Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 076, 32 pages      arXiv:2306.14107      https://doi.org/10.3842/SIGMA.2024.076
Contribution to the Special Issue on Evolution Equations, Exactly Solvable Models and Random Matrices in honor of Alexander Its' 70th birthday

A Riemann-Hilbert Approach to Skew-Orthogonal Polynomials of Symplectic Type

Alex Little
Unité de Mathématiques Pures et Appliquées, ENS de Lyon, France

Received December 27, 2023, in final form August 06, 2024; Published online August 16, 2024

Abstract
We present a representation of skew-orthogonal polynomials of symplectic type ($\beta=4$) in terms of a matrix Riemann-Hilbert problem, for weights of the form ${\rm e}^{-V(z)}$ where $V$ is a polynomial of even degree and positive leading coefficient. This is done by representing skew-orthogonality as a kind of multiple-orthogonality. From this, we derive a $\beta=4$ analogue of the Christoffel-Darboux formula. Finally, our Riemann-Hilbert representation allows us to derive a Lax pair whose compatibility condition may be viewed as a $\beta=4$ analogue of the Toda lattice.

Key words: Riemann-Hilbert problem; skew-orthogonal polynomials; random matrices.

pdf (534 kb)   tex (38 kb)  

References

  1. Adler M., Forrester P.J., Nagao T., van Moerbeke P., Classical skew orthogonal polynomials and random matrices, J. Stat. Phys. 99 (2000), 141-170, arXiv:solv-int/9907001.
  2. Adler M., Horozov E., van Moerbeke P., The Pfaff lattice and skew-orthogonal polynomials, Int. Math. Res. Not. 1999 (1999), 569-588, arXiv:solv-int/9903005.
  3. Adler M., van Moerbeke P., The Pfaff lattice, matrix integrals and a map from Toda to Pfaff, arXiv:solv-int/9912008.
  4. Akemann G., Ebke M., Parra I., Skew-orthogonal polynomials in the complex plane and their Bergman-like kernels, Comm. Math. Phys. 389 (2022), 621-659, arXiv:2103.12114.
  5. Berezin S., Kuijlaars A.B.J., Parra I., Planar orthogonal polynomials as type I multiple orthogonal polynomials, SIGMA 19 (2023), 020, 18 pages, arXiv:2212.06526.
  6. Bleher P., Its A., Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model, Ann. of Math. 150 (1999), 185-266, arXiv:math-ph/9907025.
  7. Bleher P., Its A., Double scaling limit in the random matrix model: the Riemann-Hilbert approach, Comm. Pure Appl. Math. 56 (2003), 433-516, arXiv:math-ph/0201003.
  8. Byun S.-S., Ebke M., Universal scaling limits of the symplectic elliptic Ginibre ensemble, Random Matrices Theory Appl. 12 (2023), 2250047, 33 pages, arXiv:2108.05541.
  9. Byun S.-S., Ebke M., Seo S.-M., Wronskian structures of planar symplectic ensembles, Nonlinearity 36 (2023), 809-844, arXiv:2110.12196.
  10. Byun S.-S., Noda K., Scaling limits of complex and symplectic non-Hermitian Wishart ensembles, arXiv:2402.18257.
  11. Claeys T., Kuijlaars A.B.J., Universality of the double scaling limit in random matrix models, Comm. Pure Appl. Math. 59 (2006), 1573-1603, arXiv:math-ph/0501074.
  12. Claeys T., Kuijlaars A.B.J., Vanlessen M., Multi-critical unitary random matrix ensembles and the general Painlevé II equation, Ann. of Math. 168 (2008), 601-641, arXiv:math-ph/0508062.
  13. de Bruijn N.G., On some multiple integrals involving determinants, J. Indian Math. Soc. 19 (1955), 133-151.
  14. Deift P., Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lect. Notes Math., Vol. 3, American Mathematical Society, Providence, RI, 1999.
  15. Deift P., Riemann-Hilbert problems, in Random Matrices, IAS/Park City Math. Ser., Vol. 26, American Mathematical Society, Providence, RI, 2019, 1-40, arXiv:1903.08304.
  16. Deift P., Gioev D., Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices, Comm. Pure Appl. Math. 60 (2007), 867-910, arXiv:math-ph/0507023.
  17. Deift P., Gioev D., Universality in random matrix theory for orthogonal and symplectic ensembles, Int. Math. Res. Pap. IMRP 2007 (2007), 004, 116 pages, arXiv:math-ph/0411075.
  18. Deift P., Gioev D., Random matrix theory: invariant ensembles and universality, Courant Lect. Notes Math., Vol. 18, American Mathematical Society, Providence, RI, 2009.
  19. Deift P., Gioev D., Kriecherbauer T., Vanlessen M., Universality for orthogonal and symplectic Laguerre-type ensembles, J. Stat. Phys. 129 (2007), 949-1053, arXiv:math-ph/0612007.
  20. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X., Asymptotics for polynomials orthogonal with respect to varying exponential weights, Int. Math. Res. Not. 1997 (1997), 759-782.
  21. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X., Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math. 52 (1999), 1491-1552.
  22. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52 (1999), 1335-1425.
  23. Deift P., Zhou X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. 137 (1993), 295-368.
  24. Dyson F.J., The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics, J. Math. Phys. 3 (1962), 1199-1215.
  25. Dyson F.J., A class of matrix ensembles, J. Math. Phys. 13 (1972), 90-97.
  26. Eynard B., Asymptotics of skew orthogonal polynomials, J. Phys. A 34 (2001), 7591-7605, arXiv:cond-mat/0012046.
  27. Fokas A.S., Its A.R., Kitaev A.V., Discrete Painlevé equations and their appearance in quantum gravity, Comm. Math. Phys. 142 (1991), 313-344.
  28. Forrester P.J., Log-gases and random matrices, London Math. Soc. Monogr. Ser., Vol. 34, Princeton University Press, Princeton, NJ, 2010.
  29. Ghosh S., Generalized Christoffel-Darboux formula for skew-orthogonal polynomials and random matrix theory, J. Phys. A 39 (2006), 8775-8782, arXiv:math-ph/0603013.
  30. Its A.R., The Riemann-Hilbert problem and integrable systems, Notices Amer. Math. Soc. 50 (2003), 1389-1400.
  31. Kriecherbauer T., Shcherbina M., Fluctuations of eigenvalues of matrix models and their applications, arXiv:1003.6121.
  32. Krüger T., Lee S.-Y., Yang M., Local statistics in normal matrix models with merging singularity, arXiv:2306.12263.
  33. Lee S.-Y., Yang M., Planar orthogonal polynomials as type II multiple orthogonal polynomials, J. Phys. A 52 (2019), 275202, 14 pages, arXiv:1801.01084.
  34. Martínez-Finkelshtein A., Van Assche W., What is ... a multiple orthogonal polynomial?, Notices Amer. Math. Soc. 63 (2016), 1029-1031, arXiv:1707.09511v1.
  35. Mehta M.L., Random matrices, 3rd ed., Pure Appl. Math. (Amst.), Vol. 142, Elsevier, Amsterdam, 2004.
  36. Muskhelishvili N.I., Singular integral equations. Boundary problems of functions theory and their applications to mathematical physics, Springer, Dordrecht, 1958.
  37. Pastur L., Shcherbina M., Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles, J. Stat. Phys. 86 (1997), 109-147.
  38. Pierce V.U., A Riemann-Hilbert problem for skew-orthogonal polynomials, J. Comput. Appl. Math. 215 (2008), 230-241, arXiv:math/0610592.
  39. Shcherbina M., Edge universality for orthogonal ensembles of random matrices, J. Stat. Phys. 136 (2009), 35-50, arXiv:0812.3228.
  40. Shcherbina M., On universality for orthogonal ensembles of random matrices, Comm. Math. Phys. 285 (2009), 957-974, arXiv:math-ph/0701046.
  41. Shcherbina M., Orthogonal and symplectic matrix models: universality and other properties, Comm. Math. Phys. 307 (2011), 761-790, arXiv:1004.2765.
  42. Stojanovic A., Universality in orthogonal and symplectic invariant matrix models with quartic potential, Math. Phys. Anal. Geom. 3 (2000), 339-373.
  43. Van Assche W., Geronimo J.S., Kuijlaars A.B.J., Riemann-Hilbert problems for multiple orthogonal polynomials, in Special Functions 2000: Current Perspective and Future Directions, NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, Kluwer, Dordrecht, 2001, 23-59.
  44. Widom H., On the relation between orthogonal, symplectic and unitary matrix ensembles, J. Stat. Phys. 94 (1999), 347-363, arXiv:solv-int/9804005.

Previous article  Next article  Contents of Volume 20 (2024)