ВЫЧИСЛЕНИЕ ТЕСТОВОГО РАНГА СВОБОДНОЙ РАЗРЕШИМОЙ АЛГЕБРЫ ЛИ

Е. И. Тимошенко, М. А. Шевелин

Аннотация. Вычислен тестовый ранг свободной разрешимой алгебры Ли конечного ранга.

Ключевые слова: алгебра Ли разрешимая, тестовый ранг.

§1. Введение

Элемент g алгебры (группы) G называется mecmosum, если любой эндоморфизм φ алгебры (группы) G, оставляющий элемент g на месте, является автоморфизмом, т. е. из условия $\varphi(g) = g$ следует, что φ — автоморфизмо.

Естественным обобщением понятия тестового элемента является понятие тестового набора.

Пусть G является n-порожденной алгеброй (группой). Набор элементов $\{g_1,\ldots,g_m\},\ m\leq n$, называется mecmosым, если для всякого эндоморфизма φ алгебры (группы) G из условий $\varphi(g_i)=g_i$ при $i=1,\ldots,m$ вытекает, что φ — автоморфизм.

Tecmoвым рангом алгебры (zpynnu) G называется минимум длин тестовых наборов.

В большинстве работ по исследованию тестовых элементов и тестовых рангов рассматриваются группы. Параллельно изучаются тестовые ранги для алгебр Π и.

Вопрос о существовании группы ранга $r \geq 3$, тестовый ранг которой равен двум, сформулирован Файном на сайте программы Магнус (http://www.group-theory.org; Magnus program web site; Open Problems, FP15). Отвечая на этот вопрос, первый автор данной статьи в [1] вычислил тестовый ранг свободной метабелевой группы ранга r. Оказалось, что тестовый ранг этой группы равен r-1 при $r\geq 2$. В [2,3] независимо друг от друга авторы вычислили тестовый ранг свободной метабелевой алгебры Ли. Оказалось, что он так же, как для групп, на единицу меньше ранга алгебры.

В работе [4] изучались тестовые элементы в цветных метабелевых супералгебрах Ли ранга два.

В [5] найдены допустимые значения для тестовых рангов некоторых свободных полинильпотентных групп. Доказано, что тестовый ранг свободной группы произведения многообразий $AN_{c_1} \dots N_{c_l}$ абелевых групп A и нильпотентных групп N_{c_i} либо равен рангу группы, либо на единицу меньше его. Аналог этого результата для алгебр Ли получен в [6].

Работа первого автора выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 05.01.00292).

Внимание к тестовым рангам свободных разрешимых групп объясняется отчасти вопросом Файна и Шпильрайна, сформулированным в Коуровской тетради [7, вопрос 14.88], а также на упомянутом выше сайте проблем Магнуса. Авторы вопроса спрашивают, существуют ли тестовые элементы в свободной разрешимой группе $F_2(A^l)$ ранга два при $l \geq 3$. Первому автору статьи удалось решить проблему 14.88. Более того, в работе [8] им доказано, что тестовый ранг группы $F_r(AN_{c_1}\dots N_{c_l})$ при любом $r\geq 2$ и любом наборе классов (c_1,\dots,c_l) равен r-1.

Целью данной заметки является определение тестового ранга свободной разрешимой алгебры Ли, точнее, доказана следующая теорема, обобщающая результаты из [2,3] о тестовом ранге свободной метабелевой алгебры Ли.

Теорема. Тестовый ранг свободной разрешимой алгебры Π и G ранга $r \geq 2$ равен r-1.

§ 2. Подготовительные результаты

Умножение в алгебре Ли G над полем k обозначаем как коммутатор, i-й член нижнего центрального ряда обозначаем через G^i , i-й коммутант — через $G^{(i)}$. Введем сокращение для длинных коммутаторов: $[a,b;0]=a,\ [a,b;m]=[a,b;m-1],b]$ при m>0.

Пусть G — свободная разрешимая ступени n>1 алгебра Ли над полем k с множеством свободных порождающих $\{x_1,\ldots,x_r\}, A=G^{(n-1)}$. Универсальную обертывающую алгебру для G/A обозначаем через R. Из результатов работы [9] следует, что существует базис $\{l_\lambda \mid \lambda=1,2\dots\}$ алгебры G/A, согласованный с нижним центральным рядом алгебры G/A, т. е. натуральный ряд может быть разбит на такие непересекающиеся отрезки I_j , что множество $\{l_\lambda \mid \lambda \in I_j\}$ есть базис $(G/A)^j$ по модулю $(G/A)^{j+1}$. По теореме Пуанкаре — Биркгофа — Витта множество B, состоящее из произведений

$$l_{\lambda_1} \dots l_{\lambda_p} \quad (\lambda_1 \le \dots \le \lambda_p),$$

является k-базисом алгебры R. Рассмотрим функцию d, определенную на B правилом $d(l_{\mu})=n$, если $l_{\mu}\in (G/A)^n\setminus (G/A)^{n+1}$. При помощи этой функции можно определить d-степень одночлена $l_{\lambda_1}\dots l_{\lambda_p}$ формулой $d(l_{\lambda_1}\dots l_{\lambda_p})=d(\lambda_1)+\dots+d(\lambda_p)$. Одночлены из B упорядочиваем следующим образом. Одночлены с меньшим значением d считаем меньшими. Для двух одночленов $m_1=l_{\lambda_1}\dots l_{\lambda_p}$ и $m_2=l_{\mu_1}\dots l_{\mu_q}$ из B с одинаковым значением d и p<q считаем, что $m_1>m_2$ (более «короткие» одночлены больше). Одночлены из B с одинаковыми значениями d и p=q сравниваем словарно слева направо. Это правило определяет полный порядок на B.

Если $\lambda > \mu$, то

$$l_{\lambda}l_{\mu}=l_{\mu}l_{\lambda}+[l_{\lambda},l_{\mu}].$$

При этом по определению d значения функции d на элементах l_{κ} , возникающих при разложении $[l_{\lambda}, l_{\mu}]$, равны $d(l_{\mu}l_{\lambda})$. Поэтому для таких κ имеем $l_{\mu}l_{\lambda} < l_{\kappa}$. Применяя стандартный процесс, позволяющий устранять «инверсии» в произведениях букв l_{λ} за счет добавления строго больших таких произведений, получаем, что порядок, введенный на B, имеет следующее свойство. Для двух одночленов m_1 , m_2 из B

 $m_1 m_2 = m_3 +$ линейная комбинация строго больших одночленов из B.

Здесь через m_3 обозначен одночлен из B, составленный из тех же букв l_μ , что m_1 и m_2 (с учетом кратностей), записанных в порядке неубывания.

Определяем функцию $\omega(u)$ на $R\setminus\{0\}$ как наименьшее значение, принимаемое функцией d на одночленах из B, входящих в запись u с ненулевыми коэффициентами. Докажем, что

$$\omega(uv) = \omega(u) + \omega(v). \tag{1}$$

Чтобы сделать это, рассмотрим одночлен $m_1=l_{\lambda_1}\dots l_{\lambda_p}$ ($\lambda_1\leq\dots\leq\lambda_p$) — младший среди одночленов наименьшей d-степени, входящих в запись u по базису B с ненулевыми коэффициентами, и аналогичный одночлен $m_2=l_{\mu_1}\dots l_{\mu_q}$ ($\mu_1\leq\dots\leq\mu_q$), построенный по v. Элементы $\lambda_1,\dots,\lambda_p,\mu_1,\dots,\mu_q$ расположим в виде неубывающей последовательности ν_1,\dots,ν_{p+q} . Тогда младший среди одночленов наименьшей d-степени, действительно входящих в разложение элемента uv по базису B, есть $m_3=l_{\nu_1}\dots l_{\nu_{p+q}}$. По построению одночлен m_3 не имеет подобных слагаемых среди одночленов, возникающих при разложении uv по базису B. По определению функции ω имеем $\omega(uv)=\omega(m_3)=\omega(m_1)+\omega(m_2)=\omega(u)+\omega(v)$, что и требовалось.

Очевидно, что для функции ω справедливо также свойство

$$\omega(f-g) \ge \min(\omega(f), \omega(g)).$$

Векторное k-пространство A обычным способом наделяется структурой правого модуля над универсальной обертывающей алгеброй U(G/A), например, для $a \in A$

$$a(x_1 + A)(x_2 + A) = [[a, x_1], x_2].$$

Пусть F — свободная алгебра Ли над k с порождающим множеством $X_1,\ldots,X_r,$ T — свободная ассоциативная алгебра с множеством свободных порождающих $X_1,\ldots X_r$ над тем же полем, рассмотренная как универсальная обертывающая алгебры F. Каждый элемент $f\in F$ допускает единственную запись в виде

$$f = X_1 f_1 + X_2 f_2 + \dots + X_r f_r \quad (f_1, \dots, f_r \in T).$$

Элементы f_1, \ldots, f_r называются npouseodnыми $\Phi oкca$ элемента f и обозначаются через $f_i = D_i f$. Представим G в виде G = F/N' для некоторого идеала N алгебры F. Если взять $g \in G$, то мы называем npouseodnыми $\Phi okca$ образы соответствующих элементов в ассоциативной алгебре U(F/N) = U(G/A), где A = N/N'. Функции $D_i : G \to U(G/A)$ k-линейны и обладают следующими свойствами.

- 1. $D_i(qh) = D_i(q)h'$.
- 2. $D_i([g,h]) = D_i(g)h' D_i(h)g'$.

B этих двух равенствах $g'=g+A, h'=h+A, g,h \in G$.

3. Если b_1, \ldots, b_r — набор элементов алгебры $G, \varphi : G \to G$ — эндоморфизм, определенный правилом $x_i \varphi = b_i \ (1 \le i \le r), \ g \in G$, то

$$D_i(garphi) = \sum_k (D_k(g)arphi_1) D_i(b_k),$$

где через φ_1 обозначен единственный эндоморфизм ассоциативной алгебры U(G/A), удовлетворяющий условиям $(x_i + AU(G))\varphi_1 = b_i + AU(G)$ $(1 \le i \le r)$.

4.
$$\omega(D_i(u)) \ge 1$$
 при $u \in G'$.

Напомним свойства вложения Магнуса для свободной разрешимой алгебры Ли (см. [10]). Обозначим через M свободный правый R-модуль с базисом e_1,\ldots,e_r и через \bar{x}_i — смежный класс $x_i+AU(G)$. Рассмотрим отображение μ подмножества $\{x_1,\ldots,x_r\}$ алгебры G в алгебру Ли D матриц вида

$$\begin{pmatrix} R & 0 \\ M & 0 \end{pmatrix}$$
,

заданное для $i=1,\ldots,r$ правилом $x_i\mapsto\begin{pmatrix}\bar{x}_i&0\\e_i&0\end{pmatrix}$. Подалгебра Ли G_1 алгебры D, порожденная образами $\mu(x_i)$ $(i=1,\ldots,r)$, разрешима ступени n, и μ продолжается до изоморфизма $\mu:G\longrightarrow G_1$. При этом $\mu(A)\subseteq\begin{pmatrix}0&0\\M&0\end{pmatrix}$, в частности,

R-модуль A без кручения. Элемент $\begin{pmatrix} 0 & 0 \\ \sum e_i r_i & 0 \end{pmatrix} \in D$ принадлежит іт μ тогда и только тогда, когда $\sum \bar{x_i} r_i = 0$.

Ассоциативная алгебра R может быть индуктивно представлена как объединение алгебр косых многочленов над областями Оре, поэтому она сама является областью Оре и, следовательно, имеет классическое тело частных Q(R). Поэтому тензорное произведение $A\otimes_R Q(R)$ есть векторное пространство над телом Q(R) и $\dim A\otimes_R Q(R)=r-1$. Рассмотрим ненулевые элементы $h_2,\ldots,h_r\in A$ такие, что h_i принадлежит подалгебре в G, порожденной элементами x_1 и x_i . При этом

$$\mu(h_i) = \begin{pmatrix} 0 & 0 \\ e_1D_1(h_i) - e_iD_i(h_i) & 0 \end{pmatrix}.$$

Матрицы $\mu(h_i)$ $(2 \le i \le r)$, очевидно, линейно независимы над Q(R) и, следовательно, образуют базис в пространстве $A \otimes_R Q(R)$.

Отсюда следует, что $A \otimes_R Q(R)$ порождается как модуль над Q(R) любым таким набором h_2, \ldots, h_r ненулевых элементов из A, что h_i есть длинный коммутатор, содержащий в своей записи только буквы x_1 и x_i .

Лемма 1. Пусть m — целое положительное число, y_1, y_2, g — ненулевые элементы алгебры G. Предположим, что

- 1) $y_1 \in G'$ или $y_2 \in G'$,
- 2) $g \in G^{(n-1)}$ принадлежит подалгебре, порожденной элементами x_1, x_2 .

Если эндоморфизм φ алгебры G задан правилом $x_i\varphi=y_i\ (1\leq i\leq r)$, то $[[g,x_1;m],x_2;m]\varphi\neq [[g,x_1;m],x_2;m].$

Доказательство. Для элемента $f \in U(G/A)$ через f[y] обозначим образ элемента f относительно эндоморфизма φ_1 , индуцированного эндоморфизмом φ на алгебре U(G/A).

Вычислим первую производную Фокса от элемента $g\varphi$:

$$D_1(g\varphi) = (D_1(g))[y]D_1(y_1) + (D_2(g))[y]D_1(y_2).$$

Поскольку $0 = D_1(g)x_1 + D_2(g)x_2 \in U(G/A)$, то $\omega(D_1(g)) = \omega(D_2(g))$.

Предположим, что $[[g,x_1;m],x_2;m]=[[g,x_1;m],x_2;m]\varphi$, и найдем первую производную Фокса от обеих частей этого равенства:

$$D_1(g)x_1^m x_2^m = ((D_1(g))[y]D_1(y_1) + (D_2(g))[y]D_1(y_2))y_1^m y_2^m.$$
 (2)

Очевидно,

$$\omega(D_1(g)) \le \omega((D_1(g))[y]) \le \omega((D_1(g))[y])D_1(y_1),$$

$$\omega(D_1(g)) \le \omega((D_2(g))[y]) \le \omega((D_2(g))[y])D_1(y_2).$$

По условию какой-то из элементов y_1 , y_2 принадлежит коммутанту. Поэтому значение ω на правой части равенства (2) как минимум на 1 превосходит значение той же функции на левой части; противоречие.

Лемма 2. Обозначим R = U(G/A). Пусть $a, b \in R$ — два ненулевых элемента, l — линейная комбинация порождающих x_1, \ldots, x_r . Одно из следующих двух утверждений является истинным:

- 1) $ax_1 \neq b(l+u)$ для всех $u \in (G/A)' \setminus \{0\};$
- 2) $ax_1^2 \neq b(l+u)^2$ для всех $u \in (G/A)' \setminus \{0\}$.

Доказательство. Допустим, что оба утверждения ложны. Это означает, что найдутся два таких ненулевых элемента $u_1,\ u_2,\$ лежащих в коммутанте, и две такие линейные комбинации $l_1,\ l_2$ порождающих, что $ax_1=b(l_1+u_1)$ и $ax_1^2=b(l_2+u_2)^2.$ Отсюда $ax_1^2=b(l_1+u_1)x_1=b(l_2+u_2)^2.$ Сократив на b, получим равенство $(l_1+u_1)x_1=(l_2+u_2)^2.$ Запишем $l_1=\gamma_1x_1+l_1',\ l_2=\gamma_2x_1+l_2',$ здесь l_1',l_2' — линейные комбинации x_2,\ldots,x_r $(\gamma_1,\gamma_2\in k).$ Тогда

 $\gamma_1 x_1^2 + (l_1' + u_1) x_1 = \gamma_2^2 x_1^2 + 2 \gamma_2 (l_2' + u_2) x_1 + \gamma_2 [x_1, l_2' + u_2] + (l_2' + u_2)^2.$ (3) Пусть S обозначает универсальную обертывающую алгебру идеала в G/A, порожденного x_2, \ldots, x_r . Рассмотрим R как алгебру косых многочленов $R = S[x_1; d]$ с левыми коэффициентами S и дифференцированием d таким, что $d(s) = [x_1, s]$ для всех $s \in S$. Это позволяет сравнить коэффициенты при степенях x_1 в (3) и получить

$$\gamma_2^2=\gamma_1,\quad 2\gamma_2l_2'-l_1'=u_1-2\gamma_2u_2$$
 и $(l_2'+u_2)^2=\gamma_2[l_2'+u_2,x_1].$ Если $\gamma_2=0$, то из второго равенства получаем $l_1'\in (G/A)'$, что невозможно, так как $u_1\neq 0$. Поэтому $\gamma_2\neq 0$ и $\gamma_1\neq 0$. Тем самым третье равенство дает противоречие, поскольку $[l_2'+u_2,x_1]\in (G/A)'$, тогда как $(l_2'+u_2)^2\notin G/A$.

Следствие. Для любых двух ненулевых элементов $a,b \in R$ найдется такое целое положительное число m, что равенство

$$ax_1^m=b(l+u)^m, \quad$$
где $l=\sum_{1\leq i\leq r}\gamma_ix_i$ и $u\in (G/A)',$

влечет $u = 0, l = \gamma_1 x_1$.

Лемма 3. Пусть $u_1, \ldots, u_n \in A$. Рассмотрим эндоморфизм φ , определенный правилом $x_i \varphi = \xi_i x_i + u_i \ (1 \le i \le r)$. Если φ действует на A тождественно, то $\xi_i = 1$ при $(1 \le i \le r)$ и φ — автоморфизм.

Доказательство. Положим $y_i = \xi_i x_i + u_i$ $(1 \le i \le r)$. Пусть $\xi_1 = 0$. В случае, когда $u_1 = 0$, каждый ненулевой коммутатор порождающих, принадлежащий A и имеющий в своей записи букву x_1 , переходит в 0 под действием φ , что противоречит условию. Если же $u_1 \ne 0$, то $x_1 \varphi = u_1 \in A$, $[x_1, u_1] \ne 0$ и $[x_1, u_1] \varphi = [u_1, u_1 \varphi] = [u_1, u_1] = 0$, что опять противоречит условию. Поэтому $\xi_1 \ne 0$ и вообще $\xi_i \ne 0$ $(1 \le i \le r)$. Следовательно, $x_i = \xi_i^{-1}(y_i - u_i)$. Так как $u_i \varphi = u_i$, то x_i принадлежат подалгебре, порожденной y_1, \ldots, y_r . Поэтому эндоморфизм φ сюръективен.

Возьмем $a\in A,\ a\neq 0$. По условию $a\varphi=a$ и $[a,x_1]\varphi=[a,x_1]$. С другой стороны, $0\neq [a,x_1]\varphi=[a,\xi_1x_1+u_1]=\xi_1[a,x_1]$. Следовательно, $\xi_1=1$. Точно так же $\xi_i=1$ при $2\leq i\leq r$.

Пусть $f \in G$, $f\varphi = 0$. Так как φ индуцирует на G/A тождественное отображение, то $f\varphi \equiv f \pmod A$, т. е. $f \in A$. По условию $f\varphi = f$, откуда f = 0. Таким образом, φ инъективен, т. е. является автоморфизмом.

Лемма 4. Пусть эндоморфизм φ алгебры G задан правилом $x_i\varphi=\xi_ix_i+u_i$ $(u_i\in A,\,\xi_i\in k\setminus\{0\},\,1\leq i\leq r).$ Тогда для любого элемента $h\in G$

$$h\varphi = h(\xi_1 x_1, \dots, \xi_r x_r) + \sum_{1 \le j \le r} \mu_j u_j D_j(h(\xi_1 x_1, \dots, \xi_r x_r)) \quad (\mu_j \in k). \tag{4}$$

ДОКАЗАТЕЛЬСТВО. Формулу (4) достаточно проверить, в случае, когда h является коммутатором порождающих элементов. Для коммутаторов веса 1 (т. е. когда $h=x_i$) она очевидна. Общий случай получается индукцией по весу коммутатора.

§ 3. Доказательство основной теоремы

Пусть m — целое число из следствия. Рассмотрим ненулевые элементы $g_2, \dots, g_r \in A$, удовлетворяющие условиям:

- 1) g_i принадлежит подалгебре, порожденной x_1 и x_i $(2 \le i \le r)$,
- 2) g_i является коммутатором порождающих.

Положим $h_i = [[g_i, x_1; m], x_i; m]$. Проверим, что элементы h_2, \ldots, h_r образуют тестовое множество. Возьмем эндоморфизм φ такой, что $x_i \varphi = y_i \ (1 \le i \le r)$, и пусть $h_i \varphi = h_i$ для всех i. Нам нужно убедиться, что φ — автоморфизм. Вычислим производные Фокса от обеих частей равенства $h_i \varphi = h_i$:

$$(D_j(g_i))x_1^m x_i^m = (D_j(g_i\varphi))y_1^m y_i^m.$$

По лемме 1 элементы y_1,\ldots,y_r не лежат в коммутанте. Используя следствие из леммы 2, мы получаем, что $y_i=\xi_ix_i+u_i$ ($u_i\in A,\ \xi_i\in k$). Представим φ в виде $\varphi=\xi\psi$, где $x_i\xi=\xi_ix_i,\ x_i\psi=x_i+v_i$ ($v_i=u_i\xi^{-1}\in A,\ 1\leq i\leq r$). По лемме 1 при $i=1,\ldots,r$ имеем $\xi_i\neq 0$, т. е. $\xi-$ (диагональный) автоморфизм. По лемме 4 $h_j\varphi=h_j\xi+\sum_i\mu_iu_iD_i(h\xi)$ ($\mu_i\in k$). Заметим, что все отличные от нуля слагаемые $\mu_iu_iD_i(h\xi)$ из предыдущего равенства имеют большую степень, чем $h_j\xi$, поскольку $u_i\in A$. Поэтому $\sum_i\mu_iu_iD_i(h\xi)=0$. Это означает, что $h_j\xi=h_j$ ($2\leq j\leq r$). Следовательно, достаточно проверить, что ψ является автоморфизмом. Иными словами, можно считать далее, что $\xi=1$.

Элементы h_2, \ldots, h_r порождают правое векторное пространство $A \otimes_R Q(R)$ над классическим телом частных Q(R) алгебры R = U(G/A), поскольку для каждого $g \in A$ можно подобрать такие элементы $b_0, b_2, \ldots, b_r \in R$, что $gb_0 = h_2b_2 + \cdots + h_rb_r$. Из того, что φ индуцирует на G/A тождественное отображение, следует, что φ корректно продолжается до эндоморфизма пространства A над телом Q(R). Ясно, что это продолжение является тождественным эндоморфизмом. Тем самым φ действует на A тождественно. Отсюда по лемме 3 следует, что φ — автоморфизм. Этим доказано, что тестовый ранг G не больше, чем r-1. Противоположное неравенство следует из [6].

ЛИТЕРАТУРА

- 1. Тимошенко Е. И. Тестовые элементы и тестовый ранг свободной метабелевой группы // Сиб. мат. журн. 2000. Т. 41, № 6. С. 1451-1456.
- **2.** Чирков И. В., Шевелин М. А. Тестовые наборы в свободных метабелевых алгебрах Ли // Сиб. мат. журн. 2002. Т. 43, № 6. С. 1401–1407.
- 3. Esmerligil Z., Ekici N. Test sets and test rank of a free metabelian Lie algebra // Comm. Algebra. 2003. V. 31, N 11. P. 5581–5589.

- 4. Esmerligil Z. Test elements of a free color metabelian Lie superalgebra of rank two // J. Inst. Math. Comput. Sci. Math. Ser. 2004. V. 17, N 1. P. 25–29.
- 5. Гупта Ч. К., Тимошенко Е. И. О тестовом ранге некоторых свободных полинильпотентных групп // Алгебра и логика. 2003. Т. 42, № 1. С. 37–50.
- 6. Esmerligil Z., Kahyalar D., Ekici N. Test rank of F/R' Lie algebras // Internat. J. Algebra Comput. 2006. V. 16, N 4. P. 817–825.
- Коуровская тетрадь №15. Нерешенные вопросы теории групп. Новосибирск: Ин-т математики СО РАН, 2002.
- Тимошенко Е. И. Вычисление тестового ранга свободной разрешимой группы // Алгебра и логика. 2006. Т. 45, № 4. С. 447–457.
- 9. Бокуть Л. А. База свободных полинильпотентных алгебр Ли // Алгебра и логика. 1963. Т. 2, № 4. С. 13–20.
- 10. *Харлампович О. Г.* Условие Линдона для разрешимых алгебр Ли // Изв. вузов. Математика. 1984. № 9. С. 50–59.

Статья поступила 30 мая 2007 г.

Тимошенко Евгений Иосифович Новосибирский гос. архитектурно-строительный университет, ул. Ленинградская, 113, Новосибирск 630008 etim@sibstrin.ru

Шевелин Михаил Александрович Омский гос. университет, кафедра алгебры, пр. Мира, 55-A, Омск 644077 shevelin@math.omsu.omskreg.ru