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Abstract. The author proves the W 1,p and C1,α convergence of the radial mini-
mizers uε of an Ginzburg-Landau type functional as ε → 0. The zeros of the radial
minimizer are located and the convergent rate of the module of the minimizer is
estimated.
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§1. Introduction

Let n ≥ 2, Br = {x ∈ Rn; |x| < r}, g(x) = x on ∂B1. Recall the Ginzburg-
Landau type functional

Eε(u) =
1

2

∫
B1

|∇u|2 +
1

4ε2

∫
B1\BΓ

(1 − |u|2)2 +
1

4ε2

∫
BΓ

|u|2,

on the class functions H1
g (B1, R

n). The functional Eε(u) is related to the Ginzburg-
Landau model of superconductivity with normal impurity inclusion such as super-
conducting normal junctions (cf. [5]) if n = 2. B1 \ BΓ and BΓ represent the
domains occupied by superconducting materials and normal conducting materials,
respectively. The minimizer uε is the order parameter. Zeros of uε are known as
Ginzburg-Landau vortices which are of significance in the theory of superconduc-
tivity(cf. [1]). The paper [7] studied the asymptotic behaviors of the minimizer of
Eε(u, B1) on the function class H1

g (B1, R
2) and discussed the vortex-pinning effect.

For the simplified Ginzburg-Landau functional, many papers stated the asymptotic
behavior of the minimizer uε as ε → 0. When n = 2, the asymptotics of uε were
well-studied by [1]. In the case of higher dimension, for the radial minimizer uε of
Eε(u, B1), some results on the convergence had been shown in [14] as ε → 0. There
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were many works for the radial minimizer in [12]. Other related works can be seen
in [2] [3] [8] and [17] etc.

Assume p > n. Consider the minimizers of the p-Ginzburg-Landau type func-
tional

Eε(u, B1) =
1

p

∫
B1

|∇u|p +
1

4εp

∫
B1\BΓ

(1 − |u|2)2 +
1

4εp

∫
BΓ

|u|4,

on the class functions

W = {u(x) = f(r)
x

|x| ∈ W 1,p(B1, R
n); f(1) = 1, r = |x|}.

By the direct method in the calculus of variations we can see that the minimizer
uε exists and it will be called radial minimizer. In this paper, we suppose that
Γ ∈ (0, ε]. The conclusion of the case of Γ = O(ε) as ε → 0 is still true by the same
argument. we will discuss he location of the zeros of the radial minimizer. Based on
the result, we shall establish the uniqueness of the radial minimizer. The asymptotic
behavior of the radial minimizer be concerned with as ε → 0. The estimates of the
rate of the convergence for the module of minimizer will be presented.

We will prove the following theorems.

Theorem 1.1. Assume uεis a radial minimizer of Eε(u, B1). Then for any given
η ∈ (0, 1/2) there exists a constant h = h(η) > 0 such that

Zε = {x ∈ B1; |uε(x)| < 1 − 2η} ⊂ B(0, hε) ∪ BΓ.

Moreover, the zeros of the radial minimizer are contained in Bhε as Γ ∈ (0, hε].
When Γ ∈ (hε, ε], the zeros are contained in BΓ \ B(0, hε).

Theorem 1.2. For any given ε ∈ (0, 1), the radial minimizers of Eε(u, B1) are
unique on W .

Theorem 1.3. Assume uε is the radial minimizer of Eε(u, B1). Then as ε → 0,

(1.1) uε → x

|x| , in W 1,p
loc (B1 \ {0}, Rn);

(1.2) uε → x

|x| , in C1,β
loc (B1 \ {0}, Rn),

for some β ∈ (0, 1).

Theorem 1.4. Let uε(x) = fε(r)
x
|x| be the radial minimizer of Eε(u, B1). Then

for any T > 0, there exist C, ε0 > 0 such that as ε ∈ (0, ε0),

∫ 1

T

rn−1[(f ′
ε)

p +
1

εp
(1 − f2

ε )2]dr ≤ Cεp.

sup
r∈[T,1]

(1 − fε(r)) ≤ Cεp−n
2 .

Some basic properties of minimizers are given in §2. The main purpose of §3 is
to prove Theorem 1.1. In §4 and §5 we present the proof of (1.1). The proof of
Theorem 1.2 is given in §6. §7 gives the proof of (1.2). Theorem 1.4 is derived in
§8.
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§2. Preliminaries

In polar coordinates, for u(x) = f(r) x
|x| we have

|∇u| = (f2
r + (n − 1)r−2f2)1/2,

∫
B1

|u|p = |Sn−1|
∫ 1

0

rn−1|f |p dr,

∫
B1

|∇u|p = |Sn−1|
∫ 1

0

rn−1(f2
r + (n − 1)r−2f2)p/2 dr.

It is easily seen that f(r) x
|x| ∈ W 1,p(B1, R

n) implies f(r)r
n−1

p −1, fr(r)r
n−1

p ∈
Lp(0, 1). Conversely, if f(r) ∈ W 1,p

loc (0, 1], f(r)r
n−1

p −1, fr(r)r
n−1

p ∈ Lp(0, 1), then
f(r) x

|x| ∈ W 1,p(B1, R
n). Thus if we denote

V = {f ∈ W 1,p
loc (0, 1]; r

n−1
p fr, r

(n−1−p)/pf ∈ Lp(0, 1), f(r) ≥ 0, f(1) = 1},
then V = {f(r); u(x) = f(r) x

|x| ∈ W}.
Substituting u(x) = f(r) x

|x| ∈ W into Eε(u, B1), we obtain

Eε(u, B1) = |Sn−1|Eε(f)

where

Eε(f) =
1

p

∫ 1

0

(f2
r + (n − 1)r−2f2)p/2rn−1dr

+
1

4εp

∫ 1

Γ

(1 − f2)2]rn−1 dr +
1

4εp

∫ Γ

0

f4rn−1 dr.

This implies that u = f(r) x
|x| ∈ W is the minimizer of Eε(u, B1) if and only if

f(r) ∈ V is the minimizer of Eε(f).

Proposition 2.1. The set V defined above is a subset of {f ∈ C[0, 1]; f(0) = 0}.
Proof. Let f ∈ V and h(r) = f(r

p−1
p−n ).Then

∫ 1

0

|h′(r)|p dr = (
p − 1

p − n
)p

∫ 1

0

|f ′(r
p−1
p−n )|pr

p(n−1)
p−n dr

= (
p − 1

p − n
)p−1

∫ 1

0

sn−1|f ′(s)|p ds < ∞

by noting fs(s)s
(n−1)/p ∈ Lp(0, 1). Using interpolation inequality and Young in-

equality, we have that for some y > 1,

‖h‖W 1,y((0,1),R) < ∞,

which implies that h(r) ∈ C[0, 1] and hence f(r) ∈ C[0, 1].
Suppose f(0) > 0, then f(r) ≥ s > 0 for r ∈ [0, t) with t > 0 small enough since

f ∈ C[0, 1]. We have
∫ 1

0

rn−1−pfp dr ≥ sp

∫ t

0

rn−1−p dr = ∞,

which contradicts r(n−1)/p−1f ∈ Lp(0, 1). Therefore f(0) = 0 and the proof is
complete.

It is not difficult to prove the following
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Proposition 2.2. The functional Eε(u, B1) achieves its minimum on W by a func-
tion uε(x) = fε(r)

x
|x| .

Proposition 2.3. The minimizer uε satisfies the equality

(2.1)

∫
B1

|∇u|p−2∇u∇φdx − 1

εp

∫
B1\BΓ

uφ(1 − |u|2)dx +
1

εp

∫
BΓ

uφ|u|2dx = 0,

(2.2) ∀φ = f(r)
x

|x| ∈ C∞
0 (B1, R

n). u|∂B1 = x.

Proof. Denote uε by u. For any t ∈ [0, 1)and φ = f(r) x
|x| ∈ C∞

0 (B1, R
n), we have

u + tφ ∈ W as long as t is small sufficiently. Since u is a minimizer we obtain

dEε(u + tφ, B1)

dt
|t=0 = 0,

namely,

0 =
d

dt
|t=0

∫
B1

1

p
|∇(u + tφ)|p +

1

4εp

∫
B1\BΓ

(1 − |u + tφ|2)2dx

+
1

4εp

∫
BΓ

|u + tφ|4dx

=

∫
B1

|∇u|p−2∇u∇φdx − 1

εp

∫
B1\BΓ

uφ(1 − |u|2)dx +
1

εp

∫
BΓ

uφ|u|2dx.

By a limit process we see that the test function φ can be any member of {φ =
f(r) x

|x| ∈ W 1,p(B1, R
n); φ|∂B1 = 0}.

Similarly, we also derive
The minimizer fε(r) of the functional Eε(f) satisfies

∫ 1

0

rn−1(f2
r + (n − 1)r−2f2)(p−2)/2(frφr + (n − 1)r−2fφ) dr

(2.3)

=
1

εp

∫ 1

Γ

rn−1(1 − f2)fφ dr − 1

εp

∫ Γ

0

rn−1f3φ dr, ∀φ ∈ C∞
0 (0, 1).

By a limit process we see that the test function φ in (2.3) can be any member of

X = {φ(r) ∈ W 1,p
loc (0, 1]; φ(0) = φ(1) = 0, φ(r) ≥ 0, r

n−1
p φ′, r

n−p−1
p φ ∈ Lp(0, 1)}

Proposition 2.4. Let fε satisfies (2.3) and f(1) = 1. Then fε ≤ 1 on [0,1].

Proof. Denote f = fε in (2.3) and set φ = f(f2 − 1)+. Then∫ 1

0

rn−1(f2
r + (n − 1)r−2f2)(p−2)/2[f2

r (f2 − 1)+ + ffr[(f
2 − 1)+]r

+ (n − 1)rn−3f2(f2 − 1)+] dr +
1

εp

∫ 1

Γ

rn−1f2(f2 − 1)2+ dr

+
1

εp

∫ Γ

0

rn−1f4(f2 − 1)+ dr = 0

from which it follows that

1

εp

∫ 1

Γ

rn−1f2(f2 − 1)2+ dr +
1

εp

∫ Γ

0

rn−1f4(f2 − 1)+ dr = 0

Thus f = 0 or (f2 − 1)+ = 0 on [0, 1] and hence f = fε ≤ 1 on [0,1].
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Proposition 2.5. Assume uε is a weak radial solution of (2.1)(2.2). Then there
exist positive constants C1, ρ which are both independent of ε such that

(2.4) ‖∇uε(x)‖L∞(B(x,ρε/8)) ≤ C1ε
−1, if x ∈ B(0, 1 − ρε),

(2.5) |uε(x)| ≥ 10

11
, if x ∈ B1 \ B(0, 1 − 2ρε).

Proof. Let y = xε−1 in (2.1) and denote v(y) = u(x), Bε = B(0, ε−1). Then

(2.6)

∫
Bε

|∇v|p−2∇v∇φdy =

∫
Bε\B(0,Γε−1)

v(1 − |v|2)φdy −
∫

B(0,Γε−1)

vφ|v|2dy

∀φ ∈ W 1,p
0 (Bε, R

n). This implies that v(y) is a weak solution of (2.6). By using the
standard discuss of the Holder continuity of weak solution of (2.6) on the boundary
(for example see Theorem 1.1 and Line 19-21 of Page 104 in [4]) we can see that
for any y0 ∈ ∂Bε and y ∈ B(y0, ρ0) (where ρ0 > 0 is a constant independent of ε),
there exist positive constants C = C(ρ0) and α ∈ (0, 1) which are both independent
of ε such that

|v(y) − v(y0)| ≤ C(ρ0)|y − y0|α.

Choose ρ > 0 sufficiently small such that

(2.7) y ∈ B(y0, 2ρ) ⊂ B(y0, ρ0), and C(ρ0)|y − y0|α ≤ 1

11
,

then

|v(y)| ≥ |v(y0)| − C(ρ0)|y − y0|α = 1 − C(ρ0)|y − y0|α ≥ 10

11
.

Let x = yε. Thus

|uε(x)| ≥ 10

11
, if x ∈ B(x0, 2ρε)

where x0 ∈ ∂B1. This implies (2.5).
Taking φ = vζp, ζ ∈ C∞

0 (Bε, R) in (2.6), we obtain∫
Bε

|∇v|pζpdy ≤ p

∫
Bε

|∇v|p−1ζp−1|∇ζ||v|dy +

∫
Bε\B(0,Γε−1)

|v|2(1 − |v|2)ζpdy

+

∫
B(0,Γε−1)

|v4|ζpdy.

For the ρ in (2.7), setting y ∈ B(0, ε−1 − ρ), B(y, ρ/2) ⊂ Bε, and

ζ = 1 in B(y, ρ/4), ζ = 0 in Bε \ B(y, ρ/2), |∇ζ| ≤ C(ρ),

we have ∫
B(y,ρ/2)

|∇v|pζp ≤ C(ρ)

∫
B(y,ρ/2)

|∇v|p−1ζp−1 + C(ρ).

Using Holder inequality we can derive
∫

B(y,ρ/4)
|∇v|p ≤ C(ρ). Combining this with

the Tolksdroff’ theorem in [19] (Page 244 Line 19-23) yields

‖∇v‖p
L∞(B(y,ρ/8)) ≤ C(ρ)

∫
B(y,ρ/4)

(1 + |∇v|)p ≤ C(ρ)

which implies
‖∇u‖L∞(B(x,ερ/8)) ≤ C(ρ)ε−1.
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Proposition 2.6. Let uε be a radial minimizer of Eε(u, B1). Then

(2.8) Eε(uε, B1) ≤ Cεn−p + C,

with a constant C independent of ε ∈ (0, 1).

Proof. Denote

I(ε, R) = Min{
∫

B(0,R)

[
1

p
|∇u|p +

1

εp
(1 − |u|2)2]; u ∈ WR},

where WR = {u(x) = f(r) x
|x| ∈ W 1,p(B(0, R), Rn); r = |x|, f(R) = 1}. Then

I(ε, 1) = Eε(uε, B1)

(2.9)

=
1

p

∫
B1

|∇uε|pdx +
1

4εp

∫
B1\BΓ

(1 − |uε|2)2dx +
1

4εp

∫
BΓ

|uε|4dx

= εn−p[
1

p

∫
B(0,ε−1)

|∇uε|pdy +
1

4

∫
B(0,ε−1)\B(0,Γε−1)

(1 − |uε|2)2dy

+
1

4

∫
B(0,Γε−1)

|uε|4dy] = εn−pI(1, ε−1).

Let u1 be a solution of I(1, 1) and define

u2 = u1, if 0 < |x| < 1; u2 =
x

|x| , if 1 ≤ |x| ≤ ε−1.

Thus u2 ∈ Wε−1 and,

I(1, ε−1)

≤ 1

p

∫
B(0,ε−1)

|∇u2|p +
1

4

∫
B(0,ε−1)\B(0,Γε−1)

(1 − |u2|2)2 +
1

4

∫
B(0,Γε−1)

|uε|4

=
1

p

∫
B1

|∇u1|p +
1

4

∫
B1

(1 − |u1|2)2 +
1

4

∫
B1

|u1|4dx +
1

p

∫
B(0,ε−1)\B1

|∇ x

|x| |
p

= I(1, 1) +
(n − 1)p/2|Sn−1|

p

∫ ε−1

1

rn−p−1dr

= I(1, 1) +
(n − 1)p/2|Sn−1|

p(p − n)
(1 − εp−n) ≤ C.

Substituting this into (2.9) yields (2.8).

§3. Proof of Theorem 1.1

Proposition 3.1. Let uε be a radial minimizer of Eε(u, B1). Then for some con-
stant C independent of ε ∈ (0, 1]

(3.1)
1

εn

∫
B1\BΓ

(1 − |uε|2)2 +
1

εn

∫
BΓ

|uε|4 ≤ C.

Proof. (3.1) can be derived by multiplying (2.8) by εp−n.
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Proposition 3.2. Let uε be a radial minimizer of Eε(u, B1). Then for any η ∈
(0, 1/2), there exist positive constants λ, µ independent of ε ∈ (0, 1) such that if

(3.2)
1

εn

∫
AΓ,1−ρε∩B2lε

(1 − |uε|2)2 ≤ µ,

where AΓ,1−ρε = B(0, 1− ρε) \BΓ, B2lε is some ball of radius 2lε with l ≥ λ, then

(3.3) |uε(x)| ≥ 1 − η, ∀x ∈ AΓ,1−ρε ∩ Blε.

Proof. First we observe that there exists a constant C2 > 0 which is independent of ε
such that for any x ∈ B1 and 0 < ρ ≤ 1, |B1∩B(x, r)| ≥ |AΓ,1−ρε∩B(x, r)| ≥ C2r

n.
To prove the proposition, we choose

(3.4) λ =
η

2C1
, µ =

C2

Cn
1

(
η

2
)n+2,

where C1 is the constant in (2.4). Suppose that there is a point x0 ∈ AΓ,1−ρε ∩Blε

such that |uε(x0)| < 1 − η. Then applying (2.4) we have

|uε(x) − uε(x0)| ≤ C1ε
−1|x − x0| ≤ C1ε

−1(λε)

= C1λ =
η

2
, ∀x ∈ B(x0, λε),

hence (1 − |uε(x)|2)2 > η2

4 , ∀x ∈ B(x0, λε). Thus

∫
B(x0,λε)∩AΓ,1−ρε

(1 − |uε|2)2 >
η2

4
|AΓ,1−ρε ∩ B(x0, λε)|

(3.5)

≥ C2
η2

4
(λε)n = C2

η2

4
(

η

2C1
)nεn = µεn.

Since x0 ∈ Blε ∩ B1, and (B(x0, λε) ∩ AΓ,1−ρε) ⊂ (B2lε ∩ AΓ,1−ρε), (3.5) implies
∫

B2lε∩AΓ,1−ρε

(1 − |uε|2)2 > µεn,

which contradicts (3.2) and thus (3.3) is proved.

Let uε be a radial minimizer of Eε(u, B1). Given η ∈ (0, 1/2). Let λ, µ be
constants in Proposition 3.2 corresponding to η. If

(3.6)
1

εn

∫
B(xε,2λε)∩AΓ,1−ρε

(1 − |uε|2)2 ≤ µ,

then B(xε, λε) is called η− good ball, or simply good ball. Otherwise it is called
η− bad ball or simply bad ball.

Now suppose that {B(xε
i , λε), i ∈ I} is a family of balls satisfying

(i) : xε
i ∈ AΓ,1−ρε, i ∈ I ; (ii) : AΓ,1−ρε ⊂ ∪i∈IB(xε

i , λε);

(3.7) (iii) : B(xε
i , λε/4) ∩ B(xε

j , λε/4) = ∅, i 6= j.

Denote Jε = {i ∈ I ; B(xε
i , λε) is a bad ball}.
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Proposition 3.3. There exists a positive integer N such that the number of bad
balls

Card Jε ≤ N.

Proof. Since (3.7) implies that every point in B1 can be covered by finite, say m
(independent of ε) balls, from (3.1)(3.6) and the definition of bad balls,we have

µεnCardJε ≤
∑
i∈Jε

∫
B(xε

i ,2λε)∩AΓ,1−ρε

(1 − |uε|2)2

≤ m

∫
∪i∈Jε B(xε

i ,2λε)∩AΓ,1−ρε

(1 − |uε|2)2

≤ m

∫
B1\BΓ

(1 − |uε|2)2 ≤ mCεn

and hence Card Jε ≤ mC
µ ≤ N .

Proposition 3.3 is an important result since the number of bad balls CardJε is
always finite as ε turns sufficiently small.

Similar to the argument of Theorem IV.1 in [1], we have

Proposition 3.4. There exist a subset J ⊂ Jε and a constant h ≥ λ such that
∪i∈JεB(xε

i , λε) ⊂ ∪i∈JB(xε
j , hε) and

(3.8) |xε
i − xε

j | > 8hε, i, j ∈ J, i 6= j.

Proof. If there are two points x1, x2 such that (3.8) is not true with h = λ, we take
h1 = 9λ and J1 = Jε \ {1}. In this case, if (3.8) holds we are done. Otherwise
we continue to choose a pair points x3, x4 which does not satisfy (3.8) and take
h2 = 9h1 and J2 = Jε \ {1, 3}. After at most N steps we may choose λ ≤ h ≤ λ9N

and conclude this proposition.

Applying Proposition 3.4, we may modify the family of bad balls such that the
new one, denoted by {B(xε

i , hε); i ∈ J}, satisfies

∪i∈JεB(xε
i , λε) ⊂ ∪i∈JB(xε

i , hε), Card J ≤ Card Jε,

|xε
i − xε

j | > 8hε, i, j ∈ J, i 6= j.

The last condition implies that every two balls in the new family are not intersected.
Now we prove our main result of this section.

Theorem 3.5. Let uε be a radial minimizer of Eε(u, B1). Then for any η ∈
(0, 1/2), there exists a constant h = h(η) independent of ε ∈ (0, 1) such that Zε =
{x ∈ B1; |uε(x)| < 1−η} ⊂ B(0, hε)∪BΓ. In particular the zeros of uε are contained
in B(0, hε) ∪ BΓ.

Proof. Suppose there exists a point x0 ∈ Zε such that x0∈B(0, hε). Then all points
on the circle S0 = {x ∈ B1; |x| = |x0|} satisfy |uε(x)| < 1 − η and hence by virtue
of Proposition 3.2 and (2.5), all points on S0 are contained in bad balls. However,
since |x0| ≥ hε, S0 can not be covered by a single bad ball. S0 can be covered by
at least two bad balls. However this is impossible. Theorem is proved.
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Complete the proof of Theorem 1.1.. Using Theorem 3.5 and (2.5), we can
see that |uε(x)| ≥ min( 10

11 , 1 − 2η), x∈B(0, h(η)ε) ∪ BΓ. When Γ ∈ (0, hε], this
means

(3.9) |uε(x)| ≥ min(
10

11
, 1 − 2η), x∈B(0, h(η)ε).

When Γ ∈ (hε, ε], from Theorem 3.5 we know that |uε| ≥ 1 − η on B1 \ BΓ.
Moreover, similar to the proof of Proposition 3.2, we may still obtain: for any given
η ∈ (0, 1/2), there are λ = η

2C1
, µ2 = C2λ

n(η
2 )n+2, such that if for l > λ,

(3.10)
1

εn

∫
BΓ∩B2lε

|uε|4 ≤ µ2

holds, then |uε(x)| ≤ η, ∀x ∈ BΓ ∩ Blε. We will take (3.10) as the ruler which
distinguishes the good and the bad balls. The ball B(xε, λε) satisfying

1

ε2

∫
BΓ∩B(xε,2λε)

|uε|4 ≤ µ2

is named the bad ball in BΓ. Otherwise, the ball B(xε, λε) is named the good ball
in BΓ. Similar to the proof of Proposition 3.3, from proposition 3.1 we may also
conclude that the number of the good balls is finite. Moreover, by the same way to
the proof of Theorem 3.5, we obtain that

(3.11) {x ∈ BΓ; |uε(x)| > η} ⊂ Bhε and |uε(x)| ≤ η as x ∈ BΓ \ Bhε.

§4. Uniform estimate

Let uε(x) = fε(r)
x
|x| be a radial minimizer of Eε(u, B1), namely fε be a minimizer

of Eε(f) in V . From Proposition 2.6, we have

(4.1) Eε(fε) ≤ Cεn−p.

for some constant C independent of ε ∈ (0, 1).
In this section we further prove that for any given R ∈ (0, 1), there exists a

constant C(R) such that

(4.2) Eε(fε; R) ≤ C(R)

for ε ∈ (0, ε0) with ε0 > 0 sufficiently small, where

Eε(f ; R) =
1

p

∫ 1

R

(f2
r + (n − 1)r−2f2)p/2rn−1 dr +

1

4εp

∫ 1

R

(1 − f2)2rn−1 dr.

Proposition 4.1. Given T ∈ (0, 1). There exist constants Tj ∈ [ (j−1)T
N+1 , jT

N+1 ],

(N = [p]) and Cj , such that

(4.3) Eε(fε; Tj) ≤ Cjε
j−p

for j = n, n + 1, ..., N , where ε ∈ (0, ε0) with ε0 sufficiently small.
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Proof. For j = n, the inequality (4.3) can be obtained by (4.1) easily. Suppose that
(4.3) holds for all j ≤ m. Then we have, in particular,

(4.4) Eε(fε; Tm) ≤ Cmεm−p.

If m = N then we have done. Suppose m < N , we want to prove (4.3) for j = m+1.
From (4.4) and integral mean value theorem, we can see that there exists Tm+1 ∈

[ mT
N+1 , (m+1)T

N+1 ] such that

(4.5)
1

εp
(1 − f2

ε )2|r=Tm+1 ≤ CEε(uε, ∂B(0, Tm+1)) ≤ Cmεm−p.

Consider the minimizer ρ1 of the functional

E(ρ, Tm+1) =
1

p

∫ 1

Tm+1

(ρ2
r + 1)p/2dr +

1

2εp

∫ 1

Tm+1

(1 − ρ)2dr

It is easy to prove that the minimizer ρε of E(ρ, Tm+1) on W 1,p
fε

((Tm+1, 1), R+)
exists and satisfies

(4.6) −εp(v(p−2)/2ρr)r = 1 − ρ, in (Tm+1, 1),

(4.7) ρ|r=Tm+1 = fε, ρ|r=1 = fε(1) = 1

where v = ρ2
r + 1. Since fε ≤ 1, it follows from the maximum principle

(4.8) ρε ≤ 1.

Applying (4.1) we see easily that

(4.9) E(ρε; Tm+1) ≤ E(fε; Tm+1) ≤ CEε(fε; Tm+1) ≤ Cεm−p.

Now choosing a smooth function 0 ≤ ζ(r) ≤ 1 in (0,1] such that ζ = 1 on
(0, Tm+1), ζ = 0 near r = 1 and |ζr| ≤ C(Tm+1), multiplying (4.6) by ζρr(ρ = ρε)
and integrating over (Tm+1, 1) we obtain
(4.10)

v(p−2)/2ρ2
r |r=Tm+1 +

∫ 1

Tm+1

v(p−2)/2ρr(ζrρr + ζρrr) dr =
1

εp

∫ 1

Tm+1

(1 − ρ)ζρr dr.

Using (4.9) we have

|
∫ 1

Tm+1

v(p−2)/2ρr(ζrρr + ζρrr) dr|

(4.11)

≤
∫ 1

Tm+1

v(p−2)/2|ζr |ρ2
r dr +

1

p
|
∫ 1

Tm+1

(vp/2ζ)r dr −
∫ 1

Tm+1

vp/2ζr dr|

≤ C

∫ 1

Tm+1

vp/2 +
1

p
vp/2|r=Tm+1 +

C

p

∫ 1

Tm+1

vp/2dr

≤ Cεm−p +
1

p
vp/2|r=Tm+1
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and using (4.5)(4.7)(4.9) we have

| 1

εp

∫ 1

Tm+1

(1 − ρ)ζρr dr| =
1

2εp
|
∫ 1

Tm+1

((1 − ρ)2ζ)r dr −
∫ 1

Tm+1

(1 − ρ)2ζr dr|

(4.12)

≤ 1

2εp
(1 − ρ)2|r=Tm+1 +

C

2εp

∫ 1

Tm+1

(1 − ρ)2 dr| ≤ Cεm−p.

Combining (4.10) with (4.11)(4.12) yields

v(p−2)/2ρ2
r|r=Tm+1 ≤ Cεm−p +

1

p
vp/2|r=Tm+1 .

Hence for any δ ∈ (0, 1),

vp/2|r=Tm+1 = v(p−2)/2(ρ2
r + 1)|r=Tm+1 = v(p−2)/2ρ2

r|r=Tm+1 + v(p−2)/2|r=Tm+1

≤ Cεm−p +
1

p
vp/2|r=Tm+1 + v(p−2)/2|r=Tm+1

= Cεm−p + (
1

p
+ δ)vp/2|r=Tm+1 + C(δ)

from which it follows by choosing δ > 0 small enough that

(4.13) vp/2|r=Tm+1 ≤ Cεm−p.

Now we multiply both sides of (4.6) by ρ − 1 and integrate. Then

−εp

∫ 1

Tm+1

[v(p−2)/2ρr(ρ − 1)]r dr + εp

∫ 1

Tm+1

v(p−2)/2ρ2
r dr +

∫ 1

Tm+1

(ρ − 1)2 dr = 0.

From this, using(4.5)(4.7)(4.13), we obtain

E(ρε; Tm+1) ≤ C|
∫ 1

Tm+1

[v(p−2)/2ρr(ρ − 1)]r dr|(4.14)

= Cv(p−2)/2|ρr||ρ − 1|r=Tm+1 ≤ Cv(p−1)/2|ρ − 1|r=Tm+1

≤ (Cεm−p)(p−1)/p(Cεm)1/2 ≤ Cεm−p+1.

Define wε = fε, for r ∈ (0, Tm+1); wε = ρε, for r ∈ [Tm+1, 1]. Since that fε

is a minimizer of Eε(f), we have Eε(fε) ≤ Eε(wε). Thus, it follows that

Eε(fε; Tm+1) ≤
1

n

∫ 1

Tm+1

(ρ2
r + (n− 1)r−2ρ2)p/2rn−1 dr +

1

4εp

∫ 1

Tm+1

(1− ρ2)2rn−1 dr

by virtue of Γ ≤ ε < Tm+1 since ε is sufficiently small. Noticing that∫ 1

Tm+1

(ρ2
r + (n − 1)r−2ρ2)p/2rn−1dr −

∫ 1

Tm+1

((n − 1)r2ρ2)p/2rn−1dr

=
p

2

∫ 1

Tm+1

∫ 1

0

[ρ2
r + (n − 1)r−2ρ2)s + (n − 1)r−2ρ2(1 − s)](p−2)/2dsρ2

rr
n−1dr

≤ C

∫ 1

Tm+1

(ρ2
r + (n − 1)r−2ρ2)(p−2)/2ρ2

rr
n−1dr

+ C

∫ 1

Tm+1

((n − 1)r−2ρ2)(p−2)/2ρ2
rr

n−1dr

≤ C

∫ 1

Tm+1

(ρp
r + ρ2

r)dr
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and using (4.8) we obtain

Eε(fε; Tm+1)

≤ 1

p

∫ 1

Tm+1

((n − 1)r−2ρ2)p/2rn−1 dr + C

∫ 1

Tm+1

(ρp
r + ρ2

r)dr

+
C

4εp

∫ 1

Tm+1

(1 − ρ2)2dr

≤ 1

p

∫ 1

Tm+1

((n − 1)r−2)p/2rn−1 dr + CE(ρε; Tm+1).

Combining this with (4.14) yields (4.3) for j = m+1. It is just (4.3) for j = m+1.

Proposition 4.2. Given T ∈ (0, 1). There exist constants TN+1 ∈ [ NT
N+1 , T ] and

CN+1 such that

Eε(uε; TN+1) ≤ (n − 1)p/2 |Sn−1|
p

∫ 1

TN+1

rn−p−1dr

+ CN+1ε
N+1−p, N = [p].

Proof. From (4.3) we can see Eε(uε; TN) ≤ CεN−p. Hence by using integral mean
value theorem we know that there exists TN+1 ∈ [ NT

N+1 , T ] such that

(4.15)
1

p

∫
∂B(0,TN+1)

|∇uε|pdx +
1

4εp

∫
∂B(0,TN+1)

(1 − |uε|2)2dx ≤ CεN−p.

Denote ρ2 is a minimizer of the functional

E(ρ, TN+1) =
1

p

∫ 1

TN+1

(ρ2
r + 1)p/2dr +

1

2εp

∫ 1

TN+1

(1 − ρ)2dr

on W 1,p
fε

((TN+1, 1), R+ ∪ {0}). It is not difficult to prove by maximum principle
that

(4.16) ρ2 ≤ 1.

By the same way of the derivation of (4.14), from (4.3) and (4.15) it can be con-
cluded that

(4.17) E(ρ2, TN+1) ≤ C(TN+1)ε
N+1−p.

Noticing that uε is a minimizer and ρ2
x
|x| ∈ W2, we also have

Eε(fε; TN+1) ≤ Eε(ρ2; TN+1)

(4.18)

≤ 1

p

∫ 1

TN+1

[ρ2
2r + ρ2

2(n − 1)r−2]p/2rn−1dr +
1

2εp

∫ 1

TN+1

(1 − ρ2)
2dr.
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On the other hand,

∫ 1

TN+1

[ρ2
r + (n − 1)r−2ρ2]p/2rn−1dr −

∫ 1

TN+1

[(n − 1)r−2ρ2]p/2rn−1dr

=
p

2

∫ 1

TN+1

∫ 1

0

[ρ2
r + (n − 1)r−2ρ2](p−2)/2s + (n − 1)r−2ρ2(1 − s)dsρ2

rr
n−1dr

≤ C

∫ 1

TN+1

[ρ2
r + (n − 1)r−2ρ2](p−2)/2ρ2

rr
n−1dr

+ C

∫ 1

TN+1

[(n − 1)r−2ρ2](p−2)/2ρ2
rr

n−1dr ≤ C

∫ 1

TN+1

[ρp
r + ρ2

r]dr.

Substituting this into (4.18), we have

Eε(fε; TN+1)

≤ 1

p

∫ 1

TN+1

(n − 1)p/2ρp
2r

n−p−1dr + C

∫
TN+1

(ρp
2r + ρ2

2r)dr

+
1

2εp

∫ 1

TN+1

(1 − ρ2)
2dr

≤ 1

p

∫ 1

TN+1

(n − 1)p/2ρp
2r

n−p−1dr + CεN+1−p

≤ 1

p
(n − 1)p/2

∫ 1

TN+1

rn−p−1dr + CεN+1−p,

by using (4.16) and (4.17). This is the conclusion of Proposition.

§5. W 1,p convergence

Based on the Proposition 4.2, we may obtain better convergence for radial min-
imizers.

Theorem 5.1. Let uε = fε(r)
x
|x| be a radial minimizer of Eε(u, B1). Then

(5.1) lim
ε→0

uε =
x

|x| , in W 1,p(K, Rn)

for any compact subset K ⊂ B1 \ {0}.
Proof. Without loss of generality, we may assume K = B1 \ B(0, TN+1). From
Proposition 4.2, we have

(5.2) Eε(uε, K) = |Sn−1|Eε(fε; TN+1) ≤ C

where C is independent of ε. This and |uε| ≤ 1 imply the existence of a subsequence
uεk

of uε and a function u∗ ∈ W 1,p(K, Rn), such that

(5.3) lim
εk→0

uεk
= u∗, weakly in W 1,p(K, Rn),
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(5.4) lim
εk→0

|uεk
| = 1, in Cα(K, R), α ∈ (0, 1 − n/p).

(5.4) implies u∗ = x
|x| . Noticing that any subsequence of uε has a convergence

subsequence and the limit is always x
|x| , we can assert

(5.5) lim
ε→0

uε =
x

|x| , weakly in W 1,p(K, Rn).

From this and the weakly lower semicontinuity of
∫

K |∇u|p, using Proposition 4.2,
we know that

∫
K

|∇ x

|x| |
p ≤ limεk→0

∫
K

|∇uε|p ≤ limεk→0

∫
K

|∇uε|p

≤ Cε[p]+1−p + |Sn−1|
∫ 1

TN+1

((n − 1)r−2)p/2rn−1 dr

and hence

lim
ε→0

∫
K

|∇uε|p =

∫
K

|∇ x

|x| |
p

since ∫
K

|∇ x

|x| |
p = |Sn−1|

∫ 1

TN+1

((n − 1)r−2)p/2rn−1 dr.

Combining this with (5.4)(5.5) completes the proof of (5.1).

From (3.5) we also see that the zeroes of the radial minimizer uε(x) = fε(r)
x
|x|

are in BR for given R > 0 if ε is small enough.

§6 Uniqueness and regularized property

Theorem 6.1. For any given ε ∈ (0, 1), the radial minimizers of Eε(u, B1) are
unique on W .

Proof. Fix ε ∈ (0, 1). Suppose u1(x) = f1(r)
x
|x| and u2(x) = f2(r)

x
|x| are both

radial minimizers of Eε(u, B1) on W , then they are both weak radial solutions of
(2.1) (2.2). Thus

∫
B1

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)∇φdx

=
1

εp

∫
B1\BΓ

[(u1 − u2) − (u1|u1|2 − u2|u2|2)]φdx

− 1

εp

∫
BΓ

(u1|u1|2 − u2|u2|2)φdx.

Set φ = u1 − u2 = (f1 − f2)
x
|x| . Take η sufficiently small such that h < 1.
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Case 1. When Γ ≤ hε, we have

∫
B1

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)∇(u1 − u2)dx

(6.1)

=
1

εp

∫
B1

(f1 − f2)
2dx − 1

εp

∫
B1

(f1 − f2)
2(f2

1 + f2
2 + f1f2)dx

=
1

εp

∫
B1\B(0,hε)

(f1 − f2)
2[1 − (f2

1 + f2
2 + f1f2)]dx

+
1

εp

∫
B(0,hε)

(f1 − f2)
2dx − 1

εp

∫
B(0,hε)

(f1 − f2)
2(f2

1 + f2
2 + f1f2)dx.

Letting η < 1
2 − 1

2
√

2
in (3.9), we have f1, f2 ≥ 1/

√
2 on B1 \ B(0, hε) for any

given ε ∈ (0, 1). Hence

∫
B1

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)∇(u1 − u2)dx ≤ 1

εp

∫
B(0,hε)

(f1 − f2)
2dx.

Applying (2.11) of [19], we can see that there exists a positive constant γ inde-
pendent of ε and h such that

(6.2) γ

∫
B1

|∇(u1 − u2)|2dx ≤ 1

εp

∫
B(0,hε)

(f1 − f2)
2dx,

which implies

(6.3)

∫
B1

|∇(f1 − f2)|2dx ≤ 1

γεp

∫
B(0,hε)

(f1 − f2)
2dx.

Denote G = B(0, hε). Applying Theorem 2.1 in Ch II of [16], we have ‖f‖ 2n
n−2

≤
β‖∇f‖2 as n > 2, where β = 2(n−1)

n−2 . Taking f = f1 − f2 and applying (6.3), we

obtain f(|x|) = 0 as x ∈ ∂B1 and

[

∫
B1

|f | 2n
n−2 dx]

n−2
n ≤ β2

∫
B1

|∇f |2dx ≤ β2γ−1

∫
G

|f |2dxε−p.

Using Holder inequality, we derive

∫
G

|f |2dx ≤ |G|1− n−2
n [

∫
G

|f | 2n
n−2 dx]

n−2
n ≤ |B1|1−

n−2
n h2ε2−p β2

γ

∫
G

|f |2dx.

Hence for any given ε ∈ (0, 1),

(6.4)

∫
G

|f |2dx ≤ C(β, |B1|, γ, ε)h2

∫
G

|f |2dx.

Denote F (η) =
∫

B(0,h(η)ε)
|f |2dx, then F (η) ≥ 0 and (6.4) implies that

(6.5) F (η)(1 − C(β, |B1|, γ, ε)h2) ≤ 0.
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On the other hand, since C(β, |B1|, γ, ε) is independent of η, we may take 0 < η <
1
2 − 1

2
√

2
so small that h = h(η) ≤ λ9N = 9N η

2C1
(which is implied by (3.4)) satisfies

1 < C(β, |B1|, γ, ε)h2 for the fixed ε ∈ (0, 1), which and (6.5) imply that F (η) = 0.
Namely f = 0 a.e. on G, or f1 = f2, a.e. on B(0, hε). Substituting this into (6.2),
we know that u1 − u2 = C a.e. on B1. Noticing the continuity of u1, u2 which is
implied by Proposition 2.1, and u1 = u2 = x on ∂B1, we can see at last that

u1 = u2, on B1.

When n = 2, using

(6.6) ‖f‖6 ≤ β‖∇f‖3/2

which implied by Theorem 2.1 in Ch II of [16], and by the same argument above
we can also derive u1 = u2 on B1.

Case 2. When hε < Γ ≤ ε. Similar to (6.1), by taking η < 1
2 − 1√

2
and using

(3.11) we get

∫
B1

|∇(f1 − f2)|pdx ≤
∫

B1

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)∇(u1 − u2)dx

(6.7)

≤ 1

εp

∫
B1\BΓ

(f1 − f2)
2[1 − (f2

1 + f2
2 + f1f2)]dx

+ C(ε)η2

∫
BΓ\Bhε

(f1 − f2)
2dx + C(ε)

∫
B(0,hε)

(f1 − f2)
2dx

≤ C(ε)η2

∫
BΓ\Bhε

(f1 − f2)
2dx + C(ε)

∫
B(0,hε)

(f1 − f2)
2dx.

Substituting

η2C(ε)

∫
BΓ\Bhε

(f1 − f2)
2dx ≤ Cη2

∫
B1

(f1 − f2)
2dx

≤ Cη2(

∫
B1

(f1 − f2)
6dx)1/3 ≤ Cη2

∫
B1

|∇(f1 − f2)|2dx

(which implied by (6.6)) into (6.7) and choosing η sufficiently small, we have

∫
B1

|∇(f1 − f2)|2dx ≤ C

∫
Bhε

(f1 − f2)
2dx,

this is (6.3). The other part of the proof is as same as the Case 1. The theorem is
proved.

In the following, we will prove that the radial minimizer uε can be obtained as the
limit of a subsequence uτk

ε of the radial minimizer uτ
ε of the regularized functionals

Eτ
ε (u, B1) =

1

p

∫
B1

(|∇u|2 + τ)p/2 +
1

4εp

∫
B1\Γ

(1 − |u|2)2 +
1

4εp

∫
Γ

|u|4, (τ > 0)

on W as τk → 0, namely
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Theorem 6.2. Assume that uτ
ε be the radial minimizer of Eτ

ε (u, B1) in W . Then
there exist a subsequence uτk

ε of uτ
ε and ũε ∈ W such that

(6.8) lim
τk→0

uτk
ε = ũε, in W 1,p(B1, R

n).

Here ũε is just the radial minimizer of Eε(u, B1) in W .

It is not difficult to proof that the minimizer uτ
ε is a classical solution of the

equation

(6.9) −div(v(p−2)/2∇u) =
1

εp
u(1 − |u|2), on B1 \ BΓ;

−div(v(p−2)/2∇u) =
1

εp
u|u|2, on BΓ

and also satisfies the maximum principle: |uτ
ε | ≤ 1 on B1, where v = |∇u|2 + τ . By

virtue of the uniqueness of the radial minimizer, we know ũε = uε. Thus the radial
minimizer uε can be regularized by the radial minimizer uτ

ε of Eτ
ε (u, B1).

Proof of Theorem 6.2.. First, from (2.8) we have

(6.10) Eτ
ε (uτ

ε , B1) ≤ Eτ
ε (uε, B1) ≤ CEε(uε, B1) ≤ Cε2−p

as τ ∈ (0, 1), where C does not depend on ε and τ . This and |uτ
ε | ≤ 1 imply that

‖uτ
ε‖W 1,p(B1) ≤ C(ε). Applying the embedding theorem we see that there exist a

subsequence uτk
ε of uτ

ε and ũε ∈ W 1,p(B1, R
n) such that

(6.11) uτk
ε → ũε, weakly in W 1,p(B1, R

n),

(6.12) uτk
ε −→ ũε, in C(B1, R

n), ,

as τk → 0. Since (6.11) and the weakly low semicontinuity of the functional∫
B1

|∇u|p, we obtain

(6.13)

∫
B1

|∇ũε|p ≤ limτk→0

∫
B1

|∇uτk
ε |p.

From (6.12) it follows ũε ∈ W . This means Eτk
ε (uτk

ε , B1) ≤ Eτk
ε (ũε, B1), i.e.,

(6.14) limτk→0E
τk
ε (uτk

ε , B1) ≤ lim
τk→0

Eτk
ε (ũε, B1).

We can also deduce∫
B1\Γ

(1 − |uτk
ε |2)2 +

∫
Γ

|uτk
ε |4 →

∫
B1\Γ

(1 − |ũε|2)2 +

∫
Γ

|ũε|4

from (6.12) as τk → 0. This and (6.14) show

limτk→0

∫
B1

(|∇uτk
ε |2 + τk)p/2 ≤ lim

τk→0

∫
B1

(|∇ũε|2 + τk)p/2 =

∫
B1

|∇ũε|p.

Combining this with (6.13) we obtain
∫

B1
|∇uτk

ε |p →
∫

B1
|∇ũε|p as τk → 0, which

together with (6.11) implies ∇uτk
ε → ∇ũε, in Lp(B1, R

n). Noticing (6.12) we have
the conclusion uτk

ε → ũε, in W 1,p(B1, R
n) as τk → 0. This is (6.8).

On the other hand, we know

(6.15) Eτk
ε (uτk

ε , B1) ≤ Eτk
ε (u, B1)

for all u ∈ W . Noticing the conclusion limτk→0 Eτk
ε (uτk

ε , B1) = Eε(ũε, B1) which
had been proved just now we can say Eε(ũε, B1) ≤ Eε(u, B1) when τk → 0 in
(6.15), which implies ũε be a minimizer of Eε(u, B1).
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§7. Proofs of (1.2)

Proposition 7.1. Assume uτ
ε = u = f(r) x

|x| . Then there exists C > 0 which is

independent of ε, τ such that

‖f‖C1,α(K,R) ≤ C, ∀α ≤ 1/2,

where K ⊂ (0, 1) is an arbitrary closed interval.

Proof. From (6.9) it follows that f solves

− (A(p−2)/2fr)r − (n − 1)r−1A(p−2)/2fr + r−2A(p−2)/2f(7.1)

=
1

εp
f(1 − f2), on (Γ, 1)

where A = f2
r + (n − 1)r−2f2 + τ . Take R > 0 sufficiently small such that K ⊂⊂

(2R, 1 − 2R). Let ζ ∈ C∞
0 ([0, 1], [0, 1]) be a function satisfying ζ = 0 on [0, R] ∪

[1 − R, 1], ζ = 1 on [2R, 1 − 2R] and |∇ζ| ≤ C(R) on (0, 1). Differentiating (7.1),
multiplying with frζ

2 and integrating, we have

−
∫ 1

0

(A(p−2)/2fr)rr(frζ
2)dr − (n − 1)

∫ 1

0

(r−1A(p−2)/2fr)r(frζ
2)dr

+

∫ 1

0

(r−2A(p−2)/2f)r(frζ
2)dr =

1

εp

∫ 1

0

[f(1 − f2)]r(frζ
2)dr.

Integrating by parts yields

∫ 1

0

(A(p−2)/2fr)r(frζ
2)rdr +

∫ 1

0

A(p−2)/2(frζ
2)r[(n − 1)r−1fr

− r−2f ]dr ≤ 1

εp

∫ 1

0

(1 − f2)f2
r ζ2dr.

Denote I =
∫ 1−R

R ζ2(A(p−2)/2f2
rr + (p− 2)A(p−4)/2f2

r f2
rr)dr, then for any δ ∈ (0, 1),

there holds

(7.2) I ≤ δI + C(δ)

∫ 1−R

R

Ap/2ζ2
r dr +

1

εp

∫ 1−R

R

f2
r (1 − f2)ζ2dr

by using Young inequality. From (7.1) we can see that

1

εp
(1 − f2) = f−1[−(A(p−2)/2fr)r − (n − 1)r−1A(p−2)/2fr + r−2A(p−2)/2f ].

Applying Young inequality again we obtain that for any δ ∈ (0, 1),

1

εp

∫ 1

0

(1 − f2)f2
r ζ2dr ≤ δI + C(δ)

∫ 1−R

R

A(p+2)/2ζ2dr.

Substituting this into (7.2) and choosing δ sufficiently small, we have

(7.3) I ≤ C

∫ 1−R

R

Ap/2ζ2
r dr + C

∫ 1−R

R

A(p+2)/2ζ2dr.
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To estimate the second term of the right hand side of (7.3), we take φ = ζ2/qf
(p+2)/q
r

in the interpolation inequality (Ch II, Theorem 2.1 in [16])

‖φ‖Lq ≤ C‖φr‖1−1/q
L1 ‖φ‖1/q

L1 , q ∈ (1 +
2

p
, 2).

We derive by applying Young inequality that for any δ ∈ (0, 1),

∫ 1−R

R

fp+2
r ζ2dr ≤ C(

∫ 1−R

R

ζ2/q |fr|(p+2)/qdr)(7.4)

· (
∫ 1−R

R

ζ2/q−1|ζr||fr|(p+2)/q + ζ2/q |fr|(p+2)/q−1|frr|dr)q−1

≤ C(

∫ 1−R

R

ζ2/q |fr|(p+2)/qdr)(

∫ 1−R

R

ζ2/q−1|ζr ||fr|(p+2)/q

+ δI + C(δ)

∫ 1−R

R

A
p+2

q − p
2 ζ4/q−2dr)q−1.

We may claim

(7.5)

∫ 1−R

R

Ap/2dr ≤ C,

by the same argument of the proof of Proposition 4.2, where C is independent of
ε and τ . In fact, from (6.10) we may also derive (4.17). Noting uτ

ε is a radial
minimizer of Eτ

ε (u, B1), replacing (4.18) we obtain

Eτ
ε (fε

x

|x| ; B1 \ B(0, TN+1)) ≤ CE(ρ2; TN+1)

≤ C

p
(n − 1)p/2

∫ 1

TN+1

rn−p−1dr + CεN+1−p.

This means that (7.5) holds.
Noting q ∈ (1 + 2

p , 2), we may using Holder inequality to the right hand side of

(7.4). Thus, by virtue of (7.5),

∫ 1−R

R

fp+2
r ζ2dr ≤ δI + C(δ).

Substituting this into (7.3) we obtain

∫ 1−R

R

A(p−2)/2f2
rrζ

2dr ≤ C,

which, together with (7.5), implies that ‖Ap/4ζ‖H1(R,1−R) ≤ C. Noticing ζ = 1 on

K, we have ‖Ap/4‖H1(K) ≤ C. Using embedding theorem we can see that for any

α ≤ 1/2, there holds ‖Ap/4‖Cα(K) ≤ C. It is not difficult to prove our proposition.
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Theorem 7.2. Let uε = fε(r)
x
|x| be a radial minimizer of Eε(u, B1). Then for any

compact subset K ⊂ B1 \ {0}, we have

lim
ε→0

uε =
x

|x| , in C1,β(K, Rn), β ∈ (0, 1)

Proof. For every compact subset K ⊂ B1 \ {0}, applying Proposition 7.1 yields
that for some β ∈ (0, 1/2] one has

(7.6) ‖uτ
ε‖C1,β(K) ≤ C = C(K),

where the constant does not depend on ε, τ .

Applying (7.6) and the embedding theorem we know that for any ε and some
β1 < β, there exist wε ∈ C1,β1(K, Rn) and a subsequence of τk of τ such that as
k → ∞,

(7.7) uτk
ε → wε, in C1,β1(K, Rn).

Combining this with (6.8) we know that wε = uε.

Applying (7.6) and the embedding theorem again we can see that for some
β2 < β, there exist w ∈ C1,β2(K, Rn) and a subsequence of τk which can be
denoted by τm such that as m → ∞,

(7.8) uτm
εm

→ w, in C1,β2(K, Rn).

Denote γ = min(β1, β2). Then as m → ∞, we have

‖uεm − w‖C1,β(K,Rn) ≤ ‖uεm − uτm
εm

‖C1,β(K,Rn)(7.9)

+ ‖uτm
εm

− w‖C1,β(K,Rn) ≤ o(1)

by applying (7.7) and (7.8). Noting (1.1) we know that w = x
|x| .

Noting the limit x
|x| is unique, we can see that the convergence (7.9) holds not

only for some subsquence but for all uε. Applying the uniqueness theorem (Theorem
6.1) of the radial minimizers, we know that the regularizable radial minimizer just
is the radial minimizer. Theorem is proved.

§8. Proof of Theorem 1.4

First (3.1) shows one rate that the minimizer fε converge to 1 as ε → 0. More-
over, proposition 4.2 implies that for any T > 0,

(8.1)
1

4εp

∫ 1

T

(1 − f2
ε )2rn−1dr ≤ C.

In the following we shall give other better estimates of the rate of the convergence
for the radial minimizer fε than (8.1).
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Theorem 8.1. Let uε(x) = fε(r)
x
|x| be the radial minimizer of Eε(u, B1). For

any T > 0, there exists a constant C > 0 which is independent of ε such that as ε
sufficiently small,

(8.2)

∫ 1

T

|f ′
ε|prn−1dr +

1

εp

∫ 1

T

(1 − f2
ε )2rn−1dr ≤ Cε[p]+1−p.

Here [p] is the integer number part of p. Moreover, as ε → 0,

(8.3)
1

p

∫
B1\BT

|∇uε|p +
1

4εp

∫
B1\BT

(1 − |uε|2)2 → 1

p

∫
B1\BT (0)

|∇ x

|x| |
p.

Proof. By proposition 4.2 we have

(8.4) Eε(fε; BT ) ≤ 1

p

∫ 1

T

(n − 1)p/2rn−p−1dr + Cε2([p]+1−p)/p,

thus,

(8.5)

∫ 1

T

(1 − fε)
2dr ≤ C(T )εp,

for any T > 0. On the other hand, Jensen’s inequality implies

Eε(fε; BT ) ≥ 1

p

∫ 1

T

|f ′
ε|prn−1dr

+
1

p

∫ 1

T

((n − 1)
f2

ε

r2
)p/2rn−1dr +

1

4εp

∫ 1

T

(1 − f2
ε )2rn−1dr.

Combining this with (8.4) we have

1

p

∫ 1

T

((n − 1)
f2

ε

r2
)p/2rn−1dr ≤ Eε(fε; BT )(8.6)

≤ Cε2([p]+1−p)/p +
1

p

∫ 1

T

(n − 1)p/2rn−p−1dr.

Applying (8.5) and Hölder’s inequality we obtain∫ 1

T

((n − 1)r−2)p/2rn−1dr −
∫ 1

T

((n − 1)r−2f2
ε )p/2rn−1dr

=

∫ 1

T

(n − 1)p/2rn−p−1(1 − fp
ε )dr ≤ C(T )

∫ 1

T

(1 − fε)dr

≤ C(

∫ 1

T

(1 − fε)
2dr)1/2 ≤ Cεp/2.

Substituting this into (8.6) we obtain

−Cεp/2 ≤ Eε(fε; BT )(8.7)

− 1

p

∫ 1

T

((n − 1)r−2)p/2rn−1dr ≤ Cε[p]+1−p.

Noticing
1

p

∫
B1\BT (0)

|∇ x

|x| |
p =

|Sn−1|
p

∫ 1

T

((n − 1)r−2)p/2rn−1dr,

from (8.7) we can see that both (8.2) and (8.3) hold.
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Theorem 8.2. Let uε(x) = fε(r)
x
|x| be the radial minimizer of Eε(u, B1) on W .

Then there exist C, ε0 > 0 such that as ε ∈ (0, ε0),

(8.8)

∫ 1

T

rn−1[(f ′
ε)

p +
1

εp
(1 − f2

ε )2]dr ≤ Cεp.

(8.9) sup
r∈[T,1]

(1 − fε(r)) ≤ Cεp−n
2 .

(8.8) gives the estimate of the rate of fε’s convergence to 1 in W 1,p[T, 1] sense,
and that in C0[T, 1] sense is showed by (8.9).

Proof. It follows from Jensen’s inequality that

Eε(fε; T ) =
1

p

∫ 1

T

[(f ′
ε)

2 +
(n − 1)

r2
f2

ε ]p/2rn−1dr

+
1

4εp

∫ 1

T

(1 − f2
ε )2rn−1dr

≥ 1

p

∫ 1

T

(f ′
ε)

prn−1dr +
1

4εp

∫ 1

T

(1 − f2
ε )2rn−1dr

+
1

p

∫ 1

T

[n − 1]p/2

rp
fp

ε rn−1dr.

Combining this with Proposition 4.2 yields

1

p

∫ 1

T

(f ′
ε)

prn−1dr +
1

4εp

∫ 1

T

(1 − f2
ε )2rn−1dr

≤ 1

p

∫ 1

T

[n − 1]p/2

rp
(1 − fp

ε )rn−1dr + Cε[p]+1−p.

Noticing (8.1), we obtain

1

p

∫ 1

T

(f ′
ε)

prn−1dr +
1

4εp

∫ 1

T

(1 − f2
ε )2rn−1dr(8.10)

≤ C

∫ 1

T

[n − 1]p/2

rp
(1 − fε)r

n−1dr + Cε[p]+1−p

≤ Cεp/2 + Cε[p]+1−p ≤ Cε[p]+1−p.

Using Proposition 4.2 and (8.10), as well as the integral mean value theorem we
can see that there exists

T1 ∈ [T, T (1 + 1/2)] ⊂ [R/2, R]

such that

(8.11) [(fε)
2
r + (n − 1)r−2f2

ε ]r=T1 ≤ C1,
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(8.12) [
1

εp
(1 − f2

ε )2]r=T1 ≤ C1ε
[p]+1−p.

Consider the functional

E(ρ, T1) =
1

p

∫ 1

T1

(ρ2
r + 1)p/2dr +

1

2εp

∫ 1

T1

(1 − ρ)2dr.

It is easy to prove that the minimizer ρ3 of E(ρ, T1) in W 1,p
fε

((T1, 1), R+ ∪ {0})
exists.

By the same way to proof of (4.14), using (8.11) and (8.12) we have

E(ρ3, T1) ≤ v
p−2
2 ρ3r(1 − ρ3)|r=T1 ≤ C1(1 − ρ3(T1)) ≤ CεF [1],

where F [j] = [p]+1−p
2j + (2j−1)p

2j , j = 1, 2, · · · . Hence, similar to the proof of Propo-
sition 4.2, we obtain

Eε(fε; T1) ≤ CεF [1] +
1

p

∫ 1

T1

[n − 1]p/2

rp−1
dr.

Furthermore, similar to the derivation of (8.10), using (8.1) we may get

∫ 1

T1

(f ′
ε)

prn−1dr +
1

εp

∫ 1

T1

(1 − f2
ε )2rn−1dr ≤ CεF [1] + Cεp/2 ≤ C2ε

F [1].

Set Tm = R(1− 1
2m ). Proceeding in the way above (whose idea is improving the

exponents of ε from F [k] to F [k + 1] step by step), we can see that there exists
some m ∈ N satisfying F [m − 1] ≤ p

2 ≤ F [m] such that

∫ 1

Tm

(f ′
ε)

prdr +
1

εp

∫ 1

Tm

(1 − f2
ε )2rn−1dr(8.13)

≤ Cε
[p]+1−p

2m + (2m
−1)p

2m + Cεp/2 ≤ Cεp/2.

Similar to the derivation of (8.11) and (8.12), it is known that there exists Tm+1 ∈
[Tm, 3Tm/2] such that

(8.14) [(fε)
2
r + (n − 1)r−2f2

ε ]r=Tm+1 ≤ C,

(8.15) [
1

εp
(1 − f2

ε )2]r=Tm+1 ≤ Cεp/2.

The minimizer ρ4 of the functional

E(ρ, Tm+1) =
1

p

∫ 1

Tm+1

(ρ2
r + 1)p/2dr +

1

2εp

∫ 1

Tm+1

(1 − ρ)2dr

in W 1,p
fε

((T1, 1), R+) exists. By the same way to proof of (4.14), using (8.15) and

(8.14) we have

E(ρ4, Tm+1) ≤ v
p−2
2 ρ4r(1 − ρ3)|r=Tm+1 ≤ C(1 − ρ4(Tm+1)) ≤ CεG[1],
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where G[j] = p/2
2j + (2j−1)p

2j , j = m + 1, m + 2, · · · . By the argument of proof of
Proposition 4.2, we obtain

Eε(fε; Tm+1) ≤ CεG[1] +
1

p

∫ 1

Tm+1

[n − 1]p/2

rp−1
dr.

Furthermore, similar to the derivation of (8.10), using (8.13) we may get

∫ 1

Tm+1

(f ′
ε)

prn−1dr +
1

εp

∫ 1

Tm+1

(1 − f2
ε )2rn−1dr ≤ CεG[1].

Proceeding in the way above (whose idea is improving the exponents of ε from
G[k] to G[k + 1] step by step), we can see that for any k ∈ N ,

∫ 1

Tm+k

(f ′
ε)

prn−1dr +
1

εp

∫ 1

Tm+k

(1 − f2
ε )2rn−1dr ≤ Cε

p/2

2k + (2k
−1)p

2k .

Letting k → ∞, we derive

∫ 1

R

(f ′
ε)

prn−1dr +
1

εp

∫ 1

R

(1 − f2
ε )2rn−1dr ≤ Cεp.

This is (8.8).
From (8.8) we can see that

(8.16)

∫ 1

T

(1 − f2
ε )2rn−1dr ≤ Cε2p.

On the other hand, from (5.2) and |uε| ≤ 1 it follows that ‖fε‖W 1,p((T,1),R) ≤ C.
Applying the embedding theorem we know that for any r0 ∈ [T, 1],

|fε(r) − fε(r0)| ≤ C|r − r0|1−1/p, ∀r ∈ (r0 − ε, r0 + ε).

Thus

(1 − fε(r))
2 ≥ (1 − fε(r0))

2 − ε1−1/p ≥ 1

2
(1 − fε(r0))

2.

Substituting this into (8.16) we obtain

Cε2p ≥
∫ 1

T

(1 − f2
ε )2rn−1dr ≥

∫ r0+ε

r0−ε

(1 − f2
ε )2rn−1dr ≥ 1

2
(1 − fε(r0))

2εn

which implies 1−fε(r0) ≤ Cεp− n
2 . Noting r0 is an arbitrary point in [T, 1], we have

sup
r∈[T,1]

(1 − fε(r)) ≤ Cεp−n
2 .

Thus (8.9) is derived and the proof of Theorem is complete.
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