)
� r2,

(
xk1 · · ·xk|K|

)
� r3]

−
[
x0 �

((
xi1 · · ·xi|I|

)
� r1

)
,
(
xj1 · · ·xj|J|

)
� r2,

(
xk1 · · ·xk|K|

)
� r3

]
−
[(
xi1 · · ·xi|I|

)
� r1, x0 �

((
xj1 · · ·xj|J|

)
� r2

)
,
(
xk1 · · ·xk|K|

)
� r3

]
−
[(
xi1 · · ·xi|I|

)
� r1,

(
xj1 · · ·xj|J|

)
� r2, x0 �

((
xk1 · · ·xk|K|

)
� r3

)])
∈ I.

Notice that

x0 �
((
xi1 · · ·xi|I|

)
� r1

)
=
(
x0xi1 · · ·xi|I|

)
� r1 +

i|I|∑
s=i1

(
xi1 · · · (x0 � xs) · · ·xi|I|

)
� r1,

hence we can rewrite the relation above as∑
I,J,K

(
x0 �

[(
xi1 · · ·xi|I|

)
� r1,

(
xj1 · · ·xj|J|

)
� r2,

(
xk1 · · ·xk|K|

)
� r3

])
−

k∑
s=1

∑
I,J,K

[(
x̃i1 · · · x̃i|I|

)
� r1,

(
x̃j1 · · · x̃j|J|

)
� r2,

(
x̃k1 · · · x̃k|K|

)
� r3

]
−
∑
Î,Ĵ ,K̂

[(
xi1 · · ·xi|Î|

)
� r1,

(
xj1 · · ·xj|Ĵ|

)
� r2,

(
xk1 · · ·xk|K̂|

)
� r3

]
∈ I,

where Î, Ĵ and K̂ are defined in the same way as I, J and K, just on the set {0, 1, . . . , k}. When
put together, this gives

x0 �
(
(x1 · · ·xk)� [r1, r2, r3]

−
∑
I,J,K

[(
xi1 · · ·xi|I|

)
� r1,

(
xj1 · · ·xj|J|

)
� r2,

(
xk1 · · ·xk|K|

)
� r3

])
−

k∑
s=1

(
(x1 · · · (x0 � xs) · · ·xk)� [r1, r2, r3]

−
∑
I,J,K

[(
x̃i1 · · · x̃i|I|

)
� r1,

(
x̃j1 · · · x̃j|J|

)
� r2,

(
x̃k1 · · · x̃k|K|

)
� r3

])
+
∑
I,J,K

(
x0 �

[(
xi1 · · ·xi|I|

)
� r1,

(
xj1 · · ·xj|J|

)
� r2,

(
xk1 · · ·xk|K|

)
� r3

])
−

k∑
s=1

∑
I,J,K

[(
x̃i1 · · · x̃i|I|

)
� r1,

(
x̃j1 · · · x̃j|J|

)
� r2,

(
x̃k1 · · · x̃k|K|

)
� r3

]
−
∑
Î,Ĵ ,K̂

[(
xi1 · · ·xi|Î|

)
� r1,

(
xj1 · · ·xj|Ĵ|

)
� r2,

(
xk1 · · ·xk|K̂|

)
� r3

]

= x0 � ((x1 · · ·xk)� [r1, r2, r3])−
k∑

s=1

(x1 · · · (x0 � xs) · · ·xk)� [r1, r2, r3]

−
∑
Î,Ĵ ,K̂

[(
xi1 · · ·xi|Î|

)
� r1,

(
xj1 · · ·xj|Ĵ|

)
� r2,

(
xk1 · · ·xk|K̂|

)
� r3

]
= (x0x1 · · ·xk)� [r1, r2, r3]

−
∑
Î,Ĵ ,K̂

[(
xi1 · · ·xi|Î|

)
� r1,

(
xj1 · · ·xj|Ĵ|

)
� r2,

(
xk1 · · ·xk|K̂|

)
� r3

]
∈ I.

Hence the statement is true for n = k + 1, and the lemma follows by induction. ■
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Brasileira de Matemática, Rio de Janeiro, 2017, arXiv:1711.10613.

[26] Vallette B., Homology of generalized partition posets, J. Pure Appl. Algebra 208 (2007), 699–725,
arXiv:math.AT/0405312.

[27] Vinberg E., The theory of homogeneous convex cones, Trans. Mosc. Math. Soc. 12 (1963), 340–403.

[28] Yamaguti K., On algebras of totally geodesic spaces (Lie triple systems), J. Sci. Hiroshima Univ. Ser. A 21
(1957), 107–113.

https://arxiv.org/abs/1711.10613
https://doi.org/10.1016/j.jpaa.2006.03.012
https://arxiv.org/abs/math.AT/0405312
https://doi.org/10.32917/hmj/1555639501

	1 Introduction
	2 The connection algebra
	2.1 Some algebras related to constant curvature and torsion

	3 Tensors, trees and the free Lie admissible triple algebra
	3.1 Tensor algebra
	3.2 D-algebra
	3.3 Trees and the free algebra
	3.4 Free pre-Lie
	3.5 Free Lie admissible triple algebras

	4 Hall basis for free Lie triple system
	5 OSBB-words: a basis for the free tensor algebra
	5.1 An order on the OSBB-words

	6 Using OSBB-words to build bases for the free algebra
	6.1 An ordered basis of Alg(C)
	6.2 An ordered basis for Alg(C) that contains B

	7 Proof of Theorem 3.6
	8 Embedding of LAT into post-Lie
	A Appendix
	B Appendix
	References

