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A SURVEY ON PROJECTIVELY EQUIVALENT
REPRESENTATIONS OF FINITE GROUPS

Tania Luminiţa Costache

Abstract. The paper is a survey type article in which we present some results on projectively

equivalent representations of finite groups.

1 Introduction

The theory of projective representations of finite groups was founded by I. Schur [25]
and the notion of projective representation was suggested by the study of relations
between linear representations of a group and its factor group over a central group.
Schur has associated to every finite group G a finite abelian group M , called the
multiplier of G, consisting of all equivalence classes of factor sets of projective repre-
sentations of G. In the terminology of cohomology theory of groups, the multiplier
M of G is in fact the second cohomology group H2(G,C∗) for the multiplicative
group of the complex number field C under the trivial action of G on C∗.

Curtis and Reiner [7] examined the structure of the multiplier group under the
hypothesis that K is algebraically closed (Theorem 18).

The theory of projective representations of a finite group G suffers from the fact
that the projective character is not in general a class function on G. However, this
difficulty may be overcome by considering characters with respect to simple factor
sets and in Theorem 16, Read [21] showed that given a factor set ω of G there is a
simple factor set γ of G equivalent to it.

Linear representation of a finite group G over a field K can be interpreted as
KG-modules. This interpretation permits the use of module theoretic language, in
which many statements become more natural and their proofs simpler. The same
situation prevails for projective representations in which the role of the group algebra
KG plays the twisted group algebra KωG defined in [13] and Karpilovsky proved
that the study of projective representations with the factor set ω is equivalent to
the study of KωG-modules (Theorem 33). In [13], Karpilovsky observed that the
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theory of projective representations for a fixed factor set ω and with respect to linear
equivalency is analogous to the theory of linear representations. However, when
it comes to the study of projective representations with respect to the projective
equivalency, some of the parallelism with linear representations disappears (Theorem
34). Karpilovsky [13] found a fruitful way of linking H2(G,K∗) and twisted group
algebras of G over K. A convenient way of doing this is to involve the notion of
equivalence of twisted group algebras (Lemma 20).

Schur’s theory of projective representations is founded on the fact that when
K = C representation groups of G over K always exist. This fact allows to reduce
the problem to determine all projective C-representations of G to the determination
of all linear C-representations of a representation group G∗ of G. For arbitrary fields,
representation groups need not exist. For example, let K be an algebraic number
field. Then the group H2(G,K∗) is infinite (Proposition 2.3.20, [13]) and hence a
representation group of G overK cannot exist. In [13], Karpilovsky obtained Schur’s
results as a consequence of more general considerations (Lemma 38, Theorem 39,
Corollary 40).

In [3] Brauer proved that every representation of a finite group G in the field C of
complex numbers is equivalent in C to a representation of G in the field of the |G|-th
roots of unity and in [4] he improved this by replacing |G| by the exponent of G. In
[23], Reynolds considered the corresponding question for projective representations
(Theorem 28, Theorem 29).

Schur [25] proved that for finite abelian groups a factor set is equivalent to the
trivial one if and only if it is symmetric (Theorem 31) and Backhouse [2], cite Ba2
proved the same result for a large class of abelian groups. Backhouse [1] established
a triviality criterion for the factor sets of finite groups (Theorem 41).

Tappe [27] proved a result on the number of irreducible projective represen-
tations of a finite group with respect to a given factor set and a group of linear
characters acting on them (Theorem 56) and determined the number of classes of
projectively equivalent representations and Osima’s result ([18]) on the classes of
linearly equivalent representations (Corollary 48, Corollary 49).

Morris [15] determined the number of inequivalent irreducible projective repre-
sentations with factor set ω of G = ZZn × . . .ZZn (m copies) over C in two special
cases (Theorem 50, Theorem 51) :

1) when β(i, j) = ε, 1 ≤ i < j ≤ m, where β(i, j) = ω(gi, gj)ω
−1(gj , gi), 1 ≤ i <

j ≤ m, gi, gj ∈ G and ε is a primitive n-th root of unity;
2) when n is even and β(i, j) = −1, 1 ≤ i < j ≤ m.
Read [22] developed Clifford’s theory [6] of inducing from normal subgroups of

finite groups for projective representations (Theorem 56, Lemma 57).
In Section 4 we present some of Karpilovsky’s results on irreducible projective

representations of some classes of finite groups which are important in physics: direct
products of cyclic groups of the same order, dihedral groups and symmetric groups
(Theorem 58, Theorem 59, Theorem 60, Theorem 61).
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2 Equivalent factor sets of finite groups

In what follows, G is a finite group and K∗ is the multiplicative group of a field K.

Definition 1. ([25], [7],[23]) A map ω : G×G→ K∗ is a factor set (or multiplier
or 2-cocycle) of G (in K) if

i) ω(x, y)ω(xy, z) = ω(x, yz)ω(y, z) for all x, y, z ∈ G;

ii) ω(x, e) = ω(e, x) = 1 for all x ∈ G, where e is the identity of G.

Remark 2. ([23]) The factor sets of G in K form an abelian multiplicative group,
where

(ωω1)(x, y) = ω(x, y)ω1(x, y).

Definition 3. ([7], [23]) A 1-cochain of G in K is a map µ : G → K∗ such that
µ(e) = 1.

Remark 4. ([23]) The 1-cochains of G in K form an abelian multiplicative group.

Definition 5. ([23]) The coboundary of a 1-cochain µ is the factor set δµ defined
by

(δµ)(x, y) = µ(x)µ(y)µ(xy)−1.

Definition 6. ([25], [7], [23]) Two factor sets ω and ω1 of G in K are called
equivalent (or cohomologous) if there is a 1-cochain µ such that

ω(x, y) = µ(x)µ(y)µ(xy)−1ω1(x, y)

for all x, y ∈ G. We also can say that two factor sets are equivalent in K if their
quotient is a coboundary.

This is an equivalence relation and the equivalence class containing the factor
set ω will be denoted by

{
ω
}
. The set of equivalence classes

{
ω
}
of factor sets form

the second cohomology group H2(G,K∗) (or the multiplier group M(G,K)),
which is a finite abelian multiplicative group.

Lemma 7. ([10]) Let ω and ω1 be two equivalent factor sets of G. Then

ω(x, y)ω(y, x)−1 = ω1(x, y)ω1(y, x)
−1

for any x, y ∈ G such that xy = yx.

Proof. Since ω and ω1 are equivalent, there is a map µ : G→ C∗ such that

ω(x, y) = µ(x)µ(y)µ(xy)−1ω1(x, y)

ω(y, x) = µ(y)µ(x)µ(yx)−1ω1(y, x)

So, ω(x, y)ω(y, x)−1 = µ(x)µ(y)µ(xy)−1ω1(x, y)(µ(y)µ(x)µ(xy)
−1ω1(y, x))

−1 =
= µ(x)µ(y)µ(xy)−1ω1(x, y)µ(y)

−1µ(x)−1µ(xy)ω1(y, x)
−1 = ω1(x, y)ω1(y, x)

−1
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Definition 8. ([21]) Let ω be a factor set of G. An element a ∈ G is said to be
ω-regular if ω(x, a) = ω(a, x) for all x ∈ CG(a), where CG(a) =

{
x ∈ G| xa = ax

}
is the centralizer of a in G.

Remark 9. ([21]) If a is ω-regular, then a is ω1- regular for all factor sets ω1

equivalent to ω.

Proof. Since a is ω-regular, we have ω(x, a) = ω(a, x) for all x ∈ CG(a).
Since ω and ω1 are equivalent, there is a map µ : G→ C∗ such that

ω(x, a) = µ(x)µ(a)µ(xa)−1ω1(x, a)

ω(a, x) = µ(a)µ(x)µ(ax)−1ω1(a, x)

for a ∈ G and x ∈ CG(a).
Hence µ(x)µ(a)µ(xa)−1ω1(x, a) = µ(a)µ(x)µ(ax)−1ω1(a, x) for a ∈ G and x ∈

CG(a). Then ω1(x, a) = ω1(a, x) for a ∈ G and x ∈ CG(a). Therefore, a is ω1-
regular.

Definition 10. ([21]) Given a factor set ω of G, we define

fω(x, a) = ω(x, a)ω(xax−1, x)−1

for all a ∈ G ω- regular and for all x ∈ G.

Lemma 11. ([22]) Let ω be a factor set of G. Then

fω(xy, z) = fω(y, z)fω(x, yzy
−1)

for all x, y, z ∈ G.

Proof. Using Definition 10, the equality is equivalent with
ω(y, z)ω(yzy−1, y)−1ω(x, yzy−1)ω(xyzy−1x−1, x)−1 = ω(xy, z)ω(xyzy−1x−1, xy)−1

We have to verify the following equation :

(2.1) ω(y, z)ω(x, yzy−1)ω(xyzy−1x−1, xy) = ω(xy, z)ω(yzy−1, y)ω(xyzy−1x−1, x)

By Definition 1 i), we have : ω(y, z)ω(x, yzy−1)ω(xyzy−1x−1, xy) =
= ω(y, z)ω(x, yz)ω(xyz, y−1)ω(yz, y−1)−1ω(xyzy−1x−1, xy) =
= ω(x, yz)ω(y, z)ω(xyz, y−1)ω(yz, y−1)−1ω(xyzy−1x−1, xy)

The relation (2.1) becomes
ω(x, yz)ω(y, z)ω(xyz, y−1)ω(yz, y−1)−1ω(xyzy−1x−1, xy) =

= ω(xy, z)ω(yzy−1, y)ω(xyzy−1x−1, x)
So,

(2.2) ω(x, yz)ω(y, z)ω(xyz, y−1)ω(xyzy−1x−1, xy) =
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= ω(xy, z)ω(yzy−1, y)ω(xyzy−1x−1, x)ω(yz, y−1)

Applying Definition 1 i) in the left part of relation (2.1), we obtain:

ω(x, y)ω(xy, z)ω(xyz, y−1)ω(xyzy−1x−1, xy) =

= ω(xy, z)ω(yzy−1, y)ω(xyzy−1x−1, x)ω(yz, y−1)

So,

(2.3) ω(x, y)ω(xyz, y−1)ω(xyzy−1x−1, xy) = ω(yzy−1, y)ω(xyzy−1x−1, x)ω(yz, y−1)

Applying again Definition 1 i) in the left part of relation (2.1), we obtain:

ω(x, y)ω(xyzy−1x−1, x)ω(xy, y−1) = ω(yzy−1, y)ω(xyzy−1x−1, x)ω(yz, y−1)

Hence,

(2.4) ω(x, y)ω(xy, y−1) = ω(yzy−1, y)ω(yz, y−1)

By Definition 1 i), the relation (2.1) becomes

ω(x, yy−1)ω(y, y−1) = ω(yzy−1, yy−1)ω(y, y−1)⇐⇒
⇐⇒ ω(x, e) = ω(yzy−1, e), which is true by Definition 1 ii).

Lemma 12. ([21]) Let ω be a factor set of G and a an ω-regular element. Let
x, y ∈ G be such that xax−1 = yay−1. Then

fω(x, a) = fω(y, a).

Lemma 13. ([21]) Let ω be a factor set of G and let a be ω-regular. If fω(x, a) = 1
for all x ∈ G, then fω(x, yay−1) = 1 for all x, y ∈ G.

Lemma 14. ([21]) Let ω be a factor set of G and let fω(x, a) = 1 for all a ∈ G
ω-regular and for all x ∈ G. Then ω(a, a−1) = ω(xax−1, xa−1x−1) for all ω-regular
a ∈ G and all x ∈ G.

Definition 15. ([21]) The factor set ω is called simple if :

i) fω(x, a) = 1 for all ω-regular a ∈ G and all x ∈ G;

ii) ω(x, x−1) = 1 for all x ∈ G.

Theorem 16. ([21]) Let ω be a factor set of G. Then there is a simple factor set
γ of G equivalent to ω.

Proof. We define µ : G→ K∗ as follows :

Let
{
a1, . . . , at

}
be an ω-regular class of G and let G =

t⋃
i=1

xiCG(a1) such that

ai = xia1x
−1
i for i = 1, . . . , t. We call a1 the representative element of the ω-regular

class containing it.
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Define µ(ai) = fω(xi, a1) for i = 1, . . . , t. Lemma 12 shows that µ is well defined
for any choice of

{
x1, . . . , xt

}
. Similarly, we define µ on the other ω-regular classes.

Further, put µ(x) = 1 if x is not ω-regular. Define

β(x, y) = µ(x)µ(y)µ(xy)−1ω(x, y)

for all x, y ∈ G. Then for all z ∈ G, we have fβ(z, a1) = 1 and hence by Lemma 13,
fβ(z, a) = 1 for all β-regular a ∈ G and all z ∈ G.

Now we define η(z) = β(z, z−1)−
1
2 for all z ∈ G and put

γ(x, y) = η(x)η(y)η(xy)−1β(x, y)

for all x, y ∈ G.
We show that γ(z, z−1) = 1 for all z ∈ G.
γ(z, z−1) = η(z)η(z−1)η(zz−1)−1β(z, z−1) =

= β(z, z−1)−
1
2β(z−1, z)−

1
2 [β(zz−1, (zz−1)−1)−

1
2 ]−1β(z, z−1) =

= β(z, z−1)−
1
2β(z−1, z)−

1
2β(zz−1, zz−1)

1
2β(z, z−1) =

= β(z, z−1)
1
2β(z−1, z)−1

2β(zz
−1, zz−1)

1
2 =

= β(z, z−1)
1
2 [β(z, z−1)

1
2β(zz−1, zz−1)−1]−

1
2 = µ(z)

1
2µ(z−1)

1
2µ(zz−1)−

1
2 =

= ω(z, z−1)
1
2 [µ(z−1)µ(z)µ(z−1z)−1ω(z−1, z)]

1
2 ·

·[µ(zz−1)µ(zz−1)µ(zz−1zz−1)−1ω(zz−1, zz−1)]
1
2 =

= µ(z)
1
2µ(z−1)

1
2µ(e)−

1
2ω(z, z−1)

1
2µ(z−1)−

1
2µ(z)−

1
2

µ(e)
1
2ω(z−1, z)−

1
2µ(zz−1)−

1
2µ(zz−1)−

1
2µ(e)

1
2ω(zz−1, zz−1)

1
2 =

= ω(z, z−1)
1
2ω(z−1, z)−

1
2µ(e)−

1
2ω(zz−1, zz−1)]

1
2 = ω(z, z−1)

1
2ω(z−1, z)−

1
2ω(e, e)

1
2 =

= ω(z, z−1)
1
2ω(z−1, z)−

1
2 , by Definition 1 i).

By Definition 1 i), ω(z, z−1)ω(zz−1, z) = ω(z, z−1z)ω(z−1, z) =⇒
=⇒ ω(z, z−1)ω(e, z) = ω(z, e)ω(z−1, z) =⇒ ω(z, z−1) = ω(z−1, z)

Hence, γ(z, z−1) = 1.

If a is ω-regular, by Lemma 14, follows that fγ(z, a) = 1 for all z ∈ G, because
fγ(z, a) = γ(z, a)γ(zaz−1, z)−1 =
= η(z)η(a)η(za)−1β(z, a)[η(zaz−1)η(z)η(zaz−1z)−1β(zaz−1, z)]−1 =
= η(a)β(z, a)η(zaz−1)−1β(zaz−1, z)−1 =

= β(a, a−1)−
1
2β(z, a)β(zaz−1, (zaz−1)−1)

1
2β(zaz−1, z)−1 =

= β(a, a−1)−
1
2β(z, a)β(zaz−1, za−1z−1)

1
2β(zaz−1, z) =

= β(z, a)β(zaz−1, z)−1 = fβ(z, a) = 1, because, since β is a factor set of G and
fβ(z, a) = 1, we have β(a, a−1) = β(zaz−1, za−1z−1) by Lemma 14.

By definition of γ results that γ is equivalent to ω.

Thus γ is a simple factor set equivalent to ω.

Lemma 17. ([13]) (i) An element x ∈ G is ω-regular if and only if it is β-regular
for any factor set β equivalent with ω.
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(ii) If x ∈ G is ω-regular, then so is any power xq, where q is a positive integer
coprime with the order of x. In particular, if x is ω-regular, then so is x−1.

(iii) If x ∈ G is ω-regular, then so is any conjugate of x.

(iv) If charK = p > 0 and x is a p-element, then x is ω-regular.

Proof. (i) Let x be a ω-regular element and let β be an equivalent factor set with
ω, i.e.
β(y, z) = ω(y, z)µ(y)µ(z)µ(yz)−1 for some µ : G→ K∗.

Then for y ∈ CG(x), β(y, x) = ω(y, x)µ(y)µ(x)µ(yx)−1 =
= ω(x, y)µ(y)µ(x)µ(xy)−1 = β(x, y), proving that x is ω-regular.

The converse is obvious.

(ii) Let y ∈ CG(x
q). Then, since CG(x

q) = CG(x) and since x is ω-regular, we
have y · x = x · y.

Let λ = λ(x) ∈ K∗ be such that xq = λxq. Then yxq = λyxq = λxqy = xqy, so
xq is ω-regular.

(iii) Let z ∈ G and let y ∈ CG(zxz
−1). Then z−1yz ∈ CG(x) and therefore

z−1yz · x = x · z−1yz.

Since z−1yz = tz−1 · y · z for some t = t(y, z) ∈ K∗, it follows that z−1 · y · z ·x =
x · z−1 · y · z.

Hence y commutes with z · x · z−1. Again, since zxz−1 = λz · x · z−1 for some
λ = λ(x, z) ∈ K∗, we see that y commutes with zxz−1. Thus zxz−1 is also ω-regular.

(iv) We may assume that K is algebraically closed. Assume that y ∈ CG(x)and
let S =< y, x >. Then all Sylow l-subgroups of S with l ̸= p are cyclic. Applying
Theorem 2.3.1 and 2.3.2 (iii), [13] together with Corollary 2.3.24, [13], we deduce
that ω|S is a coboundary. Hence KωS ∼= KS is commutative, so y ·x = x ·y, proving
the result.

Theorem 18. ([7]) The second cohomology group H2(G,K∗) has finite order not
divisible by the characteristic of K. The order of every element in H2(G,K∗) is a
factor set of the order of G.

Proof. First let
{
ω
}
∈ H2(G,K∗) and n = [G : 1].

For any x ∈ G, define µ(x) =
∏
y∈G

ω(x, y).

Then from Definition 1 i), we have ω(x, y)n = µ(x)µ(y)
µ(xy) and it follows that

{
ω
}n

=
1. This proves the second statement of the theorem.

Let h be the order of
{
ω
}
in H2(G,K∗) and if charK = p > 0, write h = paq,

where a ≥ 0 and p - q. Then there is a map β : G → K∗ such that for all x, y ∈ G,
we have

(2.5) ω(x, y)h =
β(x)β(y)

β(xy)
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Since K is algebraically closed, K is a perfect field and we may extract p-th roots in

K. We obtain (ω(x, y)q)p
a
=

(
β(x)

1
pa β(y)

1
pa

β(xy)
1
pa

)pa

and because pa-th roots are unique

in K, we have ω(x, y)q =

= β(x)
1
pa β(y)

1
pa

β(xy)
1
pa

which contradicts our assumption that h is the order of
{
ω
}
unless

pa = 1. Therefore p - h. Returning to (2.1), for each x ∈ G we can find µ(x) ∈ K∗

such that µ(x)h = β(x)−1. Upon setting ω′(x, y) = µ(x)µ(y)
µ(xy) ω(x, y), we see that

(ω′(x, y))h = β(x)−1β(y)−1

β(xy)−1 ω(x, y)h = 1.

We have proved that every class
{
ω
}
∈ H2(G,K∗) of order h contains a repre-

sentative ω′ whose values ω′(x, y) are h-th roots of 1 in K. Since h|n, it follows that
there is at most a finite number of classes of factor sets and the order of H2(G,K∗)
is finite. Furthermore, since the order of every element of H2(G,K∗) is not divisible
by the characteristic of K, it follows that charK - [H2(G,K∗) : 1] and the theorem
is proved.

Let ω be a factor set. We denote by KωG the vector space over K with basis{
x| x ∈ G

}
which is in one-to-one correspondence with G. We define multiplication

in KωG distributively using for all x, y ∈ G, x · y = ω(x, y)xy.
The finite dimensional K-algebra KωG is called the twisted group algebra of

G over K. Note that if ω(x, y) = 1 for all x, y ∈ G, then KωG ∼= KG.

Definition 19. ([13]) Let KωG and KλG be twisted group algebras with bases{
x| x ∈ G

}
and

{
x̃| x ∈ G

}
respectively. We say that KωG and KλG are equiv-

alent if there is a K-algebra isomorphism ψ : KωG→ KλG and a map t : G→ K∗

such that for all x ∈ G,ψ(x) = t(x)x̃.

Lemma 20. ([13]) The twisted group algebras KωG and KλG are equivalent if and
only if ω and λ are equivalent. Thus

i) if ω is a coboundary, then KωG ∼= KG.

ii) the map ω ↦−→ KωG induces a bijective correspondence between the elements
of H2(G,K∗) and the equivalence classes of twisted group algebras of G over
K.

Proof. Let an isomorphism ψ : KωG → KλG and a map t : G → K∗ such that
ψ(x) = t(x)x̃, where

{
x| x ∈ G

}
and

{
x̃| x ∈ G

}
are bases of KωG and KλG

respectively. Then
t(xy)x̃y = ψ(xy) = ψ(ω(x, y)−1x · y) = ω(x, y)−1ψ(x)ψ(y) =

= ω(x, y)−1µ(x)µ(y)x̃ỹ = ω(x, y)−1t(x)t(y)λ(x, y)x̃y, so

ω(x, y) = λ(x, y)t(x)t(y)µ(xy)−1,
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proving that ω and λ are equivalent.
Conversely, suppose that ω and λ are equivalent, say

ω(x, y) = λ(x, y)µ(x)µ(y)µ(xy)−1

for some 1-cochain µ : G → K∗. Then the map ψ : KωG → KλG, which is the
extension of x −→ µ(x)x̃ by K-linearity, is certainly a vector space isomorphism. To
prove that ψ preserves multiplication, it is sufficient to check that ψ(x·y) = ψ(x)ψ(y)
for all x, y ∈ G. Because

ψ(x · y) = ψ(ω(x, y)xy) = ω(x, y)µ(xy)x̃y = ω(x, y)µ(xy)λ(x, y)−1x̃ỹ =
= µ(x)µ(y)x̃ỹ = ψ(x)ψ(y), the result follows.

3 Projectively equivalent representations

Definition 21. ([25], [7], [23], [13], [27]) Let G be a finite group with the identity
e, K a field, V a finite dimensional vector space over K and GL(V ) the group of
all automorphisms of V . A projective representation of G with the factor set ω
is a map ρ : G→ GL(V ) such that

i) ρ(x)ρ(y) = ω(x, y)ρ(xy) for all x, y ∈ G;

ii) ρ(e) = 1V .

If we identify GL(V ) with GL(n,K), where n = (V : K), the resulting map is
called a projective matrix representation of G over K. We’ ll treat the terms ”pro-
jective representation” and ”projective matrix representation” as interchangeable.

A linear representation is a projective representation with ω(x, y) = 1 for all
x, y ∈ G.

Definition 22. ([23], [9], [13], [27]) Let ρ1 and ρ2 be two projective representations
of G, ρi : G → GL(Vi), i = 1, 2. ρ1 and ρ2 are called projectively equivalent if
there are a 1-cochain µ : G→ K∗ and a vector space isomorphism f : V1 → V2 such
that

ρ2(x) = µ(x)f−1ρ1(x)f

for all x ∈ G.
If µ(x) = 1 for all x ∈ G, then ρ1 and ρ2 are called linearly equivalent.

In terms of matrix representations, two representations ρi : G → GL(n,K), i =
1, 2 are projectively equivalent if there are a 1-cochain µ : G → K∗ with µ(e) = 1
and a matrix P ∈ GL(n,K) such that ρ2(x) = µ(x)P−1ρ1(x)P for all x ∈ G.

Remark 23. ([13]) If ω1 is the factor set for ρ1 and ω2 is the factor set for ρ2, then
the projective equivalence of ρ1 and ρ2 yields

µ(xy)ω2(x, y) = µ(x)µ(y)ω1(x, y)

for all x, y ∈ G.
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Proof. Since ρ1 and ρ2 are projectively equivalent, there are a 1-cochain µ : G→ K∗

and a vector space isomorphism f : V1 → V2 such that

ρ2(x) = µ(x)f−1ρ1(x)f

ρ2(y) = µ(y)f−1ρ1(y)f

ρ2(xy) = µ(xy)f−1ρ1(xy)f

for all x, y ∈ G.
Since ρ1 and ρ2 are projective representations projectively equivalent, we have
ω2(x, y)ρ2(xy) = ρ2(x)ρ2(y) = µ(x)f−1ρ1(x)fµ(y)f

−1ρ1(y)f =
= µ(x)µ(y)f−1ρ1(x)ρ1(y)f = µ(x)µ(y)f−1ω1(x, y)ρ1(xy)f .

Then ω2(x, y)µ(xy)f
−1ρ1(xy)f = µ(x)µ(y)f−1ω1(x, y)ρ1(xy)f =⇒

=⇒ ω2(x, y)µ(xy) = µ(x)µ(y)ω1(x, y)

Remark 24. ([23]) It is obvious that linearly equivalent projective representations
have the same factor set.

Remark 25. ([13]) If ρ1 and ρ2 are projectively equivalent and have the same factor
set, then the 1-cochain µ is a homeomorphism from G into K∗.

Proof. By Definition 22, there are a 1-cochain map µ : G→ K∗ and a vector space
isomorphism f such that µ(e) = 1 and

ρ2(x) = µ(x)f−1ρ1(x)f

ρ2(y) = µ(y)f−1ρ1(y)f

ρ2(xy) = µ(xy)f−1ρ1(xy)f

for all x, y ∈ G.
Since ρ2 is a projective representation with the factor set ω and ρ1 and ρ2 have the

same factor set ω, we get that ρ2(x)ρ2(y) = ω2(x, y)ρ2(xy) = ω2(x, y)µ(xy)f
−1ρ1(xy)f =

= µ(xy)f−1ω2(x, y)ρ1(xy)f = µ(xy)f−1ω1(x, y)ρ1(xy)f = µ(xy)f−1ρ1(x)ρ1(y)f
On the other hand,

ρ2(x)ρ2(y) = µ(x)f−1ρ1(x)fµ(y)f
−1ρ1(y)f = µ(x)µ(y)f−1ρ1(x)ρ1(y)f

Therefore, µ(xy)f−1ρ1(x)ρ1(y)f = µ(x)µ(y)f−1ρ1(x)ρ1(y)f =⇒ µ(xy) = µ(x)µ(y)
for all x, y ∈ G.

Lemma 26. ([13]) (a) Let ρi, i = 1, 2 be two projective representations Vi, i = 1, 2
with the factor sets ωi, i = 1, 2. If ρ1 is projectively (respectively, linearly) equivalent
to ρ2, then ω1 is equivalent (respectively, equal) to ω2. Furthermore, if ω1 = ω2, then
any map µ : G→ K∗ satisfying the relation in Definition 22 is a homomorphism.

(b) Let ρ1 be a projective representation V with the factor set ω1. Then for any
factor set ω2 that is equivalent to ω1 there is a projective representation ρ2 V with
the factor set ω2 which is projectively equivalent to ρ1. In particular, if ω1 is a
coboundary, then ρ1 is projectively equivalent to a linear representation.
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Proof. (a) This assertion is proved in Remark 23 and Remark 25.

(b) Since ω2 is equivalent to ω1, by Definition 6, there is a 1-cochain µ : G→ K∗

such that µ(e) = 1 and ω2(x, y) = µ(x)µ(y)µ(xy)−1ω1(x, y) for all x, y ∈ G.
For all x ∈ G, define ρ2 : G→ GL(V ) by ρ2(x) = µ(x)ρ1(x).

Since ρ1 is a projective representation with the factor set ω1, we have ρ1(x)ρ1(y) =
ω1(x, y)ρ1(xy) for all x, y ∈ G, that is ω1(x, y) = ρ1(x)ρ1(y)ρ1(xy)

−1 for all x, y ∈ G.
So, ω2(x, y) = µ(x)µ(y)µ(xy)−1ρ1(x)ρ1(y)ρ1(xy)

−1 =
= µ(x)ρ1(x)µ(y)ρ1(y)µ(xy)

−1ρ1(xy)
−1 =

= ρ2(x)ρ2(y)ρ2(xy)
−1. This means that ρ2 is a projective representation with the

factor set ω2.

Definition 27. ([23]) The restriction ω|S of a factor set ω of G to a subgroup S
is defined by restricting its arguments to S. If η is a factor set of a quotient group
G/H in K, the inflation of η to G is the factor set inf η of G in K defined by
(inf η)(x, y) = η(xH, yH).

Theorem 28. ([23]) Let H be a normal subgroup of a finite group G and let ω be
a factor set of G/H in C. Then there is a factor set η of G/H such that

i) ω is equivalent to η in C;

ii) the values of η are |G|-th roots of unity;

iii) if S is a subgroup of G, then every projective representation of S in C with
the factor set (inf η)|S or (inf η)−1|S is linearly equivalent in C to a projective
representation of S in the field K of the |G|-th roots of unity.

Proof. Let r be the order of the equivalence class
{
inf ω

}
of inf ω in H2(G,C∗).

Then this class also contains at least one factor set ε of G such that ε itself has
order r in the multiplicative group of factor sets of G in C (by Theorem 53.3, [7]).
Here

(3.1) ε = (δµ)(inf ω)

for some 1-cochain µ of G in C.

Using an adaptation of an argument of Schur, [25], let A be the character group
of the multiplicative cyclic group generated by ε; A is cyclic of order r.

For any x, y ∈ G, let ax,y ∈ A be the character such that ax,y(ε
i) = ε(x, y)i.

Then the ordered pairs (a, x), a ∈ A, x ∈ G form a group G∗ under the multiplication
(a, x)(b, y) = (abax,y, xy). If A∗ consists of the pairs of form (a, 1) and S∗ consists
of all pairs (a, s) with s ∈ S, then clearly A∗ ⊆ Z(G∗), A∗ ∼= A,G∗/A∗ ∼= G and
S∗/A∗ ∼= S.

For any linear character λ of G∗, λ(a, 1) = aj(ε) for some j and for all a ∈ A.
In particular, λ(ax,y, 1) = ε(x, y)j . Since λ(1, x)λ(1, y) = ε(x, y)jλ(1, xy), we have
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{
inf ω

}j
=

{
ε
}j

= 1, so that r divides j and λ|A∗ = 1; since λ is arbitrary,
A∗ ⊆ (G∗)′.

To each projective representation ρ of S in C with the multiplier ω|S, there
corresponds an ordinary representation π of S∗ defined by π(a, x) = a(ω)ρ(x). By
Theorem 3, [23] applied to G∗ we see that π is equivalent to a representation of S∗ in
K, since |G∗ : A∗| = |G|. Then ρ is linearly equivalent to a projective representation
of S in K. The same holds true for projective representations with the factor set
ω−1|S.

The order r of
{
ε
}

=
{
inf ω

}
divides the order h of the class

{
ω
}

of ω in
H2(G/H,C∗). But h divides |G : H| by [7]. Hence

(3.2) ε|G:H| = 1.

This proves the theorem in the case H = 1, by taking η = ε. But in general we must
argue further, since ε may not be the inflation of a factor set of G/H.

Since ω(1, 1) = 1, (3.1) implies that (δµ)|H = ε|H.
By (3.1), ((δµ)|H)|G:H| = 1. In other words, (µ|H)|G:H| is a linear character of

H. Therefore,

(3.3) (µ|H)|G| = ((µ|H)|G:H|)|H| = 1.

For each z ∈ G/H, choose a representative gz ∈ g such that gzH = z with
g1 = 1.

A 1-cochain γ of G/H is defined by setting γ(z) = µ(gz). We show that the
factor set η = (δγ)ω of G/H satisfies conditions i), ii) and iii).

Condition i) holds by definition.
For the 1-cochain ν = (inf γ)µ−1 of G, whenever h ∈ H and z ∈ G/H we have

ν(hgz) = γ(z)µ(hgz)
−1 = µ(gz)µ(hgz)

−1.
But by (3.1), ε(h, gz) = (δµ)(h, gz)ω(1, z) = µ(h)µ(gz)µ(hgz)

−1, so that ν(hgz) =
µ(h)−1ε(h, gz).

By (3.1) and (3.1) both factors on the right are |G|-th roots of unity. Hence

(3.4) ν|G| = 1.

By (3.1) and the definitions of η and ν,

(3.5) inf η = (inf(δγ))(inf ω) = (δ(inf γ))(δµ)−1ε = (δν)ε

Then by (3.1) and (3.1), η|G| = 1, which proves ii).
Corresponding to each projective representation τ of S with factor set (inf η)|S,

we can define a projective representation ρ with factor set ε|S by writing ρ(x) =
ν(x)−1τ(x), x ∈ S by (3.1). We have shown that ρ is linearly equivalent to a projec-
tive representation over K. But for any matrix U over C such that U−1ρ(x)Uρ lies
in K for all x ∈ S, U−1τ(x)U also lies in K, by (3.1).

This proves the part of iii) concerning (inf η)|S; the rest of iii) follows from
similar arguments.
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This theorem implies that every projective representation of S in C with factor
set (inf ω)|S is projectively equivalent in C to a projective representation of S in K
with factor set (inf η)|S, which gives us the following theorem:

Theorem 29. ([23]) Every projective representation ρ of G in C is projectively
equivalent in C to a projective representation π of G in the field of the |G|-th roots
of unity. π can be chosen so that its factor set takes on only |G|-th roots of unity as
values and so that it is inflated from any quotient group G/H from which the factor
set of ρ is inflated.

Definition 30. ([13]) The projective representation ρ on the space V is called ir-
reducible if 0 and V are only subspaces of V which are sent into themselves by all
the transformations ρ(x), x ∈ G.

Theorem 31. ([25], [1]) Let ω be a symmetric factor set of the abelian finite group
G and suppose that there is at least one irreducible unitary projective representation
of G with the factor set ω. Then ω is equivalent with the trivial factor set.

Proof. Let ρ be an irreducible unitary projective representation of G with the factor
set ω. Then

(3.6) ρ(x)ρ(y) = ω(x, y)ρ(xy)

for all x, y ∈ G.
Equation (3.1) holds if x and y interchanges and by hypothesis ω(x, y) = ω(y, x)

and xy = yx, it follows that ρ(x)ρ(y) = ρ(y)ρ(x) for all x, y ∈ G. But ρ is irreducible
and unitary, so from Schur’s lemma ρ(x) is equal to a scalar multiple λ(x) of the
identity. Then λ(x)λ(y) = ω(x, y)λ(xy), which means that ω is equivalent with the
trivial factor set.

Let A be an associative K-algebra with basis
{
ux| x ∈ G

}
such that uxuy =

ω(x, y)uxy, x, y ∈ G and ω(x, y) ∈ K∗. The associativity of A implies that for all
x, y, z ∈ G, ω(x, y)ω(xy, z) = ω(y, z)ω(x, yz). By making a diagonal change of basis,
if necessary, we may assume that for all x ∈ G,ω(x, 1) = ω(1, x) = 1, so that ω is a
factor set. Thus A is identifiable with KωG.

Lemma 32. ([13]) Let A be a K-algebra and let f be a map of G into the unit group
of A which satisfies f(x)f(y) = ω(x, y)f(x, y) (x, y ∈ G). Then the map f∗ : KωG→
A defined by f∗(

∑
αxx) =

∑
αxf(x) is a homomorphism of K-algebras.

Proof. Since f∗ is the extension of x −→ f(x) by K-linearity, f∗ is a vector space
homomorphism. To prove that f∗ preserves multiplication it is sufficient to check it
on the basis elements x, x ∈ G. Since f∗(x · y) = f∗(ω(x, y)xy) = ω(x, y)f(xy) =
f(x)f(y) = f∗(x)f∗(y), the result follows.
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Theorem 33. ([13]) There is a bijective correspondence between projective repre-
sentations of G with factor set ω and KωG-modules. This correspondence preserves
sums and maps bijectively linearly equivalent (irreducible) representations into iso-
morphic (irreducible) modules.

Proof. Let ρ be a projective representation of G with the factor set ω on the space
V . Due to Lemma 32, we can define a homomorphism f : KωG → EndK(V ) by
setting f(x) = ρ(x) and extending by linearity. Hence V becomes a KωG-module
by setting (

∑
αxx)v =

∑
αxρ(x)v (αx ∈ K,x ∈ G, v ∈ V ).

Conversely, given a KωG-module V and hence a homomorphism f : KωG →
EndK(V ), define ρ(x) = f(x). Then ρ(x) ∈ GL(V ) since x is a unit of KωG.
Furthermore, ρ(x)ρ(y) = f(x)f(y) = f(x ·y) = f(ω(x, y)xy) = ω(x, y)ρ(xy), so that
ρ is a projective representation with the factor ω on V . This sets up a bijective
correspondence between projective representations with the factor set ω and KωG-
modules.

A subspace W of V is invariant under all ρ(x) if and only if W is a KωG-
submodule of V . Hence the correspondence preserves sums and maps bijectively
irreducible representations into irreducible modules.

We observe that a K-isomorphism f : V1 → V2 of KG-modules is a KωG-
isomorphism if and only if xf(v) = f(xv) for all x ∈ G, v ∈ V1.

Suppose that ρi : G → GL(Vi), i = 1, 2 are two projective representations with
the factor set ω. Then ρ1 is linearly equivalent to ρ2 if and only if there is a K-
isomorphism f : V1 → V2 such that ρ2(x)f = fρ1(x) for all x ∈ G. The latter is
equivalent to ρ2(x)f(v) = fρ1(x)v or to xf(v) = f(xv) for all g ∈ G, v ∈ V1. Thus
two projective representations with the factor set ω are linearly equivalent if and
only if the corresponding modules are isomorphic.

Theorem 34. ([13]) Let m be the exponent of G/G′. Then the number n(G,K) of
projectively nonequivalent irreducible projective representations of G over K is finite
if and only if the group K∗/(K∗)mµ(K∗) is finite. In particular,

i) the numbers n(G,C∗) and n(G,R∗) are finite;

ii) the number n(G,K∗) is infinite whenever K is an algebraic number field and
G ̸= G′.

Proof. Due to Theorem 33, for any factor set ω there is an irreducible representation
of G over K with this factor set. The same theorem also implies that the number
of projectively nonequivalent irreducible projective representations with the factor
set ω cannot exceed the number of nonisomorphic KωG-modules. Since the latter
is finite, Lemma 26 implies that n(G,K) is finite if and only if H2(G,K∗) is also.

The assertion (i) and (ii) can be deduced by Theorem 2.3.2, Proposition 2.3.20
(ii) and the remark preceding Proposition 2.3.20, [13].
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Definition 35. [13] Let ω be the factor set of G and α be the factor set of G/N ,
where N is a normal subgroup of G such that there is a K-algebra homomorphism
f : KωG → Kα(G/N). Then f is called the natural homomorphism if for all
x ∈ G, Suppf(x) = xN .

Of course, at the expense of replacing ω by an equivalent factor set, the latter
equality can be strengthened by f(x) = xN . Indeed, write f(x) = λ(x)xN for some
λ(x) ∈ K∗. Then setting x̃ = λ(x)−1x, we have f(x̃) = xN . The latter, however,
does not imply that the same can be achieved leaving ω unchanged and replacing α
by an equivalent factor set. This is so since the values of λ(x) need not be constant
on the cosets of N .

Lemma 36. ([13]) Let N be a normal subgroup of G, let ω be a factor set of G and
α a factor set of G/N . Then KωG admits the natural homomorphism f : KωG →
Kα(G/N) if and only if ω is equivalent to inf α.

Proof. Suppose that f is the natural homomorphism. By the foregoing, replacing ω
by an equivalent factor set yields f(x) = xN . Thus ω is equivalent with inf α, by
Theorem 2.7 (i), [13].

Conversely, assume that ω is equivalent with inf α, say ω = (δλ) inf α for some
λ : G → K∗. Setting x̃ = λ(x)x, it follows that x̃ỹ = inf α(x, y)x̃y, x, y ∈ G.
Applying Theorem 2.7 (i), [13], we deduce that the map x̃ ↦−→ xN extends to a
K-algebra homomorphism f : KωG→ Kα(G/N). Since f(x) = λ(x)−1xN , we have
Suppf(x) = xN for all x ∈ G as required.

Definition 37. ([13]) Let 1 −→ A −→ G∗ −→ G −→ 1 be a central group extension
and let Γ be a linear representation of G∗ on the vector space V . Assume that for
all a ∈ A, Γ(a) is a scalar multiple of the identity transformation. If µ is a section
of f , then the map ρ : G → GL)V ) defined by ρ(x) = Γ(µ(x)) is easily seen to be a
projective representation. We shall refer to ρ as a projective representation lifted
to Γ. We shall also say that a projective representation ρ can be lifted to G∗ if ρ
is lifted to Γ for some linear representation Γ of G∗.

We denote the torsion subgroup of K∗ by t(K∗). We fix c ∈ H2(G,A) together
with a finite central extension E : 1 −→ A −→ G∗ −→ G −→ 1 associated with it. If
µ is a section of f , then the map β : G×G→ A defined by β(x, y) = µ(x)µ(y)µ(xy)−1

is a factor set whose cohomology class β coincides with c. Given χ ∈ Hom(A,K∗),
the map λ : G × G → K∗ defined by λ(x, y) = χ(β(x, y)) is a factor set such that
λ is the image of χ under the transgression map Tra: Hom(A,K∗) → H2(G,K∗)
associated with c.

Expressed otherwise, Tra(χ) = χ(c), where χ is the natural homomorphism
H2(G,A) −→ H2(G,K∗) induced by χ.

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 425 – 458

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


440 Tania Luminiţa Costache

Because A is finite, so is Hom(A,K∗) and therefore Tra(χ) ∈ H2(G, t(K∗)).
Consequently, we may regard the transgression map as a homomorphism

τ : Hom(A,K∗)→ H2(G, t(K∗)).

Lemma 38. ([13]) A projective representation ρ : G → GL(V ) with the factor set
ω is projectively equivalent to one that can be lifted to G∗ if and only if ω ∈ Imτ .

Proof. We may assume by Lemma 26 i) that ρ is lifted to a linear representation Γ
of G∗. Then Γ(a) = χ(a) · 1A, a ∈ A for some χ : A → K∗ and there is a section µ
of f such that ρ(x) = Γ(µ(x)) for all x ∈ G.

Because Γ is a linear representation, it follows that χ ∈ Hom(A,K∗).

Setting β(x, y) = µ(x)µ(y)µ(xy)−1, x, y ∈ G, we deduce that

ω(x, y) = ρ(x)ρ(y)ρ(xy)−1 = Γ(µ(x))Γ(µ(y))Γ(µ(xy))−1 =
= Γ(µ(x)µ(y))Γ(µ(xy))−1 = Γ(β(x, y)µ(xy))Γ(µ(xy)−1) = χβ(x, y) whence ω ∈
Imτ .

Conversely, assume that ω ∈ Imτ .
Owing to Lemma 26 i), we may assume that there is a section µ of f such that

for β(x, y) = µ(x)µ(y)µ(xy)−1, ω(x, y) = χ(β(x, y)) for some χ ∈ Hom(A,K∗),
x, y ∈ G.

Now each element y of G∗ can be uniquely written in the form y = aµ(x) with
a ∈ A, x ∈ G.

Define a map Γ: G → GL(V ) by Γ(y) = χ(a)ρ(x). Then ρ(x) = Γ(µ(x)), each
Γ(a), a ∈ A is a scalar multiple of the identity transformation and yi = aiµ(xi), i =
1, 2, ai ∈ A, xi ∈ G, we have Γ(y1y2) = Γ(a1a2β(x1, x2)µ(x1, x2)) =
= χ(a1)χ(a2)ω(x1, x2)ρ(x1, x2) = χ(a1)χ(a2)ρ(x1)ρ(x2) = Γ(y1)Γ(y2).

Theorem 39. ([13]) There is a finite central extension 1 −→ A −→ G∗ −→ G −→ 1
such that any projective representation of G with the factor set ω, ω ∈ H2(G, t(K∗))
is projectively equivalent to one that can be lifted to G∗. Furthermore, if each c ∈
H2(G, t(K∗)) contains a factor set whose order is equal to the order of c, then
A ∼= H2(G, t(K∗)).

Proof. Because H2(G, t(K∗)) is a finite abelian group (Theorem 2.3.22, [13]), it can
be written in the form H2(G, t(K∗)) = ⟨c1⟩ × ⟨c2⟩ × . . .× ⟨cm⟩.

Let ωi be a factor set in ci. Since G is finite and since the values of ωi are roots
of 1, ωi is of finite order di, 1 ≤ i ≤ m. Let Ai be the group of all di-th roots of 1 in
K∗, let A = A1 × . . .×Am. We may always choose ωi such that Ai

∼= ⟨ci⟩ in which
case A ∼= H2(G, t(K∗)).

Let χi : H
2(G,Ai) → H2(G, t(K∗)) be the homomorphism induced by the nat-

ural injection χi : Ai → t(K∗). Since ωi is an Ai-valued factor set, there is βi ∈
H2(G,Ai) such that χi(βi) = ci, 1 ≤ i ≤ m. Let β ∈ H2(G,A) be the image
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of β1 × β2 × . . . βm under the natural isomorphism
m∏
i=1

H2(G,Ai) −→ H2(G,A)

and let E : 1 −→ A −→ G∗ −→ G −→ 1 be a central extension associated
with β. Due to Lemma 38, the result will follow once we verify that the trans-
gression map τ : Hom(A,K∗) → H2(G, t(K∗) associated with β is surjective. Let
χ̃i ∈ Hom(A,K∗) be defined by (a1, a2, . . . , an) ↦−→ χi(ai), ai ∈ Ai. Then we see that
τ(χ̃i) = ci, i ≤ i ≤ m. Because the ci generate H

2(G, t(K∗)), the result follows.

Corollary 40. ([13]) The following conditions are equivalent:

(i) there is a finite central extension 1 −→ A −→ G∗ −→ G −→ 1 such that any
projective representation of G is projectively equivalent to one that can be lifted
to G∗;

(ii) H2(G,K∗) = H2(G, t(K∗));

(iii) K∗ = (K∗)mt(K∗), where m is the exponent of G/G′.

Proof. That (i) implies (ii) is a consequence of Lemma 38 and the converse is true
by Theorem 39.

To prove that (ii) is equivalent to (iii), set A = K∗/t(K∗). By Theorem 2.3.21,
[13], (ii)holds if and only if H2(G,A) = 1. The latter, in view of Lemma 2.3.19, [13]
is equivalent to A = An for all n such that Zn is a direct factor of G/G′. Since Zm is
a direct factor of G/G′ and since Am ⊆ An for all n|m, we conclude that (ii) holds if
and only if Am = A. Because the latter is equivalent to (iii), the result follows.

Let T denote the multiplicative group of all complex numbers of unit modulus.

Let ω : G×G→ T be a factor set of G. We define a group structure Gω on the
set G× T by requiring that

(x, z1)(y, z2) = (xy, ω(x, y)z1z2)

for all x, y ∈ G and for all z1, z2 ∈ T.
Gω is a group having a central subgroup T0 =

{
(e, z)| z ∈ T

}
isomorphic to T

such that Gω/T0 isomorphic to G, where e is the identity of G. Gω is called the
central extension of G by ω. It is straightforward to show that there is a natural
isomorphism between G and a subgroup of Gω if and only if ω belongs to the trivial
cohomology class.

Theorem 41. ([1]) Let G be a finite group and ω a factor set of G. Then ω is
equivalent to the trivial factor set if and only if (Gω)′ ∩ T0 =

{
(e, 1)

}
, where (Gω)′

is the commutator subgroup of Gω.
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Proof. Suppose that ω is equivalent to the trivial factor set. That is, for all x, y ∈ G,
ω(x, y) = µ(xy)

µ(x)µ(y) , for some T-valued function µ. We find that the commutator of

(x, z1) and (y, z2) is given by

(x, z1)(y, z2)(x, z1)
−1(y, z2)

−1 = (xyx−1y−1, µ(xyx−1y−1)).

Furthermore, if c1 and c2 are two commutators in G′, we have

(c1, µ(c1))(c2, µ(c2)) = (c1c2, µ(c1c2)).

Thus G′ and (Gω)′ are isomorphic under the map (c, µ(c))←→ c.
Hence (Gω)′ ∩ T0 =

{
(e, 1)

}
.

Conversely, suppose (Gω)′∩T0 =
{
(e, 1)

}
. Let π denote the natural epimorphism

of Gω onto the abelian factor group Gω/(Gω)′ and let πT0 denote the restriction of
π to T0. By the first isomorphism theorem the image of T0 under πT0 is isomorphic
to T0/KerπT0 . Thus ImπT0

∼= T0/KerπT0 = T0/(Kerπ) ∩ T0 = T0/(Gω)′ ∩ T0 =
T0/

{
(e, 1)

}
= T0.

This shows that the abelian group Gω/(Gω)′ contains a subgroup isomorphic to
T, the circle group. Identifying this subgroup with T, let us write π(e, z) = z ∈ T.

We now claim that Gω/(Gω)′ has a linear character χ̂(z) = z for all z ∈ T.
Finally χ defined by χ(x, z) = χ̂[

{
π(x, z)

}
] is a linear character of Gω, whereupon

ω(x, y) = λ(x)λ(y)
λ(xy) , where λ(x) = χ(x, 1) and ω is therefore equivalent to the trivial

factor set.

Let G be a finite group, ω a factor set of G and K a field. In order to determine
the number of orbits of the subgroup of the character group Ĝ := H(G,K∗) on the
classes of linearly equivalent irreducible representations with the factor set ω, we
consider some definitions.

Definition 42. ([27]) Let p be either zero or a prime number. A class of G is called
p-regular if the order of the elements in this class is not divisible by p. A class is
called (α, p)-regular if it is α-regular and p-regular.

Let D be a finite group, A a group contained in the centre and in the commutator
of D and G = D/A. For each x ∈ G we choose an element x ∈ D such that Ax = x.
This yields a map r : G×G→ A, where r(x, y)xy = xy. Let F be an algebraically
closed field of characteristic p ≥ 0 and Â = Hom(A,F ∗) be the character group of
A. For all λ ∈ Â we define λr : G×G→ F by λr(x, y) = λ(r(x, y)) and it is easy to
see that λr is a factor set of G.

Let R be an irreducible linear F -representation of D. From Schur’s Lemma we
obtain R(a) = λ(a)I for all a ∈ A, where λ ∈ Â and I is the identity matrix.

For all x ∈ G we define

(3.7) P (x) = R(x)
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and it is easy to see that P is an irreducible projective representation of G with
factor set λr. For all ax ∈ D, where a ∈ A, we have R(ax) = λ(a)P (x).

On the other hand, if P is an arbitrary irreducible representation of G with
factor set λr, then R is an irreducible linear representation of D.

Two irreducible linear representations R1 = λ1P1 and R2 = λ2P2 of D are equiv-
alent if and only if λ1 = λ2 and P1 and P2 are linearly equivalent. The projective
representations of G which are obtained by (3.1) are called linearizable in D (with
respect to the map r). So we have a one-to-one correspondence between the equiv-
alency classes of irreducible linear representations of D and the classes of linearly
equivalent irreducible projective representations of G which can be linearized in D.

Let C be a subgroup of Ĝ, the character group of G. We denote by π(G,C,D)
the number of orbits of C on the set of classes of linearly equivalent irreducible
projective F -representations of G which can be linearized in D (with respect to r).
The group C can be regarded as a group of characters of G and D and we denote
by K(C,G) and K(C,D) the intersections of the kernels of all c ∈ C. Hence, we
have K(C,D)/A = K(C,G).

By p(C,D) we denote number of all p-regular classes (of conjugate elements) of
D which are contained in K(C,D).

For all λ ∈ Â we denote by π(C, λr) the number of orbits of C on the set of
all classes of linearly equivalent irreducible projective F -representations of G with
factor set λr and q(C, λr) denotes the number of (λr, p)-regular classes of G which
are contained in K(C,G).

Lemma 43. ([27]) Let G,D and C as above. Then we have π(G,C,D) = p(C,D).

Let x ∈ G and x̃ ∈ D such that x = Ax̃ and let x̃D denote the class of x̃. We
define the following subgroup of A: U(x) =

{
a| a ∈ A, ax̃ ∈ x̃D

}
. It is obvious that

U(x) does not depend on the choice of x̃.

Lemma 44. ([27]) Let λ ∈ Â. Then x is λr-regular if and only if U(x)is contained
in the kernel of λ.

Lemma 45. ([27]) We have p(C,D) =
∑
q(C, λr), where the sum is taken over all

λ ∈ Â.

Lemma 46. ([27]) If λ1 and λ2 are faithful characters of A, we have π(C, λr1) =
π(C, λr2).

Theorem 47. ([27]) Let G be a finite group and F an algebraically closed field
of characteristic p ≥ 0. Let α be a factor set of G over F and C a subgroup of
the character group Ĝ. Then the number of orbits of C on the set of all classes of
linearly equivalent irreducible projective representations with factor set α coincides
with the number of (α, p)-regular classes of G which are contained in the kernels of
all characters in C.
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Proof. We can assume without loss of generality that α = λr for a λ ∈ A.
We prove the theorem by induction on the order of D. It is obvious that the

irreducible projective representations of G with factor set λr can also be linearized
in D/kernel(λ). Thus, the induction hypothesis yields that λ ia a faithful character
of A, which implies that A is cyclic.

Let λ = λ1, λ2, λ3, . . . , λs be the faithful characters of A and let σ1, . . . , σt be
the non-faithful ones. By Lemma 44 we obtain for all i = 1, s, π(C, λri ) = π(C, λr).

Thus we have π(G,C,D) =
t∑

j=1

π(C, σrj ) +
s∑

i=1

π(C, λri ) =
t∑

j=1

π(C, σrj ) + s · π(C, λr).

From Lemma 44 we obtain q(C, λri ) = q(C, λr) for all i. By Lemma 45 we have

p(C,D) =
t∑

j=1

q(C, σrj ) +
s∑

i=1

q(C, λri ) =
t∑

j=1

q(C, σrj ) + s · q(C, λr).

For the non-faithful characters σj we obtain by the induction hypothesis that
π(C, σrj ) = q(C, σrj ) holds. Hence we obtain by Lemma 43 that π(C, λr) = q(C, λr)
is valid.

Corollary 48. ([27]) Let G be a finite group, F an algebraically closed field of
characteristic p ≥ 0 and α a factor set of G over F . Then the number of classes of
linearly equivalent irreducible projective representations of G with factor set α equals
the number of (α, p)-regular classes of G.

Corollary 49. ([27]) Let G and α be as in Corollary 48. Then the number of classes
of projectively equivalent irreducible projective representations of G with factor set
α coincides with the number of (α, p)-regular classes of G which are contained in the
commutator subgroup of G.

LetG be a finite abelian group of order nm generated bym elements g1, g2, . . . , gm
of order n, i.e. G ∼= ZZn × . . .× ZZn (m copies), where ZZn is a cyclic group of order
n. Let π be a projective representation of G with factor set ω over C.

Let µ(i) =
n−1∏
j=1

ω(gji , gi), i = 1,m and β(i, j) = ω(gi, gj)ω
−1(gj , gi), 1 ≤ i < j ≤

m.

It can be shown that the factor set ω can be chosen such that µ(i) = 1, i = 1,m
and β(i, j), 1 ≤ i < j ≤ m is an n-th root of unity.

Theorem 50. ([15]) Let G be a finite abelian group of order nm generated by
g1, g2, . . . , gm and let ω be a factor set of G over C such that µ(i) = 1, i = 1,m
and β(i, j) = ε, 1 ≤ i < j ≤ m, where ε is a primitive n-th root of unity. Then,
if m = 2µ is even, G has only one inequivalent irreducible projective representation
of degree nµ and if m = 2µ + 1 is odd, G has n inequivalent irreducible projective
representations of degree nµ.
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Proof. Let π be a projective representation of G with the factor set ω and let π(gi) =
ei, i = 1,m. Then we must determine the number of elements a = eα1

s1 . . . e
αr
sr , where

1 ≤ s1 < s2 < . . . < sr ≤ m, 0 ≤ αi ≤ n− 1, i = 1, r such that e−1
i aei = a, i = 1,m.

In particular, we must have e−1
si aesi = a, i = 1, r.

It is easy to verify that e−1
si aesi = ε(α1+...+αi−1−αi+1−...−αr)a, i = 1, r and so we

have AX ≡ 0 (mod n), where A is the r× r matrix

⎛⎜⎜⎜⎝
1 1 . . . 1 0
1 1 . . . 0 −1
...

...
...

...
...

0 −1 . . . −1 −1

⎞⎟⎟⎟⎠ and

Xt = (α1, . . . , αr).
An easy calculation shows that

detA =

{
0, if r is odd
(−1)λ, if r = 2λ is even

Thus, if r is even, the only solution is the trivial solution α1 = α2 = . . . = αr = 0.
On the other hand, if r = 2λ+ 1 is odd, the above system of linear congruences

reduces to α1 ≡ −α2 ≡ α3 ≡ . . . ≡ −α2λ ≡ α2λ+1 (mod n),
Thus, if gα1

s1 . . . g
αr
sr is an ω-regular element, it can only take the form

gis1g
−i
s2 . . . g

−i
sr−1

gisr , i = 0, n− 1. But we must also have that when s ̸= si, e
−1
s aes = a.

If s ̸= si, i = 1, r and we put s0 = 1, sr+1 = m, then s > sj and s < sj+1 for some
0 ≤ j ≤ r+1 and e−1

s aes = ε(α1+...+αj−αj+1−...−αr)a = ε±ia, for some 0 ≤ i ≤ n− 1.
That is, if r < m, i = 0. Thus, it follows that if m = 2k is even, 1 is the only
ω-regular element and if m = 2k + 1 is odd, the ω-regular elements are given by
gi1g

−i
2 . . . g−i

2k g
i
2k+1, i = 0, n− 1.

When m = 2µ is even, G has only one inequivalent irreducible projective repre-
sentation, whose degree must be nµ.

When m = 2µ+1 is odd, the n inequivalent projective representations have the
same degree which is nµ.

Theorem 51. ([15]) Le G be as in Theorem 50, n = 2ν and the factor set ω satisfies
µ(i) = 1, i = 1,m and β(i, j) = −1, 1 ≤ i < j ≤ m. Then, if m = 2µ is even, G has
νm inequivalent irreducible projective representations of degree 2µ and if m = 2µ+1
is odd, G has 2νm inequivalent irreducible projective representations of degree 2µ.

Proof. The proof is similar to the proof of Theorem 50, replacing ε by -1. Again, in
this case, let π(gi) = ei, i = 1,m.

It is easily verified that if r is even gα1
s1 . . . g

αr
sr is ω-regular if and only if αi ≡ 0

(mod 2), that is αi = 0, 2, 4 . . . , n− 2.
If r is odd and a = eα1

s1 . . . e
αr
sr , e

−1
si aesi = a, i = 1, r implies that α1 ≡ α2 ≡ . . . ≡

αr (mod 2).
If s ̸= si, for any i = 1, r, then e−1

s aes = a implies that α1 + . . .+ αr ≡ 0 (mod
2) or rαr ≡ 0 (mod 2).

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 425 – 458

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


446 Tania Luminiţa Costache

Since r is odd, this means that αr ≡ 0 (mod 2). Thus, if r is odd and r < m,
gα1
s1 . . . g

αr
sr is ω-regular if and only if αi = 0, 2, 3, . . . , n− 2.

Hence, if m is even, the ω-regular are gα1
1 . . . gαm

m , where αi = 0, 2, . . . , n − 2,
i = 1,m, that is, there are

(
n
2

)m
ω-regular classes. If m is odd, the ω-regular

elements are gα1
1 . . . gαm

m , where αi = 0, 2, . . . , n−2, i = 1,m and αi = 1, 3, . . . , n−1,
i = 1,m, that is, there are 2

(
n
2

)m
ω-regular classes.

Since all irreducible projective representations of an abelian group (with a fixed
factor set) have the same degree, it is easily verified that these representations have
the degrees given in the statement of the theorem.

Definition 52. ([22]) Let ω be a factor set of G and ρ an irreducible projective
representation of a normal subgroup H of G with the factor set ω. Define

ρ(g)(h) = fω(g, h)ρ(ghg
−1)

for all g ∈ G, h ∈ H.

Lemma 53. ([22]) ρ(g) is an irreducible projective representation of H with the
factor set ω.

Proof. Applying Definition 52, Definition 1 i), Definition 10 and the fact that ρ is a
projective representation, we obtain

ρ(g)(h)ρ(g)(h1) = fω(g, h)ρ(ghg
−1)fω(g, h1)ρ(gh1g

−1) =
= fω(g, h)fω(g, h1)ω(ghg

−1, gh1g
−1)ρ(ghg−1gh1g

−1) =
= fω(g, h)fω(g, h1)ω(ghg

−1, gh1g
−1)ρ(ghh1g

−1) =
= ω(g, h)ω(ghg−1, g)−1ω(g, h1)ω(gh1g

−1, g)−1ω(ghg−1, gh1g
−1)ρ(ghh1g

−1) =
= ω(g, h)ω(ghg−1, g)−1ω(g, h1)ω(gh1g

−1, g)−1ω(ghg−1, gh1g
−1g)ω(gh1g

−1, g)·
·ω(ghg−1gh1g

−1, g)−1ρ(ghh1g
−1) = ω(g, h)ω(ghg−1, g)−1ω(g, h1)ω(gh1g

−1, g)−1·
·ω(ghg−1, gh1)ω(gh1g

−1, g)ω(ghh1g
−1, g)−1ρ(ghh1g

−1) =
= ω(g, h)ω(ghg−1, g)−1ω(g, h1)ω(ghg

−1, gh1)ω(ghh1g
−1, g)−1ρ(ghh1g

−1) =
= ω(g, h)ω(ghg−1, g)−1ω(ghg−1, g)ω(gh, h1)ω(ghh1g

−1, g)−1ρ(ghh1g
−1) =

= ω(g, h)ω(gh, h1)ω(ghh1g
−1, g)−1ρ(ghh1g

−1) =
= ω(g, hh1)ω(h, h1)ω(ghh1g

−1, g)−1ρ(ghh1g
−1) =

= ω(h, h1)fω(g, hh1)ρ(ghh1g
−1) = ω(h, h1)ρ

(g)(hh1)

ρ(g)(1H) = fω(g, 1H)ρ(g1Hg
−1) = fω(g, 1H)ρ(gg−1) = fω(g, 1H)ρ(1G) =

= fω(g, 1H)I = ω(g, 1H)ω(g1Hg
−1, g)−1I = ω(gg−1, g)−1I = I

Thus ρ(g) is a projective representation of H with the factor set ω, which is
irreducible since ρ is irreducible.

Definition 54. ([22]) Two irreducible projective representations ρ1 and ρ2 of H are

conjugate if ρ2 ≃ ρ
(g)
1 for some g ∈ G, where ”≃” denotes linear equivalence of

representations.
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Lemma 55. ([22]) Let ρ be an irreducible projective representation of H with the
factor set ω and let Iρ =

{
g ∈ G|ρ(g) ≃ ρ

}
. Iρ is a group called the inertia group

of ρ and Fρ = Iρ/H is called the inertia factor of ρ.

Theorem 56. ([22]) Let ρ, ω, Iρ be as in Lemma 55 Then there is an irreducible
projective representation ρ̃ of Iρ with some factor set σ such that

(i) ρ̃(g)ρ(h)ρ̃(g)−1 = ρ(g)(h);

(ii) ρ̃(h) = ρ(h);

(iii) ρ(h)ρ̃(g) = ω(h, g)ρ̃(hg), for all g ∈ Iρ, h ∈ H.

Proof. By definition of Iρ, there is some matrix ρ′(g) such that ρ′(g)ρ(h)ρ′(g)−1 =
ρ(g)(h) for all g ∈ Iρ, h ∈ H.

Let g1, g2 ∈ G. We have ρ′(g1g2)ρ(h)ρ
′(g1g2)

−1 = ρ(g1g2)(h) =
= ρ′(g1)ρ

′(g2)ρ(h)(ρ
′(g1)ρ

′(g2))
−1 = ρ′(g1)ρ

′(g2)ρ(h)ρ
′(g2)

−1ρ′(g1)
−1 for all h ∈ H.

So ρ′(g1g2)
−1ρ′(g1)ρ

′(g2)ρ(h) = ρ(h)ρ′(g1g2)
−1ρ′(g1)ρ

′(g2).
By Schur lemma, since ρ is irreducible, there is an element σ′(g, g1) ̸= 0 in C such

that ρ′(g1g2)
−1ρ′(g1)ρ

′(g2) = σ′(g, g1)I =⇒ ρ′(g1)ρ
′(g2) = σ′(g, g1)ρ

′(g1g2), where σ
′

is some factor set of Iρ.
Since e ∈ H, we may take ρ′(e) = I, and we have proved that ρ′ is a projective

representation of G.
Now choose a set

{
x1, x2, . . . , xn

}
of right coset representatives of H in Iρ and

define

(3.8) ρ̃(hxi) = ω(h, xi)
−1ρ(h)ρ′(xi) (ρ̃(h) = ρ(h)

for all h ∈ H, i = 1, . . . , n.
It is easy to check that ρ̃ is a projective representation of Iρ with some factor set

σ satisfying (i) and (ii). The fact that ρ̃ is irreducible follows as in the linear case
([6])

Further, by (3.1), ρ̃(h(h1xi)) = ρ̃(hh1xi) = ω(hh1, xi)
−1ρ(hh1)ρ

′(xi) =
= ω(hh1, xi)

−1ω(h, h1)
−1ρ(h)ρ(h1)ρ

′(xi) = ρ(h)ω(h, h1)
−1ω(hh1, xi)

−1ρ(h1)ρ
′(xi) =

= ρ(h)ω(h, h1x1)
−1ω(h1, xi)

−1ρ(h1)ρ
′(xi) = ω(h, h1x1)

−1ρ(h)ρ̃(h1xi).
We obtain ρ(h)ρ̃(g) = ω(h, g)ρ̃(hg) for all g ∈ Iρ, h ∈ H.

Lemma 57. ([22]) If ω and σ are the factor sets defined in Theorem 56, the factor
set ωσ−1 of Iρ satisfies ωσ−1(hg, h1g1) = ωσ−1(gg1) for all g, g1 ∈ Iρ, h, h1 ∈ H.

Proof. By Theorem 56, (iii), ρ̃(hg)ρ̃(h1g1) = σ(hg, h1g1)ρ̃(hgh1g1) =
= σ(hg, h1g1)ω(hgh1g

−1, gg1)
−1ρ(hgh1g

−1)ρ̃(gg1)
But ρ̃(hg)ρ̃(h1g1) = ω(h, g)−1ρ(h)ρ̃(g)ω(h1, g1)

−1ρ(h1)ρ̃(g1) =
= ω(h, g)−1ω(h1, g1)

−1ρ(h)ρ̃(g)ρ(h1)ρ̃(g1) =
= ω(h, g)−1ω(h1, g1)

−1ρ(h)ρ(g)(h1)ρ̃(g)ρ̃(g1) =
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= ω(h, g)−1ω(h1, g1)
−1ρ(h)fω(g, h1)ρ(gh1g

−1)ρ̃(g)ρ̃(g1) =
= ω(h, g)−1ω(h1, g1)

−1fω(g, h1)ρ(h)ρ(gh1g
−1)ρ̃(g)ρ̃(g1) =

= ω(h, g)−1ω(h1, g1)
−1fω(g, h1)ω(h, gh1g

−1)ρ(hgh1g
−1)σ(g, g1)ρ̃(gg1) =

= σ(g, g1)ω(h, g)
−1ω(h1, g1)

−1fω(g, h1)ω(h, gh1g
−1)ρ(hgh1g

−1)ρ̃(gg1)
Thus σ(g, g1)ω(h, g)

−1ω(h1, g1)
−1fω(g, h1)ω(h, gh1g

−1) =
= σ(hg, h1g1)ω(hgh1g

−1, gg1)
−1 =⇒

=⇒ σ(g, g1)ω(h, g)
−1ω(h1, g1)

−1ω(g, h1)ω(gh1g
−1, g)−1ω(h, gh1g

−1) =
= σ(hg, h1g1)ω(hgh1g

−1, gg1) =⇒

(3.9) ω(hgh1g
−1, gg1)σ(hg, h1g1)

−1ω(g, h1)ω(h, gh1g
−1) =

ω(h, g)ω(h1, g1)ω(gh1g
−1, g)σ(g, g1)

−1

By Definition 1, ω(h, gh1g
−1)ω(hgh1g

−1, gg1) = ω(h, gh1g
−1gg1)ω(gh1g

−1, gg1) =
= ω(h, gh1g1)ω(gh1g

−1, gg1)
So, by Definition 1, (3.1) becomes ω(g, h1)ω(h, gh1g1)ω(gh1g

−1, gg1)σ(hg, h1g1)
−1 =

= ω(h, g)ω(h1, g1)ω(gh1g
−1, g)σ(g, g1)

−1 =⇒
=⇒ ω(g, h1)ω(h, g)ω(hg, h1g1)ω(g, h1g1)

−1ω(gh1g
−1, gg1)σ(hg, h1g1)

−1 =
= ω(h, g)ω(h1, g1)ω(gh1g

−1, g)σ(g, g1)
−1 =⇒

=⇒ ω(g, h1)ω(g, h1g1)
−1ω(gh1g

−1, gg1)[ω(hg, h1g1)σ(hg, h1g1)]
−1 =

= ω(h1, g1)ω(gh1g
−1, g)σ(g, g1)

−1 =⇒

(3.10) ω(g, h1)ω(g, h1g1)
−1ω(gh1g

−1, gg1)ω(g, g1)ω(hg, h1g1)σ(hg, h1g1)
−1 =

= ω(h1, g1)ω(gh1g
−1, g)ω(g, g1)σ(g, g1)

−1

To verify the relation in Lemma 57, it is sufficient to show that

(3.11) ω(g, h1)ω(g, h1g1)
−1ω(gh1g

−1, gg1)ω(g, g1) = ω(h1, g1)ω(gh1g
−1, g),

since (3.1) holds.
Relation (3.1) is equivalent with ω(g, h1)ω(gh1g

−1, gg1)ω(g, g1) =
= ω(h1, g1)ω(g, h1g1)ω(gh1g

−1, g)⇐⇒ ω(g, h1)ω(gh1g
−1, g)ω(gh1g

−1g, g1) =
= ω(h1, g1)ω(g, h1g1)ω(gh1g

−1, g)⇐⇒ ω(g, h1)ω(gh1g
−1, g)ω(gh1, g1) =

= ω(h1, g1)ω(g, h1g1)ω(gh1g
−1, g)⇐⇒ ω(g, h1)ω(gh1, g1) = ω(h1, g1)ω(g, h1g1), which

is true by Definition 1 i).

4 Projectively equivalent representations of particular
groups

4.1 Direct products of cyclic groups of the same order

Let G be a cyclic group of order n. It is a consequence of Theorem 2.3.1, [13] that
H2(G,C∗) = 1. Hence by Lemma 26 (ii) every projective representation of G is
projectively equivalent to a linear representation. The following is a direct proof of
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this fact. Let ω be a factor set of G in C and let ρ be a projective representation
of G with the factor set ω. If x is a generator for G, then ρ(x)n = µ(x)I, where
I is the identity matrix and µ(x) = ω(x, x)ω(x2, x) . . . ω(xn−1, x). For each x ∈ G,
fix λ(x) ∈ C∗ such that λ(x)n = µ(x)−1 and define ρ′(x) = λ(x)ρ(x) for all x ∈ G.
Then (ρ′(x))n = λ(x)nρ(x)n = µ(x)−1µ(x)I = I, so ρ′ is a linear representation of
G which is projectively equivalent to ρ. In what follows, G will denote the direct
product < x1 > × . . .× < xm > of m cyclic groups of order n.

We fix a factor set ω of G in C and put

µ(i) =

n−1∏
j=1

ω(xji , xi), i = 1,m

β(i, j) = ω(xi, xj)ω
−1(xj , xi), 1 ≤ i < j ≤ m

Replacing ω by an equivalent factor set, if necessary, we may assume that µ(i) = 1
for all i = 1,m and that β(i, j) is an n-th root of 1.

We introduce the following notations:
If n is odd, let P and Q be the n× n matrices defined by

P =

⎛⎜⎜⎜⎜⎝
0 1 0 0 . . . 0
0 0 1 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1
1 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎠, Q =

⎛⎜⎜⎜⎜⎝
0 ε 0 0 . . . 0
0 0 ε2 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . εn−1

1 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎠

If n is even, let P be defined as above andQ =

⎛⎜⎜⎜⎜⎝
0 δ 0 0 . . . 0
0 0 δ3 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . δ2n−3

δ2n−1 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎠,

where δ is a primitive 2n-th root of 1 such that δ2 = ε. Put

R =

{
Pn−1Q, if n is odd
δPn−1Q, if n is even

If m is even, say m = 2k, set

Ei = R⊗R⊗ . . .⊗R⊗ P ⊗ I ⊗ . . .⊗ I

Ek+i = R⊗R⊗ . . .⊗R⊗Q⊗ I ⊗ . . .⊗ I, i = 1, k

where P and Q appear in the i-th position and each tensor product has k factors
(here I denotes the identity matrix).

If m is odd, say m = 2k + 1, let

E2k+1 = R⊗R⊗ . . .⊗R (k factors)
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Theorem 58. ([13]) Let ω be a factor set.

(i) If m = 2k is even, then the map ρ : G→ GL(nk,C) defined by ρ(xi) = Ei, i =
1,m is the only up to linear equivalency irreducible projective representation
of G with the factor set ω.

(ii) If m = 2k+1 is odd, then G has precisely n irreducible linearly nonequivalent
projective representations with the multiplier ω, namely

{
G −→ GL(nk,C)
xi ↦−→ εjEi

(j = 0, n− 1, i = 1, 2k + 1)

Proof. A straightforward calculation shows that ρ and ρj , where ρj(xi) = εjEi,
j = 0, n− 1 are projective representations of G with factor set ω for the cases (i)
and (ii).

Furthermore, the representations ρj are inequivalent. Indeed, for all j = 0, n− 1,

(εjE1)
n−1(εjEk+1)(ε

jE2)
n−1(εjEk+2) . . . (ε

jEk)
n−1(εjE2k)(ε

jE2k+1)
n−1 =

= εj(n−1)Ink = ε−jInk .

Thus the element xn−1
1 xk+1x

n−1
2 xk+2 . . . x

n−1
k x2kx

n−1
2k+1 of CωG if n is odd

(respectively, δkxn−1
1 xk+1 . . . x

n−1
2k+1 if n is even) is represented by a distinct scalar

matrix for each j = 0, n− 1, which shows that the ρj are linearly inequivalent.

We now claim that in the case (i), 1 is the only ω-regular element of G, while in
case (ii) there are exactly n such elements. Once this is established the result will
follow in view of these considerations:

Suppose that in case (i), 1 is the only ω-regular element of G. By Theorem 3.6.7,
[13] we conclude that CωG ∼= Md(C) for some d ≥ 1. Comparing the C-dimensions
of both sides yields CωG ∼=Mnk(C) which establishes the case m = 2k.

Suppose that in case (ii) there are exactly n ω-regular elements ofG. By Theorem
7.9.5 (i), [13], all irreducible projective representations of G with the factor set ω
are projectively equivalent and hence have the same dimension. By Theorem 3.6.7,
[13], CωG ∼=Mnk(C)× . . .×Mnk(C) (n factors) and therefore we are left to sustain
our claim.

Let ρ be a projective representation of G with the factor set ω and let ρ(xi) =
ei, i = 1,m. Then we must determine the number of elements a = eω1

k1
. . . eωr

kr
, where

1 ≤ k1 < k2 < . . . < kr ≤ m, 0 ≤ ωi ≤ n− 1, i = 1, r such that e−1
i aei = a, i = 1,m.

In particular, we must have e−1
ki
aeki = a, i = 1, r.

A straightforward calculation shows that e−1
ki
aeki = ε(ω1+...+ωi−1−ωi+1−...−ωr)a, i =

1, r and thus we must have AX ≡ 0(mod n), where A is the r × r matrix
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1 1 . . . 1 0
1 1 . . . 0 −1
...

...
...

...
...

0 −1 . . . −1 −1

⎞⎟⎟⎟⎠ and Xt = (ω1, . . . , ωr). An easy calculation shows that

detA =

{
0, if r is odd
(−1)λ, if r = 2λ is even

If therefore follows that if r is even, then the only solution is the trivial solution
ω1 = ω2 = . . . = ωr = 0. On the other hand, if r = 2λ + 1 is odd, the system of
linear congruences above reduces to ω1 ≡ −ω2 ≡ ω3 ≡ . . .− ω2λ ≡ ω2λ+1(mod n).

The conclusion is that if xω1
k1
. . . xωr

kr
is a ω-regular element, it must be of the form

xik1x
−i
k2
. . . x−i

kr−1
xikr , i = 0, n− 1.

But for k ̸= ki we must also have e−1
k aek = a.

If k ̸= ki for i = 1, r and we put k0 = 1, kr+1 = m, then k > kj and k < kj+1

for some j = 0, r + 1 and e−1
k aek = ε(ω1+...+ωi−1−ωi+1−...−ωr)a = ε±ia for suitable

i = 0, n− 1. In other words, if r < m, then i = 0. Consequently, if m = 2k is even,
1 is the only ω-regular element and if m = 2k + 1 is odd, the ω-regular elements of
G are given by xi1x

−i
2 . . . x−i

2kx
i
2k+1, i = 0, n− 1.

Thus we have sustained our claim and the result follows.

In what follows G will denote the group in Theorem 58 and n = 2k is even.

Let A =

(
1 0
0 1

)
, B =

(
0 1
1 0

)
, C =

(
0 −i
−i 0

)
, D =

(
1 0
0 −1

)
and for

i = 1, t, let M2i−1 = D ⊗D ⊗ . . .⊗D ⊗B ⊗A⊗ . . .⊗A
M2i = D ⊗D ⊗ . . .⊗D ⊗ C ⊗A⊗ . . .⊗A
M2t+1 = D⊗D⊗ . . .⊗D⊗D⊗D⊗ . . .⊗D be tensor products, where B and C

are in the i-th position and each product has t factors. If m = 2t and ε is a primitive
n = 2k-th root of 1, for i = 1,m and 0 ≤ λi < k, define ρ(λ1,...,λm)(gi) = ελiMi.

Theorem 59. ([13]) The following properties hold:
(i) If m = 2t is even, then G has precisely km linearly nonequivalent irreducible

projective representations with factor set ω, namely G ↦−→ GL(2t,C),
gi ↦−→ ρ(λ1,...,λm)(gi), 0 ≤ λi < k, i = 1,m.

(ii) If m = 2t + 1 is odd, then G has precisely 2km linearly nonequivalent irre-
ducible projective representations with the factor set ω, namely G ↦−→ GL(2t,C),
gi ↦−→ ±ρ(λ1,...,λm)(gi), 0 ≤ λi < k, i = 1,m.

Proof. An easy calculation shows that the formulas of (i) and (ii) define projective
representations with the factor set ω of G and that these representations are linearly
inequivalent. Applying the argument employed in the proof of Theorem 58, it is
sufficient to show that if m is even, then there are exactly (n2 )

m ω-regular elements
in G, while in the case where m is odd the number of such elements is 2(n2 )

m.
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Let ρ be a projective representation of G with the factor set ω and let ρ(gi) =
ei, i = 1,m. A straightforward calculation shows that if r is even, then gα1

k1
. . . gαr

kr

is ω-regular if and only if αi ≡ 0 (mod 2), that is αi = 0, n− 2. If r is odd and
a = eα1

k1
. . . eαr

kr
, then e−1

ki
aeki = a, i = 1, r implies that αi ≡ α2 ≡ . . . ≡ αr (mod 2).

If s ̸= ki for any i = 1, r, then e−1
s aes = a implies that α1 + . . . + αr ≡ 0 (mod

2) or rαr ≡ 0 (mod 2).
Because r is odd, the latter implies that αr ≡ 0 (mod 2). Consequently, if r is

odd and r < m, then gα1
k1
. . . gαr

kr
is ω-regular if and only if α1 = 0, 2, 3, . . . , n − 2.

Hence, ifm is even, the ω-regular elements are gα1
1 . . . gαm

m , where αi = 0, 2, . . . , n−2,
i = 1,m, proving that there are exactly (n2 )

m ω-regular elements in G.
Finally, ifm is odd, the ω-regular elements are gα1

1 . . . gαm
m , where αi = 0, 2, . . . , n−

2, i = 1,m and αi = 1, 3, . . . , n− 1, proving that there are exactly 2(n2 )
m ω-regular

elements in G.

4.2 Dihedral groups

Let Dn be the dihedral group of order 2n defined by Dn = ⟨a, b| an = 1, b2 =
1, bab−1 = a−1⟩. Let ε be a primitive n-th root of 1 and let ω : Dn ×Dn → C∗ be
defined by ω(ai, ajbk) = 1 and ω(aib, ajbk) = εj for all i, j = 0, n− 1 and k = 0, 1.

If n is even, for each r ∈
{
0, . . . , n2

}
put Ar =

(
εr 0
0 ε1−r

)
, Br =

(
0 1
1 0

)
and let ρr : Dn → GL(2,C) be defined by ρr(a

ibj) = Ai
rB

j
r , i, j = 0, n− 1.

Theorem 60. ([13])

(i) If n is odd, then every projective representation of Dn in C is projectively
equivalent to a linear representation.

(ii) Suppose that n is even. Then for a factor set ω of Dn, the following properties
hold:

(a) ρ1, ρ2, . . . , ρn
2
are all linearly nonequivalent irreducible projective repre-

sentations of Dn with the factor set ω.

(b) There are exactly n
2 ω-regular classes of Dn, namely

{
1
}
,
{
a, a−1

}
,
{
a2, a−2

}
, . . . ,{

a
n
2
−1, a−

n
2
+1

}
.

(c) The elements z0 = 1 and zi = ai + εia−i, 1 ≤ i ≤ n
2 − 1 constitute a

C-basis for the center of CωDn.

(d) Every irreducible projective representation of Dn is either projectively
equivalent to a linear representation or projectively equivalent to a projec-
tive representation ρi with the factor set ω for a suitable i ∈

{
1, . . . , n2

}
.

(iii) For any factor set β of Dn in C either CβDn
∼= CDn or n is even and CβDn

∼=
CωDn
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Proof. (i) This is a consequence of Proposition 4.6.4, [13].
Let β be a factor set of Dn and let be a projective representation of Dn with

the factor set β. Then there are λ, µ, ν ∈ C∗ such that (ρ(a))n = λI, (ρ(b))2 =
µI, ρ(b)ρ(a)ρ(b)−1 = νρ(a)−1.

Replacing ρ(a) by λ−
1
n ρ(a) and ρ(b) by µ−

1
2 ρ(b) if necessary, we may assume

that

(4.1) (ρ(a))n = I, (ρ(b))2 = I, ρ(b)ρ(a)ρ(b)−1 = νρ(a)−1

Raising the third equality to the n-th power and taking into account the first and the
second equalities, we deduce that νn = 1. Hence ν = εm for some positive integer
m. If k is a positive integer, then replacement of ρ(a) by ε−kρ(a) does not change
the first two equalities of (4.1) and the third becomes

(4.2) ρ(b)ρ(a)ρ(b)−1 = εm−2kρ(a)−1

Since n is odd, ⟨ε2⟩ = ⟨ε⟩ and hence εm = ε2k for some k ≥ 1. Choosing the k above,
we finally obtain from (4.1) and (4.1), (ρ(a))n = I, (ρ(b))2 = I, ρ(b)ρ(a)ρ(b)−1 =
ρ(a)−1 and the desired assertion follows.

(ii) Observe that if m of (4.1) is even, then ρ is projectively equivalent to a
linear representation. In case m is odd, ν is a primitive n-th root of 1 and hence
we may replace ν by ε in (4.1). Thus if ρ is not projectively equivalent to a linear
representation, then up to projective equivalency, the matrices ρ(a) and ρ(b) satisfy
the following equalities:

(4.3) (ρ(a))n = I, (ρ(b))2 = I, ρ(b)ρ(a)ρ(b)−1 = ερ(a)−1

In particular, if we put ρ(a) = Ar and ρ(b) = Br, then a straightforward calculation
shows that Ar and Br satisfy (4.1); hence for each r ∈

{
1, . . . , n2

}
, ρr is a projective

representation and in fact an easy calculation shows that each ρr is a projective
representation with the factor set ω.

Observe that a
n
2 ∈ Z(Dn) and that ω(a

n
2 , b) = 1 and ω(b, a

n
2 ) = ε

n
2 ̸= 1. Hence

a
n
2 is not ω-regular, so ω is not a coboundary. It follows that all irreducible projective

representations with the factor set ω of Dn have degree ≥ 2 and therefore each ρr
is irreducible. By looking at the restriction ρr to ⟨a⟩, it follows that ρ1, . . . , ρn

2
are

linearly nonequivalent. Since

n
2∑

i=1

(degρi)
2 = 2n = |Dn|, we conclude that ρ1, . . . , ρn

2

are all linearly nonequivalent irreducible projective representations of Dn with the
factor set ω, proving (a).

By Theorem 6.7, [13], Dn has exactly n
2 ω-regular classes. Note that for each

i ∈
{
1, . . . , n2 − 1

}
, baib−1 = a−i ̸= ai for otherwise a2i = 1, so (ai)2 = 1, contrary

to the fact that a
n
2 is the only element of order 2 in ⟨a⟩. It follows that for each
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i ∈
{
1, . . . , n2 − 1

}
, C(ai) = ⟨a⟩. Since for all x ∈ ⟨a⟩, ω(ai, x) = ω(x, ai) = 1 each

ai, i ∈
{
1, . . . , n2

}
is ω-regular, proving (b).

It follows from (a) that dimC Z(C
ωDn) = n

2 and therefore we need only verify

that for all i ∈
{
1, . . . , n2 − 1

}
, b(ai + εia−i)b

−1
= ai + εia−i. The latter being a

consequence of the equalities (a)i = ai and b · ai · b−1
= εia−i (0 ≤ i ≤ n − 1), (c)

follows.

Finally, (d) is a consequence of the isomorphism H2(Dn,C
∗) ∼= ZZ2 (which may

be deduced from (4.1) or from Proposition 4.6.4, [13]), Lemma 26, (ii) and (a).

(iii) Suppose that β is a factor set of Dn in C such that CβDn � CDn. Then
β is not a coboundary and by (i), n is even. Since H2(Dn,C

∗) ∼= ZZ2 and ω is not
a coboundary, we conclude that ω is cohomologous to β. The desired conclusion
follows by appealing to Lemma 20, (ii).

4.3 Symmetric groups

Let Sn be the symmetric group of degree n. Then Sn is generated by the transpo-
sitions

t1 = (12), t2 = (23), . . . , tn−1 = (n − 1 n) with the defining relations t2i =
(tjtj+1)

3 = (trts)
2 = 1, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2, r ≤ s− 2. The last equality can

be rewritten as trts = tstr.

Theorem 61. [13]

(i) If n < 4, then every projective representation of Sn is projectively equivalent
to a linear representation.

(ii) Suppose that n ≥ 4. Then the following properties hold:

(a) Every projective representation of Sn is projectively equivalent to a repre-
sentation ρ satisfying

(4.4) ρ(ti)
2 = λI, (ρ(tj)ρ(tj+1))

3 = λI, ρ(tr)ρ(ts) = λρ(ts)ρ(tr)

where λ = ±1. In the case λ = 1, ρ is a linear representation of Sn.

(b) For each partition n = n1+n2+ . . .+nk of n with n1 > n2 > . . . > nk > 0
there is a projective representation ρ such that

degρ = 2[
n−k
2 ] n!

n1!n2! . . . nk!

∏
1≤i<j≤k

ni − nj
ni + nj

,

where
[
n−k
2

]
is the largest integer ≤ n−k

2 . Furthermore, ρ satisfies (4.1) for
λ = −1 and ρ is not projectively equivalent to a linear representation.
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Proof. (i) If n < 4, then all Sylow p-groups of Sn are cyclic and hence by Corollary
2.3.25, [13], H2(Sn,C

∗) = 1. The desired conclusion follows by Lemma 26, (ii).
(ii) Let Γ be a projective representation of Sn and let Γ(ti) = Ai. Then there

are ai, bj and crs in C∗ such that

(4.5) A2
i = aiI, 1 ≤ i ≤ n− 1

(4.6) (AjAj+1)
3 = bjI, 1 ≤ j ≤ n− 2

(4.7) ArAs = crsAsAr, r ≤ s− 2

From (4.1) ArAsA
−1
r = crsAs and squaring both sides gives

(4.8) c2rs = 1.

Let tr = (r r+1) and ts = (s s+1), where s > r+1. Then r, r+1, s, s+1 are four
distinct elements. Let t′r = (r′ r′ + 1), t′s = (s′ s′ + 1) and let t ∈ Sn be defined by

t =

[
· · · r r + 1 · · · s s+ 1 · · ·
· · · r′ r′ + 1 · · · s′ s′ + 1 · · ·

]
. Then ttrt

−1 = tr and ttst
−1 = t′s and

so setting Γ(t) = A, we obtain

(4.9) AArA
−1 = cAr, AAsA

−1 = dAs

for some c, d ∈ C∗. From (4.1) it follows thatAArA
−1AAsA

−1 = crsAAsA
−1AArA

−1.
Invoking (4.1), we therefore deduce that cdAr′As′ = cdcrsAs′Ar′ orAr′As′ = crsAs′Ar′ ,
which in view of (4.1) implies that crs = cr′s′ .

Thus by (4.1), all the crs are equal to λ = ±1. From (4.1) it follows that
AjAj+1Aj = bjA

−1
j+1A

−1
j A−1

j+1 and squaring both sides gives

(4.10) AjAj+1A
2
jAj+1Aj = b2jA

−1
j+1A

−1
j A−2

j+1A
−1
j A−1

j+1, a
2
jaj+1 = b2j (aja

2
j+1)

−1, b2j = a3ja
3
j+1

Since we may replace each Ai by its scalar multiple, the elements ai of C
∗ can

be chosen arbitrarily. Setting a1 = a2 = . . . = an−1 = λ it follows from (4.1)
that bj = ±1. Replacing Γ by a projectively equivalent representation ρ such that
ρ(t1) = A1, ρ(t2) = λb1A2, ρ(t3) = b1b2A3, ρ(t4) = λb1b2b3A4, . . . it follows that
ρ(ti)

2 = λI, (ρ(tj)ρ(tj+1))
3 = λI, ρ(tr)ρ(ts) = λρ(ts)ρ(tr) proving (ii) (a). For the

proof of (ii) (b) we refer to the original paper of Schur [26].
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