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ABSTRACT. The author proves the WP and C1'® convergence of the radial mini-
mizers ue of an Ginzburg-Landau type functional as € — 0. The zeros of the radial
minimizer are located and the convergent rate of the module of the minimizer is
estimated.
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§1. INTRODUCTION

Let n > 2,B, = {z € R"|z| < r},g(z) = = on 0B;. Recall the Ginzburg-
Landau type functional

1 1 1
B =g [ Vel [ g [
1 1 r r

on the class functions Hy (By, R"). The functional E (u) is related to the Ginzburg-
Landau model of superconductivity with normal impurity inclusion such as super-
conducting normal junctions (cf. [5]) if n = 2. B; \ Br and Br represent the
domains occupied by superconducting materials and normal conducting materials,
respectively. The minimizer u. is the order parameter. Zeros of u. are known as
Ginzburg-Landau vortices which are of significance in the theory of superconduc-
tivity(cf. [1]). The paper [7] studied the asymptotic behaviors of the minimizer of
E.(u, By) on the function class H}(B;, R?) and discussed the vortex-pinning effect.
For the simplified Ginzburg-Landau functional, many papers stated the asymptotic
behavior of the minimizer u. as ¢ — 0. When n = 2, the asymptotics of u. were
well-studied by [1]. In the case of higher dimension, for the radial minimizer u. of
E.(u, By), some results on the convergence had been shown in [14] as € — 0. There
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were many works for the radial minimizer in [12]. Other related works can be seen
in [2] [3] [8] and [17] etc.

Assume p > n. Consider the minimizers of the p-Ginzburg-Landau type func-
tional

1 1 1
Eu,Blz—/ VulP + — 1—u“+—/ ult,
cwBy =2 [ Ve [ Ol g

on the class functions

W= {ul@) = () € WP (B, R (1) = 17 = fal}.
By the direct method in the calculus of variations we can see that the minimizer
ue exists and it will be called radial minimizer. In this paper, we suppose that
I' € (0,¢]. The conclusion of the case of I' = O(¢) as € — 0 is still true by the same
argument. we will discuss he location of the zeros of the radial minimizer. Based on
the result, we shall establish the uniqueness of the radial minimizer. The asymptotic
behavior of the radial minimizer be concerned with as ¢ — 0. The estimates of the
rate of the convergence for the module of minimizer will be presented.

We will prove the following theorems.

Theorem 1.1. Assume ucis a radial minimizer of E.(u, B1). Then for any given
n € (0,1/2) there exists a constant h = h(n) > 0 such that

Ze. = {x € By;|uc(x)] <1—-2n} C B(0, he) U Br.

Moreover, the zeros of the radial minimizer are contained in Bpe as T' € (0, hel.
When T € (he, ], the zeros are contained in Br \ B(0, he).

Theorem 1.2. For any given ¢ € (0,1), the radial minimizers of E.(u,By) are
unique on W.

Theorem 1.3. Assume u. is the radial minimizer of E.(u,B1). Then ase — 0,

x . — n

(1.1) U= op in Wio? (B \ {0}, R");
x .

(1.2) ue— o i CLP(By\ {0}, R™),

for some B € (0,1).
Theorem 1.4. Let uc(z) = fo(r) be the radial minimizer of E.(u,B1). Then

||

for any T > 0, there exist C,eq > 0 such that as € € (0,¢p),

1
[+ S0 g2 < e

T

sup (1— fo(r)) < CeP™ 7%,
re(T,1]

Some basic properties of minimizers are given in §2. The main purpose of §3 is
to prove Theorem 1.1. In §4 and §5 we present the proof of (1.1). The proof of
Theorem 1.2 is given in §6. §7 gives the proof of (1.2). Theorem 1.4 is derived in
§8.
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§2. PRELIMINARIES

In polar coordinates, for u(z) = f(r)lfﬂ_l we have
1
Val = (2 + 0= 022 [ = gsm [,
B 0

1
/ |VulP =[S / PR A4 (n = e 2 f2)P 2 dr
Bq 0

It is easily seen that f(r); € WP(By, R") implies f(r)r%_l,fr(r)r% €
LP(0,1). Conversely, if f(r) € W,-7(0, 1],f(r)r%_1,fr(r)r% € LP(0,1), then

C

f(r)l%l € W1P(By, R™). Thus if we denote

V= {f e WLP(0,1];7"% fo, /"1 P/Pf € LP(0,1), f(r) > 0, f(1) = 1},

C

then V = {f(r);u(z) = f(r)i5 € W}.

||
Substituting u(z) = f(r)% € W into E.(u, By), we obtain
Ec(u, By) = |S"|EL(f)
where
1

E.(f) = E/Ol(ff +(n— 1)r_2f2)p/2rn_1dr

e 2y2),.n—1 |
+@ F(].*f)]”l’ dT+@/OfT dr.
This implies that v = f(r)3; € W is the minimizer of E.(u, B1) if and only if

f(r) € V is the minimizer of E.(f).
Proposition 2.1. The set V defined above is a subset of {f € C[0,1]; f(0) = 0}.

Proof. Let f €V and h(r) = f(r%).Then

1 -1 1 p—1 p(n—1
| wepar=dE=y [ireip = a
0 0

p—n

plp—l/l n—1| ¢/ p
= (—— s s)|Pds < oo
el R0

by noting f,(s)s™~D/P ¢ LP(0,1). Using interpolation inequality and Young in-
equality, we have that for some y > 1,
[Rllwrw(0,1),R) < 00,

which implies that h(r) € C[0,1] and hence f(r) € C[0,1].
Suppose f(0) > 0, then f(r) > s> 0 for r € [0,¢) with ¢ > 0 small enough since
f € C[0,1]. We have

1 t
/ P TLITP P g > sp/ r" TP dr = 0o,
0 0

which contradicts r(»~1/P=1f ¢ LP(0,1). Therefore f(0) = 0 and the proof is
complete.

It is not difficult to prove the following
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Proposition 2.2. The functional E(u, B1) achieves its minimum on W by a func-
tion u.(x) = fa(r)l%l'

Proposition 2.3. The minimizer u. satisfies the equality

(2.1) / |VulP~2VuVedr — 1 ugp(1 — ul*)dx + 1 / uglul*dz = 0,
B € JB\Br ¥ Jpr
x
(22) Vo = f('f‘)m S Cgo(Bl,Rn) u|aB1 =

Proof. Denote u. by u. For any t € [0,1)and ¢ = f(r)& € C§°(B1, R™), we have

u+t¢p € W as long as t is small sufficiently. Since u is ;E ‘minimizer we obtain
dEE (U + t¢, Bl)
e ) =,
namely,
d

1 1
0= _ z to)|P + — 1— to|?)%d
dt|t_o/Blp|v<u+ P+ [, (1=l tof)Pds

— u + to|*dx
g ], ol

1

= / |Vu|P2VuVode — — up(1 — |u|?)dx + i/ ug|u|?dz.
B ep e? Jpr

B1\Br

By a limit process we see that the test function ¢ can be any member of {¢ =
F(r) & € WP (By, R"); dlos, = 0}

Similarly, we also derive

The minimizer f.(r) of the functional E.(f) satisfies

(2.3)
1
/ 2+ (0= Dr 2 ) P2 (f6 4 (n— 1)r 2 f¢) dr
0

1

I
== [ - ) fedr - Eip /O T Sedr, Vo e CR(0,1).

el Jr
By a limit process we see that the test function ¢ in (2.3) can be any member of

X = {¢(r) € WkP(0,1]; 6(0) = (1) = 0,(r) > 0,7 % ¢/ .+ 5 ¢ € LP(0,1)}

Proposition 2.4. Let f. satisfies (2.3) and f(1) =1. Then fe <1 on [0,1].
Proof. Denote f = f. in (2.3) and set ¢ = f(f? —1)4. Then

1
/ PPN (0= e 2P - 1)+ F A7 - D)4
0

1

= SR = ) ldrk o [ R - )

r
1 /T
+ —/ AP =) e dr =0
el Jo
from which it follows that
1t r

1
n—1 p2/ p2 2 n—1 pd/ p2 _
gy fo(f *1)+dr+_€p/0 (T =) dr =0

Thus f =0 or (f2—1); =0on [0,1] and hence f = f. <1 on [0,1].
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Proposition 2.5. Assume u. is a weak radial solution of (2.1)(2.2). Then there
exist positive constants C1, p which are both independent of € such that

(24) ||Vu€(x)||L°°(B(z,ps/8)) < 015_17 Zf T e B(O, 1-— ,08),
10 . -
(2.5) |ue(x)] > 1’ if x€ B1\B(0,1—2pe).

Proof. Let y =ze! in (2.1) and denote v(y) = u(x), B. = B(0,e~1). Then
26) [ [vepivovedy = [ o= ooy~ [ oy
B. B (

0,l'e—1)
Vé € Wy P(B., R™). This implies that v(y) is a weak solution of (2.6). By using the
standard discuss of the Holder continuity of weak solution of (2.6) on the boundary
(for example see Theorem 1.1 and Line 19-21 of Page 104 in [4]) we can see that
for any yo € 0B and y € B(yo, po) (where po > 0 is a constant independent of ¢),
there exist positive constants C' = C(pg) and « € (0, 1) which are both independent
of € such that

\B(0,I'e—1)

[v(y) = v(yo)| < Clpo)ly — ol
Choose p > 0 sufficiently small such that

1
(2.7) y € B(yo,2p) C B(yo,po), and C(po)ly —yo|* < e

then 10
[o(y)] = [v(yo)l = Clpo)ly = yol* =1 = Clpo)ly = yol* = 37
Let x = ye. Thus
lue(x)| > %, if x € B(xg,2pe)
where xg € 9B;. This implies (2.5).
Taking ¢ = v(?, ¢ € C§°(Be, R) in (2.6), we obtain

| vereay<p [ vapioveelay + | (0= of)crdy

S\B(0,Te~1)
+ / [v*|¢Pdy.
B(0,l'e—1)

For the p in (2.7), setting y € B(0,e~ — p), B(y, p/2) C B, and
¢ =1in B(y,p/4),( =01in B:\ B(y,p/2),|V¢| < C(p),

BE

we have

/ VuPer < C(p) / Vo1 4 O(p).
B(y,p/2)

B(y,p/2)
Using Holder inequality we can derive [, (op/4) |[VoulP < C(p). Combining this with
the Tolksdroff’ theorem in [19] (Page 244 Line 19-23) yields

IVl s <€) [ (L4907 < Clp)
B(y.p/4)

which implies
”vu”L“(B(x,ep/S)) < C(p)s_l.
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Proposition 2.6. Let u. be a radial minimizer of E.(u, B1). Then
(2.8) E.(us, By) < Ce" P+ C,

with a constant C independent of € € (0,1).

Proof. Denote

1
P

1
I(e,R) = Mm{/ [=|Vul? + =(1 — |u|*)?];u € Wgr},
B(0O,R) P

where Wg = {u(z) = f(r)% € Wh?(B(0,R), R");r = |z|, f(R) = 1}. Then

(2.9)

I(e,1) = E-(u., By)
1 1 19 1 4

= - |Vue|Pde + — (1 —|ue|*)*de + — |ue|*dx
?JB, 4e? g\ Br 4e? Jp.

ol 1
—e [ Sy g [ (1= fuc2 2y
P JB0,e1) 4 JB(0,e-1)\B(0,Te1)

1
+ —/ luc|*dy] = e"PI(1,e7 ).
4 B(0,Te—1)

Let uq be a solution of I(1,1) and define

ug =uy, if 0<|z|<1; ngi if 1§|x|§5_1.

||’
Thus uy € W.-1 and,
I(1,e7h)
1 1 1
<[ wwreif A=tuaPPrg [t
P JB0,:1) 4 JB(0,e-1)\B(0,re 1) 4 JBo,re-1)

1 1 1 1 T
= [ vapa g [ a-tnPreg [ ot Vil
pJB, 4 Jp, 4 Jp, P JB(0,e-1)\B: ||

— 1)p/2|gn—1 et
=I(1,1)+ —(n il Sl / PPy
p 1

(n— P25
pp—n)
Substituting this into (2.9) yields (2.8).

=I1(1,1) + (1—er™) <C.

83. PROOF OF THEOREM 1.1

Proposition 3.1. Let u. be a radial minimizer of E-(u, B1). Then for some con-
stant C independent of € € (0,1]

1

3.1 —
(3.1) = -

1
(1~ Juel?)* + —n/ Jue|* < C.
g Br

Proof. (3.1) can be derived by multiplying (2.8) by eP~ ™.
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Proposition 3.2. Let u. be a radial minimizer of E.(u,B1). Then for any n €
(0,1/2), there exist positive constants A, p independent of € € (0,1) such that if

1

n
g AF,l—paﬂBma

(3-2) (1= Juel?)? < p,

where Ar 1—pe = B(0,1 — pe) \ Br, B2?= is some ball of radius 2le with | > X, then
(3.3) lue(z)] >1—n, Vo€ Ari_,NBe.
Proof. First we observe that there exists a constant Cs > 0 which is independent of €

such that for any z € By and 0 < p <1, |B1NB(x,7)| > |Ar1—peNB(x,r)| > Cor™.
To prove the proposition, we choose

(3.4) A= 1 G2 My

“300 P

where C is the constant in (2.4). Suppose that there is a point zg € Ar 1—pe N Ble
such that |u.(zg)] < 1 — 7. Then applying (2.4) we have
[ue () — ue(z0)| < Cre o — 2] < Cre ()

— O\ = g Vz € Blxo, \e),

hence (1 — |uc(z)[*)? > %2, Vo € B(xg, Ae). Thus
(3.5)

2
/ (1 22 > L Arape 0 Bla, Xe)|
B(xo,Ae)NAr1—pe 4
7’ n”,n
> 0L e = L (=L ymen = pen,
> 24(5) 24(201)5 JUE
Since w9 € B'* N By, and (B(wg, Ae) N Ari—pe) C (B%=n Ari—_pe), (3.5) implies

/ (1= Jucl?)? > pen,
B2ler‘|AF117p6

which contradicts (3.2) and thus (3.3) is proved.

Let u. be a radial minimizer of E.(u,B;). Given n € (0,1/2). Let A\ pu be
constants in Proposition 3.2 corresponding to n. If
1
(3.6) ~ (1 - uef2)? < g,
€7 JB(x2,2Xe)NAr,1— pe

then B(zf, Xe) is called n— good ball, or simply good ball. Otherwise it is called
n— bad ball or simply bad ball.
Now suppose that {B(z§, Ae),i € I'} is a family of balls satisfying

(Z) : Jﬁf S Ar,l_pg,i S I, (ZZ) : Anl_pg C Uie[B(J?f, )\E),

(3.7) (4ii) : B(x7, \e/4) N B(x5,\e/4) = 0,1 # j.
Denote J. = {i € I; B(x5, A¢) is a bad ball}.
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Proposition 3.3. There exists a positive integer N such that the number of bad
balls
Card J. < N.

Proof. Since (3.7) implies that every point in B; can be covered by finite, say m
(independent of ¢) balls, from (3.1)(3.6) and the definition of bad balls,we have

ue"CarddJ. < Z (1 — ue|?)?
icJ. Y B(25:2X8)NAr 1 pe

<m / (1 fue2)?
Uicg. B(x5,2Ae)NAr 1 pe

<m (1 — |uel?)? < mCe™
Bl\BF

and hence Card J. < mTC < N.

Proposition 3.3 is an important result since the number of bad balls CardJ. is
always finite as e turns sufficiently small.
Similar to the argument of Theorem IV.1 in [1], we have

Proposition 3.4. There exist a subset J C J. and a constant h > X such that
Uies. B(z5, Xe) C UieJB(I?, he) and

(3.8) |2f — 25| > 8he, i,je€J, i#j.

Proof. 1f there are two points x1, z2 such that (3.8) is not true with h = A, we take
hi = 9X and J; = J: \ {1}. In this case, if (3.8) holds we are done. Otherwise
we continue to choose a pair points 3, x4 which does not satisfy (3.8) and take
hy = 9hy and Jo = J. \ {1,3}. After at most N steps we may choose A < h < A9V
and conclude this proposition.

Applying Proposition 3.4, we may modify the family of bad balls such that the
new one, denoted by {B(z5, he);i € J}, satisfies

Uies. B(x5,Ae) C UjegB(a5, he), Card J < Card J.,

2§ — 25| > 8he,i,j € J,i # j.

The last condition implies that every two balls in the new family are not intersected.
Now we prove our main result of this section.

Theorem 3.5. Let u. be a radial minimizer of E.(u,Bi1). Then for any n €
(0,1/2), there exists a constant h = h(n) independent of € € (0,1) such that Z. =
{z € By;|ue(x)| < 1—n} C B(0, he)UBr. In particular the zeros of ue are contained
in B(0,he) U Br.

Proof. Suppose there exists a point z¢ € Z. such that 2g€B(0, he). Then all points
on the circle So = {x € By; |z| = |zo|} satisfy |uc(z)] < 1 — n and hence by virtue
of Proposition 3.2 and (2.5), all points on Sy are contained in bad balls. However,
since |zg| > he, So can not be covered by a single bad ball. Sy can be covered by
at least two bad balls. However this is impossible. Theorem is proved.
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Complete the proof of Theorem 1.1.. Using Theorem 3.5 and (2.5), we can
see that |uc(z)] > min(18,1 - 2n), 2€B(0,h(n)e) U Br. When I' € (0, he], this
means

(3.9) . ()] > min(%, 1—2y), «€B(0,h(n)e).

When T' € (he, €], from Theorem 3.5 we know that |uc| > 1 — 7 on By \ Br.
Moreover, similar to the proof of Proposition 3.2, we may still obtain: for any given
1 € (0,1/2), there are X = 5=,  pg = CoX"(3)" "2, such that if for I > A,

1
3.10 — uslt <
(3.10) S <

holds, then |uc(z)| < n, Vz € Br N B¥. We will take (3.10) as the ruler which
distinguishes the good and the bad balls. The ball B(x*, Ae) satisfying

1

4
) |u€| SNQ
€% JBrnB(z=,2)e)

is named the bad ball in Br. Otherwise, the ball B(x¢, Ae) is named the good ball
in Bp. Similar to the proof of Proposition 3.3, from proposition 3.1 we may also
conclude that the number of the good balls is finite. Moreover, by the same way to
the proof of Theorem 3.5, we obtain that

(3.11) {z € Br;|us(z)| >n} C Bre and |uc(xz)]<n as x &€ Br\ Bpe.

84. UNIFORM ESTIMATE

Let uc(z) = fe(r) 177 be aradial minimizer of £, (u, B1), namely fe be a minimizer

of E.(f) in V. From Proposition 2.6, we have
(4.1) E.(f.) < Ce™P.

for some constant C' independent of € € (0, 1).
In this section we further prove that for any given R € (0,1), there exists a
constant C'(R) such that

(4.2) E.(fe; R) < C(R)

for € € (0,ep) with 9 > 0 sufficiently small, where

1

1
B(fim) = [ G2 ooyt a2 [0 et

Proposition 4.1. Given T € (0,1). There exist constants T; € (UL T
(N = [p]) and C;, such that

(4.3) E.(f;T;) < Cje?™?

forj=n,n+1,....N, where e € (0,e9) with g sufficiently small.
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Proof. For j = n, the inequality (4.3) can be obtained by (4.1) easily. Suppose that
(4.3) holds for all j < m. Then we have, in particular,

(4.4) B.(fo;Tin) < Crpe™ .

If m = N then we have done. Suppose m < N, we want to prove (4.3) for j = m+1.
From (4.4) and integral mean value theorem, we can see that there exists Ty, 41 €

[]:;n—fla (TVTET] such that

1

(4'5) E_p(l - fa2)2|T:Tm+1 < CEE(“Ea 8B(0, Terl)) < Cmgmip'

Consider the minimizer p; of the functional

1 1
(p? + 1)p/2d7" + 2—51) / (]. — p)2d7”

Tm41

1 1
E(p Toin) = 7 |
p

Tt

It is easy to prove that the minimizer p. of E(p, T41) on W}E’p((TmH, 1),R")
exists and satisfies

(4.6) —eP(PD2p ) =1—p, in (Thi1,1),

(4.7) P|7'=Tm+1 = fe, p|r=1 = fe(l) =1

where v = p? + 1. Since f. < 1, it follows from the maximum principle

(4.8) pe < 1.
Applying (4.1) we see easily that
(4.9) E(PaéTm-H) < E(faéTm—i-l) < CEe(fes?Tm—i-l) < Ce™TP,

Now choosing a smooth function 0 < ¢(r) < 1 in (0,1] such that { = 1 on
(0,Trm+t1),¢ =0 mnear r =1 and |(,| < C(Tm+1), multiplying (4.6) by Cpr(p = pe)
and integrating over (Ty,4+1,1) we obtain
(4.10)

1 1
- N 1
P 2)/2pz|T:Tm+1 Jr/T P22, (Copr + Cprr) dr = E_P/T (1 = p)Cpydr.
m+41

m41
Using (4.9) we have
(4.11)

1
| / v PD2p (Copr + Cprr) dr
Trm+1

1 1 1
1
g/ vP=D/2|¢, | p? dr+—|/ (vP/2¢), dr—/ vP/2¢, dr|
Trt1 p

Tt Tt

1 1 C 1
S e N R
p P Jr,

Tt

1
< Ce™ P + _vp/2|T:Tm+1
p
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and using (4.5)(4.7)(4.9) we have

(4.12)

e I
5 atei =gl [ o [ g
1

Tm+1 Tm+1

1
§ R
2eP

Combining (4.10) with (4.11)(4.12) yields

C e
(=Pt + 55 [ (= pPdr| <Cem.

m+1

_ _ 1
U(p 2)/2p')2"|7":Tm+1 S CEm P + E’Up/Ql'f:Terl'

Hence for any § € (0,1),

Up/2|T=Tm+1 — U(p—2)/2(pz + 1)|T=Tm+1 _ 1)(1)—2)/2pz|r=Tm+1 + U(p—2)/2|r:Tm+1

1
< Ce™P 4 Z_)Up/2|r=Tm+1 + U(p—2)/2|T=Tm+1

1
=Cem™P 4 (]—) +8)vP 2|21,y + C(6)
from which it follows by choosing § > 0 small enough that
(4.13) oP/?|, ., < Ce™P
Now we multiply both sides of (4.6) by p — 1 and integrate. Then
1 1 1
—5”/ [WP=2/2p (p—1)], dr + 5”/ vP=2/2p2 g 4 / (p—1)%dr = 0.
Trt1 Tt

Tm+1

From this, using(4.5)(4.7)(4.13), we obtain
1
(@10 E(paTu) O [ WD (p - 1), dr]
Tm+1

= Cv®D/2)p|p = 1]pr,,, < COP V2| 1), g
< (Cem—P)P=D/p(Cem)l/2 < CemptL,

Define we = f, for r € (0,Tin+1); we = pe, for r € [Timy1,1]. Since that f.
is a minimizer of E.(f), we have E.(f.) < E.(w.). Thus, it follows that

1 1 _ e 1 1 o
Ee(fe; Tt1) < / (p7+ (n—1)r—2p* P2 dr + — (1—p?)2 ' dr
Tm41

P
€ Tyt

by virtue of I' < & < T}, 41 since € is sufficiently small. Noticing that
1

1
[ @z ta - [ (et

Tt Tt

1 1
SB[ [t =0 = R ) g
m—+1

1
< C/ (p2 4 (n — 1)r2p%)P=2)/2 p2pn =1y

Tm41

1
+ C’/ ((n— 1)r72p2)(p*2)/2p3r”*1dr

Tm41

1
< C/ (PP + p2)dr

Tm+1
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and using (4.8) we obtain

EE(fE; Tm-i-l)

e '
<= / ((n=1)r=2p* P2 dr + C/ (0% + p})dr
P Tt Trt1
C 1
+— (1—p?)2dr
4€p Trnt1
1 1
SE/ ((n = 1)r=2)P/2" " dr + CE(pe; 1)
Tm+1

Combining this with (4.14) yields (4.3) for j = m+ 1. It is just (4.3) for j = m+1.
Proposition 4.2. Given T € (0,1). There exist constants Ty41 € []ffv—ﬂ,T] and
Cny1 such that

p/2 |Sn71| !

p Tny1
+Cnpae¥ P N =p].

E.(ue;Tn41) < (n—1) PPy

Proof. From (4.3) we can see E.(u.;Ty) < Ce¥~P. Hence by using integral mean

value theorem we know that there exists Tnxy1 € [Jf,v—JrTl, T] such that

1

1
(4.15) —/ |Vue|Pde + — (1 — |ue|?)2dx < CeN7P.
P JoB(0,Txn11) 4eP JoB(0,Tx 1)

Denote py is a minimizer of the functional

1 [t 1 [t
BT =3 [ GePars o [ - prar

TN+1 TN

on W;E’p((TNH, 1), RT U {0}). It is not difficult to prove by maximum principle
that

(4.16) p2 < 1.

By the same way of the derivation of (4.14), from (4.3) and (4.15) it can be con-
cluded that

(4.17) E(p2, Tny1) < C(Tyy1)e™ TP,
Noticing that u. is a minimizer and pgﬁ € Wy, we also have

(4.18)
Eo(fe;Tny1) < Ec(p2; T 1)

1 [t B B 1 [t
<o [ e o [ gt
PJrniy € TNiy1
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On the other hand,

1 1
[t ta [ (e e

TN+1 TN+1

1 1
= g / / (P2 + (n — 1)r2p2)P=2/25 4 (n — 1)r2p2(1 — s)dsp>r™ Ldr
TN+1 0
1

<C 07 + (n— 1)r—2p*| P22 2 Ly
Tny1
1 1
+C [(n = 1)r=2p?| P22 2y < C 02 + p?dr.
TN+1 TN+1

Substituting this into (4.18), we have

E.(fe;Tny1)

1 1
<[ v drc [ g
PJrni, TN+1
1t )
Py (1= p2)=dr
2eP Tn11
1
< 1 / (n — 1)P/2phrn=P=Ldr 4 CeN+1—P
PJrnia
1
< 1(n— 1)”/2/ PP gy 4 CeN TP,
p TN 41

by using (4.16) and (4.17). This is the conclusion of Proposition.

§5. WLP CONVERGENCE

Based on the Proposition 4.2, we may obtain better convergence for radial min-
imizers.

Theorem 5.1. Let u. = fe(r)‘%‘ be a radial minimizer of E.(u, B1). Then

(5.1) lim ue = —

0" Tl

in WK, R")

for any compact subset K C By \ {0}.

Proof. Without loss of generality, we may assume K = Bj \ B(0,Tx,1). From
Proposition 4.2, we have

(5.2) B (ue, K) = |S" 7 E:(fe; Tvga) < C

where C'is independent of €. This and |u.| < 1 imply the existence of a subsequence
ue, of us and a function u, € WHP(K, R"), such that

(5.3) lim u., = u., weaklyin W'P(K, R"),

er—0
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(5.4) lir_% lue, | =1, in C*(K,R), a € (0,1—n/p).

€k

(5.4) implies u, = % Noticing that any subsequence of u. has a convergence

subsequence and the limit is always ‘7””‘, we can assert

(5.5) lim v, = —

e—0 |g;|’

weakly in WHP(K, R™).

From this and the weakly lower semicontinuity of || x |VulP, using Proposition 4.2,
we know that

x -
/ VL P < lim. / Vu. P < Tm., o / V.l
K |$| K K

1

< Cellt=r 4 |gn=t) (n — 1) 2)P/2pm =1 g
TN 41

and hence

lim [ |Vu|P = / |Vi|p

e—0 Jp K |$|
since

1
/ |V£|p = |S"71| ((n— 1)7“*2)”/27’"*1 dr.
k |zl TN

Combining this with (5.4)(5.5) completes the proof of (5.1).

x

From (3.5) we also see that the zeroes of the radial minimizer u.(z) = f-(r) o]

are in Bpr for given R > 0 if € is small enough.

86 UNIQUENESS AND REGULARIZED PROPERTY

Theorem 6.1. For any given € € (0,1), the radial minimizers of E.(u,By) are
unique on W.

Proof. Fix € € (0,1). Suppose ui(x) = fl(r)% and ug(r) = fg(r)% are both
radial minimizers of E.(u, B1) on W, then they are both weak radial solutions of
(2.1) (2.2). Thus

/ (|Vu1|P~2Vuy — |Vua[P~2Vug) Vedz
B

1
== (w1 —uz) — (wifur|* — uzlus|*)]pda
€% JB1\Br

1
- (u1|u1|2 — uQ|u2|2)q§dx.
r

Set ¢ =ug —u2 = (f1 — fg)%. Take 7 sufficiently small such that h < 1.
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Case 1. When I' < he, we have

(6.1)
/ (|Vui|P2Vuy — |Vua|P2Vug)V(uy — ug)da

1

-5 i f2) e i/ (F = F2)2 (U} + 13 + frf2)da
:Eip (f1 = f2)*[L = (f + f3 + f1fo)ldz
B1\B(0,he)
Jrip (f1*f2)2d=’5*ip (fi — )% (f2 + f2 + fif2)dx
€7 JB(0,he) €X JB(0,he)

Letting n < 3 — 7 in (3.9), we have f1,f» > 1/v/2 on By \ B(0, he) for any
given ¢ € (0,1). Hence

1
/ (IVur [P~V — [Vug P> Vug) V(w1 — ug)dz < —/ (f1 = fo)?da
By B(0,he)

Applying (2.11) of [19], we can see that there exists a positive constant -y inde-
pendent of ¢ and h such that

1
(6.2) fy/ IV (ur — ug)Pde < — (fr = f2)?de,
B, €P JB(0,he)
which implies

(6.3 [ 9= ppdrs = [ (- s

YEP JB(0,he)

BIV S|z as n > 2, where 8 = %21) Taking f = f1 — f2 and applying (6.3), we

obtain f(|z|) =0 as ¢ € 9B; and

Denote G = B(0, he). Applying Theorem 2.1 in Ch II of [16], we have || f| 2., <

[ = < g [ 19sPar < gy [ (ppaee,
B
Using Holder inequality, we derive

[ ar <i6r==2 1 157 < st [ pa
Hence for any given ¢ € (0, 1),
(6.4) [ 15 < c@ il [ (5P

G G

Denote F(n fB 0.h(n)e) |f|?dz, then F(n) >0 and (6.4) implies that

(6.5) F(n)(1—C(B,|B1],7,e)h?) < 0.
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On the other hand, since C(53, |B1],7,€) is independent of 7, we may take 0 < n <
1- ﬁ so small that h = h(n) < A9Y = QN% (which is implied by (3.4)) satisfies
1 < C(B,|Bi],7,e)h? for the fixed ¢ € (0,1), which and (6.5) imply that F(n) = 0.
Namely f =0 a.e. on G, or fi1 = fo2, a.e. on B(0, he). Substituting this into (6.2),
we know that uy — us = C a.e. on By. Noticing the continuity of u1,us which is

implied by Proposition 2.1, and u; = ugs = x on 0B7, we can see at last that
uy =up, on Bi.
When n = 2, using
(6.6) 1flle < BIV 32

which implied by Theorem 2.1 in Ch II of [16], and by the same argument above
we can also derive u; = us on Bj.

Case 2. When he < T < e. Similar to (6.1), by taking n < £ — % and using
(3.11) we get

(6.7)
/ [V (f1 — f2)|Pdx < / ([Vu1[P72Vuy — [Vua [P~ 2Vu)V(u1 — ug)dx
B; By
sgip (F1— F2)2[— (f2 + f2 + fufo)lda
Bl\Br
+0@f/’ (ﬁ—hfw+0@/1 (f1 — f2)de
Br\Bhe B(0,he)
< C(en? / (Fr — f2)2dz + C(2) / (1 — fo)de.
BF\B;LE B(0,he)
Substituting

ﬁaﬂémmfh—thSCﬁéﬁh—hfw

S&ﬂétﬁ—m%@méCf/IWh—hWM

By
(which implied by (6.6)) into (6.7) and choosing 7 sufficiently small, we have

/|Wﬁ—ﬁmmsc (1 — f2)da,
By

Bhe

this is (6.3). The other part of the proof is as same as the Case 1. The theorem is
proved.

In the following, we will prove that the radial minimizer u. can be obtained as the
limit of a subsequence ul*of the radial minimizer ul of the regularized functionals
Er(u,B)) = 1/ (Va2 42+ = [ )2+ i/ ult, (7> 0)

€ ’ P B 4eP B\l 4eP r ’

on W as 13, — 0, namely
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Theorem 6.2. Assume that ul be the radial minimizer of ET(u, B1) in W. Then
there exist a subsequence ul¢ of ul and u. € W such that

(6.8) lim u’* =a., in WHYP(By, R™).

T, —0
Here . is just the radial minimizer of Ec(u, By) in W.
It is not difficult to proof that the minimizer u] is a classical solution of the

equation

(6.9) —div(v(p’Q)/QVu):Eipu(l—|u|2), on  Bi\ Br;

1
—div(vP~2/2 V) = —pu|u|2, on Br
€

and also satisfies the maximum principle: |uZ| < 1 on By, where v = [Vu|? +7. By
virtue of the uniqueness of the radial minimizer, we know @. = u.. Thus the radial
minimizer u. can be regularized by the radial minimizer u? of ET (u, By).

Proof of Theorem 6.2.. First, from (2.8) we have
(6.10) ET(ul,By) < EZ (ue, By) < CE.(u., By) < Ce*™P

as 7 € (0,1), where C does not depend on ¢ and 7. This and |u]| < 1 imply that
lulllwrr(,) < C(e). Applying the embedding theorem we see that there exist a
subsequence uZ* of ul and @. € WP (B, R") such that

(6.11) u™ — @, weakly in WYP(By, R"),
(6.12) u — e, in C(By, R"),,

as 7, — 0. Since (6.11) and the weakly low semicontinuity of the functional
[, IVul?, we obtain

(6.13) [ vap <t o [ vz
Bl Bl
From (6.12) it follows @ € W. This means E7*(u*, By) < E™*(u., By), i.e.,
(6.14) lim,, oE™*(ul*, By) < lim EZ*(iie, By).
Tk—

We can also deduce

/ (1 Ju*?)? + / fuze |t — / (1 Jael?)? + / |
B\l r Bi\I' r

from (6.12) as 7, — 0. This and (6.14) show

Tt [ (Va2 n) <l [ (Vs = [ ap.
B, T —0 B, B,
Combining this with (6.13) we obtain fBl |[VulrP — fBl |V |P as 7, — 0, which
together with (6.11) implies VuT* — Vi, in LP(By, R"™). Noticing (6.12) we have
the conclusion u™* — ., in WYP(By, R™) as 7, — 0. This is (6.8).
On the other hand, we know
(6.15) ET*(ul*,By) < EI*(u, By)
for all u € W. Noticing the conclusion lim,, o EZ*(ul*, B1) = E.(u., B1) which
had been proved just now we can say E.(u.,B1) < E.(u,B;) when 7, — 0 in
(6.15), which implies %, be a minimizer of E.(u, By).
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§7. PROOFS OF (1.2)
Proposition 7.1. Assume ul = u = f(r)ﬁ Then there exists C > 0 which is
independent of €, 7 such that

I fllcrew,r <C, Va<1/2,

where K C (0,1) is an arbitrary closed interval.

Proof. From (6.9) it follows that f solves
(7.1) — (AP L) — (n = 1) AP f 2 AR R
1 2
:E_pf(lff)v on (Fal)

where A = f2+ (n — 1)r=2f2 + 7. Take R > 0 sufficiently small such that K CC
(2R,1 — 2R). Let ¢ € C§°([0,1],]0,1]) be a function satisfying ¢ = 0 on [0, R] U
[1-R,1], ( =1on [2R,1 —2R] and |[V(| < C(R) on (0,1). Differentiating (7.1),
multiplying with f.¢2 and integrating, we have

1 1
*/ (AP=272 1), (f,¢%)dr — (n = 1) / (rtAPD2 F(frCP)dr
0 0

17572 (r—2)/2 27«:i ' — O] (frCP)dr
s [Camrae g = 5 [ L

epb

Integrating by parts yields
1 1
/ (AP L) (fr6)rdr + / AP (£, [(n = ),
0 0
—92 1 ! 2\ £2 2
—rfldr < — | (1= f7)f7Cdr.
eP Jy

Denote I = ;_R C(AP=2/2f2 1 (p—2) AP=N/2f2 2 Yir then for any & € (0, 1),
there holds
1-R

(7.2) 1< 61+C(6) /

AP 2 dr 4 —/ 21— fAH¢zdr
R el Jr

by using Young inequality. From (7.1) we can see that

0= 1) = (AP, — (o= 1) A2 2422

Applying Young inequality again we obtain that for any ¢ € (0, 1),
1ot 2\ 2 2 o (p42)/2 -2
— [ (A= f2)fe¢cdr <8I+ C(9) AP ¢=dr.
eP Jo R

Substituting this into (7.2) and choosing § sufficiently small, we have

1-R 1-R
(7:3) I<c / APPC2dr + C / APD/202 gy
R R
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To estimate the second term of the right hand side of (7.3), we take ¢ = (2/qf7(-p+2)/q
in the interpolation inequality (Ch II, Theorem 2.1 in [16])

1 2
Igllze < Cllorlls NellsY ae @+ ~2).

We derive by applying Young inequality that for any ¢ € (0, 1),

1-R
(7.4) / fPr2Car < C(/R 2| f,| P +2)/agyy

R

1-R
( / CH G| fo| DT g 2 f, | PHD/aL e
R

1-R 1-R
SO, - emar [
R R
=R pt2 _p
+ 01+ C(9) / A" mEgt a2 gpyat,
R
We may claim
1-R
(7.5) / AP2dr < C,
R

by the same argument of the proof of Proposition 4.2, where C' is independent of
¢ and 7. In fact, from (6.10) we may also derive (4.17). Noting ul is a radial
minimizer of E7 (u, By), replacing (4.18) we obtain

x
Eg(fsm;Bl \B(0,Tn+1)) < CE(p2; Tnt1)

1
< g(n— 1)”/2/ PPy 4 CeN TP,
p

TnN41

This means that (7.5) holds.
Noting ¢ € (1 + %, 2), we may using Holder inequality to the right hand side of

(7.4). Thus, by virtue of (7.5),
1-R
/ fPR2C%dr < 01 + C(6).
R
Substituting this into (7.3) we obtain

1-R
[ e <c
R

which, together with (7.5), implies that ||Ap/4(:||H1(RJ,R) < C. Noticing ( =1 on
K, we have ||AP/*|| 1 (x) < C. Using embedding theorem we can see that for any
a < 1/2, there holds || AP/4||ca (g < C. It is not difficult to prove our proposition.
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Theorem 7.2. Letu, = fe(r)% be a radial minimizer of E.(u, B1). Then for any
compact subset K C By \ {0}, we have

limu. = —, in CYP(K,R™), B (0,1)

e—0 |$|7

Proof. For every compact subset K C Bj \ {0}, applying Proposition 7.1 yields
that for some 5 € (0,1/2] one has

(7.6) lulllcrsy < C = C(K),

where the constant does not depend on ¢, 7.

Applying (7.6) and the embedding theorem we know that for any ¢ and some
B1 < 3, there exist w. € C*P1(K, R") and a subsequence of 7 of 7 such that as
k — oo,

(7.7) ul* —w., in CVPI(K,R™).
Combining this with (6.8) we know that w. = w..
Applying (7.6) and the embedding theorem again we can see that for some

B2 < 3, there exist w € C'P2(K,R") and a subsequence of 75, which can be
denoted by 7, such that as m — oo,

(7.8) ulm —w, in CYP2(K,R™).

Em

Denote v = min(f, f2). Then as m — oo, we have

(7.9) llue,, —wllcrsx,mry < e, —ulmlors ik, rr)
+ [lulrr — wllers (i, mny < 0(1)

Em

by applying (7.7) and (7.8). Noting (1.1) we know that w = ﬁ

Noting the limit % is unique, we can see that the convergence (7.9) holds not
only for some subsquence but for all u.. Applying the uniqueness theorem (Theorem
6.1) of the radial minimizers, we know that the regularizable radial minimizer just

is the radial minimizer. Theorem is proved.
88. PROOF OF THEOREM 1.4
First (3.1) shows one rate that the minimizer f. converge to 1 as ¢ — 0. More-

over, proposition 4.2 implies that for any 7" > 0,

1t e
(8.1) o /. (1— 2% tdr < C.

In the following we shall give other better estimates of the rate of the convergence
for the radial minimizer f. than (8.1).
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Theorem 8.1. Let u.(z) = fe(r)ljﬁ—'l be the radial minimizer of Ec(u,By). For
any T > 0, there exists a constant C > 0 which is independent of € such that as €
sufficiently small,

1 1 1
(8:2) / |FLPr = dr + —/ (1 — f2)2"tdr < Celti-r,
T er Jp

Here [p] is the integer number part of p. Moreover, as e — 0,

1 1 1
83 L[ wuprgn [ e v
P JB\Br 4e? Jp\ By P JBa\Br(o) |7l
Proof. By proposition 4.2 we have
1 1
(8.4) E.(f-; Br) < - / (n — 1)P/2pn=P=1gp 4 CXPIH1-P)/p
pJr
thus,
1
(8.5) / (1 — fo)%dr < C(T)eP
T

for any 7' > 0. On the other hand, Jensen’s inequality implies

Eo(fo: Br) > / e =ldy
1 ! fa p/2,n—1 1 ! 2\2, n—1
+—/((n—1)r—2) r d7°—|-4—€p/T(1—f€)r dr.

pJr
Combining this with (8.4) we have

1 2
(8.6) l/ ((n— 1)f—;)P/2r”*1dr < E.(f-; Br)

pPJr r

1
< cg2lpl+1-p)/p l/ (n — 1)P/2pn=p=1qp,
B pJr

Applying (8.5) and Hélder’s inequality we obtain

/ ((n —1)r=2)P/2pn =1y — / ((n — 1)r2f2)p/2pn=1gy

T T

_ / (n— 1)P/2pn=2=1(1 — fP)dr < C(T)/T (1— f)dr

T

1
< C(/ (1— f)%dr)Y/? < CeP/2,

T
Substituting this into (8.6) we obtain
(8.7) —Ce?? < E.(f-; Br)
1
— l/ ((n —1)r=2)p/2m=1gr < CelPl+i-p,
pJr
Noticing
n—1
l/ |Vip 1S |/ Y 2)P/ 2 g
P JB\Br(0) ||

from (8.7) we can see that both (8.2) and (8.3) hold.
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Theorem 8.2. Let u.(z) = fe(r)ljﬁ—'l be the radial minimizer of E.(u,B1) on W.
Then there exist Cyeq > 0 such that as € € (0,&9),

! n—1 I\p 1 1 2\2 dr < CeP
(59 |y + 50 2 < cen
(8.9) sup (1 — fo(r)) < CeP™%,
re(T,1]

(8.8) gives the estimate of the rate of f.’s convergence to 1 in WHP[T, 1] sense,
and that in C°[T’, 1] sense is showed by (8.9).

Proof. 1t follows from Jensen’s inequality that

1 J—
Bty =3 [ PR

e 22, n—1
+ yp . (1= f)*r" " dr
> l/l(f')”r"_lerr L 1(1 — A2 tar
TpJr Ut deP Jop :

1 [t [n—1]p/?
L[ g,

PJr e
Combining this with Proposition 4.2 yields

1

I 1
_ ppn—1 i 1 _ £2)2,n—1
=t [ e tar
1 _11p/2
gl/ [n =177 (1— 2y tdr 4 CelPlti-p,
DJT P

Noticing (8.1), we obtain

e I
8.10 - "\p n—ld = 1— 2\2 n—ld
(8.10) = ta s o[- e tar
1 __11p/2
< C/ %(1 7f5)7"n71d7’+08[p]+17p
T T

< CeP/? 4 celPl+i-p < Celpl+i-p,

Using Proposition 4.2 and (8.10), as well as the integral mean value theorem we
can see that there exists

T, €T, T(1+1/2)] C [R/2,R]
such that

(8.11) [(fo)? + (n = r =2 f2,—r, < C1,
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1
(8.12) [ (1= f2)rer, < CrelHEe,

Consider the functional
BT =5 [ 1P+ / (1 - p)dr
’ Pl 2e? Jp .

It is easy to prove that the minimizer ps of E(p,T}) in V[/)}E’]”((Tl7 1), Rt U {0})
exists.
By the same way to proof of (4.14), using (8.11) and (8.12) we have

E(p3,T1) < 0% pse(1 — ps)lory < C1(1— p3(Th)) < CeF1Y,

where F[j] = [p];]kp + (272;1)10,]. =1,2,---. Hence, similar to the proof of Propo-
sition 4.2, we obtain

1 ! — 1]p/2
E(fo;Ty) < Ce"l 4 —/ %dr.
pJn rP

Furthermore, similar to the derivation of (8.10), using (8.1) we may get

1 1
1
/ (FOFrm=tdr+ = | (L= f2)*"ldr < CeFl 4 CeP/2 < CpeF N,
Tl T*1

Set T,,, = R(1 — 2},1 ). Proceeding in the way above (whose idea is improving the
exponents of ¢ from F[k] to F[k 4 1] step by step), we can see that there exists
some m € N satisfying F[m — 1] < § < F[m] such that

1 1
1
(8.13) / (fL)Prdr + —p/ (1 — 22 tdr
Tom e Jr,
§ Ce [p];rlbip"l‘(zyz;ﬂ,l)p + C&:p/Q S C[{p/Q,

Similar to the derivation of (8.11) and (8.12), it is known that there exists Ty, 41 €
[T, 311 /2] such that

(8.14) [(fo)F + (n = Dr 2 o=, < C,

1

(815) [E_p(l - fa2)2]7“=Tm+1 < CEP/Q'

The minimizer p4 of the functional
1t 2 /2 1 ' 2
E(p, Tt1) = » (pr +1)PEdr + o (1= p)dr

Trmt1 € Trmt1

in W;E’p((Tl, 1), R") exists. By the same way to proof of (4.14), using (8.15) and
(8.14) we have

p—2
E(pa; Tong1) <07 par(l = ps)lr=n,,,, < C(1— pa(Tinp)) < CeC,
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where G[j] = 1;2# + @,j =m+1,m+2,---. By the argument of proof of
Proposition 4.2, we obtain

1t — 1]p/?
Ee(fe; Trng1) < Ce%M 4 = / [n— 17 ,]1 dr.
p Tm+1 Tp

Furthermore, similar to the derivation of (8.10), using (8.13) we may get
1 1t
/ (fLprm—tdr + —/ (1= f2)*r"tdr < CeC,
Tm+1 Ep Tm+1

Proceeding in the way above (whose idea is improving the exponents of & from
G[k] to G[k + 1] step by step), we can see that for any k € N,

1 1
1 p/2 | 2*-1p
/ (fHPrm=tdr + E_P/ (1— )% tdr < CceTm T
Tm+;¢ Tm+k
Letting £ — oo, we derive
1 1 1
/ (fHPr™tdr + E_P/ (1— 22 tdr < CeP.
R R
This is (8.8).
From (8.8) we can see that
1
(8.16) / (1— f2)%r"tdr < Ce?.
T

On the other hand, from (5.2) and |uc| < 1 it follows that || fc|[w1.r(7,1),r) < C.
Applying the embedding theorem we know that for any r¢ € [T} 1],

|fe(r) = fe(ro)| < Clr —ro|*™YP, ¥r € (ro —&,10 + ).

Thus )
(L= fo(r)? = (1= fe(ro))? =& /7 > 5 (1= fe(r0))*.
Substituting this into (8.16) we obtain

ro+e

1
Ce? > / (1— 2% tdr 2/ (1— 2% tdr >
T T

0—¢€

S0 = L))"

which implies 1 — f.(ro) < CeP~%. Noting g is an arbitrary point in [T, 1], we have

sup (1 — fo(r)) < CeP~ 3,
re(T,1]

Thus (8.9) is derived and the proof of Theorem is complete.
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