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NEUMANN SYSTEM AND HYPERELLIPTIC AL
FUNCTIONS

Shigeki Matsutani

Abstract. This article shows that the Neumann dynamical system is described well in terms

of the Weierstrass hyperelliptic al functions. The descriptions are very primitive; their proofs are

provided only by residual computations but don’t require any theta functions.

1 Introduction

The Neumann dynamical system is a well-known integrable nonlinear dynamical
system, whose Lagrangian for (q, q̇) ∈ R2g+2 is given by,

L =
1
2

g+1∑
i=1

q̇2
i −

1
2

g+1∑
i=1

aiq
2
i , (1)

with a holonomic constraint,

Φ(q) = 0, Φ(q) :=
g+1∑
i=1

q2
i − 1, (2)

which was proposed by C. Neumann in 1859 for the case of g = 2 [16]. This is
studied well in frameworks of the dynamical system [14], of the symplectic geometry
[8], of the algebraic geometry [15], of the representation of the infinite Lie algebra
[1, 17].

D. Mumford gave explicit expressions of the Neumann system in terms of hy-
perelliptic functions based upon classical and modern hyperelliptic function theories
[15]. This article gives more explicit expressions of the Neumann system using
Weierstrass hyperelliptic al functions [19].

In the case of elliptic functions theory [20], Weierstrass ℘ functions and Jacobi sn,
cn, dn functions play important roles in the theory even though they are expressed by
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14 S. Matsutani

the theta functions and all relations among them are rewritten by the theta functions.
The expressions of Weierstrass ℘ functions and Jacobi sn, cn, dn functions make the
theory of elliptic functions fruitful and reveal the essentials of elliptic functions [20].

Unfortunately in the case of higher genus case, such studies are not enough
though F. Klein and K. Weierstrass discovered hyperelliptic versions of these ℘, sn,
cn, dn functions [10, 19]. The history, especially of the al functions, a generalization
of sn, cn, dn function, is well-described in Chapter “Fonctions ellptiques et intégrales
abéliennes” in [6] as in [13]. The al function was discovered by Weierstrass in order
to obtain his hyperelliptic θ function, Al, in 1854 [19], which is the first attempt to
higher general genus version of N. H. Abel’s theory of elliptic functions following the
Abelian integral theory of hyperelliptic curves by C. G. J. Jacobi [11]. The name
“al” and “Al” are honor to N. H. Abel. Klein sophisticated Weierstrass’ “Al” to
hyperelliptic σ function following the Weierstrass’ elliptic σ function theory [10] and
defined hyperelliptic ℘ functions.

These studies were basically succeeded by the modern algebraic geometry and the
Abelian function theory. However their concreteness of the theories in the nineteenth
century [2, 3, 4, 10, 19] faded out. Thus Mumford picked up the theory of Jacobi
[11] and connected it with the modern theory [15]. For the similar purpose, several
authors devote themselves to reinterpretations of the modern theory of hyperelliptic
functions in terms of these functions in [2, 3, 4, 10, 19] and developing studies of
these functions as special functions [5, 12, 13, and their references]. In this article, we
also proceed to make the hyperelliptic function theory more fruitful and show that
the Weierstrass al functions give natural descriptions of the Neumann dynamical
system. As in Theorem 10, the configuration qi of i-th particle (or coordinate) is
directly given by the al function,

qi(t) = ali(t).

Here ali(t) is defined in Definition 4 which was originally defined by Weierstrass as
a generalization of Jacobi sn, cn, and dn functions over a elliptic curve to that over
a hyperelliptic curve. As Jacobi sn, cn, dn functions are associated with several
nonlinear phenomena and these relations enable us to recognize the essentials of
the phenomena [18], we expect that this expression also plays a role in hyperelliptic
function case. (Even though it is not well-known, a differential equation which is
known as the sine-Gordon equation plays the central role in the discovery of the
elliptic and hyperelliptic functions [19, p.296], [6, 13].)

In fact the description in terms of the al functions makes several properties of the
Neumann system rather simple. For examples, an essential property of the Neumann
system

∑g
i (q

i(t))2 = 1 is interpreted as a hyperelliptic version of sn2(u)+cn2(u) = 1.
Its hamiltonian is given as a manifestly constant quantity in Theorem 10 (3). Here
we don’t need any theta functions and the theory of the theta functions at all.
Following [2, 3, 4, 5, 19], we give proofs in this article, which basically need only
primitive residual computations. This is in contrast to the previous works, e.g., [15].
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Neumann system and al functions 15

We give our plan of this article. §2 gives a short review of the Neumann system.
In §3, we introduce the hyperelliptic al functions and hyperelliptic ℘ functions.
There we also give a short review of their basic properties following [2, 3, 5, 19]. §4
is our main section, where we give our main theorem. There al function naturally
describes the Neumann system.

Acknowledgement 1. We thank Professor Emma Previato for bringing my atten-
tions up on the Neumann system and Professor Yoshihiro Ônishi for his continual
supports on the studies. He is also grateful to the referee for his crucial comments.

2 Neumann System

We shortly review the Neumann system (q, q̇) ∈ R2g+2 whose Lagrangian and con-
straint condition are given (1) and (2) in Introduction. The constraint (2) means
Φ̇(q) = 0,

g+1∑
i=1

q̇iqi = 0. (3)

The canonical momentum pi to qi is given as

pi =
∂L

∂q̇i
= q̇.

Purely kinematic investigations lead the following proposition [15].

Proposition 2. The hamiltonian of this system is given by

H :=
1
2

g+1∑
i=1

q̇2
i +

1
2

g+1∑
i=1

aiq
2
i , (4)

and the hamiltonian vector field is given by

DH =
∑

q̇i
∂

∂qi
−
∑

aiqi
∂

∂q̇i
+
(∑

[aiq
2
i − q̇2

i ]
)∑

qi
∂

∂q̇i
. (5)

The equation of motion is given by

q̇i = q̇i, q̈i = −(2L + ai)qi. (6)
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16 S. Matsutani

3 Hyperelliptic Functions

In this article, we consider a hyperelliptic curve Cg given by an affine equation [15, 7],

y2 = f(x), f(x) = A(x)Q(x),

A(x) := (x− a1)(x− a2) · · · (x− ag+1),
Q(x) := (x− c1)(x− c2) · · · (x− cg),

where ai’s and ci’s are complex numbers. Let bi := ai (i = 1, · · · , g + 1) and
bg+i+1 := ci (i = 1, · · · , g).

From here we deal with (x1, x2, · · · , xg) belonging to g symmetric product Symg(Cg)
of Cg.

Let us introduce the canonical coordinate u := (u1, · · · , ug) in Cg related to in
the Jacobian Jg of Cg [5],

ui :=
g∑

a=1

∫ (xa,ya)

∞

xi−1dx

2y
.

Here u− := (u1, · · · , ug−1), u = (u−, ug). The Jacobian Jg is given by Cg/Λ for a
certain lattice Λ associated with the periodic matrices of Cg [3, 5].

Due to Abel’s theorem [9], the following proposition holds.

Proposition 3. (u1, u2, · · · , ug) are linearly independent in Cg. In other words,
there are paths in Symg(Cg) so that {ug} is equal to C with fixing u−.

As Mumford studied the Neumann system using UV W -expression of the hyper-
elliptic functions [15], we give U , V and W functions [15],

U(x) =: (x− x1) · · · (x− xg),

V (x) :=
g∑

a=1

yaU(x)
U ′(xa)(x− xa)

, W (x) :=
f(x)− V (x)2

U(x)
.

In this article, we will express the system in terms of the hyperelliptic ℘ functions
and al functions which are written only in terms of the data of the curve. Let us
introduce these functions as follows.

Definition 4. The hyperelliptic ℘gi (i = 1, 2, · · · , g +1) functions of u’s are defined
by

U(x) = xg +
g∑

i=1

(−1)i℘gix
g−i, (7)
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Neumann system and al functions 17

e.g., ℘gg := x1 + · · ·+ xg.
The Weierstrass ali and ali (i = 1, 2, · · · , g) functions are defined by [2, 3, 19],

alr(u) := γralr(u), alr(u) :=
√

U(ar)(u), (8)

where we set γr = 1/
√

A′(ar) in this article. We write

al[i]r (u) :=
∂

∂ui
alr(u), al[i]r (u) :=

∂

∂ui
alr(u).

As the constant factor is less important, we call bath functions al-functions
though the original version defined by K. Weierstrass has another factor in [19].

First we have primitive relations between differentials of al functions and UV W
expressions:

Lemma 5. 1. al[g]
i (u) = −V (ai)(u)

ali(u)
, al

[g]
i (u) = − V (ai)(u)

ali(u)A′(ai)
.

2.
U(x)
A(x)

=
g+1∑
i=1

ali(u)2

x− ai
,

V (x)
A(x)

= −
g+1∑
i=1

ali(u)al
[g]
i (u)

x− ai
,

W (x)
A(x)

=
g+1∑
i=1

al
[g]
i (u)2

x− ai
.

Proof. Noting
∂

∂ug
=

g∑
a=1

2ya

U ′(xa)
∂

∂xa
[4] and

∂

∂xa
U(x) = − U(x)

(x− xa)
, we find that

1
2

∂

∂ug
U(x) = −V (x), which directly gives the relations in 1. The relations in 2 are

obtained from the definition of alr, 1 and the fact that f(ai) vanishes.

The sn and cn functions are defined by sn(u) :=
√

a1 − a3/
√

x− a3 and cn(u) :=√
x− a1/

√
x− a3, which can be alternatively defined by

sn(u + Ω) =
√

x− a3√
a2 − a3

, cn(u + Ω) =
√

x− a2√
a3 − a2

.

As the right hand sides of both definitions correspond to al1 precisely, al functions
should be recognized as an extension of sn, cn functions. As sn and cn functions
have the relations,

sn2(u) + cn2(u) = 1, k2sn2(u) + dn2(u) = 1,

the al function also has similar relations as follows.
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18 S. Matsutani

Proposition 6.
g+1∑
i=1

al2i (u) = 1,

g+1∑
i=1

1
a2

i

[al
[g]
i ]2(u) = 0.

Though this relation was also studied in [15] as a generalization of Frobenius
identity of theta functions, we will prove it by primitive method, without any theta
functions.

Proof. The left hand side is given by

g+1∑
i=1

U(ai)
A′(ai)

=
1
2

g+1∑
i=1

res(ai,0)
U(x)
A(x)

,

since around the finite ramified point (ai, 0) of the curve Cg, we have a local param-
eter t2 = (x− ai) and

res(ai,0)
U(x)
A(x)

dx = res(ai,0)
2U(t2 + ai)tdt

(t2 + ai − a1) · · · t2 · · · (t2 + ai − ag+1)
.

Let us consider an integral over a boundary of polygon expression C0 of Cg,∮
∂C0

U(x)
A(x)

dx = 0,

which gives the relation,

g+1∑
i=1

res(ai,0)
U(x)
A(x)

dx = −res∞
U(x)
A(x)

dx.

At ∞, a local parameter t of Cg is given by x = 1/t2:

res∞
U(x)
A(x)

dx = res∞
1

t2g (1− x1t
2) · · · (1− xgt

2)
1

t2g+2 (1− a1t2) · · · (1− ag+1t2)
−2
t3

dt = −2.

Hence it is proved. Similarly we obtain the relations for al
[g]
r though we should

evaluate W (x)/x2A(x) using Lemma 5 2.

There is a natural relation between al function and ℘gg function

Proposition 7.

∂2

∂u2
g

ali(u) =
∂

∂ug
al

[g]
i (u) =

 2g+1∑
j=1,bi 6=ai

bj − 2℘gg(u)

 ali.
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Neumann system and al functions 19

Proof. This is directly obtained due to Lemma 5 and 8.

Lemma 8.

1
2

∂

∂ug
V (ai) = U(ai)

(
2g+1∑
i=1

bi − ai − 2
g∑

a=1

xa

)
− 1

U(ai)
V (ai)2.

Proof. Here we check the left hand side
∂

∂ug
V (ai):

=
g∑

a,b=1

2ya

U ′(xa)
∂

∂xa

ybU(ai)
U ′(xb)(ai − xb)

=
g∑

a=1

ya

U ′(xa)
∂

∂xa

2yaU(ai)
U ′(xa)(ai − xa)

+
g∑

a 6=b

ya

U ′(xa)
∂

∂xa

2ybU(ai)
U ′(xb)(ai − xb)

= U(ai)
g∑

a=1

[
1

U ′(x)
∂

∂x

(
f(x)U(ai)

U ′(x)(ai − x)

)]
x=xa

+ U(ai)
g∑

a 6=b

f(xa)
U ′(xa)2(ai − xa)2

− U(ai)
g∑

a 6=b

2ya

U ′(xa)
yb

U ′(xb)(ai − xa)

(
1

(ai − xb)
− 1

(xa − xb)

)

=
2g+1∑
i=1

bi − ai − 2
g∑

a=1

xa − U(ai)

 g∑
a 6=b

ya

U ′(xa)(ai − xa)

2

.

Here we used the following relations.

1.
∂

∂xa
U ′(xa) =

1
2

∂2

∂x2
U(x)|x=xa ,

2.
g∑

a 6=b

2ya

U ′(xa)
yb

U ′(xb)(ai − xa)

(
1

(ai − xb)
− 1

(xa − xb)

)

=
g∑

a 6=b

ya

U ′(xa)
yb

U ′(xb)(ai − xa)(ai − xb)
,

3.
[

1
U ′(x)

∂

∂x

(
f(x)

U ′(x)(ai − xb)

)]
x=xa

= res(xa,ya)
f(x)

U(x)2(ai − x)
dx, and
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20 S. Matsutani

4.
2g+1∑
i=1

bi − ai − 2
g∑

a=1

xa =
g∑

a=1

res(xa,ya)
f(x)

U(x)2(ai − x)
dx.

The fourth relation is obtained by an evaluation of the integral∮
∂C0

f(x)
U(x)2(ai − x)

dx.

Remark 9. The Klein hyperelliptic ℘ function obeys the KdV equations [5, 12].

On the other hand,
∂

∂ug
log alr is a solution of the MKdV equation [12] and log alr

obeys the sine-Gordon equations [13]. The relation in Proposition 7 means so-called
Miura transformation,(

∂

∂ug
log ali

)2

+
∂2

∂u2
g

log ali = (L − ai),

where L :=
1
2

(
2℘gg −

∑2g+1
i=1 bi

)
.

4 Neumann system and hyperelliptic al functions

This section gives our main theorem as follows.

Theorem 10. Suppose that configurations of (x1, · · · , xg) ∈ Symg(Cg) are given so
that (ali) belongs to Rg+1, ug ∈ R fixing u− ∈ Rg−1.

1. ali obey the Neumann system, i.e.,

qi(t) = ali(u−, t), q̇i = −al
[g]
i (u−, t), (9)

where the time t of the system is identified with −ug and thus the hamiltonian
vector field is given by

DH :=
d

dt
≡ − ∂

∂ug
.

2. The hamiltonian (4) and the Lagrangian (1) are given by

H =
1
2

(
g+1∑
i=1

ai −
g∑

a=1

ca

)
, L =

1
2

(
2℘gg −

2g+1∑
i=1

bi

)
.
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Neumann system and al functions 21

3. The conserved quantities are ci (i = 1, · · · , g) and

mi := q2
i +

g+1∑
i=1

g+1∑
j=1, 6=i

(qiq̇j − qj q̇i)2

ai − aj
, (i = 1, · · · , g + 1),

which obey relations,

mi =
Q(ai)
A′(ai)

,

g+1∑
i=1

mi = 1,

g+1∑
i=1

aimi = H.

These relations were essentially proved in [15] using UV W expression and the
properties of the theta functions without al functions. However by following the
method [3, 4, 19], we show them directly using nature of al functions without theta
functions. We use only the data of the curve Cg and simple residual computations.
Our method is very primitive in contrast to [15]. Since the theta function has excess
parameters for higher genus case, we believe that our method has some advantage,
at least, for concrete problems of geometry and physics.

Proof. Assumptions are asserted by Proposition 3. 1: Due to Proposition 6, alr’s
obviously obeys the constraint condition Φ(al) = 0 (2) and Φ̇(al) = 0 (3) by differ-
entiating the both sides of the identity in ug. We should check whether they obey
the equation of motion (6), which are proved in Proposition 7 if we assume the form
of the Lagrangian L in 2. 2 is directly obtained by using the relations in Lemma 12.
Finally 3 is proved in Remark 14.

Remark 11. 1. The equation of motion (6) is directly related to Proposition
7, which is connected with the Miura transformation. Further the constraint
(2) satisfies due to the identity of al function as mentioned in Proposition 6.
These exhibits essentials of al functions. Hence the Neumann system should
be expressed by the al functions as some dynamical systems are expressed by
Jacobi sn, cn, dn functions [18].

2. We remark that the hamiltonian depends only upon ai’s and ci’s which deter-
mines the hyperelliptic curve Cg. Thus it is manifest that it is invariant for
the time ug development of the system.

3. There are 2g degrees of freedom as a kinematic system because the constraints
Φ and Φ̇ reduce (2g+2) ones to 2g ones. The independent conserved quantities
mi are g = g + 1− 1; “−1” comes from

∑
mi = 1. Since the sum of mi gives

hamiltonian H, H is not linearly independent conserved quantities. Since
there are other g conserved quantities ci but their sum gives the hamiltonian∑

mi, the dimensional of independent ci is g − 1. However
∑g+1

i=1 q̇2
i /a2

i = 0
compensates the lacking one. Hence the degrees of freedom of this system is
equal to number of the conserved quantities.
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22 S. Matsutani

4. By the definition of ci’s, ci depends upon the initial condition of the Neumann
system whereas ai is fixed as coupling constants of the Neumann system. Thus
Sg := {Cg : y2 = A(x)Q(x) | c1, c2, · · · cg ∈ C} corresponds to the solution
space Ng of the Neumann system if ug ∈ R and (al, al[g]) ∈ R2g+2. The Sg is
a subspace of the moduli Mg of hyperelliptic curves of genus g.

Let us give a lemma and remarks as follows, which are parts of the proofs of the
theorem.

Lemma 12. 1.
g+1∑
i=1

[al
[g]
i (u)]2 = ℘gg(u)−

g∑
a=1

ca.

2.
∑

aiali(u)2 =
g+1∑
i=1

ai − ℘gg(u).

Proof. (1) Due to Lemma 5, we deal with
∮

∂C0

V (x)2

U(x)A(x)
dx = 0 giving

2
g+1∑
i=1

V (ai)2

U(ai)A′(ai)
+

g∑
a=1,ε=±

res(xa,εya)
V (x)2

U(x)A(x)
dx + res∞

V (x)2

U(x)A(x)
dx = 0.

Whereas the third term vanishes, each element in the second term is given by

res(xa,±ya)
V 2(x)

U(x)A(x)
dx =

Q(xa)
U ′(xa)

.

Further we also evaluate an integral,
∮

∂C0

Q(x)
U(x)

dx = 0. The integrand has singular-

ities at (xa,±ya) and infinity. Similar consideration leads us to the identities

g∑
a=1,ε=±

Q(xa)
U ′(xa)

= 2(c1 + · · ·+ cg)− 2(x1 + · · ·+ xg).

Due to these relations, we have the relation 1.

2. Next we consider an integral,
∮

∂C0

x
U(x)
A(x)

dx = 0. A residual computation

gives
g+1∑
i=1

ai
U(ai)
A′(ai)

= −res∞x
U(x)
A(x)

dx. The infinity term gives 2((x1 + · · ·xg)− (a1 +

· · · ag+1)). Hence we also have the relation in 2.
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Neumann system and al functions 23

Remark 13. Using the fact
∂xa

∂ug
=

2ya

U ′(xa)
, we obtain anther form of Lemma 12

[7],
g+1∑
i=1

[al
[g]
i ]2 =

g∑
a,b=1

g(x)a,b
∂xa

∂ug

∂xb

∂ug
, where g(x)a,b := −

g+1∑
i=1

U(ai)
(ai − xa)(ai − xb)A′(ai)

whose off-diagonal part does not vanish for the case genus g > 2 in general.

Remark 14. (Proof of Theorem 10 3). Here we give the conserved quantities of
the Neumann system as a proof of Theorem 10.3. Let us consider,

mi(x) = q2
i +

g+1∑
i=1

g+1∑
j=1, 6=i

(qiq̇j − qj q̇i)2

x− aj
.

Then we have identities

f(x)
A(x)2

≡ U(x)W (x) + V (x)2

A(x)2
=

g+1∑
i=1

mi(x)
x− ai

,

mi = resai

mi(x)
x− ai

= q2
i +

g+1∑
i=1

g+1∑
j=1, 6=i

(qiq̇j − qj q̇i)2

ai − aj
.

The direct computation gives the relations in Theorem 10 3, when we deal with the

integrals of differentials
Q(x)
A(x)

dx,
xQ(x)
A(x)

dx.
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(86b:14017). Zbl 0549.14014.

[16] C. Neumann, De problemate quodam mechanico, quod ad primam integralium
ultraellipticorum classem revocatur, Crelle J. für die reine und ang. Math.,
56(1859), 46–63. ERAM 056.1472cj.

[17] R. J. Schilling, Generalizations of the Neumann System I, Comm. Pure Appl.
Math., XL (1987) 455-522. MR890174 (88k:58059). Zbl 0662.35083.

[18] M. Toda, Daen-kansu-Nyumon (Introduction to Elliptic Function)
Nihonhyouron-sha, 1976 (in japanese).

[19] K. Weierstrass, Zur Theorie der Abelschen Functionen, Crelle J. für die reine
und ang. Math., 47 (1854), 289–306. ERAM 047.1271cj.

******************************************************************************
Surveys in Mathematics and its Applications 3 (2008), 13 – 25

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=504183
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0656.01001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1855358
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1001.70013&format=complete
http://www.ams.org/mathscinet-getitem?mr=770935
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0576.58012&format=complete
http://www.ams.org/mathscinet-getitem?mr=463157
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0531.14001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1510386
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:18.0418.02&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:032.0923cj&format=complete
http://www.ams.org/mathscinet-getitem?mr=1910215
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1040.37063&format=complete
http://www.ams.org/mathscinet-getitem?mr=2076278
http://www.ams.org/mathscinet-getitem?mr=609560
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0455.58018&format=complete
http://www.ams.org/mathscinet-getitem?mr=742776
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0549.14014&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:056.1472cj&format=complete
http://www.ams.org/mathscinet-getitem?mr=890174
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0662.35083&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:047.1271cj&format=complete
http://www.utgjiu.ro/math/sma/v03/v03.html
http://www.utgjiu.ro/math/sma


Neumann system and al functions 25

[20] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge,
Cambridge univ., 1927. MR178117 (31 #2375). Zbl 0951.30002.

8-21-1 Higashi-Linkan, Sagamihara, 228-0811,

Japan.

e-mail: rxb01142@nifty.com

******************************************************************************
Surveys in Mathematics and its Applications 3 (2008), 13 – 25

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=178117
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0951.30002&format=complete
http://www.utgjiu.ro/math/sma/v03/v03.html
http://www.utgjiu.ro/math/sma

	Introduction
	Neumann System
	Hyperelliptic Functions
	Neumann system and hyperelliptic al functions

