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MODELLING THE DURABILITY OF MULTIBODY
TOTAL HIP JOINT PROSTHESIS

Virgil Florescu, Lauren�tiu Rece, Aurel Gherghina and Adriana Tudorache

Abstract. The Total Hip Prosthesis (THP) is one of the biggest successes of the 20th century in the �eld

of orthopaedic biomechanical engineering. The loss of stability THP are scheduled failure. The percentage

of good functioning after 10 years of operation for classically THP is 94%. According to the data from

the Swedish Prosthesis Register, the working time of a prosthesis reaches an average of 15 years. It is well

known that the premature failure of the THP implant, in which there is frictional slip between the acetabular

cup and the femoral head, also depends on the surgical accuracy which is required to provide functional

angles. One solution is to promote hip prosthesis with multibody rolling. Predicting their function and the

analytical determination of the lastingness of multibody prostheses is a challenge. The purpose of this paper

is to provide a reliable solution to make a prediction on the durability of a THP multibody implant with the

use of computing resources available to any user. This may also be the basis for subsequent risk analyzes of

implant failure depending on the physical aspects of the patient and the features of the prosthesis.

1 Introduction

Total hip prosthesis arthroplasty is considered to be the most widely used procedure for hip
reconstruction and, as a result of more than one million implants/year, represents the quality
therapeutic solution for a host of degenerative a�ictions. Unfortunately, up until now, their
reliability couldn't be improved above the 15th year limit this solution being considered as
a programmed failure type intervention. The researchers in the �eld are approaching the
subject of developing this solution along two major routes, namely: through the nature of
the materials being used and through the nature of the constructive solutions [11].

One of the most modern trends is represented by replacing the sliding motion between the
components of the prosthesis with a rolling motion. This changes the tribological behaviour
of the prosthesis and has direct consequences on the working life of the implant. But to
develop an analytical model for dynamic formulations for multibody systems is a challenge
[26, 16, 27, 14].

Multibody systems analysis in relation to the contact constraints, with or without fric-
tion, was the main objectives of many scienti�c papers [1, 3, 15, 12, 10, 9, 19, 20, 21, 23].
An important concern was the calculation of joint reaction forces in rigid body mechanisms
with dependent constraints [6, 7, 30, 31]. Several numerical methods have been proposed
[2, 5, 4, 8, 13, 18, 28, 24, 25, 29].
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Developing such prosthesis requires complex theoretical and laboratory approaches. Al-
though the existence of computer systems allows for the complex modelling of such systems,
the practical work requires the discovery of simple theoretical models with a high degree of
con�dence for the results. As a consequence, the high number of balls needed to accom-
plish the functional role of rolling friction prosthesis and, implicitly, the high number of
degrees of freedom implies, from the standpoint of mathematically approaching the system,
the existence of a high number of di�erential equations.

The current article presents a way to apply sparse matrices for make a prediction on
the durability of a THP multibody implant by the determination of angular frequencies and
frequencies for a high number of rolling bodies. . The proposed method has the advantage
of using low resources computing and an acceptable errors rate.

2 Description of the Problem

The Romanian Academy's Institute for Solid Mechanics together with the Faculty of Tech-
nological Equipment from the University of Civil Engineering Bucharest proposed and de-
veloped a constructive solution for the total hip prosthesis (MOM) with rolling friction [11].
This entails the interposition between the head and the acetabular cup of a layer of 2.5 mm
diameter balls, without a cage. (Fig. 1)

Figure 1: The MOM total hip prosthesis with rolling friction [11]

The model used for the studies is a spatial model that contains 199 balls arranged on 12
rows.

The �rst identi�ed requirement is the Analytical Determination of the natural frequency
of the balls for the planar model.

2.1 Establishing the model and determining the di�erential motion

equations

To begin with, it was decided to test a planar model.
The planar model proposed in Fig. 2 contains 91 balls arranged on 5 rows, as follows:

a) First row at the upper edge � 31 balls

b) Second row � 25 balls
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c) Third row � 18 balls

d) Fourth row � 12 balls

e) The last row located in the centre � 5 balls

This layered balls structure is considered at time t = 0; for any other time t1 > t there's
a di�erent ball distribution.

Figure 2: The planar model with 91 balls

Figure 3: Simpli�ed planar model with 8 balls

A symmetric distribution for the 91 balls is considered, comprising 8 mass with 11 balls
each having identical motions and 3 balls which do not take part in these movements and
can be ignored. The simpli�ed model is showed in Fig. 3.

Unfolding the circular trajectory on which the 8 balls are rolling allows us to obtain the
computational scheme as showed in Fig. 4.

In order to obtain the di�erential equation set for the motion of this mechanical system
with 8 degrees of freedom we begin by using Lagrange's second degree equations:

d

dt

(
∂E

∂q̀j

)
− ∂E

∂qj
= QjF +QjD +QjP (2.1)

where E is the kinetic energy of the mechanical system, qj is the generalized coordinate,
q̇j is the generalized speed, QjF is the generalized perturbing force, QjD is the dissipative
force, and QjP is the force created by replacing the active spring-type links.
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Figure 4: Computational scheme for a mechanical system with 8 degrees of freedom

Through integration, with consideration of the initial conditions, we will obtain the laws
of motion for the balls' centres of mass.

The di�erential equation system is presented below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mẍ1 + 2cẋ1 + 2kx1 − cẋ2 − kx2 = F1 − Ff

mẍ2 + 2cẋ2 + 2kx2 − cẋ1 − cẋ3 − kx1 − kx3 = −Ff

mẍ3 + 2cẋ3 + 2kx3 − cẋ2 − cẋ5 − kx2 − kx4 = −Ff

mẍ4 + 2cẋ4 + 2kx4 − cẋ3 − cẋ5 − kx3 − kx5 = −Ff

mẍ5 + 2cẋ5 + 2kx5 − cẋ4 − cẋ6 − kx4 − kx6 = −Ff

mẍ6 + 2cẋ6 + 2kx6 − cẋ5 − cẋ7 − kx5 − kx7 = −Ff

mẍ7 + 2cẋ7 + 2kx7 − cẋ6 − cẋ8 − kx6 − kx7 = −Ff

mẍ8 + 2cẋ8 + 2kx8 − cẋ7 − k = F2 − Ff

The di�erential equation system may be written in matrix form as:

[M ]{ẍ}+ [C]{ẋ}+ [K]{x} = {F} (2.2)

where [M ] is the inertia matrix, [K] is the sti�ness matrix, [C] is the damping matrix and
{F} is the column vector for the perturbing and friction forces. In this particular example:

[M ] = 3/2m[I]8 (2.3)

[K] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2k −k 0 0 0 0 0 0
−k 2k −k 0 0 0 0 0
0 −k 2k −k 0 0 0 0
0 0 −k −2k −k 0 0 0
0 0 0 −k 2k −k 0 0
0 0 0 0 −k 2k −k 0
0 0 0 0 0 −k 2k −k
0 0 0 0 0 0 −k k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.4)
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[C] =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

2c −c 0 0 0 0 0 0
−c 2c −c 0 0 0 0 0
0 −c 2c −c 0 0 0 0
0 0 −c 2c −c 0 0 0
0 0 0 −c 2c −c 0 0
0 0 0 0 −c 2c −c 0
0 0 0 0 0 −c 2c −c
0 0 0 0 0 0 −c c

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
(2.5)

{F} = [(F1 − Ff )− Ff − Ff − Ff − Ff − Ff − Ff (F2 − Ff )]
T (2.6)

{x} = [x1 x2 x3 x4 x5 x6 x7 x8]
T

In
order to determine the angular frequencies and natural frequencies for the 8 balls it is nec-
essary to compute the equivalent mass me and the equivalent sti�ness coe�cient ke.

2.2 Determining the angular and natural frequencies for the 8 balls

The determination of the angular frequencies and natural frequencies for the 8 balls is
performed using the MATLAB software package [17]. The instructions and the results of
the execution are shown in Table 1

Table 1: Angular frequencies and natural frequencies for the 8 balls
No. Angular frequencies [rad/s] Natural frequencies [Hz]
1 3.5919 0.5717
2 10.6535 1.6956
3 17.3522 2.7617
4 23.4601 3.7338
5 28.7690 4.5787
6 33.0982 5.2677
7 36.3004 5.7774
8 38.2663 6.0903

Let's consider a di�erent sti�ness matrix which di�ers from the previous one through its
last term, this having the value of 2k instead of k.

The new matrix is shown below:

[K1] =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

2k −k 0 0 0 0 0 0
−k 2k −k 0 0 0 0 0
0 −k 2k −k 0 0 0 0
0 0 −k 2k −k 0 0 0
0 0 0 −k 2k −k 0 0
0 0 0 0 −k 2k −k 0
0 0 0 0 0 −k 2k −k
0 0 0 0 0 0 −k 2k

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
(2.7)
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If we now calculate the angular frequencies and frequencies for the 8 balls using the K1

matrix and keeping the M matrix unchanged, we'll get the following values:
angular frequencies: angular frequencies:
p1 = 3.5919 [rad/s] p1 = 6.76 [rad/s]
p2 = 10.6535 [rad/s] p2 = 13.3146 [rad/s]
p3 = 17.3522 [rad/s] p3 = 19.4646 [rad/s]
p4 = 23.4601 [rad/s] p4 = 25.0232 [rad/s]
p5 = 28.769 [rad/s] p5 = 29.8215 [rad/s]
p6 = 33.0982 [rad/s] p6 = 33.7136 [rad/s]
p7 = 36.3004 [rad/s] p7 = 36.5815 [rad/s]
p8 = 38.2663 [rad/s] p8 = 38.3377 [rad/s]

natural frequencies: natural frequencies
f1 = 0.57167 [Hz] f1 = 1.0759 [Hz]
f2 = 1.6956 [Hz] f2 = 2.1191 [Hz]
f3 = 2.7617 [Hz] f3 = 3.0979 [Hz]
f4 = 3.7338 [Hz] f4 = 3.9826 [Hz]
f5 = 4.5787 [Hz] f5 = 4.7462 [Hz]
f6 = 5.2677 [Hz] f6 = 5.3657 [Hz]
f7 = 5.7774 [Hz] f7 = 5.8221 [Hz]
f8 = 6.0903 [Hz] f8 = 6.1016 [Hz]
older values

Analysing the newly obtained values in comparison to the old ones we can notice a 3−5%
change which is acceptable.

This result opens up a new route which will in the end lead to the easier determination
of the angular frequencies and natural frequencies for the planar model with 88 active balls
and 3 inactive balls and for the spatial model with 199 balls.

This new approach is performed using sparse matrices which can be easily written and
manipulated, regardless of the size of the analysed mechanical system.

In numerical analysis, a sparse matrix is a matrix in which most of the elements are zero.

3 The determination of angular and natural frequencies

for the 8 balls using sparse matrices

The matrix K1 shown below is a special shape matrix, namely tridiagonal.

[K1] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2k −k 0 0 0 0 0 0
−k 2k −k 0 0 0 0 0
0 −k 2k −k 0 0 0 0
0 0 −k 2k −k 0 0 0
0 0 0 −k 2k −k 0 0
0 0 0 0 −k 2k −k 0
0 0 0 0 0 −k 2k −k
0 0 0 0 0 0 −k 2k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.1)

Matrix K1 may be de�ned through (3.1) as being formed by assembling three diagonal
matrices, as follows:
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- An 8th degree unit matrix, [I8] multiplied by 2k

- A superior diagonal matrix [K2] formed out of −k o�set by one position from the main
diagonal of the unit matrix

- An inferior diagonal matrix [K3] formed out of −k o�set by one position from the main
diagonal of the unit matrix

Thus

[K1] = 2k [I8] + [K2] + [K3] (3.2)

where:

[I8] =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

[K2] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −k 0 0 0 0 0 0
0 0 −k 0 0 0 0 0
0 0 0 −k 0 0 0 0
0 0 0 0 −k 0 0 0
0 0 0 0 0 −k 0 0
0 0 0 0 0 0 −k 0
0 0 0 0 0 0 0 −k
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[K3] =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

0 0 0 0 0 0 0 0
−k 0 0 0 0 0 0 0
0 −k 0 0 0 0 0 0
0 0 −k 0 0 0 0 0
0 0 0 −k 0 0 0 0
0 0 0 0 −k 0 0 0
0 0 0 0 0 −k 0 0
0 0 0 0 0 0 −k 0

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
The results obtained running in MATLAB software package are shown below.
Angular frequencies:
p1 = 6.76 [rad/s]
p2 = 13.3146 [rad/s]
p3 = 19.4646 [rad/s]
p4 = 25.0232 [rad/s]
p5 = 29.8215 [rad/s]
p6 = 33.7136 [rad/s]
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p7 = 36.5815 [rad/s]
p8 = 38.3377 [rad/s]

natural frequencies:
f1 = 1.0759 [Hz]
f2 = 2.1191 [Hz]
f3 = 3.0979 [Hz]
f4 = 3.9826 [Hz]
f5 = 4.7462 [Hz]
f6 = 5.3657 [Hz]
f7 = 5.8221 [Hz]
f8 = 6.1016 [Hz]
After analysing the results obtained through sparse matrices and comparing with previ-

ous results, it can be seen they are identical.
These results are demonstrating the possibility of determining angular frequencies and

natural frequencies for our real mechanical system and for the planar hypothesis respectively:

a) 88 active balls and 3 inactive balls

b) all of the 91 balls are active

3.1 Determining angular and natural frequencies for the 88 balls

through the use of sparse matrices

The results of the execution are shown in Table 2.
Similarly we obtain angular frequencies and natural frequencies for the model with 91

active balls.
Analysing the previous results compared with the ones for the 8 ball model we can see

that we can �nd natural frequencies with good accuracy for a 10 ball periodicity, according
to Table 3.

Analysis of the two real cases studied (88 and 91 balls) raised the observation that we have
approximately the same frequencies, the fact that there are 3 extra balls not signi�cantly
a�ecting the frequency range.

4 Analytical determination of the time in which the wear

of the acetabular cup appears

The authors' studies [11] upon total hip prosthesis extracted from the human body after
12-15 years of functioning have clearly pointed out polish traces on acetabular cup.

It will be determined the required time in order to make sure that all those 199 balls
of r ray will cover the inner surface of the cup through areas as against the length of the
hypocycloid arch multiplied by a side having an imposed value of the polishing trace such
as 0.5 microns.
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Table 2: Angular frequencies
p1=0.68717 [rad/s] p23=15.3752 [rad/s] p45=27.7741 [rad/s] p67=36.038 [rad/s]
p2=1.3741 [rad/s] p24=16.0041 [rad/s] p46=28.2514 [rad/s] p68=36.2926 [rad/s]
p3=2.0607 [rad/s] p25=16.6281 [rad/s] p47=28.7199 [rad/s] p69=36.5358 [rad/s]
p4=2.7465 [rad/s] p26=17.2468 [rad/s] p48=29.1794 [rad/s] p70=36.7677 [rad/s]
p5=3.4316 [rad/s] p27=17.8602 [rad/s] p49=29.6298 [rad/s] p71=36.9881 [rad/s]
p6=4.1155 [rad/s] p28=18.4681 [rad/s] p50=30.071 [rad/s] p72=37.197 [rad/s]
p7=4.7982 [rad/s] p29=19.0701 [rad/s] p51=30.5029 [rad/s] p73=37.3943 [rad/s]
p8=5.4794 [rad/s] p30=19.6663 [rad/s] p52=30.9252 [rad/s] p74=37.5799 [rad/s]
p9=6.1589 [rad/s] p31=20.2563 [rad/s] p53=31.3379 [rad/s] p75=37.7539 [rad/s]
p10=6.8364 [rad/s] p32=20.84 [rad/s] p54=31.7409 [rad/s] p76=37.9161 [rad/s]
p11=7.5119 [rad/s] p33=21.4172 [rad/s] p55=32.1339 [rad/s] p77=38.0665 [rad/s]
p12=8.185 [rad/s] p34=21.9877 [rad/s] p56=32.517 [rad/s] p78=38.205 [rad/s]
p13=8.8555 [rad/s] p35=22.5514 [rad/s] p57=32.8899 [rad/s] p79=38.3316 [rad/s]
p14=9.5233 [rad/s] p36=23.1081 [rad/s] p58=33.2525 [rad/s] p80=38.4463 [rad/s]
p15=10.1881 [rad/s] p37=23.6576 [rad/s] p59=33.6049 [rad/s] p81=38.549 [rad/s]
p16=10.8497 [rad/s] p38=24.1997 [rad/s] p60=33.9467 [rad/s] p82=38.6397 [rad/s]
p17=11.508 [rad/s] p39=24.7342 [rad/s] p61=34.278 [rad/s] p83=38.7184 [rad/s]
p18=12.1627 [rad/s] p40=25.2611 [rad/s] p62=34.5986 [rad/s] p84=38.785 [rad/s]
p19=12.8136 [rad/s] p41=25.7801 [rad/s] p63=34.9084 [rad/s] p85=38.8395 [rad/s]
p20=13.4605 [rad/s] p42=26.291 [rad/s] p64=35.2073 [rad/s] p86=38.8819 [rad/s]
p21=14.1032 [rad/s] p43=26.7938 [rad/s] p65=35.4953 [rad/s] p87=38.9122 [rad/s]
p22=14.7415 [rad/s] p44=27.2882 [rad/s] p66=35.7722 [rad/s] p88=38.9304 [rad/s]

4.1 The determination of the sti�ness coe�cient k

The rolling of a ball of r ray over a �x disc of R ray will be considered in order to determine
the sti�ness coe�cient as in Fig. 5.

The disc of m mass and r ray is running a plane rolling motion over the �x disc of r ray.
The kinetic energy of the disc has the expression:

E =
1

2
JCω

2 +
1

2
mν2c (4.1)

Considering

JC =
1

2
mr2, νC = (R− r)ω, ω = θ̇ (4.2)

it results:

E =
3

4
m (R− r)

2
θ́2 (4.3)

The force function has the expression :

U = mg(R− r) cos θ (4.4)

The generalized restoring force QR has the expression :

QR =
∂U

∂θ
= −mg (R− r) sin θ (4.5)
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Table 3: Comparison between the 8 ball and the 88 ball and 91 ball models
8 ball model � ball no. [Hz] 88 ball model � ball no. 91 ball model � ball no.
/natural frequency [Hz] /natural frequency [Hz] /natural frequency [Hz]

1/1.02 10/1.034 10/1.0006
2/2.009 20/2.0359 21/2.0666
3/2.937 30/2.9745 31/2.9735
4/3.7757 39/3.741 40/3.7165
5/4.4998 49/4.4815 50/4.4387
6/5.087 59/5.0827 60/5.0317
7/5.5198 69/5.526 71/5.5146
8/5.7848 79/5.7976 81/5.7855

Figure 5: The kinematic model of a r ray ball rolling over a �x disc of R ray

It is calculated :

∂E

∂θ
= 0 (4.6)

∂E

∂θ
=

3

2
m (R− r)

2
θ́ (4.7)

d

dt

∂E

∂θ́
=

3

2
m (R− r)

2
θ̈ (4.8)

Introducing (4.7) and (4.8) in Lagrange's second degree equations:

d

dt
(
∂E

∂θ́
)− ∂E

∂θ
= QR (4.9)

A di�erential equation of motion is obtained under the expression:

3

2
m (R− r)

2
θ́ +mg (R− r) sin θ = 0 (4.10)
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Considering small angles, approximation sin θ ≈ θ can be done and the equation (4.10)
becomes:

θ́ +
2

3

g

(R− r)
θ = 0 (4.11)

Hence:

ω =
2

3

g

(R− r)
=

k

m
(4.12)

Considering R = 6.5mm, r = 1.25mm, g = 9.81m/s2 and m = 0.06g, the result is:

kball = 0.0257
N

m
(4.13)

Being determined m and k one can build matrices [M ] and [K] given by the relations
(2.3) and (2.4). These matrices can be used further to determine the speci�c pulsations of
the balls.

4.2 Determination of a trajectory of a point located on a ball of r

ray rolling on an acetabular cup of R ray

Let us consider a material point M located at the edge of a mobile disc of r ray rolling
without sliding inside a �x disc of R > r, as in Fig. 6.

Figure 6: The kinematic generation of hypocycloid

From rolling condition without sliding results:

NI = IM (4.14)

Rϕ = rα (4.15)

If there is mandatory an overlapping condition of the trajectory of point M to the
continuous motion of the mobile disc over the �x one, the result is:
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2πR = 2πrλ (4.16)

where:

λ =
R

r
(4.17)

Introducing (4.17) in (4.15) we have:
α = λϕ (4.18)

The parametric equations of the material point M motion are as follows:{
x = r [(λ− 1) cosϕ− cos (λ− 1)ϕ]
y = r [(λ− 1) sinϕ− sin (λ− 1)ϕ]

(4.19)

For di�erent values of λ rays report, it will be obtained hypocycloidal curves.
The equations written in polar coordinates become:

ρ = (R− r) (1− cos θ) , −π ≤ θ ≤ π (4.20)

The length of the hypocycloidal arch is given by the relation:

S =

2π
3∫

0

√
ρ̇2 + ρ2dθ (4.21)

where ρ̇ is �rst degree derivative of ρ polar coordinate of the material point M .
For a maximal motion of 120◦ = 2π

3 radians of the femoral tail the course length of the
ball is de�ned with reference to a human's step.

S =

2π
3∫

0

√
ρ́2 + ρ2dθ = 4 (R− r)

2π
3∫

0

sin
θ

2
dθ = 4 (R− r) (4.22)

Performing these calculations, it results the length of the hypocycloidal arch:

S = 61 mm

4.3 The analytical determination of the time in which wear appears

The area of acetabular cup (half spherical) of ray R = 16.5mm is :

A = 2πR2 = 1710mm2

Considering not all the 199 balls are going in full through the hypocycloidal arch a
coe�cient of distribution k = 16, 5% is introduced representing the minimal probability for
32 balls to travel in the same time in the hypocycloidal arch, in other words an equivalent
length of the hypocycloidal arch is de�ned:

S1 = k • s ∼= 10mm (4.23)
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The wear area:

Awear = S1 · 0.5 · 10−3mm2 = 5 · 10−3mm2 (4.24)

The total number of wear areas needed in order to cover the surface of the acetabular
cup is:

n =
A

Awear
= 341946 (4.25)

In order to determine the time in which appears the total number of wear area it was
runned a program in Matlab for the model with 199 balls having matrices [M ] and [K] given
by the relations (2.3) and (2.4) by using sparse matrices method:

1. The 199 self pulsations pi

2. The 199 translations speed of the centres of the balls νi

3. The 199 beats in which every ball of r ray having νi speed is travelling through the
hyperbole arch s1

4. The sum of the 199 beats necessary for travelling considering that a ball is running
through all positions and surface

Matlab instructions and the related results are not included in this paperwork but can
be provided at the request by contacting any of the two authors.

By running the program it was concluded that the sum of the 199 beats of travelling is:

T199
∼= 389 s (4.26)

The estimated time in which a wear of 0.5 microns appears on the inner surface of the
acetabular cup can be calculated by using the relation :

T =
T199n

3600 · 8 · k2 · 365
∼= 11 years (4.27)

It was made an equivalency of 8 working hours during which a motion of 120◦ of the femoral
part.This could correspond to 9.2 hours considering the motion one is having in lunch time
and also lifting and sitting motions which will correspond to a coe�cient k2 = 1.15.

Conclusions

For people with a high weight or to prevent the risks of implant positionary, the medical
rehabilitation by using multibody prostheses can build up the solution.

The proposed approach attempts to identify the risk factors that can lead to the failure
of a multibody prosthesis and the prediction of its lifetime.

The use of sparse matrices opens up the perspective of unitary analysis for the spatial
mechanical system comprising 199 active balls and a mechanical system having an unlimited
number of balls. The advantages of sparse matrices are size and speed. These characteristics
allow a faster computation of the durability of a spherical joint, multibody type, setting up
a real support for personalised implants.

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 545 � 560

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


Modelling the durability of multibody total hip joint prosthesis 558

References

[1] M. Abadie, Dynamic simulation of rigid bodies: modelling of frictional contacts. In:
Brogliato, B. (ed.) Impacts in Mechanical Systems, 61�144, Analysis and Modelling.
Lecture Notes in Physics, 551 Springer Berlin, 2000. MR1843042. Zbl 1004.70010.

[2] V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems
Lecture Notes in Applied and Computational Mechanics, 35, Springer Berlin, 2008.
Zbl 1173.74001.

[3] S. Adly, F. Nacry and L. Thibault, Preservation of prox-regularity of sets and application
to constrained optimization. SIAM J. Optim. 26(1)(2016), 448�473. MR3458154. Zbl
1333.49031.

[4] M. Anitescu, J.F. Cremer and F.A. Potra, On the existence of solutions to complemen-
tarity formulations of contact problems with friction. In: Ferris, M.C., Pang, J.S. (eds.)
Complementarity and Variational Problems. State of the Art, (1997), 12�21. SIAM,
Philadelphia. MR1445069. Zbl 0887.70009.

[5] M. Anitescu and F.A. Potra, Formulating dynamic multi-rigid-body contact problems
with friction as solvable linear complementarity problems, Nonlinear Dyn. 24 (1997),
405�437. MR1474672. Zbl 0899.70005.

[6] H. Audren and A. Kheddar, 3-D robust stability polyhedron in multicontact, IEEE Trans.
Robot. 34(2) (2018), 388�403 .

[7] D. Bara�, Issues in computing contact forces for non-penetrating rigid bodies, Algorith-
mica 10 (2�4) (1993), 292�352. MR1231367. Zbl 0777.70006.

[8] D.S. Bernstein, Matrix Mathematics. Theory, Facts, and Formulas with Application to
Linear Systems Theory, Princeton University Press, Princeton, 2005. Zbl 1075.15001.

[9] A. Blumentals, B. Brogliato and F. Bertails-Descoubes, The contact problem in La-
grangian systems subject to bilateral and unilateral constraints, with or without sliding
Coulomb's friction: a tutorial, Multibody Syst. Dyn. 38 (2016), 43�76. MR3523669.
Zbl 1372.70044.

[10] B. Brogliato, Inertial couplings between unilateral and bilateral holonomic constraints in
frictionless Lagrangian systems, Multibody Syst. Dyn. 29 (2013), 289�325. MR3027721.
Zbl 1271.70032.

[11] L. Capitanu and V. Florescu, An Overview of the Researches on Hip Prosthesis with
Rolling Friction, LAP LAMBERT Academic Publishing, 2015.

[12] S. Caron, Q. C. Pham and Y. Nakamura, ZMP support areas for multicontact mobility
under frictional constraints, IEEE Trans. Robot. 33(1)(2017), 67�80.

[13] D. Choudhury, R. Horn and S. Pierce, Quasi-positive de�nite operators and matrices,
Linear Algebra Appl. 99 (1988), 161�176. MR0925155. Zbl 0654.15022.

[14] H. Dahlstr, Evaluation of a metal-on-metal total hip arthroplasty system-Ph. D Thesis,
Stockholm (2017).

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 545 � 560

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=1843042
https://zbmath.org/?q=1004.70010
https://zbmath.org/?q=1173.74001
http://www.ams.org/mathscinet-getitem?mr=3458154
https://zbmath.org/?q=1333.49031
https://zbmath.org/?q=1333.49031
http://www.ams.org/mathscinet-getitem?mr=1445069
https://zbmath.org/?q=0887.70009
http://www.ams.org/mathscinet-getitem?mr=1474672
https://zbmath.org/?q=0899.70005
http://www.ams.org/mathscinet-getitem?mr=1231367
https://zbmath.org/?q=0777.70006
https://zbmath.org/?q=1075.15001
http://www.ams.org/mathscinet-getitem?mr=3523669
https://zbmath.org/?q=1372.70044
http://www.ams.org/mathscinet-getitem?mr=3027721
https://zbmath.org/?q=1271.70032
http://www.ams.org/mathscinet-getitem?mr=0925155
https://zbmath.org/?q=0654.15022
http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


Modelling the durability of multibody total hip joint prosthesis 559

[15] j. Fraczek and M. Wojtyra, On the unique solvability of a direct dynamics problem for
mechanisms with redundant constraints and Coulomb friction, Mech. Mach. Theory 46
(2011), 312�334. Zbl 1336.70020.

[16] D. Gamble, P. K. Jaiswal, I. Lutz and K. D. Johnston, The Use of Ceramics in Total
Hip Arthroplasty, Orthopedics and Rheumatology Open Access Journal 4 (3) (2017)
DOI: 10.19080/OROAJ.2017.04.555636.

[17] J.B. Gilbert, C. Moler and R. Schreiber, Sparse matrices in MATLAB: Design and
Implementation, Tech. Report (1991), Xerox, Palo Alto Research Center.

[18] C. Glocker and F. Pfei�er, Dynamical systems with unilateral contacts, Nonlinear Dyn.
3 (4) (1992), 245�259.

[19] J.G. de Jalón and M.D. Gutteriez-Lopez, Multibody dynamics with redundant con-
straints and singular mass matrix: existence, uniqueness, and determinatio determi-
nation of solutions for accelerations and constraint forces, Multibody Syst. Dyn. 30 (3)
(2013), 311�341. MR3102982. Zbl 1274.70010.

[20] J.G. de Jalón, J. Unda and A. Avello, Natural coordinates for the computer analysis
of multibody systems, Comput. Methods Appl. Mech. Eng. 56 (1986), 309�327. Zbl
0577.70004.

[21] A. Laulusa and O.A. Bauchau, Review of classical approaches for constraint enforcement
in multibody systems, J. Comput. Nonlinear Dyn. 3(1) (2008), 011004 .

[22] R.I. Leine and N. van de Wouw, Stability and convergence of mechanical systems
with unilateral constraints, Lecture Notes in Applied and Computational Mechanics
6 Springer Berlin, 2008. Zbl 1143.70001.

[23] P. Lötstedt, Mechanical systems of rigid bodies subject to unilateral constraints, SIAM
J. Appl. Math. 42(2) (1982), 281�296. MR0650224. Zbl 0489.70016.

[24] D. Negrut, R. Serban and A. Tasora, Posing multibody dynamics with friction and con-
tact as a di�erential complementarity problem, J. Comput. Nonlinear Dyn. 13 (2018),
014503.

[25] J.S. Pang and J.C. Trinkle, Complementarity formulation and existence of solutions
of dynamic rigid-body contact problems with Coulomb friction. Math. Program. 73(2)
(1996), 199�226. MR1392162. Zbl 0854.70008.

[26] A. Peiret, J. Kovecses and J. M. Font-Llagunes, Analysis of friction coupling and the
Painleve paradox in multibody systems, Multibody System Dynamics, 45 (2019), 361-
378. MR3910146. Zbl 1408.70006.

[27] A. Peters, A. J.H. Veldhuijzen, M. Tijink, R. W. Poolman and R. M.H.A. Huis In
T Veld - Patient restrictions following total hip arthroplasty: A national survey, Acta
Orthop. Belg., 83 (2017), 45-52.

[28] D. Rus, L. Capitanu and L. L. Badita, A qualitative correlation between friction coe�-
cient and steel surface wear in linear dry sliding contact to polymers with SGF, Friction,
2(1) (2014), 47-57.

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 545 � 560

http://www.utgjiu.ro/math/sma

https://zbmath.org/?q=1336.70020
http://www.ams.org/mathscinet-getitem?mr=3102982
https://zbmath.org/?q=1274.70010
https://zbmath.org/?q=0577.70004
https://zbmath.org/?q=0577.70004
https://zbmath.org/?q=1143.70001
http://www.ams.org/mathscinet-getitem?mr=0650224
https://zbmath.org/?q=0489.70016
http://www.ams.org/mathscinet-getitem?mr=1392162 
https://zbmath.org/?q=0854.70008
http://www.ams.org/mathscinet-getitem?mr=3910146
https://zbmath.org/?q=1408.70006
http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma


Modelling the durability of multibody total hip joint prosthesis 560

[29] S.-M. Song and X. Gao, The mobility equation and the solvability of joint forces/torques
in dynamic analysis, ASME Journal of Mechanical Design, 114 (1992), 257-262.

[30] J.C. Trinkle, J.S. Pang, S. Sudarsky and G. Lo, On dynamic multi-rigid-body contact
problems with Coulomb friction, J. Appl. Math. Mech./Z. Angew. Math. Mech., 77(4)
(1997), 267�279. MR1449130. Zbl 0908.70008.

[31] M. Wojtyra, Joint reactions in rigid body mechanisms with dependent constraints, Mech.
Mach. Theory 44 (2009), 2265�2278. Zbl 1247.70026.

Virgil Florescu - correspondent author

Department of Technology Mechanics, Technical University of Civil Engineering,

69 Plevnei route Bucharest, Romania.

e-mail: �orescuvirgil@yahoo.com

Lauren�tiu Rece

Department of Technology Mechanics, Technical University of Civil Engineering,

69 Plevnei route Bucharest, Romania.

e-mail: rece@utcb.ro

Aurel Gherghina

Ministerul Ap r rii, Romania.

e-mail: stefan@lew.ro

Adriana Tudorache

Faculty of Engineering, Constantin Brancusi University from Targu-Jiu,

Republicii Street no.1, Targu-Jiu, Romania.

e-mail: adriana_ty2006@yahoo.com

License

This work is licensed under a Creative Commons Attribution 4.0 International License.

******************************************************************************
Surveys in Mathematics and its Applications 15 (2020), 545 � 560

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=1449130
https://zbmath.org/?q=0908.70008
https://zbmath.org/?q=1247.70026
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.utgjiu.ro/math/sma/v15/v15.html
http://www.utgjiu.ro/math/sma

	Introduction
	Description of the Problem
	Establishing the model and determining the differential motion equations
	Determining the angular and natural frequencies for the 8 balls

	The determination of angular and natural frequencies for the 8 balls using sparse matrices
	Determining angular and natural frequencies for the 88 balls through the use of sparse matrices

	Analytical determination of the time in which the wear of the acetabular cup appears
	The determination of the stiffness coefficient k
	Determination of a trajectory of a point located on a ball of r ray rolling on an acetabular cup of R ray
	The analytical determination of the time in which wear appears


