Surveys in Mathematics and its Applications

ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 3 (2008), 195 — 209

A SURVEY ON DILATIONS OF PROJECTIVE
ISOMETRIC REPRESENTATIONS

Tania-Luminita Costache

Abstract. In this paper we present Laca-Raeburn’s dilation theory of projective isometric
representations of a semigroup to projective isometric representations of a group [4] and Murphy’s
proof of a dilation theorem more general than that proved by Laca and Raeburn. Murphy applied
the theory which involves positive definite kernels and their Kolmogorov decompositions to obtain
the Laca-Raeburn dilation theorem [6].

We also present Heo’s dilation theorems for projective representations, which generalize Stine-
spring dilation theorem for covariant completely positive maps and generalize to Hilbert C*-modules
the Naimark-Sz-Nagy characterization of positive definite functions on groups [2].

In the last part of the paper it is given the dilation theory obtained in [6] in the case of unitary

operator-valued multipliers [3].

1 Introduction

Throughout this paper the term semigroup will signify a semigroup with unit. A
subsemigroup of a semigroup signifies a subset closed under the operation and con-
taining the unit. We shall usually write the operation multiplicatively and denote
the unit by e.

An involution on a semigroup S is a function s — s* from S to itself having
the properties (st)* = t*s* and (s*)* = s, for all s,t € S. We call a pair consisting
of a semigroup together with an involution a x-semigroup. If for all x € G, there are
s,t € S such that = s~'¢, then we say that S generates G.

A subsemigroup S of a group G is normal if xSz~ C S for all z € G.

A wvon Neumann algebra M is a *-algebra of bounded operators on a Hilbert
space H that is closed in the weak operator topology and contains the identity
operator.

Definition 1. (/3]) Let S be a semigroup with the unit e and let M be a von

2000 Mathematics Subject Classification: 20C25; 43A35; 43A65; 461.45; 47A20.
Keywords: multiplier; isometric projective representation; positive definite kernel; Kolmogorov
decomposition; dilation.
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Neumann algebra on a Hilbert space H. The U(M)-multiplier on S is a U(Z(M))-
valued map defined on S x S satisfying :

(i) w(e,s) =w(s,e) =1;
(ii) w(s,t)w(st,u) = w(s,tu)w(t,u), for all s,t,u € S.

Remark 2. (/3]) If M is a factor, i.e. Z(M) = CI, then the U(M)-multiplier
coincides with the unit circle T-valued multiplier that we shall use in Section 2.

Definition 3. (/3]) Let S be a semigroup with unit, let M be a be a von Neumann
algebra on a Hilbert space H and let w be a U(M)-multiplier on S. A projective
isometric w-representation of S is a map p: S — M having the following properties
foralls,t €S :

(i) p(s) is an isometry and p(e) = 1;

(ii) p(st) = w(s,t)p(s)p(t).
If p(s) is unitary for s € S, we say that p is a projective unitary w-representation.
If p is a projective isometric w-representation of a group G, then p is automatically
a projective unitary w-representation, in fact p(s)* = w(s™1, s)p(s~!) for all s € G.

Remark 4. In particular, if M = B(H), we obtain the definition of the projective
isometric w-representation that we shall use in Section 2.

Definition 5. ([6/) Let X be a non-empty set, let H be a Hilbert space and let
B(H) be the Banach algebra of all bounded operators on H. A map k from X x X
to B(H) is a positive definite kernel if for every positive integer n and 1, ..., x, €
X, the operator matriz (k(xi,z;))ij in the C*-algebra M,(B(H)) is positive, i.e.
Z(k(xi,xj)hj,hi> >0 for all hy,...,h, € H and x1,...,2, € X.

i.J

Definition 6. (/6]) If k can be written in the form k(x,y) = V(z)*V(y), where
V: X — B(H,Hy), for some Hilbert space Hy, then k is automatically positive
definite. Such a map V is said to be a Kolmogorov decomposition of k. Moreover,
if, in addition, Hy is the closed linear span of the set UV(x)H, then V is said to

X
be minimal.

Definition 7. ([3]) Let G be a group, let M be a von Neumann algebra on a Hilbert
space H and let w be a U(M)-multiplier on G. We say that a map ¢: G — M is
w-positive definite if the map k on G x G defined by

“Law(hy)e(@y)

is positive definite. We define a (minimal) Kolmogorov decomposition for ¢ to be

a (minimal) Kolmogorov decomposition for k.

Remark 8. In particular, if M = B(H), we obtain the definition of the w-positive
definite map that we shall use in Section 2.

k(z,y) =w(zx
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2 Dilation theory in the case of projective isometric rep-
resentations on Hilbert spaces with T-valued multi-
pliers

The following theorem shows that an isometric w-representation of S is always the
restriction of a w-representation of S by unitary operators to an invariant subspace.

Theorem 9. (/}]) Suppose w is a multiplier on a normal generating subsemigroup
S of the group G and let p be an isometric w-representation of S on a Hilbert space
H. Then there is a unitary w-representation p’ of S on a Hilbert space H' containing
a copy of H such that

(i) p'(s) leaves H invariant and p'(s)|g = p(s);

(i1) Up’(s)*H is dense in H'.

seS
Proof. Let Hy be the set of functions f: S — H for which there is s € S such that
Fly) =wlys™ 9)p(ys™)(f(5)) (2.1)
for y € Ss.

Such s will be called admissible for f. Note that if s is admissible for f and
r € Ss, then r is also admissible for f, for then Sr C Ss and for all y € Sr,

fy) =wlys™, s)plys ) f(s) =

wlys™ s)w(yr " rs Dplyr Hp(rs™) f(s) =
wlys™ ! s)wlyr™ rs Hw(rs=L, s)p(yr™") f(r) =
w(yr™",r)plyr) f(r),

by Definition 1.

Suppose now f and g are in Hy and s is admissible for both f and g (since S is
normal, the product of an admissible value for f and one for g will do). If y € Ss,
then

(FW),9(y)) = (wlys™",s)p(ys™ ) f(s),w(ys™ ", s)plys " )g(s)) =
= (f(s),9(s))

because p(ys~!) is an isometry and w takes values in the unit circle. Thus (f(s), g(s))
is constant on the set of values of s which are admissible for both functions and we can
define a positive semidefinite sesquilinear functional on Hy by (f, g) = (f(s),g(s)),
where s is any value admissible for both f and g.

Let H' be the Hilbert space completion of Hy under the corresponding seminorm
and notice that this identifies functions which coincide on an admissible set of the
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form Ss. To embed the original Hilbert space H, define for each § € H, the function
§ by §(s) = p(s)§ for s € S. Since p is an isometric w-representation, § satisfies (2.1)
for any s € 5, hence § € Hy and every s € S is admissible for {. The embedding
& — ¢ is isometric because each p(s) is.

Suppose now that f € Hy and ¢t € S and consider the function f; defined by
fi = w(x,t)f(xt) for x € S. If s € S is admissible for f, then normality implies that
st is also admissible for f, and since xt € Sst, for any x € Ss,

fr = w(z, t) f(zt) = w(z, t)w(xt(st) "L, st)p(xt(st) L) f(st) =
w(z, t)w(xs™t, st)p(xs ™) f(st) =
w(z, t)w(s, t)w(zs™t Ls, t)p(zs™h) f(st) =
w(s, t)w(xs™t, s)p(xs™ 1) f(st) =
w(zs™, s)p(as™) fi(s)

which shows that the same s is admissible for f;; in particular f; € Hy.
Evaluating the inner product at a point s admissible for both f and g, we obtain

,S)w(zs™

(i g1) = is), 1(5)) = (5,0 (s), (5, Do) ) = {,9)

thus, p/(t)f = fi for t € S defines an isometry p/(t) on H'.
If ¢ € H, then

—

w(z, w(z, t)p(x)p(t)s = p(x)p(t) = p(t)E(x)
for x € S, so p/(t) restricts to p(t) on the copy of H inside H'. Furthermore,

P (5)0 (D) () = w(@, ) (1) f (xs) = (@, s)o(ws, 1) f(wst) =

w(x, st)w(s,t)f(zst) = w(s, t)p (st) f(x)

forall x € S and f € Hy

Thus p’ is a w-representation of S by isometries and it remains to prove that
these isometries are in fact unitaries. Let ¢ € S and suppose that s is admissible for
g € Hy. Consider the function defined by

 wttht)g(at™h), ifxe St
g1 () = { 0, otherwise

Then st is admissible for g,—1: if z € Sst, then xt~! € Ss is admissible for g and
gt (2) = w(at ™, Og(at ™) = wlat™!, ulat~Ls™, s)p(at s )g(s) =
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w(zt s st)w(s, t)p(xtts Hg(s) =

w(x(st) ™, st)p(x(st) ) gp1 (st)

S0 g1 € Hp. Since

p(t)ge1(2) = w(z, t)g1 (at) = w(z, thw(x, t)g(z) = g(x)

for z € S, p/(t) is surjective for every ¢t € S. Thus p’ is a unitary w-representation
of the subsemigroup S on H’, which finishes the proof of (i).
To prove (ii), assume f € Hy and fix s admissible for f. Then for x € Ss,

§(8)(f) (@) = o, 9) (xs) = w(z, sw(wss ™, s)plass™) f(s) =

p(x)(f(s)) = f(s)(x)
Hence f(z) = (p (5)*]"/(;))(33) for  in the admissible set Ss, which implies f =

—

p'(s)*f(s) in H'. Since Hy is dense in H', (ii) follows. O

For the rest of this section, G will denote a group, w a multiplier of G and S a
normal, generating subsemigroup of G.

The following result is a generalization of Naimark-Sz.-Nagy’s theorem of char-
acterization of positive definite functions (Corollary 2.6, [1]), which can be obtained
by taking w = 1.

Theorem 10. (/6]) Let H be a Hilbert space and ¢ a w-positive definite map on G
with values in B(H). Then there are a Hilbert space H', an operator T € B(H, H')
and a unitary w-representation p of G on H' such that p(x) = T*p(x)T, for all

x € G. Moreover, H' is the closed linear span of the set Up(:r)TH.
xT

Proof. Let V be a minimal Kolmogorov decomposition of ¢ and set H' = Hy . Let
x,1y,z € G. Then it is easy to verify that

w(x_l 1 -1

1

,x) and it follows

2 zn)w(z, 2)w(z™ly) = wl@ 27l 2zy)w(z, y)w(z™

from this that

V(z2)*V(zy) = w27 zr)w(z=127 1, 2y)p(z 27 zy) =

a)w(z Tl yw(z, z)w(z,y)e(r ) = wz)w(z,y)V(z) V()

which can be written w(z, z)V (zz)*w(z,y)V(zy) = V(2)*V(y). Hence, the map
x — w(z,z)V(zz) is another minimal Kolmogorov decomposition for ¢. Conse-
quently, there is a unique unitary p(z) € B(H') such that p(2)V (z) = w(z,x)V (22),
for all z € G (by Lemma 1.4, [1]). Since we have

=w(zx

p(Y)p(2)V (z) = w(y, zz)w(z, 2)V (yzz) =
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w(y, 2)w(yz, )V (yzz) = w(y, 2)p(yz)V (z)
and the set UV(Z‘)H has dense linear span in H’ (by minimality of V'), therefore

p(yz) = w(y,z)p(y)p(z). Thus, the map p : © — p(x) is a projective unitary
representation of G with w as associated multiplier.

Set T'=V(e). Then T*p(z)T = w(x,e)V(e)*V(xe) = V(e)*V(x) = p(x). Also,
p(x)TH = V(z)H and therefore H' is the closed linear span of the set Up(x)TH.

T

O
The projective representation p is called a dilation of .

Theorem 11. (/6]) Let H be a Hilbert space and let p: S — B(H) be a projective
isometric representation with associated multiplier the restriction of w to S. Then
there is a unique extension p' of p to G having the following properties :

(1) p'(zs) = w(z,s)p'(x)p(s) for allz € G and s € S;
(2) p(z)* =w@ "t 2)p (@) for all z € G.
Moreover, p' is w-positive definite.

Proof. Since S is a normal generating subsemigroup of G, the uniqueness of p’ is
clear.

To prove the existence of p/, suppose that x = s~1t, s,t € S, because S generates
G and set p'(x) = w(s L, H)w(s™1,s)p(s)*p(t). We show that p' is well defined.
Suppose that we can also write 2 = u~'v, where u,v € S. Then ut = u(su='v) =
(usu~!)v and since usu~! € S (by the normality of S) and p is a projective isometric
representation with the multiplier w, we have

L w)p(usu)p(v).

plut) = pl(usu™Yv) = w(u, p(u)p(t) = wlusu~
However,

p((usu™)u) = pus) = wlusu™, u)p(usu™)p(u) = wlu, s)p(u)p(s),

L) p(uw)*p(usu™")p(u) = p(s) and therefore,

s0 w(u, s)w(usu™
w(u, s)w(usu=1 u)p(u)* plusu™

Hence,
pls)"plt) = w(u, s)(usu L, w)p(u)” plusu")" p(u)p(t) =

w(u, 8)w(usu=L, u)w(u, t)w(usu™, v)p(u)*plusu™)* plusu™ ) p(v) =

w(u, 8)w(usu=L, u)w(u, t)w(usu™t,v)p(u)*p(v) =
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w(s™H tw(s™L, s)p(s) p(t) =

w(s™ Hw(s™L, s)w(u, s)w(usu=1, w)w(u, t)w(usu™

It remains to verify that

-1

w(s™ Hw(s=L, s)w(u, s)w(usu1, uw)w(u, tw(usu ™, v) = w(u™, v)wu-1u) (2.2)

Since t = su~!v, the relation (2.2) becomes:

w(s™ su ™ v)w(s 1, s)w(u, s)w(usu=t, u)w(u, su=lv)w(usu™t,v) =
= w(uv)w(u 1 u) (2.3)
By Definition 1, we have:
w(s ™ su™) = w(s™ suHw(ssu™ v)w(su—t,v) =
w(s™ su Hw(u ™ v)w(su—1,v)
w(usu™, u) = wlu, s)w(su™t, w)w(u, su=1)
w(usu™,v) = w(su™, v)w(u, su= v)w(u, su=1)
Hence, the relation (2.3) becomes:
w(s™ su™Hw(s™ 1, s)w(su1,u) = w(u1,u), (2.4)

taking into account that the range of w is contained in the unit circle T.
By Definition 1, we get

So the relation (2.4) becomes :

w(s™H su w(s L, suDw(s, u Hw(su1,u) = wu1,u) <=
w(s,u Nw(su™ u) =wu™u) <
w(s,u ') wu ™ u) = wu ™t u) true by Definition 1

Since x = s~'t and p is a projective representation with the multiplier w, the

conditions (1) and (2) can be easily verified using Definition 1 and the definition of
/

0.
It remains to show that p’ is w-positive definite. Thus, if z1,...,z, € G, we
must show positivity of the operator matrix (V;;), where

1 -1

saiw(e; txg)p (a7

Vij = wiay ;).
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We claim that there is an element s € S such that szy,...,sx, € S. To prove

this, write z; = vl-uz-_l, where u;,v; € S. Then, for s = uy...u,, we have sx; =

(VR T (T unvi)ufl, so sx; € S as required.
Consequently, for some elements s,t1,...,t, € S, we have x; = s~ 't;; hence,
since w(t; 's,s71;) = w(t; !, s)w(t; 1, t;)w(s, s~'t;) (by Definition 1), we have

Vij = w(t;y s, s )w(t;ts, s71) 0 (t71) =

(2
N T T =l N T T
w(t; s, s  ti)w(t; s, s~ w(t;  t)w(t; , ti)p(ti) p(t;) =
w(s, s H)w(s, s~1t)p(t:)*p(t;).
Thus, V;; = V;*V;, where V; = w(s, s~1t;)p(t;). Hence, (V;;) is positive. O

Theorem 12. ([6]) Let H be a Hilbert space and p: S — B(H) a projective isomet-
ric representation with associated multiplier the restriction of w to S. Then there

are a Hilbert space H', an isometry T: H — H' and a unitary w-representation
@: G — B(H') such that T*o(s)T = p(s), for all s € S. Moreover, H' is the closed
linear span of the set U o(z)T(H).

zelG

Proof. We obtain the proof by applying Theorem 10 to the w-positive map p’ ex-
tending p that is given in Theorem 11. O

3 Dilation theory in the case of projective isometric rep-
resentations on Hilbert spaces with unitary operator-
valued multipliers

Theorem 13. ([3]) Let X be a non-empty set, let M be a von Neumann algebra,
let k: X x X — M be a positive definite kernel and let V' be a minimal Kolmogorov
decomposition of k. Then there is a x-homomorphism ¢: U(M') — B(Hy) such
that for any x € X,

V(z)a = ¢(a)V(z) a € UM).

Moreover, for each a € U(M'), ¢(a) is unitary on Hy .

Theorem 14. (/3]) Let S be a semigroup and ¢ be the x-homomorphism given by
Theorem 13. For each U(M)-multiplier w on S, ¢(w) is a U(N)-multiplier, where
N is a von Neumann algebra generated by

dU(Z(M))) and p(w)(s,t) = p(w(s,t)) for any s, t € S.

Theorem 15. (/3]) Let M be a von Neumann algebra on a Hilbert space H, let
w be a U(M)-multiplier and let ¢ be a w-positive definite map on G with values in
B(H). Then there are a Hilbert space H', an operator T € B(H, H') and a unitary
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o(w)-representation p of G on H' such that o(x) = T*p(x)T, for all x € G, where
the x-homomorphism ¢ is given as in Theorem 13. Moreover, H' is the closed linear
span of the set Up(x)TH.

T

Proof. Let V be a minimal Kolmogorov decomposition of ¢ and set H' = Hy . Let
x,y,%z € G. Then it is easy to verify that

w(xfl 1 1

27l zr)w(z, p)w(z™ly) = w@ 27 zy)w(z, y)w(z™!, z) and it follows

from this that

V(2x)*V(zy) = k(zzx, 2y) = w(z 27 za)w(z 1271, 29)

*

=w(e™h Y)Wz o) wzywa z)ea™ly) = wz o) wzy)V(e) V(y)

which is equivalent to
V(z)'V(y) = [V(zz)w(z,z)" ]V (zy)w(z,y)"

Hence for each z € G, the map = —— V(zz)w(z,2)* is another minimal Kol-
mogorov decomposition for ¢. Consequently, there is a unique unitary p(z) € B(H')
such that p(2)V(z) = V(zx)w(z,z)*, for all x € G (by Lemma 1.4, [1]). Since we
have

p(y)p(2)V(x) = p(y)V (zz)w(z,2)" = V(yza)w(y, zz) w(z,x)" =

Viyza)w(y, 2) w(yz 2)" = plyz)V(z)w(y, 2)" = pyz)o(w(y, 2)")V ()
and the set UV(x)H has dense linear span in H’ (by minimality of V'), therefore

pyz) = d(w(y, 2))p(y)p(2),y, 2 € G.
Moreover, for any x,y € G, a € U(Z(M)), h € H, we have, by Theorem 13,

p(y)d(a)V (x)h = p(y)V (z)ah =V (yz)w(y, x)"ah =

¢(a)V (yz)w(y, )" h = ¢(a)p(y)V (z)h

Therefore, for any y € G, p(y) € N' and p: G — N’ is a projective unitary ¢(w)-
representation of G, where the von Neumann algebra A is given as in Theorem 14.
Moreover,

Vie)'p(z)V(e) =V(e)'V(x) = kle,x) = o(x)

and p(z)V(e)H = V(z)H. By the minimality of V, the linear span of UV(:L’)H

is dense in H'. Hence, H' is the closed linear span of the set Up(x)V(e)H. Set

x

T = V(e) and the proof is completed. O

The projective unitary ¢(w)-representation p is called a dilation of ¢.
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Remark 16. If in Theorem 15, the von Neumann algebra M = B(H) and ¢(w) = w
a T-valued multiplier, we obtain Theorem 10.

Theorem 17. ([3]) Let w be a U(M)-multiplier on G, let S be a normal generat-
ing subsemigroup of G and let p: S — M be a projective isometric representation
with associated U(M)-multiplier the restriction of w on S. Then there is a unique
extension p' of p to G having the following properties :

(1) p'(zs) = w(z,s)p'(x)p(s) for allz € G and s € S;
(2) pl(z)* =w@ " 2)p(x~Y) for allz € G.
Moreover, p' is w-positive definite.

Proof. Since S is a normal generating subsemigroup of G, the uniqueness of p is
clear.

To prove the existence of p/, suppose that x = s™1t, s,t € S, because S generates
G and set p'(z) = w(s™ !, t)w(s™1, 5)"p(s)*p(t). We show that p’ is well defined.
Suppose that we can also write = v~ v, where u,v € S. Then ut = u(su~'v) =
(usu~')v and since usu™! € S and p is a projective isometric representation with
the multiplier w, we have

1

plut) = p((usu™"Yv) = w(u, )p(w)p(t) = wlusu™", v)p(usu™")p(v).

However,

1

pl(usu™)u) = plus) = wlusu™", u)p(usu™")p(u) = w(u, s)p(u)p(s).

1

s0 w(u, s)*w(usu™t u)p(u)*plusu=)p(u) = p(s).

Hence,

1

pls)p(t) = wlu, s)w(usu™, u)"p(u)*plusu™)* plw)p(t) =

1

w(u, s)w(usu™ w)*w(u, t)*wlusu™, v)p(u)* plusu™)* p(usu™1)p(v) =

Lo)p(u)p(v) =

w(sTHtw(s™ 5) p(s) p(t) =
1

w(u, s)w(usu ™, uw)*w(u, t)*wlusu™

1

*

w(s ™ w(s™, s) w(u, s)wlusu™, u)*w(u, ) wlusu™t, v)p(u)* p(v)

As in the proof of Theorem 11, it can be verified the relation:
Low) w(u, t)*w(usu™
“o)w(u )t (3.1)

w(s™HHw(s™, ) w(u, s)w(usu™

Since z = s~ !t and p is a projective representation with the associated multiplier
w, it can be easily verified the conditions (1) and (2).
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To prove that p’ is w-positive definite, we follow the proof of Theorem 11 and
show the positivity of the operator matrix (V;;), where

Vij = w(a; ' zjw(a; ' @) o (2 ),

for x1,...,xy € G. O

Theorem 18. ([3]) Let w be a U(M)-multiplier on G, let S be a normal generat-
ing subsemigroup of G and let p: S — M be a projective isometric representation
with associated U(M)-multiplier the restriction of w to S. Then there are a Hilbert
space H', an isometry T: H — H' and a unitary ¢(w)-representation ¢ such that
T*o(s)T = p(s), for all s € S. Moreover, H' is the closed linear span of the set

U o(x)TH.

zeG

Proof. We obtain the proof by applying Theorem 15 to the w-positive map p’ ex-
tending p that is given in Theorem 17. O

Remark 19. If in Theorem 18, the von Neumann algebra M = B(H) and ¢(w) = w
a T-valued multiplier, we obtain Theorem 12.

4 Dilation theory in the case of projective isometric
representations on Hilbert C*-modules with T-valued
multipliers

Now we give the generalizations of the notions and theorems in Sections 2 and 3 to
Hilbert C*-modules.

Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner-
product to take values in a C*- algebra rather than in the field of complex numbers.

Definition 20. A pre-Hilbert A-module is a complex vector space E which is also
a right A-module, compatible with the complex algebra structure, equipped with an
A-valued inner product (-,-) : E x E — A which is C -and A-linear in its second
variable and satisfies the following relations:

1.(&m)" = (n,€) for every &, € E;

2. (£,€) >0 for every £ € E;
3. (£,€) =0 if and only if £ = 0.

We say that E is a Hilbert A-module if E is complete with respect to the topology
determined by the norm ||-|| given by [|£]| = v/]|{&, &)]|-
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Definition 21. Let X be a nonempty set, let A be a C*-algebra and let E be a
right Hilbert A-module. A map k: X x X — Lj(F) is a positive definite kernel
if the matriz (k(xs,2;5))i; in My(La(E)) is positive for every integer n and for all
Tly...,Tn €S, where Lo(E) is the algebra of all adjointable module maps from E
to E, i.e. the algebra of all module maps T: E — E for which there is a module
map T*: E — E such that (T¢,n) = (£, T*n), for all{,n € E.

Definition 22. (/2]) If k can be written in the form k(z,y) = V(z)*V (y) for any
z,y € X, where V is a map from X to Ls(E, Ey) for some right Hilbert A-module
Evy, then k is positive definite. Such a map V is said to be the Kolmogorov decom-

position for a kernel k. If the linear span of the set U V(x)E is dense in Ey, then

reX
V' is said to be minimal.

Definition 23. (/2/) Let S be a semigroup. A multiplier on a semigroup S is a
function w: S xS — T such that

(i) w(e,s) =w(s,e) =1;
(71) w(s,t)w(st,u) = w(s,tu)w(t,u)
for all s,t,u € S, where T is the unit circle.

Definition 24. A projective isometric w-representation of S is a map p: S — L4(E)
having the following properties:

(i) p(s) is an isometry and p(e) = 1;
(ii) p(st) = w(s,t)p(s)p(t), for all s,t € S.

Definition 25. Let G be a discrete group and let w be a multiplier on G. A map p
from G into La(E) is said to be w-positive definite if the map k: G x G — L4(F)
defined by k(z,y) = w(z™! z)w(x=L,y)p(x~ty) is positive definite. We define a
(minimal) Kolmogorov decomposition for p to be a (minimal) Kolmogorov decom-
position for k.

The following theorem may be regarded as a generalization of Stinespring dilation
theorem for a covariant completely positive map which determines a positive definite
kernel (Theorem 2.4 and Example 2.2, [7]).

Theorem 26. ([2]) Let G be a group and let w be a multiplier on G. If a map
v: G — LA(FE) is w-positive definite, then there is a right Hilbert A-module F,
T € LA(E, F) and a unitary w-representation p of G on F' such that ¢(z) = T*p(x)T
for all x € G. Moreover, F is the closed linear span of U p(x)TE.

zeG
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Proof. From Definition 25, the map k: G x G — Ly(F) defined by k(xz,y) =
w(z 2w, y)p(z~ly) is positive definite. By (Theorem 2.3, [7]), there is a
minimal Kolmogorov decomposition V' € La(F, Ey) for the map k. That is, V
becomes a minimal Kolmogorov decomposition for ¢ by definition. Take F' = Ey .
For z,y,z € G, it is not difficult to verify that w(z =271, z2)w(z, 2)w(z™t y) =
w27 2wz, y)w(z™t, z).

Then we obtain

V(zz)*V(zy) = w27 zo)w(z=127 1, zy) (a2l 2y) =

w(z™h Dwe=l ywlz, 2wz, y)e(ey) = w(z,y)w(z, o)V (2)V(y)

Hence, the map z —— w(z,z)V (2z) is another minimal Kolmogorov decomposition
for ¢. By (Theorem 2.3, [7]), there is a unitary p(z) € La(F') such that p(z)V(x) =
w(z,z)V(zz) for all z € G.

From a simple computation, we have p(y)p(2)V (z) = w(y, 2)p(yz)V (x). Since V
is minimal, the set U V(z)E is dense in F'. Hence we have p(yz) = w(y, 2)p(y)p(2),

zeG
which shows that the map  — p(x) is a projective unitary representation of G with

w as an associated multiplier. By taking T'= V'(e), we obtain that T*p(x)T = ¢(x)
and p(z)TE =V (x)E for all x € G, which completes the proof. O

The following theorem may be considered as a generalization of Theorem 11.

Theorem 27. ([2]) Let S be a normal generating subsemigroup of a group G, let
w be a multiplier on G, let E be a right C*-module over a C*-algebra A and let
p: S — La(E) be a projective isometric representation with associated multiplier
the restriction of w to S. Then there is a unique extension p' of p to G having the
following properties :

(1) p'(zs) = w(z,s)p'(x)p(s) for allz € G and s € S;
(2) p(z)* =wx ) (@) for all z € G.
Moreover, p' is w-positive definite.

Proof. Since S is a normal generating subsemigroup of G, the uniqueness of p is
clear.

To show the existence of p/, suppose that x = s7't, s,t € S, because S gen-
erates G and set p/(z) = w(s™ t)w(s™1,s)p(s)*p(t). We have to show that the
map p’ is well-defined. For this it must be checked that for x = s~ = u v,
w(s™ w(s™ s)p(s)*p(t) = wlu™! v)w(ut u)p(u)*p(v).

Indeed, we have ut = usx = usu~'v. Then the element usu~' € S because
of normality of S in G. Since the restriction of p to S is a projective w-isometric
representation, we have that

1
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1

w(u, t)p(u)p(t) = p(ut) = plusu™'v) = wlusu™", v)p(usu™")p(v)

However, we have the equality

1

wusu™ u)p(usu™)p(u) = p(us) = wlu, s)p(u)p(s), (4.1)

so that
p(s) = w(u, s)oousu=L, w)p(u)* plusu~1)* pla). (4.2)
Hence, we obtain from equations (4.1) and (4.2) that
w(s™ L w(s™L, 5)p(s)*p(t) =

=w(s L Hw(sL, s)w(u, s)w(usut, w)w(usu™t, v)w(u, t)p(u)*p(v)

Since t = su~'v and the range of w is contained in the unit circle T, we have
that
w(s™Hw(s™t,5) =

w(s™ su™v)w(s™1, s)w(u, s)w(usu=!, w)w(usu™t, v)w(u, su=1v)

Hence, p’ is well-defined and it is a routine to check (1) and (2) (see the analogue
Theorems in Section 2 and 3).
To show that p’ is w-positive definite, we follow the proof of Theorem 11. O

Corollary 28. ([2]) Let G, S and w be as in Theorem 27. If p: S — La(E) is a
projective isometric representation with the restriction of w to S as the associated
multiplier, then there are a right Hilbert A-module F, T € LA(E,F) and a unitary
w-representation ¢ of G on F' such that p(s) = T*p(s)T for all s € S. Moreover, F
is the closed linear span of U o(x)TE.

ze@G

Proof. The proof follows immediately from Theorem 26 and Theorem 27. O

References

[1] D.E. Evans and J.T. Lewis, Dilations of irreversible evolutions in algebraic
quantum theory, Commun. of the Dublin Inst. For Advanced Studies Series A
(Theoretical Physics), No. 24 (1977). MR0489494(58 #8915). Zbl 0365.46059.

[2] J. Heo, Hilbert C*-modules and projective representations associated with multi-
pliers, J.Math.Anal.Appl. 331 (2007), 499-505. MR2306019(2008b:46083). Zbl
1121.46044.

[3] Un Cig Ji, Young Yi Kim and Su Hyung Park, Unitary multiplier and dilation of
projective isometric representation, J. Math. Anal. Appl. 336 (2007), 399-410.
MR2348513. Zbl 1130.47020.

sk sk sk ok sk ok ok s ok sk sk ok s ok sk sk ok sk sk sk s ok sk sk sk s sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk ok ok sk sk ok stk sk s sk sk sk sk sk sk sk sk ok ok sk ok sk sk ok ok sk skok ok sk k

Surveys in Mathematics and its Applications 3 (2008), 195 — 209
http://www.utgjiu.ro/math/sma


http://www.ams.org/mathscinet-getitem?mr=0489494
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0365.46059 &format=complete
http://www.ams.org/mathscinet-getitem?mr=2306019
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1121.46044 &format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1121.46044 &format=complete
http://www.ams.org/mathscinet-getitem?mr=2348513
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1130.47020 &format=complete
http://www.utgjiu.ro/math/sma/v03/v03.html
http://www.utgjiu.ro/math/sma

A survey on dilations of projective isometric representations 209

[4]

M. Laca and I. Raeburn, FExtending multipliers from semigroups, Proc.
Amer. Math. Soc., 123, No. 2 (1995), 355-362. MR1227519(95¢:20101). Zbl
0841.20058.

E. Lance, Hilbert C*-modules, Cambridge Univ. Press, 1995.
MR1325694(96k:46100). Zbl 0822.46080.

G.J. Murphy, Extensions of multipliers and dilations of projective isomet-
ric representations, Proc. Amer. Math.Soc., 125, No. 1 (1997), 121-127.
MR1343714(97¢:46085). Zbl 0860.47003.

G.J. Murphy, Positive definite kernels and Hilbert C*-modules, Proc. of the Ed-
inburg Math. Soc. 40 (1997), 367-374. MR1454031(98e:46074). Zbl 0886.46057.

V.I. Paulsen, Completely bounded maps and dilations, Pitman Research
Notes in Mathematics Series, Longman Scientific and Technical, 1986.
MR0868472(88h:46111). Zbl 0614.47006.

Tania-Luminita Costache

Faculty of Applied Sciences,
University ”Politehnica” of Bucharest,
Splaiul Independentei 313, Bucharest,
Romania.

e-mail: lumycos@yahoo.com

Sk ok koo ok ok >k kR Sk ok kok ok sk ok skook sk sk okok ok sk ok skok sk sk skokok skok kokook sk ok skokook sk kokok sk sk kokook sk okokok sk sk skokosk skoskoskokosk sk skokokoskokokokok skokokok

Surveys in Mathematics and its Applications 3 (2008), 195 — 209
http://www.utgjiu.ro/math/sma


http://www.ams.org/mathscinet-getitem?mr=1227519
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0841.20058 &format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0841.20058 &format=complete
http://www.ams.org/mathscinet-getitem?mr=1325694
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0822.46080 &format=complete
http://www.ams.org/mathscinet-getitem?mr=1343714
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0860.47003 &format=complete
http://www.ams.org/mathscinet-getitem?mr=1454031
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an: 0886.46057 &format=complete
http://www.ams.org/mathscinet-getitem?mr=0868472
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an: 0614.47006 &format=complete
http://www.utgjiu.ro/math/sma/v03/v03.html
http://www.utgjiu.ro/math/sma

	Introduction
	Dilation theory in the case of projective isometric representations on Hilbert spaces with T-valued multipliers
	Dilation theory in the case of projective isometric representations on Hilbert spaces with unitary operator-valued multipliers
	Dilation theory in the case of projective isometric representations on Hilbert C*-modules with T-valued multipliers

