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τ-DISTANCE IN A GENERAL TOPOLOGICAL SPACE

(X, τ) WITH APPLICATION TO FIXED POINT THEORY

M. AAMRI and D. EL MOUTAWAKIL

Abstract. The main purpose of this paper is to define the notion of a τ -distance
function in a general topological space (X, τ). As application, we get a generalization
of the well known Banach’s fixed point theorem.

A.M.S. (MOS) Subject Classification Codes. 54A05, 47H10, 54H25, 54E70

Key Words and Phrases. Hausdorff topological spaces, Topological spaces of
type F, symmetrizable topological spaces, Fixed points of contractive maps

1. Introduction

It is well known that the Banach contraction principle is a fundamental result
in fixed point theory, which has been used and extended In many different direc-
tions ([2],[3],[4],[6],[9]). On the other hand, it has been observed ([3],[5]) that the
distance function used in metric theorems proofs need not satisfy the triangular
inequality nor d(x, x) = 0 for all x. Motivated by this fact, we define the concept
of a τ -distance function in a general topological space (X, τ) and we prove that
symmetrizable topological spaces ([5]) and F-type topological spaces introduced in
1996 by Fang [4] (recall that metric spaces, Hausdorff topological vector spaces and
Menger probabilistic metric space are all a special case of F-type topological spaces)
possess such functions. finally, we give a fixed point theorem for contractive maps
in a general topological space (X, τ) with a τ -distance which gives the Banach’s
fixed point theorem in a new setting and also gives a generalization of jachymski’s
fixed point result [3] established in a semi-metric case.

Department of Mathematics and Informatics, University Hassan-II Mohammedia,
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2. τ-distance

Let (X, τ) be a topological space and p : X×X −→ IR+ be a function. For any
ε > 0 and any x ∈ X , let Bp(x, ε) = {y ∈ X : p(x, y) < ε}.
Definition 2.1. The function p is said to be a τ -distance if for each x ∈ X and
any neighborhood V of x, there exists ε > 0 with Bp(x, ε) ⊂ V .

Example 2.1. Let X = {0; 1; 3} and τ = {∅;X ; {0; 1}}. Consider the function
p : X ×X −→ IR+ defined by

p(x, y) =







y, x 6= 1

1

2
y, x = 1.

We have, p(1; 3) = 3
2 6= p(3; 1) = 1. Thus, p us not symmetric. Moreover, we have

p(0; 3) = 3 > p(0; 1) + p(1; 3) =
5

2

which implies that p fails the triangular inequality. However, the function p is a
τ -distance.

Example 2.2. Let X = IR+ and τ = {X, ∅}. It is well known that the space
(X, τ) is not metrizable. Consider the function p defined on X×X by p(x, y) = x
for all x, y ∈ X . It is easy to see that the function p is a τ -distance.

Example 2.3. In [5], Hicks established several important common fixed point
theorems for general contractive selfmappings of a symmetrizable (resp. semi-
metrizable) topological spaces. Recall that a symmetric on a set X is a nonnegative
real valued function d defined on X ×X by

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x)

A symmetric function d on a set X is a semi-metric if for each x ∈ X and each
ε > 0, Bd(x, ε) = {y ∈ X : d(x, y) ≤ ε} is a neighborhood of x in the topology τd

defined as follows

τd = {U ⊆ X/ ∀x ∈ U, Bd(x, ε) ⊂ U, forsome ε > 0}
A topological space X is said to be symmetrizable (semi-metrizable) if its topology
is induced by a symmetric (semi-metric) on X . Moreover, Hicks [5] proved that
very general probabilistic structures admit a compatible symmetric or semi-metric.
For further details on semi-metric spaces (resp. probabilistic metric spaces), see,
for example, [8] (resp. [7]). Each symmetric function d on a nonempty set X is a
τd-distance on X where the topology τd is defined as follows: U ∈ τd if ∀x ∈ U ,
Bd(x, ε) ⊂ U, for some ε > 0.

Example 2.4. Let X = [0,+∞[ and d(x, y) = |x− y| the usual metric. Consider
the function p : X ×X −→ IR+ defined by

p(x, y) = e|x−y|, ∀x, y ∈ X

It is easy to see that the function p is a τ -distance on X where τ is the usual
topology since ∀x ∈ X, Bp(x, ε) ⊂ Bd(x, ε), ε > 0. Moreover, (X, p) is not a
symmetric space since for all x ∈ X , p(x, x) = 1.
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Example 2.5 - Topological spaces of type (EL).

Definition 2.2. A topological space (X, τ) is said to be of type (EL) if for each
x ∈ X , there exists a neighborhood base Fx = {Ux(λ, t)/λ ∈ D, t > 0}, where
D = (D,≺) denotes a directed set, such that X = ∪t>0Ux(λ, t), ∀λ ∈ D, ∀x ∈ X .

remark 2.1. In [4], Fang introduced the concept of F-type topological space and
gave a characterization of the kind of spaces. The usual metric spaces, Hausdorff
topological vector spaces, and Menger probabilistic metric spaces are all the special
cases of F-type topological Spaces. Furtheremore, Fang established a fixed point
theorem in F-type topological spaces which extends Caristi’s theorem [2]. We recall
the concept of this space as given in [4]

Definition [4]. A topological space (X, θ) is said to be F-type topological space
if it is Hausdorff and for each x ∈ X , there exists a neighborhood base Fx =
{Ux(λ, t)/λ ∈ D, t > 0}, where D = (D,≺) denotes a directed set, such that

(1) If y ∈ Ux(λ, t), then x ∈ Uy(λ, t),
(2) Ux(λ, t) ⊂ Ux(µ, s) for µ ≺ λ, t ≤ s,
(3) ∀λ ∈ D, ∃µ ∈ D such that λ ≺ µ and Ux(µ, t1) ∩ Uy(µ, t2) 6= ∅, implies

y ∈ Ux(λ, t1 + t2),
(4) X = ∪t>0Ux(λ, t), ∀λ ∈ D, ∀x ∈ X .

It is clear that a topological space of type F is a Hausdorff topological space of
type (EL). Therefore The usual metric spaces, Hausdorff topological vector spaces,
and Menger probabilistic metric spaces are special cases of a Hausdorff topological
Space of type (EL).

proposition 2.1. Let (X, τ) be a topological space of type (EL). Then, for each
λ ∈ D, there exists a τ -distance function pλ.

Proof. Let x ∈ X and λ ∈ D. Consider the set Ex = {Ux(λ, t)|λ ∈ D, t > 0} of
neighborhoods of x such that X = ∪t>0Ux(λ, t). Then for each y ∈ X , there exists
t∗ > 0 such that y ∈ Ux(λ, t∗). Therefore, for each λ ∈ D, we can define a function
pλ : X ×X −→ IR+ as follows

pλ(x, y) = inf{t > 0, y ∈ Ux(λ, t)}.

set Bλ(x, t) = {y ∈ X |pλ(x, y) < t}. let x ∈ X and Vx a neighborhood of x. Then
the exists (λ, t) ∈ D × IR+, such that Ux(λ, t) ⊂ Vx. We show that Bλ(x, t) ⊂
Ux(λ, t). Indeed, consider y ∈ Bλ(x, t) and suppose that y /∈ Ux(λ, t). It follows that
pλ(x, y) ≥ t, which implies that y /∈ Bλ(x, t). A contradiction. Thus Bλ(x, t) ⊂ Vx.
Therefore pλ is a τ -distance function.

remark 2.2. As a consequence of proposition 3.1, we claim that each topological
space of type (EL) has a familly of τ -distances M = {pλ|λ ∈ D}.

3. Some properties of τ-distances

lemma 3.1. Let (X, τ) be a topological space with a τ -distance p.

(1) Let (xn) be arbitrary sequence in X and (αn) be a sequence in IR+ con-
verging to 0 such that p(x, xn) ≤ αn for all n ∈ IN . Then (xn) converges
to x with respect to the topology τ .
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(2) If (X, τ) is a Hausdorff topological space, then (2.1) p(x, y) = 0 implies
x = y. (2.2) Given (xn) in X,

lim
n→∞

p(x, xn) = 0 and lim
n→∞

p(y, xn) = 0

imply x = y.

Proof.

(1) Let V be a neighborhood of x. Since lim p(x, xn) = 0, there exists N ∈ IN
such that ∀n ≥ N , xn ∈ V . Therefore limxn = x with respect to τ .

(2) (2.1) Since p(x, y) = 0, then p(x, y) < ε for all ε > 0. Let V be a neighbor-
hood of x. Then there exists ε > 0 such that Bp(x, ε) ⊂ V , which implies
that y ∈ V . Since V is arbitrary, we conclude y = x. (2.2) From (2.1),
lim p(x, xn) = 0 and lim p(y, xn) = 0 imply limxn = x and lim xn = y with
respect to the topology τ which is Hausdorff. Thus x = y.

Let (X, τ) be a topological space with a τ -distance p. A sequence in X is p-
Cauchy if it satisfies the usual metric condition with respect to p. There are several
concepts of completeness in this setting.

Definition 3.1. Let (X, τ) be a topological space with a τ -distance p.

(1) X is S-complete if for every p-Cauchy sequence (xn), there exists x in X
with lim p(x, xn) = 0.

(2) X is p-Cauchy complete if for every p-Cauchy sequence (xn), there exists x
in X with limxn = x with respect to τ .

(3) X is said to be p-bounded if sup{p(x, y)/x, y ∈ X} <∞.

remark 3.1. Let (X, τ) be a topological space with a τ -distance p and let (xn) be
a p-Cauchy sequence. Suppose that X is S-complete, then there exists x ∈ X such
that lim p(xn, x) = 0. Lemma 4.1(b) then gives limxn = x with respect to the
topology τ . Therefore S-completeness implies p-Cauchy completeness.

4. Fixed point theorem

In what follows, we involve a function ψ : IR+ −→ IR+ which satisfies the
following conditions

(1) ψ is nondecreasing on IR+ ,
(2) limψn(t) = 0, ∀t ∈]0,+∞[.

It is easy to see that under the above properties, ψ satisfies also the following
condition

ψ(t) < t, foreach t ∈]0,+∞[

Theorem 4.1. Let (X, τ) be a Hausdorff topological space with a τ -distance p.
Suppose that X is p-bounded and S-complete. Let f be a selfmapping of X such
that

p(fx, fy) ≤ ψ(p(x, y)), ∀x, y ∈ X

Then f has a unique fixed point.

Proof. Let x0 ∈ X . Consider the sequence (xn) defined by

{

x0 ∈X,
xn+1 =fxn
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We have

p(xn, xn+m) =p(fxn−1, fxn+m−1)

≤ψ(p(xn−1, xn+m−1)) = ψ(p(fxn−2, fxn+m−2))

≤ψ2(p(xn−2, xn+m−2))

....

≤ψn(p(x0, xm)) ≤ ψn(M)

where M = sup{p(x, y)/x, y ∈ X}. Since limψn(M) = 0, we deduce that the
sequence (xn) is a p-cauchy sequence. X is S-complete, then lim p(u, xn) = 0, for
some u ∈ X , and therefore lim p(u, xn+1) = 0 and lim p(fu, fxn) = 0. Now, we
have lim p(fu, xn+1) = 0 and lim p(u, xn+1) = 0. Therefore, lemma 3.1(2.2) then
gives fu = u. Suppose that there exists u, v ∈ X such that fu = u and fv = v. If
p(u, v) 6= 0, then

p(u, v) = p(fu, fv) ≤ ψ(p(u, v)) < p(u, v)

a contradiction. Therefore the fixed point is unique. Hence we have the theorem.

When ψ(t) = kt, k ∈ [0, 1[, we get the following result, which gives a generaliza-
tion of Banach’s fixed point theorem in this new setting

Corollary 4.1. Let (X, τ) be a Hausdorff topological space with a τ -distance p.
Suppose that X is p-bounded and S-complete. Let f be a selfmapping of X such
that

p(fx, fy) ≤ kp(x, y), k ∈ [0, 1[, ∀x, y ∈ X

Then f has a unique fixed point.

Since a symmetric space (X, d) admits a τd-distance where τd is the topology
defined earlier in example 2.3, corollary 4.1 gives a genaralization of the following
known result (Theorem 1[5] for f = IdX which generalize Proposition 1[3]). Recall
that (W.3) denotes the following axiom given by Wilson [8] in a symmetric space
(X, d): (W.3) Given {xn}, x and y in X , lim d(xn, x) = 0 and lim d(xn, y) = 0 imply
x = y. It is clear that (W.3) guarantees the uniqueness of limits of sequences.

corollary 4.2. Let (X, d) be a d-bounded and S-complete symmetric space satisfy-
ing (W.3) and f be a selfmapping of X such that

d(fx, fy) ≤ kd(x, y), k ∈ [0, 1[, ∀x, y ∈ X

Then f has a fixed point.
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A SOLUTION TO AN ”UNSOLVED

PROBLEM IN NUMBER THEORY”

Allan J. MacLeod

Abstract. We discuss the problem of finding integer-sided triangles with the ratio
base/altitude or altitude/base an integer. This problem is mentioned in Richard
Guy’s book ”Unsolved Problems in Number Theory”. The problem is shown to be
equivalent to finding rational points on a family of elliptic curves. Various computa-
tional resources are used to find those integers in [1, 99] which do appear, and also
find the sides of example triangles.

A.M.S. (MOS) Subject Classification Codes. 11D25 , 11Y50

Key Words and Phrases. Triangle, Elliptic curve, Rank, Descent

1. Introduction

Richard Guy’s book Unsolved Problems in Number Theory [5] is a rich source of
fascinating problems. The final 3 paragraphs in section D19 of this book discuss
the following problem:

Problem Which integers N occur as the ratios base/height in integer-sided trian-
gles?

Also mentioned is the dual problem where height/base is integer. Some numerical
examples are given together with some more analytical results, but no detailed
analysis is presented.

Let BCD be a triangle with sides b,c,d using the standard naming convention. Let
a be the height of B above the side CD. If one of the angles at C or D is obtuse
then the height lies outside the triangle, otherwise it lies inside.

Assume, first, that we have the latter. Let E be the intersection of the height and
CD, with DE = z and EC = b− z. Then
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(1)
a2 + z2 = c2

a2 + (b− z)2 = d2

Now, if base/height = N, the second equation is

a2 + (z −Na)2 = d2

For altitudes outside the triangle the equations are the same, except for z − Na
replaced by z + Na. We thus consider the general system, with N positive or
negative.

(2)
a2 + z2 = c2

a2 + (z −Na)2 = d2

Clearly, we can assume that a and z have no common factors, so there exists integers
p and q (of opposite parities) such that (1) a = 2pq,z = p2 − q2, or (2) a = p2 − q2,
z = 2pq.

As a first stage, we can set up an easy search procedure. For a given pair (p, q),
compute a and x using both the above possibilities. For N in a specified range test
whether the resulting d value is an integer square.

This can be very simply done using the software package UBASIC, leading to
the results in Table 1, which come from searching with 3 ≤ p + q ≤ 999 and
−99 ≤ N ≤ 99.

This table includes results for the formulae quoted in Guy, namelyN = 2m(2m2+1)
and N = 8t2 ± 4t+ 2, and the individual values quoted except for N = 19. It also
includes solutions from other values.

It is possible to extend the search but this will take considerably more time and
there is no guarantee that we will find all possible values of N. We need alternative
means of answering the following questions:

(1) can we say for a specified value of N whether a solution exists?

(2) if one exists, can we find it?

2. Elliptic Curve Formulation

In this section, we show that the problem can be considered in terms of elliptic
curves.

Assuming a = 2pq and z = p2 − q2, then the equation for d is

(3) d2 = p4 − 4Np3q + (4N2 + 2)p2q2 + 4Npq3 + q4

Define j = d/q2 and h = p/q, so that
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Table 1. Solutions for 2 ≤ N ≤ 99

N b c d N b c d

5 600 241 409 6 120 29 101
8 120 17 113 9 9360 1769 10841

13 291720 31849 315121 14 2184 685 1525
15 10920 2753 8297 18 6254640 439289 6532649
20 46800 8269 54781 26 15600 5641 10009
29 3480 169 3601 29 737760 31681 719329
29 706440 336841 371281 34 118320 4441 121129
36 4896 305 4625 40 24480 1237 23413
40 24360 3809 20609 40 741000 274853 1015397
42 24360 3389 21029 42 68880 26921 42041
42 2270520 262909 2528389 48 118320 4033 121537
61 133224 2305 132505 62 226920 93061 133981
68 4226880 90721 4293409 86 614040 260149 354061
94 3513720 42709 3493261 99 704880 198089 506969

(4) j2 = h4 − 4Nh3 + (4N2 + 2)h2 + 4Nh+ 1

This has an obvious rational point h = 0, j = 1, and so is birationally equivalent
to an elliptic curve, see Mordell [7]. Using standard algebra, we can can link this
equation to the curve

(5) EN : y2 = x3 + (N2 + 2)x2 + x

with the transformations h = p/q = (Nx+ y)/(x+ 1).

If, however, a = p2 − q2 and z = 2pq, we have a different quartic for d2, but leading
to the same elliptic curve, with the relevant transformation p/q = (Nx + x + y +
1)/(Nx− x+ y − 1).

Thus the existence of solutions to the original problem is related to the rational
points lying on the curve. There is the obvious point (x, y) = (0, 0), which gives
p/q = 0 or p/q = −1, neither of which give non-trivial solutions. A little thought
shows the points (−1,±N), giving p/q = ∞, p/q = 0/0, or p/q = 1, again failing
to give non-trivial solutions.

We can, in fact, invert this argument and show the following

Lemma: If (x, y) is a rational point on the elliptic curve EN with x 6= 0 or
x 6= −1, then we get a non-trivial solution to the problem.

The proof of this is a straightforward consideration of the situations leading to
p2 − q2 = 0 or pq = 0, and showing that the only rational points which can cause
these are x = 0 or x = −1. It is also clear that if a or z become negative we can
essentially ignore the negative sign.
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3. Torsion Points

It is well known that the rational points on an elliptic curve form a finitely-generated
group, which is isomorphic to the group T ⊕ Zr, where r ≥ 0 is the rank of the
elliptic curve, and T is the torsion subgroup of points of finite order.

We first consider the torsion points. The point at infinity is considered the identity
of the group. Points of order 2 have y = 0, so (0, 0) is one. The other roots of
y = 0 are irrational for N integral, so there is only one point of order 2. Thus, by
Mazur’s theorem, the torsion subgroup is isomorphic to Z/nZ, with the symmetry
of the curve about y = 0 ensuring N one of 2, 4, 6, 8, 10, 12.

For elliptic curves of the form y2 = x(x2 + ax + b), a point P = (x, y) leads to 2P
having x-coordinate (x2 − b)2/4y2. Thus, if P has order 4, then 2P has order 2, so
2P=(0,0) for the curves EN . Thus x2 − 1 = 0, so that x = ±1. The value x = 1

gives y =
√
N2 + 4, which is irrational. x = −1 gives y = ±N , so that (−1,±N)

are the only order 4 points. This reduces the possibilities for the torsion subgroup
to Z/4Z, Z/8Z, or Z/12Z.

For Z/8Z, we would have 4 points of order 8. Suppose Q is of order 8, giving 2Q of
order 4. Thus the x-coordinate of 2Q must be -1, but as we stated previously, the
x-coordinate of 2Q is a square. Thus there cannot be any points of order 8.

For Z/12Z, we would have 2 points of order 3, which correspond to any rational
points of inflection of the elliptic curve. These are solutions to

(6) 3x4 + 4(N2 + 2)x3 + 6x2 − 1 = 0

If x = r/s is a rational solution to this, then s|3 and r|1, so the only possible
rational roots are ±1 and ±1/3. Testing each shows that they are not roots for any
value of N.

Thus, the torsion subgroup consists of the point at infinity, (0,0), (−1,±N). As we
saw, in the previous section, these points all lead to trivial solutions. We thus have
proven the following

Theorem: A non-trivial solution exists iff the rank of EN is at least 1. If the
rank is zero then no solution exists.

4. Parametric Solutions

As mentioned in the introduction, Guy quotes the fact that solutions exist for
N = 2m(2m2 + 1) and N = 8t2 ± 4t + 2, though without any indication of how
these forms were discovered. We show, in this section, how to use the elliptic curves
EN to determine new parametric solutions.

The simple approach used is based on the fact that rational points on elliptic curves
of the form

y2 = x3 + ax2 + bx

have x = du2/v2 with d|b. Thus, for EN , we can only have d = ±1.

We look for integer points so v = 1, and searched over 1 ≤ N ≤ 999 and 1 ≤ u ≤
99999 to find points on the curve. The data output is then analysed to search for
patterns leading to parametric solutions.



A SOLUTION TO AN ”UNSOLVED PROBLEM IN NUMBER THEORY 13

For example, the above sequences have points P given by

1. N = 2m(2m2 + 1), P = (4m2, 2m(8m4 + 4m2 + 1)),

2. N = 8t2 + 4t+ 2, P = (−(8t2 + 4t+ 1)2, 2(4t+ 1)(4t2 + 2t+ 1)(8t2 + 4t+ 1)),

3. N = 8t2 − 4t+ 2, P = (−(8t2 − 4t+ 1)2, 2(4t− 1)(4t2 − 2t+ 1)(8t2 − 4t+ 1)).

These parametric solutions are reasonably easy to see in the output data. Slightly
more difficult to find is the solution with N = 4(s2+2s+2), x = (2s3+6s2+7s+3)2

and y = (s+ 1)(s2 + 2s+ 2)(2s2 + 4s+ 3)(4s4 + 16s3 + 32s2 + 32s+ 13).

Using p/q = (Nx + y)/(x + 1) with a = 2pq, z = p2 − q2, we find the following
formulae for the sides of the triangles:

b = 8(s+ 1)(s2 + 2s+ 2)(2s2 + 2s+ 1)(2s2 + 4s+ 3)(2s2 + 6s+ 5)

c =16s10 + 192s9 + 1056s8 + 3504s7 + 7768s6 + 12024s5

+ 13168s4 + 10076s3 + 5157s2 + 1594s+ 226

d =16s10 + 128s9 + 480s8 + 1104s7 + 1720s6

+ 1896s5 + 1504s4 + 868s3 + 381s2 + 138s+ 34

Other parametric solutions can be found by adding the points on the curve to the
torsion points.

5. Rank Calculations

We now describe a computational approach to the determination of the rank. This
follows the approach of Zagier & Kramarcz [10] or Bremner & Jones [2] for example.
The computations are based on the Birch and Swinnerton-Dyer (BSD) conjecture,
which states (roughly) - if an elliptic curve has rank r, then the L-series of the curve
has a zero of order r at the point 1. Smart [9] calls this the ”conditional algorithm”
for the rank.

The L-series of an elliptic curve can be defined formally as

L(s) =
∞
∑

k=1

ak

ks

where ak are integers which depend on the algebraic properties of the curve. This
form is useless for effective computation at s = 1, so we use the following form from
Proposition 7.5.8. of Cohen [3]

L(1) =

∞
∑

k=1

ak

k

(

exp(−2πkA/
√
N∗) + ε exp(−2πk/(A

√
N∗))

)

with ε = ±1 - the sign of the functional equation, N ∗ - the conductor of the
equation, and A ANY number.

N∗ can be computed by Tate’s algorithm - see Algorithm 7.5.3 of Cohen, while ε
can be computed by computing the right-hand sum at two close values of A - say
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1 and 1.1 - and seeing which choice of ε leads to agreement (within rounding and
truncation error). If ε = 1 then the curve has even rank, whilst if ε = −1 the curve
has odd rank.

We thus determine the value of ε. If ε = 1, we compute

L(1) = 2

∞
∑

k=1

ak

k
exp(−2πk/

√
N∗)

and, if this is non-zero, then we assume r = 0, whilst, if zero, r ≥ 2. For ε = −1,
we compute

L′(1) = 2

∞
∑

k=1

ak

k
E1(2πk/

√
N∗)

with E1 the standard exponential integral special function. If this is non-zero, then
we assume r = 1, whilst if zero, r ≥ 3.

The most time-consuming aspect of these computations is the determination of the
ak values. Cohen gives a very simple algorithm which is easy to code, but takes a
long time for k large. To achieve convergence in the above sums we clearly need
k = O(

√
N∗). Even in the simple range we consider, N∗ can be several million, so

we might have to compute many thousands of ak values.

6. Numerical Results

Using all the ideas of the previous section, we wrote a UBASIC program to estimate
the rank of EN for 1 ≤ N ≤ 99. The results are given in the following table. We
have no proof that these values are correct, but for every value of N with rank
greater than 0 we have found a non-trivial solution to the original triangle problem.

TABLE 2. Rank of EN for 1 ≤ N ≤ 99

0 1 2 3 4 5 6 7 8 9

00+ 0 0 0 0 1 1 0 1 1
10+ 0 0 0 1 1 1 0 1 1 1
20+ 1 1 1 1 0 0 1 0 0 2
30+ 0 1 1 0 1 1 1 1 1 0
40+ 2 0 2 1 1 1 0 0 1 0
50+ 0 0 1 2 0 0 0 0 0 0
60+ 0 2 2 1 0 0 0 0 2 1
70+ 0 1 1 1 1 0 1 1 0 1
80+ 0 0 0 1 1 2 2 1 0 0
90+ 0 0 1 1 1 1 0 1 1 2

To find an actual solution, we can assume that x = du2/v2 and y = duw/v3, with
(u, v) = 1 and d squarefree, and hence that
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w2 = du4 + (N2 + 2)u2v2 + v4/d

implying that d = ±1.

For curves with rank 2, we found that a simple search quickly finds a solution. This
also holds for a few rank 1 curves, but most curves did not produce an answer in a
reasonable time.

A by-product of the L-series calculation is an estimate H of the height of a rational
point on the curve. The height gives a rough idea of how many decimal digits
will be involved in a point, and thus how difficult it will be to compute it. The
following formula gives the height, see Silverman [8] for a more precise definition of
the quantities involved.

H =
L′(1) T 2

2 |X| Ω c

where T is the order of the torsion subgroup, X is the Tate-Safarevic group, Ω is
the real period of the curve, and c is the Tamagawa number of the curve.

There is no known algorithm to determine |X| and so we usually use the value 1
in the formula. Note that for this problem T = 4, and that this formula gives a
value half that of an alternative height normalisation used in Cremona [4].

Unfortunately, this value is not always the height of the generator of the infinite
subgroup, but sometimes of a multiple. An example comes from N = 94, where
the height calculation gave a value H = 55.1, suggesting a point with tens of digits
in the numerator and denominator. We actually found a point with x = 4/441.

To determine the values of (d, u, v, w), we used a standard descent procedure as
described by Cremona or Bremner et al [1]. We consider equation (11) firstly as

w2 = dz2 + (N2 + 2)zt+ t2/d

Since this is a quadratic, if we find a simple numerical solution, we can parameterise
z = f1(r, s) and t = f2(r, s), with f1 and f2 homogeneous quadratics in r and s.
We then look for solutions to z = ku2, t = kv2, with k squarefree.

Considering q = kv2, if we find a simple numerical solution we can parameterise
again for r and s as quadratics, which are substituted into p = ku2, giving a quartic
which needs to be square. We search this quartic to find a solution.

We wrote a UBASIC code which performs the entire process very efficiently. This
enabled most solutions with heights up to about 16 to be found.

For larger heights we can sometimes use the fact that the curve EN is 2-isogenous
to the curve

f2 = g3 − 2(N2 + 2)g2 +N2(N2 + 4)g

with x = f2/4g2 and y = f(g2−N2(N2 +4))/8g2. This curve has the same rank as
EN and sometimes a point with estimated height half that of the equivalent point
on EN .
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For points with height greater than about 20, however, we used a new descent
method which involves trying to factorise the quartic which arises in the descent
method discussed above. This method is described in the report [6]. This has
enabled us to complete a table of solutions for all values in the range 1 < N ≤ 99.

The largest height solved is for N = 79 with E79 having equation y2 = x3 +
6243x2 + x. The estimated height is roughly 40, but the 2-isogenous curve f 2 =
g3 − 12486g2 + 38975045g was indicated to have a point with height about 20.

We found a point with

g =
2836 8499 3467 6319 5139 0020

4689 8490 9449 9234 0041

leading to a point on the original curve with

x =
2654 7926 1289 1944 1996 8505 1867 1143 3025

1705 4187 5947 7256 7676 9862 5643 5806 2336

For interested readers, this point leads to the triangle with sides

b =1465869971847782318353219719440069878

8657474856586410826213286741631164960

c =892767653488748588760336294270957750

7378277308118665999941086255389471249

d =573595369182305619553786626779319292

6159738767971279754707312477117108209

7. Altitude/Base

If we wish altitude/base=M, then we can use the theory of section 2, withN = 1/M .
If we define s = M3y, t = M2x, we get the system of elliptic curves FM , given by

s2 = t3 + (2M2 + 1)t2 +M4t

These curves have clearly the same torsion structure as EN , with the point at
infinity, (0, 0), and (−M2,±M2) being the torsion points. We can also search for
parametric solutions, and we found that M = s(s+ 2) has the following points:

1. (s3(s+ 2),±s3(s+ 2)(2s2 + 4s+ 1)),

2. (s(s+ 2)3,±s(s+ 2)3(2s2 + 4s+ 1)),

3. (−s(s+ 2)(s+ 1)2,±s(s+ 1)(s+ 2))

If we call the first point Q, then the second point comes from Q + (0, 0) and the
third from Q+ (−M2,M2).

Considering Q, we find



A SOLUTION TO AN ”UNSOLVED PROBLEM IN NUMBER THEORY 17

TABLE 3. Rank of FM for 1 ≤ M ≤ 99

0 1 2 3 4 5 6 7 8 9

00+ 0 0 1 0 1 0 1 1 0
10+ 1 0 0 1 0 1 0 0 1 0
20+ 0 1 0 0 1 0 0 1 0 0
30+ 1 0 0 0 0 1 0 1 0 1
40+ 1 2 2 2 1 0 0 1 1 1
50+ 0 1 1 0 0 2 0 1 1 0
60+ 1 1 1 2 1 0 0 1 1 0
70+ 1 1 1 1 1 0 1 1 0 0
80+ 2 1 0 0 0 0 1 0 2 0
90+ 0 1 0 1 0 1 0 0 0 1

b = 2(s+ 1) , c = s(2s2 + 6s+ 5) , d = (s+ 2)(2s2 + 2s+ 1)

which always gives an obtuse angle.

The BSD conjecture gives rank calculations listed in Table 3.

As before, we used a variety of techniques to find non-torsion points on FM . We
must say that these curves proved much more testing than EN . Several hours
computation on a 200MHz PC were needed for M = 47, while we have not been
able to find a point for M = 67, which has an estimated height of 45.7, though this
is the only value in [1, 99] for which we do not have a rational point.
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1 Basic Preliminaries

Let (X, d) be a metric space we put:

CB = {A : A is a nonempty closed and bounded subset of X }
BN = {A : A is a nonempty bounded subset of X }

If A,B are any nonempty subsets of X we put:

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},
δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B},

H(A,B) = max{ {sup{D(a,B) : a ∈ A}, sup{D(b, A) : b ∈ B} }.
If follows immediately from the definitoin that

δ(A,B) = 0 iff A = B = {a},
H(a,B) = δ(a,B),

δ(A,A) = diamA,

δ(A,B) ≤ δ(A,C) + δ(A,C),

D(a,A) = 0 if a ∈ A,

for all A,B,C in BN(X) and a in X.
In general both H and δ may be infinite. But on BN(X) they are finite. More-

over, on CB(X) H is actually a metric ( the Hansdorff metric).
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Definition 1.1. [2] A sequence {An} of subsets of X is said to be convergent to a
subset A of X if

(i) given a ∈ A, there is a sequence {an} in X such that an ∈ An for n = 1, 2, ...,

and {an} converges to a

(ii) given ε > 0 there exists a positive integer N such that An ⊆ Aε for n > N

where Aε is the union of all open spheres with centers in A and radius ε

Lemma 1.1. [2,3].If {An} and {Bn} are seqences in BN(X) converging to A and
B in BN(X) respectively, then the sequence {δ(An, Bn)} converges to δ(A,B).

Lemma 1.2. [3] Let {An} be a sequence in BN(X) and x be a point of X such
that δ(An, x) → 0. Then the sequence {An} converges to the set {x} in BN(X).

Definition 1.2. [3] A set-valued mapping F of X into BN(X) is said to be contin-
uous at x ∈ X if the sequence {Fxn} in BN(X) converges to Fx whenever {xn} is
a sequence in X converging to x in X. F is said continuous on X if it is continuous
at every point of X.

The following Lemma was proved in [3]

Lemma 1.3. Let {An} be a sequence in BN(X) and x be a point of X such that

lim
n→∞

an = x,

x being independent of the particular choice of an ∈ An. If a selfmap I of X is
continuous, then Ix is the limit of the sequence {IAn}.
Definition 1.3. [4]. The mappings I : X → X and F : X → BN(X) are δ-
compatible if limn→∞ δ(FIxn, IFxn) = 0 whenever {xn} is a sequence in X such
that IFxn ∈ BN(X),

Fxn → t and Ixn → t

for some t in X.

2. Our Results

We establish the following:

2. 1. A Coincidence Point Theorem

Theorem 2.1. Let I : X → X and T : X → BN(X) be two mappings such that
FX ⊂ IX and

(C.1) φ(δ(Tx, Ty)) ≤ aφ(d(Ix, Iy)) + b[φ(H(Ix, Tx)) + φ(H(Iy, Ty))]

+ cmin{φ(D(Iy, Tx)), φ(D(Ix, Ty))},

where x, y ∈ X, φ : R+ −→ R+ is continuous and strictly increasing such that
φ(0) = 0. a, b, c are nonnegative, a + 2b < 1 and a + c < 1. Suppose in addition
that {F, I} are δ-compatible and F or I is continuous. Then I and T have a unique
common fixed point z in X and further Tz = {z}.
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Proof. Let x0 ∈ X be an arbitrary point in X . Since TX ⊂ IX we choose a point
x1 in X such that Ix1 ∈ Tx0 = Y0 and for this point x1 there exists a point x2 in
X such that Ix2 ∈ Tx1 = Y1, and so on. Continuing in this manner we can define
a sequence {xn} as follows:

Ixn+1 ∈ Txn = Yn

For sinplicity, we can put Vn = δ(Yn, Yn+1), for n = 0, 1, 2, .... By (C, 1) we have

φ(Vn) = φ(δ(Yn, Yn+1)) = φ(δ(Txn, Txn+1))

≤ aφ(d(Ixn, Ixn+1)) + b[φ(H(Ixn, Txn)) + φ(H(Ixn+1, Txn+1))]

+ cmin{φ(D(Ixn+1, Txn)), φ(D(Ixn, Txn+1))}
≤ A1 +A2 +A3

Where
A1 = aφ(δ(Yn−1, Yn))

A2 = b[φ(δ(Yn−1, Yn)) + φ(δ(Yn, Yn+1))],

A3 = cφ(D(Ixn+1, Yn)).

So
φ(Vn) ≤ aφ(Vn−1) + b[φ(Vn−1) + φ(Vn)]

Hence we have

φ(Vn) ≤ a+ b

1 − b
φ(Vn−1) < φ(Vn−1) (1)

Since φ is increasing, {Vn} is a decreasing sequence. Let limnVn = V , assume that
V > 0. By letting n→ ∞ in (1), Since φ is continuous , we have:

φ(V ) ≤ a+ b

1 − b
φ(V ) < φ(V ),

which is contradiction , hence V = 0.
Let yn be an arbitrary point in Yn for n = 0, 1, 2, .... Then

lim
n→∞

d(yn, yn+1) ≤ lim
n→∞

δ(Yn, Yn+1) = 0.

Now, we wish to show that {yn} is a Cauchy sequence, we proceed by contradiction.
Then there exist ε > 0 and two sequences of natural numbers {m(i)}, {n(i)},
m(i) > n(i), n(i) → ∞ as i→ ∞ such taht

δ(Yn(i), Ym(i)) > ε while δ(Yn(i), Ym(i)−1) ≤ ε

Then we have

ε < δ(Yn(i), Ym(i)) ≤ δ(Yn(i), Ym(i)−1) + δ(Ym(i)−1, Ym(i))

≤ ε+ Vm(i)−1,

since {Vn} converges to 0, δ(Yn(i), Ym(i)) → ε. Futhermore, by triangular inequality,
it follows that

| δ(Yn(i)+1, Ym(i)+1) − δ(Yn(i), Ym(i)) |≤ Vn(i) + Vm(i),
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and therefore the sequence {δ(Yn(i)+1, Ym(i)+1)} converges to ε
¿From (C. 2), we also deduce:

φ(δ(Yn(i)+1, Ym(i)+1)) = φ(δ(Txn(i)+1, Txm(i)+1))

≤ C1 + C2 + C3

≤ C4 + C5 + C6 (4)

Where

C1 = aφ(d(Ixn(i)+1, Ixm(i)+1)),

C2 = b
{

φ(δ(Ixn(i)+1, Txn(i)+1)) + φ(δ(Ixm(i)+1, Txm(i)+1))
}

,

C3 = cmin{φ(D(Ixn(i)+1, Ym(i)+1), φ(D(Ixn(i)+1 , Ym(i)+1)},
C4 = aφ(δ(Yn(i), Ym(i))),

C5 = [φ(Vn(i)) + φ(Vm(i)],

C6 = cφ(δ(Yn(i), Ym(i)) + Vm(i)).

Letting i→ ∞ in (4), we have

φ(ε) ≤ (a+ c)φ(ε) < φ(ε)

This is a contradiction. Hence {yn} is a Cauchy sequence in X and it has a limit
y in X . So the sequence {Ixn} converge to y and further, the sequence {Txn}
converge to set {y}. Now supose that I is continuous. Then

I2xn → Iy and ITxn → {Iy}

by Lemma 1.3. Since I and T are δ-compatible. Therefore TIxn → {Iy}. Using
inequality (C.1) , we have

φ(δ(TIxn, Txn)) ≤ aφ(d(I2xn, Ixn)) + b[φ(H(Ixn, Txn)) + φ(H(I2xn, T Ixn))]

+ cmin{φ(D(Ixn, T Ixn)), φ(D(I2xn, Txn))},

for n ≥ 0. As n→ ∞ we obtain by Lemma 1.1

φ(d(Iy, y)) ≤ aφ(d(Iy, y)) + cφ(d(y, Iy)),

That is φ(d(Iy, y)) = 0 which implies that Iy = y. Further

φ(δ(Ty, Txn)) ≤ aφ(d(Iy, Ixn)) + b[φ(H(Iy, Ty)) + φ(H(Ixn, Txn))]

+ cmin{φ(D(Ixn, T y)), φ(D(Iy, Txn))},

for n ≥ 0. As n→ ∞ we obtain by Lemma 1.1

φ(δ(Ty, y)) ≤ bφ(δ(Ty, y)),

which implies that Ty = y. Thus y is a coincidence point for T and I . Now suppose
that T and I have a second common fixed point z such that Tz = {z} = {Iz}.
Then, using inequality (C.1), we obtain

φ(d(y, z)) = φ(δ(Ty, Tz)) ≤ (a+ c)φ(d(z, y)) < φ(d(z, y))

which is a contradiction. This completes the proof of the Theorem.
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Corollary 2.1 ([6.Theorem2.1]). Let (X, d) be a complete metric space, T :
X −→ CB(X) a multi-valued map satisfying the following condition :

φ(δ(Tx, Ty)) ≤ aφ(d(x, y)) + b
[

φ(δ(x, Tx)) + φ(δ(y, Ty))
]

+

+ cmin
{

φ(d(x, Ty)), φ(d(y, Tx))
}

∀x, y ∈ X,

where φ : R+ −→ R+ is continuous and strictly increasing such that φ(0) = 0
and a, b, c are three positive constants such that a + 2b < 1 and a + c < 1, then T
has a unique fixed point.

Note that the proof of Theorem 2.1 is another proof of Corollary 2.1 which is of
interest in part because it avoids the use of Axiom of choice.

2. 2. A Fixed Point Theorem

Theorem 2.2. Let (X, d) be a complete metric space. If F : X → CB(X) is a
multi-valued mapping and φ : R

+ −→ R
+ is continuous and strictly increasing

such that φ(0) = 0. Furthermore, let a, b, c be three functions from (0,∞) into [0, 1)
such that
a + 2b : (0,∞) → [0, 1) and a + c : (0,∞) → [0, 1) are decreasing functions.

Suppose that F satisfies the following condition:

(C.3) φ(δ(Fx, Fy)) ≤ a(d(x, y))φ(d(x, y)) + b(d(x, y))[φ(H(x, Fx)) + φ(H(y, Fy))]

+ c(d(x, y)) min{φ(D(y, Fx)), φ(D(x, Fy))},

then F has a unique fixed point z in X such that Fz = {z}.
Proof.. First we will establish the existence of a fixed point. Put p = max{(a +

2b)
1
2 , (a+c)

1
2 }, take any xo in X . Since we may assume that D(x0, Fx0) is positive,

we can choose x1 ∈ Fx0 which satisfies φ(d(x0, x1)) ≥ p(D(x0, Fx0))φ(H(x0, Fx0)),
we may assume that p(d(x0, x1)) is positive. Assuming now that D(x1, Fx1) is pos-
itive, we choose x2 ∈ Fx1 such that φ(d(x1, x2)) ≥ p(d(x0, x1))φ(H(x1, Fx1)) and
φ(d(x1, x2)) ≥ p(D(x1, Fx1))φ(d(x1, Fx1)), since d(x0, x1) ≥ D(x0, Fx0) and p is
deceasing then we have also
φ(d(x0, x1)) ≥ p(d(x0, x1))φ(H(x0, Fx0)). Now

φ(d(x1, x2)) ≤ φ(δ(Fx0, Fx1))

≤ a(d(x0, x1))φ(d(x0, x1)) + b(d(x0, x1))[φ(H(x0 , Fx0)) + φ(H(x1, Fx1))]

+ c(d(x0, x1)) min{φ(D(Fx0, x1)), φ(D(x0, Fx1))}
≤ ap−1φ(d(x0, x1)) + bp−1[φ(d(x0, x1)) + φ(d(x1, x2))],

which implies
φ(d(x1, x2)) ≤ q(d(x0, x1))φ(d(x0, x1))

where
q : (0,∞) → [0, 1)

is defined by

q =
a+ b

p− b
.
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Note that r ≥ t implies q(r) ≤ p(t) < 1. By induction, assumunig that D(xi, Fxi)
and p(d(xi−1, xi)) are positive, we obtain a sequence {xi} which satisfies xi ∈
Fxi−1, φ(d(xi−1, xi)) ≥ p(d(xi−1, xi))φ(H(xi−1, Fxi−1)),

φ(d(xi, xi+1)) ≥ p(d(xi−1, xi))φ(H(xi, Fxi)),

φ(d(xi , xi+1)) ≤ q(d(xi−1, xi))φ(d(xi−1 , xi))

≤ p(d(xi−1, xi))φ(d(xi−1 , xi))

< φ(d(xi−1, xi)).

It is not difficult to verify that limi d(xi, xi+1) = 0. If {xi} is not Cauchy, there
exists ε > 0 and two sequences of natural numbers {m(i)}, {n(i)},
m(i) > n(i) > i such that d(xm(i), xn(i)) > ε while d(xm(i)−1, xn(i)) ≤ ε. It is

not difficult to verify that

d(xm(i), xn(i)) → ε as i→ ∞ and d(xm(i)+1, xn(i)+1) → ε as i→ ∞.

For i sufficiently large d(xm(i), xm(i)+1) < ε and d(xn(i), xn(i)+1) < ε. For these i
we have

φ(d(xm(i)+1, xn(i)+1)) ≤ φ(δ(Fxm(i), Fxn(i)))

≤ a(d(xm(i), xn(i)))φ(d(xm(i), xn(i)))

+ b(d(xm(i), xn(i)))[φ(H(xm(i) , Fxm(i))) + φ(H(xn(i), Fxn(i)))]

+ c(d(xm(i), xn(i))) min{φ(D(xm(i), Fxn(i))), φ(D(xn(i) , Fxm(i))}
≤ a(d(xm(i), xn(i)))φ(d(xm(i), xn(i)))

+ b(d(xm(i), xn(i)))p
−1(d(xn(i), xn(i)+1))φ(d(xn(i), xn(i)+1))

+ b(d(xm(i), xn(i)))p
−1(d(xm(i), xm(i)+1))φ(d(xm(i), xm(i)+1))

+ c(d(xn(i), xm(i))φ(d(xm(i), xn(i)+1))

≤ a(d(xm(i), xn(i)))φ(d(xm(i), xn(i)+1) + d(xn(i)+1, xn(i))

+ b(d(xm(i), xn(i)))p
−1(d(xn(i), xn(i)+1))φ(d(xn(i), xn(i)+1))

+ b(d(xm(i), xn(i)))p
−1(d(xm(i), xm(i)+1))φ(d(xm(i) , xm(i)+1))

+ c(d(xn(i), xm(i))φ(d(xm(i), xn(i)+1 + d(xn(i)+1, xn(i)))

≤ [a(ε) + c(ε)]φ(d(xm(i), xn(i)) + d(xn(i), xn(i)+1))

+ φ(d(xm(i), xm(i)+1)) + φ(d(xn(i), xn(i)+1)) (∗)
Letting i → ∞ in (∗), we have: φ(ε) ≤ [a(ε) + c(ε)]φ(ε) < φ(ε). This is contra-
diction. Hence {xi} is cauchy sequence in a complete metric space X , then there
existe a point x ∈ X such that xn → x as i → ∞. This x is a fixed point of F
because

φ(H(xi+1, Fx)) = φ(δ(xi+1, Fx)) ≤ φ(δ(Fxi, Fx))

≤ a(d(xi, x))φ(d(xi , x))

+ b(d(xi, x))[φ(H(x, Fx)) + φ(H(xi, Fxi))]

+ c(d(xi, x)) min{φ(D(xi, Fx)), φ(D(x, Fxi))}
≤ a(d(xi, x))φ(d(xi , x))

+ b(d(xi, x))p
−1(d(xi, xi+1)φ(d(xi, xi+1))

+ b(d(xi, x))φ(H(x, Fx)) + c(d(xi, x))φ(d(x, xi+1) (∗∗)
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Using b < 1
2 , p−1(d(xi, xi+1)) < p−1(d(x0, x1)) and letting i→ ∞ in (∗∗), we have:

φ(δ(x, Fx)) ≤ 1

2
φ(H(x, Fx)).

That is φ(H(x, Fx)) = 0 and therefore H(x, Fx) = 0 i.e, Fx = x. Fx = {x}. We
claim that x is unique fixed point of F . For this, we suppose that y (x 6= y) is
another fixed point of F such that Fy = {y}. Then

φ(d(y, x)) ≤ φ(δ(Fy, Fx))

≤ aφ(d(x, y)) + b[φ(H(x, Fx)) + φ(H(y, Fy))]

+ c min{φ(D(x, Fy)), φ(D(y, Fx))}
≤ [a+ c]φ(d(x, y)) < φ(d(x, y)),

a contradiction. This completes the proof of the theorem.

We may establish a common fixed point theorem for a pair of mappings F and
G which stisfying the contractive condition corresponding to (C.1), i.e., for all
x, y ∈ X

(C.2) φ(δ(Fx,Gy)) ≤ aφ(d(x, y)) + b[φ(H(x, Fx)) + φ(H(y,Gy))]

+ c min{φ(D(y, Fx)), φ(D(x,Gy))},
2. 3 A Common Fixed Point Theorem.

Theorem 2.3. Let (X, d) be a metric space. Let F and G be two mappings of X
into BN(X) and φ : R+ −→ R+ is continuous and strictly increasing such
that φ(0) = 0. Furthermore, let a, b, c be three nonnegative constants such that
a+2b < 1 and a+ c < 1. Suppose that F and G satisfy (C.2). Then F and G have
a unique common fixed point. This fixed point satisfies Fx = Gx = {x}.
Proof. Put p = max{(a+2b)

1
2 , c

1
2 }. we may assume that is positive. We define by

using the Axiom of choice the two single-valued functions f, g : X → X by letting
f(x) be a point w1 ∈ Fx and g(x) be a point w2 ∈ Gx such that φ(d(x,w1)) ≥
pφ(H(x, Fx)) and φ(d(x,w2)) ≥ pφ(H(x,Gx)). Then for every x, y ∈ X we have:

φ(d(f(x), g(y))) ≤ φ(δ(Fx,Gy)) ≤ aφ(d(x, y)) + b[φ(H(x, Fx)) + φ(H(y,Gy))]

+ c min{φ(D(y, Fx)), φ(D(x,Gy))}
≤ aφ(d(x, y)) + p−1b[φ(d(x, fx)) + φ(d(y, gy))]

+ c min{φ(d(y, fx)), φ(d(x, gy))}.
Since a+2p−1b ≤ p−1(a+2b) ≤ p < 1, from [7, Theorem 2.1] we conclude that f and
g has a common fixed point. That is, there exists a point x such that 0 = d(x, fx) =
φ(d(x, fx)) ≥ pφ(H(x, Fx)) and 0 = d(x, gx) = φ(d(x, gx)) ≥ pφ(H(x,Gx)) which
implies φ(H(x, Fx)) = 0 and φ(H(x,Gx)) = 0, then H(x, Fx) = δ(x, Fx) = 0 and
H(x,Gx) = δ(x,Gx) = 0 i.e. Fx = Gx = {x}. Hence F and G have a common
fixed point x ∈ X . We claim that x is unique common fixed point of F and G. For
this, we suppose that y (x 6= y ) is another fixed point of F and G. Since y ∈ Fy
and y ∈ Gy, from (C.2) we have

max{φ(H(y, Fy)), φ(H(y,Gy))} ≤ φ(δ(Fy,Gy))

≤ b[φ(H(y, Fy)) + φ(H(y,Gy))]

≤ 2bmax{φ(H(y, Fy)), φ(H(y,Gy))}
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which implies δ(Fy,Gy) = 0, that is Fy = Gy = {y}. Then

φ(d(y, x)) = φ(δ(Fy,Gx))

≤ aφ(d(x, y)) + b[φ(H(x,Gx)) + φ(H(y, Fy))]

+ cmin{φ(D(x, Fy)), φ(D(y,Gx))}
≤ [a+ c]φ(d(x, y)) < φ(d(x, y)),

a contradiction. This completes the proof of the theorem.
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NON-AUTONOMOUS INHOMOGENEOUS BOUNDARY

CAUCHY PROBLEMS AND RETARDED EQUATIONS

M. Filali and M. Moussi

Abstract. In this paper we prove the existence and the uniqueness of classical
solution of non-autonomous inhomogeneous boundary Cauchy problems, this solution
is given by a variation of constants formula. Then, we apply this result to show the
existence of solution of a retarded equation.
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1 Introduction

Consider the following Cauchy problem with boundary conditions

(IBCP )















d

dt
u(t) = A(t)u(t), 0 ≤ s ≤ t ≤ T,

L(t)u(t) = φ(t)u(t) + f(t), 0 ≤ s ≤ t ≤ T,

u(s) = u0.

This type of problems presents an abstract formulation of several natural equations
such as retarded differential equations, retarded (difference) equations, dynamical
population equations and neutral differential equations.

In the autonomous case (A(t) = A,L(t) = L, φ(t) = φ) the Cauchy problem
(IBCP ) was studied by Greiner [2,3]. He used a perturbation of domain of gener-
ator of semigroups, and showed the existence of classical solutions of (IBCP ) via
variation of constants formula. In the homogeneous case (f = 0), Kellermann [6]
and Nguyen Lan [8] have showed the existence of an evolution family (U(t, s))t≥s≥0

as the classical solution of the problem (IBCP ).
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The aim of this paper is to show well-posedness in the general case (f 6= 0) and
apply this result to get a solution of a retarded equation. In Section 2 we prove the
existence and uniqueness of the classical solution of (IBCP ). For that purpose,
we transform (IBCP ) into an ordinary Cauchy problem and prove the equivalence
of the two problems. Moreover, the solution of (IBCP ) is explicitly given by a
variation of constants formula similar to the one given in [3] in the autonomous
case. We note that the operator matrices method was also used in [4, 8, 9] for the
investigation of inhomogeneous Cauchy problems without boundary conditions.

Section 3 is devoted to an application to the retarded equation

(RE)

{

v(t) = K(t)vt + f(t), t ≥ s ≥ 0,

vs = ϕ.

We introduce now the following basic definitions which will be used in the sequel.
A family of linear (unbounded) operators (A(t))0≤t≤T on a Banach spaceX is called
a stable family if there are constants M ≥ 1, ω ∈ R such that ]ω,∞[⊂ ρ(A(t)) for
all 0 ≤ t ≤ T and

∥

∥

∥

∥

∥

k
∏

i=1

R(λ,A(ti))

∥

∥

∥

∥

∥

≤M(λ− ω)
−k

for λ > ω

for any finite sequence 0 ≤ t1 ≤ ... ≤ tk ≤ T.
A family of bounded linear operators (U(t, s))0≤s≤t onX is said an evolution family
if
(1)U(t, t) = Id and U(t, r)U(r, s) = U(t, s) for all 0 ≤ s ≤ r ≤ t,
(2) the mapping

{

(t, s) ∈ R2
+ : t ≥ s

}

3 (t, s) 7−→ U(t, s) is strongly continuous.
For evolution families and their applications to non-autonomous Cauchy problems
we refer to [1,5,10].

2 Well-posedness of Cauchy problem with boundary coditions

Let D, X and Y be Banach spaces, D densely and continuously embedded in
X , consider families of operators A(t) ∈ L(D,X), L(t) ∈ L(D,Y ) and φ(t) ∈
L(X,Y ), 0 ≤ t ≤ T . In this section we will use the operator matrices method in
order to prove the existence of classical solution for the non-autonomous Cauchy
problem with inhomogeneous boundary conditions

(IBCP )















d

dt
u(t) = A(t)u(t), 0 ≤ s ≤ t ≤ T,

L(t)u(t) = φ(t)u(t) + f(t), 0 ≤ s ≤ t ≤ T,

u(s) = u0,

it means that we will transform this Cauchy problem into an ordinary homogeneous
one.

In all this section we consider the following hypotheses :
(H1) t 7−→ A(t)x is continuously differentiable for all x ∈ D;
(H2) the family (A0(t))0≤t≤T , A

0(t) := A(t)|kerL(t), is stable, with (M0, ω0) con-
stants of stability;
(H3) the operator L(t) is surjective for every t ∈ [0, T ] and t 7−→ L(t)x is continu-
ously differentiable for all x ∈ D;
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(H4) t 7−→ φ(t)x is continuously differentiable for all x ∈ X ;

(H5) there exist constants γ > 0 and ω ∈ R such that

||L(t)x||Y ≥ γ−1(λ− ω)||x||X for x ∈ ker(λ−A(t)), λ > ω and t ∈ [0, T ].

Definition 2.1. A function u : [s, T ] −→ X is called a classical solution of (IBCP )
if it is continuously differentiable, u(t) ∈ D, ∀t ∈ [s, T ] and u satisfies (IBCP ). If
(IBCP ) has a classical solution, we say that it is well-posed.

We recall the following results which will be used in the sequel.

Lemma 2.1. [6,7] For t ∈ [0, T ] and λ ∈ ρ(A0(t)) we have the following properties

i) D = D(A0(t)) ⊕ ker(λ −A(t)).

ii) L(t)|ker(λ−A(t)) is an isomorphism from ker(λ −A(t)) onto Y.

iii) t 7−→ Lλ,t := (L(t)|ker(λ−A(t)))
−1

is strongly continuously differentiable.

As consequences of this lemma we have L(t)Lλ,t = IdY , Lλ,tL(t) and (I−Lλ,tL(t))
are the projections in D onto ker(λ −A(t)) and D(A0(t)) respectively.

In order to get the homogenization of (IBCP ), we introduce the Banach space E :=
X×C1([0, T ], Y )×Y, where C1([0, T ], Y ) is the space of continuously differentiable
functions from [0, T ] into Y equipped with the norm ‖g‖ := ‖g‖∞ + ‖g′‖∞, for
g ∈ C1([0, T ], Y ).

Let Aφ(t) be a matrix operator defined on E by

Aφ(t) :=





A(t) 0 0
0 0 0

L(t) − φ(t) −δt 0



 , D(Aφ(t)) := D×C1([0, T ], Y )×{0}, t ∈ [0, T ],

here δt : C([0, T ], Y ) −→ Y is such that δt(g) = g(t).

To the family Aφ(·) we associate the homogeneous Cauchy problem

(NCP )











d

dt
U(t) = Aφ(t)U(t), 0 ≤ s ≤ t ≤ T,

U(s) =
( u0

f
0

)

.

In the following proposition we give an equivalence between solutions of (IBCP )
and those of (NCP ).

Proposition 2.1. Let
(

u0

f

)

∈ D × C1([0, T ], Y ).

(i) If the function t 7−→ U(t) :=

(

u1(t)

u2(t)

0

)

is a classical solution of (NCP ) with

initial value

(

u0

f

0

)

. Then t 7−→ u1(t) is a classical solution of (IBCP ) with initial

value u0.

(ii) Let u be a classical solution of (IBCP ) with initial value u0. Then, the function

t 7−→ U(t) =

(

u(t)

f

0

)

is a classical solution of (NCP ) with initial value

(

u0

f

0

)

.
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Proof.. i) Since U is a classical solution, then, from Definition 2.1, u1 is continu-
ously differentiable and u1(t) ∈ D, for t ∈ [s, T ]. Moreover we have

U ′(t) =

(

u′
1(t)

u′
2(t)
0

)

= Aφ(t)U(t)

=

(

A(t)u1(t)
0

L(t)u1(t)−φ(t)u1(t)−δtu2(t)

)

. (2.1)

Therefore
u′1(t) = A(t)u1(t) and u′2(t) = 0.

This implies that u2(t) = u2(s) = f, ∀t ∈ [s, T ], hence the equation (2.1) yields to

L(t)u1(t) = φ(t)u1(t) + f(t), 0 ≤ s ≤ t ≤ T.

The initial value condition is obvious.
The assertion (ii) is obvious. �

Now we return to the study of the Cauchy problem (NCP ). For that aim, we recall
the following result.

Theorem 2.1. ( [11], Theorem 1.3) Let (A(t))0≤t≤T be a stable family of linear
operators on a Banach space X such that
i) the domain D := (D(A(t)), ‖ · ‖D) is a Banach space independent of t,
ii) the mapping t 7−→ A(t)x is continuously differentiable in X for every x ∈ D.
Then there is an evolution family (U(t, s))0≤s≤t≤T on D. Moreover U(t, s) has the
following properties :
(1) U(t, s)D(s) ⊂ D(t) for all 0 ≤ s ≤ t ≤ T , where D(r) is defined by

D(r) :=
{

x ∈ D : A(r)x ∈ D
}

,

(2) the mapping t 7−→ U(t, s)x is continuously differentiable in X on [s, T ] and

d

dt
U(t, s)x = A(t)U(t, s)x for all x ∈ D(s) and t ∈ [s, T ].

In order to apply Theorem 2.1, we need the following lemma.

Lemma 2.2. The family of operators (Aφ(t))0≤t≤T is stable.

Proof.. For t ∈ [0, T ], we write Aφ(t) as

Aφ(t) = A(t) +





0 0 0
0 0 0

−φ(t) −δt 0



 ,

where A(t) =





A(t) 0 0
0 0 0

L(t) 0 0



 , with domain D(A(t)) = D(Aφ(t)).



30 SOUTHWEST JOURNAL OF PURE AND APPLIED MATHEMATICS

Since Aφ(t) is a perturbation of A(t) by a linear bounded operator on E, hence, in
view of a perturbation result ([10], Thm. 5.2.3) it is sufficient to show the stability
of (A(t))0≤t≤T .

Let λ > ω0 and

( x

f

y

)

, we have

(λ−A(t))





R(λ,A0(t)) 0 −Lλ,t

0 1
λ 0

0 0 0





( x

f

y

)

=





(λ −A(t))R(λ,A0(t))x− (λ−A(t))Lλ,ty
f

−L(t)R(λ,A0(t))x + L(t)Lλ,ty





Since R(λ,A0(t))x ∈ D(A0(t)) = ker(L(t)), Lλ,ty ∈ ker(λ − A(t)) and L(t)Lλ,t =
IdY , we obtain

(λ−A(t))





R(λ,A0(t)) 0 −Lλ,t

0 1
λ 0

0 0 0



 = IdE . (2.2)

On the other hand, for

(

x

f

0

)

∈ D(A(t)), we have





R(λ,A0(t)) 0 −Lλ,t

0 1
λ 0

0 0 0



 (λ−A(t))

(

x

f

0

)

=





R(λ,A0(t))(λ −A(t))x + Lλ,tL(t)x
f
0



 .

¿From Lemma 2.1, let x1 ∈ D(A0(t)) and x2 ∈ ker(λ−A(t)) such that x = x1 +x2.
Then

R(λ,A0(t))(λ −A(t))x + Lλ,tL(t)x = R(λ,A0(t))(λ −A(t))(x1 + x2)

+ Lλ,tL(t)(x1 + x2)

= R(λ,A0(t))(λ −A(t))x1 + Lλ,tL(t)x2

= x1 + x2

= x.

As a consequence, we get




R(λ,A0(t)) 0 −Lλ,t

0 1
λ 0

0 0 0



 (λ −A(t)) = ID(A(t)).

¿From (2.2) and (2.3) , we obtain that the resolvent of A(t) is given by

R(λ,A(t)) =





R(λ,A0(t)) 0 −Lλ,t

0 1
λ 0

0 0 0



 .

Hence, by a direct computation one can obtain, for a finite sequence 0 ≤ t1 ≤ ... ≤
tk ≤ T,

k
∏

i=1

R(λ,A(ti)) =











k
∏

i=1

R(λ,A0(ti)) 0 −
k
∏

i=2

R(λ,A0(ti))Lλ,t1

0 1
λk 0

0 0 0











.
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¿From the hypothesis (H5), we conclude that ||Lλ,t|| ≤ γ(λ− ω)
−1

for all t ∈ [0, T ]
and λ > ω. Define ω1 = max(ω0, ω). Therefore, by using (H2), we obtain for
( x

f

y

)

∈ E

∥

∥

∥

∥

∥

k
∏

i=1

R(λ,A(ti))

( x

f

y

)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

k
∏

i=1

R(λ,A0(ti))x −
k
∏

i=2

R(λ,A0(ti))Lλ,t1y +
1

λk
f

∥

∥

∥

∥

∥

≤M(λ− ω1)
−k||x|| +M(λ− ω1)

−(k−1)
γ(λ− ω1)

−1||y||
+ (λ− ω1)

−k||f ||

≤M
′

(λ− ω1)
−k

∥

∥

∥

∥

( x

f

y

)∥

∥

∥

∥

,

where M
′

:= max(M,Mγ). Thus the lemma is proved. �

Now we are ready to state the main result.

Theorem 2.2. Let f be a continuously differentiable function on [0, T ] onto Y .
Then, for all initial value u0 ∈ D, such that L(s)u0 = φ(s)u0 + f(s), the Cauchy
problem (IBCP ) has a unique classical solution u. Moreover, u is given by the
variation of constants formula

u(t) = U(t, s)(I − Lλ,sL(s))u0 + Lλ,tf(t, u(t))

+

∫ t

s

U(t, r)
[

λLλ,rf(r, u(r)) − (Lλ,rf(r, u(r)))
′
]

dr, (2.4)

where (U(t, s))t≥s≥0 is the evolution family generated by A0(t) and f(t, u(t)) :=
φ(t)u(t) + f(t).

Proof. First, for the existence of U(t, s) we refer to [7]. Since (Aφ(t))0≤t≤T is

stable and from assumptions (H1), (H3) and (H4), (Aφ(t))0≤t≤T satisfies all con-

ditions of Theorem 2.1, then there exists an evolution family Uφ(t, s) such that,

for all initial value

(

u0

f

0

)

∈ D(Aφ(s)), the function

(

u1(t)

u2(t)

0

)

:= Uφ(t, s)

(

u0

f

0

)

is

a classical solution of (NCP ). Therefore, from (i) of Proposition 2.1, u1 is a clas-
sical solution of (IBCP ). The uniqueness of u1 comes from the uniqueness of the
solution of (NCP) and Proposition 2.1.
Let u be a classical solution of (IBCP ), at first, we assume that φ(t) = 0, then

u2(t) := Lλ,tL(t)u(t)

= Lλ,tf(t),

and u1(t) := (I − Lλ,tL(t))u(t) are differentiable on t and we have

u′1(t) = u′(t) − u′2(t)

= A(t)(u1(t) + u2(t)) − (Lλ,tf(t))
′

= A0(t)u1(t) + λLλ,tf(t) − (Lλ,tf(t))
′
.
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If we define f̃(t) := λLλ,tf(t) − (Lλ,tf(t))
′

, we obtain

u1(t) = U(t, s)u1(s) +

∫ t

s

U(t, r)f̃ (r) dr.

Replacing u1(s) by (I − Lλ,sL(s))u0, we obtain

u1(t) = U(t, s)(I − Lλ,sL(s))u0 +

∫ t

s

U(t, r)f̃(r) dr,

consequently,

u(t) = U(t, s)(I−Lλ,sL(s))u0+Lλ,tf(t)+

∫ t

s

U(t, r)
[

λLλ,rf(r) − (Lλ,rf(r))
′
]

dr. (2.5)

Now in the case Φ(t) 6= 0, since f(·, u(·)) is continuously differentiable, similar
arguments are used to obtain the formula (2.5) for f(·) := f(·, u(·)) which is exactly
(2.4). �

3 Retarded equation

On the Banach space C1
E := C1([−r, 0], E), where r > 0 and E is a Banach

space, we consider the retarded equation

(RE)

{

v(t) = K(t)vt + f(t), 0 ≤ s ≤ t ≤ T,

vs = ϕ ∈ C1
E .

Where vt(τ) := v(t+ τ), for τ ∈ [−r, 0], and f : [0, T ] −→ E.

Definition 3.1. A function v : [s− r, T ] −→ E is said a solution of (RE), if it is
continuously differentiable, K(t)vt is well defined, ∀t ∈ [0, T ] and v satisfies (RE).

In this section we are interested in the study of the retarded equation (RE), we will
apply the abstract result obtained in the previous section in order to get a solution
of (RE). As a first step, we show that this problem can be written as a boundary
Cauchy one. More precisely, we show in the following theorem that solutions of
(RE) are equivalent to those of the boundary Cauchy problem

(IBCP )
′















d

dt
u(t) = A(t)u(t), 0 ≤ s ≤ t ≤ T, (3.1)

L(t)u(t) = φ(t)u(t) + f(t), (3.2)

u(s) = ϕ. (3.3)

Where A(t) is defined by

{

A(t)u := u′

D := D(A(t)) = C1([−r, 0], E),

L(t) : D −→ E : L(t)ϕ = ϕ(0) and φ(t) : C([−r, 0], E) −→ E : φ(t)ϕ = K(t)ϕ.
Note that the spacesD,X and Y in section 2, are given here by D := C1([−r, 0], E),
X := C([−r, 0], E) and Y := E.
We have the following theorem
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Theorem. i) If u is a classical solution of (IBCP )
′
, then the function v defined

by

v(t) :=

{

u(t)(0), s ≤ t ≤ T,

ϕ(t− s), −r + s ≤ t ≤ s,

is a solution of (RE).
ii) If v is a solution of (RE), then t 7−→ u(t) := vt is a classical solution of
(IBCP )

′
.

Proof. i) Let u be a classical solution of (IBCP )
′
, then from Definition 2.1, v

is continuously differentiable. On the other hand, (3.1) and (3.3) implies that u
verifies the translation property

u(t)(τ) =

{

u(t+ τ)(0), s ≤ t+ τ ≤ T

ϕ(t+ τ − s), −r + s ≤ t+ τ ≤ s,

which implies that vt(·) = u(t)(·). Therefore, from (3.2), we obtain

v(t) = u(t)(0)

= L(t)u(t)(·) + f(t)

= K(t)u(t)(·) + f(t)

= K(t)vt(·) + f(t).

Hence v satisfies (RE).
ii) Now, let v be a solution of (RE). From Definition 3.1, u(t) ∈ C1([−r, 0], E) =
D(A(t)), for s ≤ t ≤ T . Moreover,

L(t)u(t) = u(t)(0)

= v(t)

= K(t)v(t) + f(t)

= φ(t)u(t) + f(t).

The equation (3.1) is obvious. �

This theorem allows us to concentrate our self on the problem (IBCP )
′
. So, it

remains to show that the hypotheses (H1) − (H5) are satisfied.
The hypotheses (H1), (H3) are obvious and (H4) can be obtained from the assump-
tions on the operator K(t).
For (H2), let ϕ ∈ D(A0(t)) =

{

ϕ ∈ C1([−r, 0], E) ; ϕ(0) = 0
}

and f ∈ C([−r, 0], E)

such that (λ−A0(t))ϕ = f, for λ > 0. Then

ϕ(τ) = eλτϕ(0) +

∫ 0

τ

eλ(τ−σ)f(σ) dσ, τ ∈ [−r, 0].

Since ϕ(0) = 0, we get

(R(λ,A0(t))f)(τ) =

∫ 0

τ

eλ(τ−σ)f(σ) dσ.
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By induction , we can show that

(

k
∏

i=1

R(λ,A0(ti))f

)

(τ) =
1

(k − 1)!

∫ 0

τ

(σ − τ)k−1eλ(τ−σ)f(σ) dσ,

for a finite sequence 0 ≤ t1 ≤ ... ≤ tk ≤ T. Hence

∥

∥

∥

∥

∥

(

k
∏

i=1

R(λ,A0(ti))f

)

(τ)

∥

∥

∥

∥

∥

≤ 1

(k − 1)!

∫ 0

τ

(σ − τ)
k−1

eλ(τ−σ) dσ‖f‖

= eλτ
∞
∑

i=k

λi−k(−τ)i

i!
‖f‖

=
eλτ

λk

∞
∑

i=k

(−λτ)i

i!
‖f‖

≤ 1

λk
‖f‖, for τ ∈ [−r, 0].

Therefore
∥

∥

∥

∥

∥

k
∏

i=1

R(λ,A0(ti))f

∥

∥

∥

∥

∥

≤ 1

λk
‖f‖, λ > 0.

This proves the stability of A0(t))t∈[0,T ].

Now, if ϕ ∈ ker(λ−A(t)), then ϕ(τ) = eλτϕ(0), for τ ∈ [−r, 0]. Hence

‖L(t)ϕ‖ = ‖ϕ(0)‖
= ‖e−λτϕ(τ)‖,

since lim
λ→+∞

e−λ·

λ
= +∞, in CE , we can take c > 0 such that e−λ·

λ ≥ c, therefore

‖L(t)ϕ‖ ≥ cλ‖ϕ‖, ∀t ∈ [0, T ].

So (H5) holds. As a conclusion, we get the following corollary

Corollary 3.1. Let f be a continuously differentiable function from [0, T ] onto E,
then for all ϕ ∈ C1

E such that, ϕ(0) = K(s)ϕ + f(s), the retarded equation (RE)
has a solution v, moreover, v satisfies

vt = T (t− s)(ϕ− eλ·ϕ(0)) + eλ·f(t, vt) +

∫ t

s

T (t− r)eλ· [λf(r, vr) − (f(r, vr))
′]
dr,

where (T (t))t≥0 is the c0-semigroup generated by A0(t).
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Abstract. In this paper the author introduces the concept of smoother. Roughly
speaking, a smoother is a pair (s, K) consisting of a continuous map s sending each
point p of its domain into a closed neighborhood Vp of p, and an operator K that
transforms any function f into another Kf being smoother than f . This property
allows us to remove the effect of a perturbation P from the solutions of an autonomous
system the vector field of which is modified by P .
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0. Introduction

The main aim of this paper consists of introducing the concept of smoother
together with an application in differential equation theory. Roughly speaking a
smoother is an operator transforming an arbitrary function f1 into a similar one
f2 being smoother than f1. In general, smoothers perform integral transforms in
function spaces. To get a first approximation to the smoother concept consider the
following facts. Let y = f(x) be any integrable function defined in R and σ : R → C
a map such that C stands for the collection of all closed subsets of R the interior
of each of which is non-void. For every x ∈ R, let λx be any non-negative real
number, and let σ(x) = [x − λx, x + λx]. With these assumptions, consider the
linear transform K defined as follows. If λx 6= 0 is a finite number, then

(0.0.1) Kf(x) =
1

2λx

∫ λx

−λx

f(x+ τ) dτ
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C2

C1

Figure 1.

Conversely, for λx infinite

(0.0.2) Kf(x) = lim
k→∞

1

2k

∫ k

−k

f(x+ τ) dτ

Finally, if λx = 0, then

(0.0.3) Kf(x) = lim
k→0

1

2k

∫ k

−k

f(x+ τ) dτ = f(x)

Of course, assuming that such a limit exists. Thus, the integral transform K sends
the value of f(x) at x into the average of all values of f(x) in a closed neighborhood
[x− λx, x+ λx] of x. Obviously, in general, the transform Kf(x) is smoother than
f(x). To see this fact consider the following cases. If for every x, σ(x) = R, then
∀x ∈ R : λx = ∞ and Kf(x) is a constant function, that is the smoothest one
that can be built. If for every x ∈ R, σ(x) = {x}, then ∀x ∈ :λx = 0, therefore
Kf(x) = f(x), and consequently both functions have the same smoothness degree.
Thus, between both extreme cases one can build several degrees of smoothness. In
the former example, what we term smoother is nothing but the pair (σ,K).
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Perhaps the most natural smoother application consists of removing, from a
given function, the noise arising from some perturbation. For instance consider the
curves C1 and C2 in Figure 1. Suppose that the differences between C1 and C2
are consequence of some perturbation working over C2. If both curves are the plots
of two functions f1(x) and f2(x) respectively, in general, one can build a smoother
(σ,K) such that Kf1(x) = f2(x). Now, consider a vector field X and the result
Y of a perturbation P working over X, and assume (σ,K) to satisfy the relation
KY = X. If x(t) and y(t) are the general solutions for the ordinary differential

equations
d

dt
x(t) = X

(

x(t)
)

and
d

dt
y(t) = Y

(

y(t)
)

respectively, then we shall

say the smoother (σ,K) to be compatible with the vector field Y , provided that
the following relation holds: Ky(t) = x(t). Thus, one can obtain the corresponding

perturbation-free function from solutions of
d

dt
y(t) = Y

(

y(t)
)

using the smooth

vector field X = KY instead. The main aim of this paper consists of investigating
a compatibility criterion.

1. Smoothers

Let Top stand for the category of all topological spaces, and let N : Top → Top

be the endofunctor carrying each object (E, T ) in Top into the topological space
N(E, T ) = (℘(E) \ {{∅}}, T ∗) the underlying set of which ℘(E) \ {{∅}} consists of
all nonempty subsets of E. Let T ∗ be the topology a subbase S of which is defined
as follows. Denote by C the collection of all T -closed subsets of E and for every
pair (A,B) ∈ C×T , let KA,B = {C ∈ ℘(E)|A ⊂ C ⊆ B}. With these assumptions,
define the subbase S as follows.

S = {KA,B|(A,B) ∈ C × T }

Obviously, if A ⊃ B, then KA,B = ∅. Likewise, if A = ∅ and B = E, then
KA,B = ℘(E) \ {{∅}}.

Let the arrow-map of N be the law sending each continuous map

f : (E1, T1) → (E2, T2)

into the map Nf carrying each subset A ⊆ E1 into f [A] ⊆ E2. It is not difficult to
see Nf to be a continuous map with respect to the associated topology T ∗.

Definition 1.0.1. Let cAlg(N) denote the concrete category of N-co-algebras.
Thus, every object in cAlg(N) is a pair

(

(E, T ), σ(E,T )

)

, consisting of a topological
space (E, T ) together with a continuous map σ(E,T ) : (E, T ) → N(E, T ).

Recall that a continuous mapping f : (E1, T1) → (E2, T2) is a morphism in
cAlg(N) from

(

(E1, T1), σ(E1,T1)

)

into
(

(E2, T1), σ(E2,T2)

)

, provided that the follow-
ing diagram commutes.

(1.0.4) (E1, T1)

f

��

σ(E1 ,T1)
// N(E1, T1)

Nf

��

(E2, T2) σ(E2 ,T2)

// N(E2, T2)
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Now, let Tvec be the topological vector space category, and let TopV ec denote
the category the objects of which are products of the form N(E, T )×

(

C0(E, V ), T ∗),
where (V, T ) is a topological vector space and T ∗ the pointwise topology for the
set C0(E, V ) of all continuous maps from (E, T ) into |(V, T )|; where the functor
| | : Tvec → Top forgets the vector space structure and preserves the topological
one. In addition, a TopV ec-morphism with domain N(E1, T1) ×

(

C0(E1, V ), T ∗
1

)

and codomain N(E2, T2) ×
(

C0(E2, V ), T ∗
2

)

is of the form Nf × g where f lies

in homT op(E1, E2) and g is a continuous mapping with domain C0(E1, V ) and
codomain C0(E2, V ).

Given any topological space (E, T ), let

P(E,T ) : Tvec → TopV ec

denote the functor carrying each Tvec-object (V, T ) into the product

N(E, T ) ×
(

C0(E, V ), T ∗)

and sending every Tvec-morphism f : (V1, T1) → (V2, T2) into Id × f∗; where
f∗ = homT op((E, T ), |f |) stands for the morphism carrying each g ∈ C0(E, V1)
into f ◦ g ∈ C0(E, V2), and as usual homT op((E, T ), | − |) denotes the covariant
hom-functor.

Finally, let Alg(P(E,T ))denote the category of P(E,T )-algebras, that is, each

object is a pair of the form
(

(V, T ),K(V,T )

)

where

K(V,T ) : P(E,T )(V, T ) = N(E, T ) ×
(

C0(E, V ), T ∗)→ |(V, T )|

is a continuous map. In addition, a given continuous linear mapping

f : (V1, T1) → (V2, T2)

is an Alg(P(E,T ))-morphism whenever the following quadrangle commutes.

(1.0.5) N(E, T ) ×
(

C0(E, V1), T
∗
1

)

Id×homT op((E,T ),|f |)
��

K(V1 ,T1)
// |(V1, T1)|

|f |
��

N(E, T ) ×
(

C0(E, V2), T
∗
2

)

K(V2 ,T2)

// |(V2, T2)|

Definition 1.0.2. A smoother will be any pair

((

(E, T ), σ(E,T )

)

,
(

(V, T ),K(V,T )

))

such that
(

(E, T ), σ(E,T )

)

is a co-algebra lying in cAlg(N) and
(

(V, T ),K(V,T )

)

is
an algebra in Alg(P(E,T )) satisfying the following conditions.

a) For every p ∈ E: p ∈ σ(E,T )(p).

b) For every (p, f) ∈ E × C0(E, V ):

K(V,T )

(

σ(E,T )(p), f
)

∈ C
(

Nf
(

σ(E,T )(p)
))
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where, for any subset A ⊆ E, C (A) denotes the convex cover of A.
c) K(V,T ) is linear with respect to its second argument, that is to say, for every

couple of scalars (α, β) and each pair of maps (f, g) the following holds.

(1.0.6)
K(V,T )

(

σ(E,T )(p),αf + βg
)

=

αK(V,T )

(

σ(E,T )(p), f
)

+ βK(V,T )

(

σ(E,T )(p), g
)

1.0.1. Transformation associated to a smoother. Given a homeomorphism
ϕ : (E, T ) → |(V, T )|, a smoother

S =
((

(E, T ), σ(E,T )

)

,
(

(V, T ),K(V,T )

))

induces a transformation Sϕ carrying each point p ∈ E into

ϕ−1
(

K(V,T )

(

σ(E,T )(p), ϕ
)

which will be said to be induced by S. Likewise, for every one-parameter continuous
map family h : E × I ⊆ E × R → E one can define the induced transformation by

(1.0.7) Sh(p,t)(p) = ϕ−1
(

K(V,T )

(

σ(E,T )(h(p, t), ϕ
))

1.0.2. Ordering. Smoothers form a category Smtr the morphism-class of
which consists of every cAlg(N)-morphism f : (E1, T1) → (E2, T2) such that the
following quadrangle commutes

(1.0.8)
(

N(E1, T1) × C0(E1, V )
)

Nf×homT op(f,|(V,T )|)
��

K(V,T )
// |(V, T )|

|Id |
��

(

N(E2, T2) × C0(E2, V )
)

K(V,T )

// |(V, T )|

where homT op (−, |(V, T )|) : Top → Topop stands for the contravariant hom-
functor.

Regarding Smtr as a concrete category over Set via the forgetful functor
such that

((

(E, T ), σ(E,T )

)

,
(

(V, T ),K(V,T )

))

7→ E

with the obvious arrow-map, in each fibre one can define an ordering � as follows.
For any smoother

((

(E, T ), σ(E,T )

)

,
(

(V, T ),K(V,T )

))

, let

Ω
((

(E, T ), σ(E,T )

)

,
(

(V, T ),K(V,T )

))

denote the intersection of all topologies for E containing the set family

K =
{

σ(E,T )(p) | p ∈ E
}

then

(1.0.9)

(

(

(E1, T1), σ(E1,T1)

)

,
(

(V, T ),K(V,T )

)

)

�
(

(

(E2, T2), σ(E2,T2)

)

,
(

(V, T ),K(V,T )

)

)
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if and only if the topology
(

Ω
(

(E1, T1), σ(E1,T1)

)

,
(

(V, T ),K(V,T )

))

is finer than

the topology Ω
((

(E2, T2), σ(E2,T2)

)

,
(

(V, T ),K(V,T )

))

. For a maximal element, the

topology Ω
((

(E, T ), σ(E,T )

)

,
(

(V, T ),K(V,T )

))

must be indiscrete. In this case, for
every p in E, σ(E,T )(p) = E, and consequently, for every p, q ∈ E,

KE,T (σ(E,T )(p), ϕ) = K(E,T )(E,ϕ) = K(σ(E,T )(q), ϕ)

therefore Sϕh(p, t) = ϕ−1
(

K(V,T )

(

σ(E,T )(h(p, t), ϕ
))

transforms h(p, t) into a con-
stant map, which is the smoothest function one can build. Conversely, a minimal
element corresponds to the discrete topology. In this case, by virtue of both condi-
tions a) and b), the transformation (1.0.7) is the identity, so then h(p, t) remains
unaltered. Between both extremes one can build several degrees of smoothness.

1.1 Smoothers in smooth manifolds.. Let (M,An) be a smooth manifold,
ϕ : U ⊆ M → R

n a chart and T the induced topology for U . Henceforth, the
pair (U, T ) will be assumed to be a Hausdorff space. In the most natural way,
one can build a smoother S =

((

(U, T ), σ(U,T )

)

,
(

(Rn, T ),K(Rn,T )

))

over (U, T )

the associated set of continuous maps C0(U,Rn) contains each smooth one like the
diffeomorphism associated to each chart.

For those smooth manifolds such that, for each p ∈Mn, each tangent space
Tp is isomorphic to Rn, that is to say, there is an isomorphism λp : Tp → Rn, one
can associate a map ωX : U → Rn to every smooth vector field X letting

(1.1.1) ∀p ∈ U : ωX(p) = λp

(

Xp)
)

Accordingly, the image of the vector field X under S is

(1.1.2) λp

(

Y
)

= K(Rn,T )

(

σ(U,T )(p), ωX

)

therefore

(1.1.3) Y = λ−1
p

(

K(Rn,T )

(

σ(U,T )(p), ωX

))

From the former equations it follows immediately that if ht : U → U is the one-
parameter group associated to X, then

(1.1.4) ωX(p) = λp (X)
∣

∣

p
= lim

t→0

ϕ ◦ ht(p) − ϕ(p)

t
∈ R

n

accordingly

(1.1.5)

K(Rn,T )

(

σ(U,T )(p), ωX

)

=

lim
t→0

K(Rn,T )

(

σ(U,T )(p), ϕ ◦ ht

)

− K(Rn,T )

(

σ(U,T )(p), ϕ
)

t
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Definition 1.1.1. Let X be a smooth vector field the coordinates of which are
(X1, . . . Xn), and consider the differential equation

(1.1.6)







































d

dt
x1(γ(p, t)) = X1

(

x1(γ(p, t), x2(γ(p, t) . . .
)

d

dt
x2(γ(p, t)) = X2

(

x1(γ(p, t), x2(γ(p, t) . . .
)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
d

dt
xn(γ(p, t)) = Xn

(

x1(γ(p, t), x2(γ(p, t) . . .
)

where the differentiable curve γ : I ⊆ R → U is assumed to be solution of
the former equation for the initial value γ(p, t0) = p. Say, a smoother S =
((

(U, T ), σ(U,T )

)

,
(

(Rn, T ),K(Rn,T )

))

to be compatible with X provided that the

curve y
(

ρ(p, t)
)

= K(Rn,T )

(

σ(U,T ) (γ(p, t)) , ϕ
)

is solution of the equation

(1.1.7)







































d

dt
y1(ρ(p, t)) = Y 1

(

y1(ρ(p, t), y2(ρ(p, t) . . .
)

d

dt
y2(ρ(p, t)) = Y 2

(

y1(ρ(p, t), y2(ρ(p, t) . . .
)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
d

dt
yn(ρ(p, t)) = Y n

(

y1(ρ(p, t), y2(ρ(p, t) . . .
)

where q = Sϕ(y(p, t0)) = Sϕ(p), and

(1.1.8) (Y 1, Y 2, . . . Y n) = K(Rn,T )

(

σ(U,T ) (p) , ωX

)

Obviously, if p is a fixed point for Sϕ, then y(q, t) and x(p, t) are solutions
of (1.1.6) and (1.1.7), respectively, for the same initial value p = x(p, t0) = y(p, t0).

Remark. If p = q, that is to say, if p is a fixed-point for Sϕ, then from Defini-
tion 1.0.2 the relations

(1.1.9) ∀p ∈ U : x(p) ∈ C
(

Nϕ
(

σ(U,T )(p)
))

and

(1.1.10) ∀p ∈ U : y(p) ∈ C
(

Nϕ
(

σ(U,T )(p)
))

are true, therefore

(1.1.11) ‖x(p) − y(p)‖ ≤ max
q1,q2∈C(σ(U,T )(p))

‖ϕ(q1) − ϕ(q2)‖

From the former relation one can build some proximity criteria. If the maximum
distance among points in any set σ(U,T )(p) is bounded, that is to say, if there is
δ > 0 such that

∀p ∈ U : max
q1,q2∈C(σ(U,T )(p))

‖ϕ(q1) − ϕ(q2)‖ < δ

then
∀t > 0 : ‖x(p, t) − y(p, t)‖ < δ
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Proposition 1.1.3. Let
(

(U, T ), σ(U,T )

)

be a co-algebra in cAlg(N) and for every
point p of U let µp : σ(U,T ) → [0,∞) be a measure for σ(U,T )(p) such that the set
σ(U,T )(p) is µp-measurable. If for every p ∈ U the following condition hold,

a) p ∈ σ(U,T )(p).
b) σ(U,T )(p) is a closed subset of U .

c) µp

(

σ(U,T )(p)
)

= 1

then the pair
((

(U, T ), σ(U,T )

)

,
(

(V, T ),K(V,T )

))

is a smoother, where

(1.1.12) K(V,T )

(

σ(U,T )(p),f
)

=

∫

· · ·
∫

σ(U,T )(p)

f dµp

Proof. Obviously, K(V,T ) is linear with respect to its second coordinate, and by
definition, it satisfies condition a) in Definition 1.0.2, therefore it remains to be
proved K(V,T ) to satisfy condition b) too.

It is a well-known fact that each coordinate f j of any measurable function f

is the limit of a sequence
{

f j
n | n ∈ N

}

of step-functions each of which of the form

(1.1.13) f j
n =

m
∑

i=1

cji,nχEi,n

such that each of the Ei,n is µp-measurable and for every i ∈ N, cji,n = f j(αi) for

some αi ∈ Ei,n, besides, ∀n ∈ N : Ei,n ∩Ej,n = ∅ (i 6= j) and ∪m
i=1Ei,n = σ(U,T )(p).

In addition
∫

· · ·
∫

σ(U,T )(p)

f j dµp = lim
n→∞

m
∑

i=1

cji,nµp(χEi,n
) (1.1.14)

Now, from statement c) it follows that

(1.1.15) ∀n ∈ N :

m
∑

i=1

µp(χEi,n
) = µp(σ(U,T )(p)) = 1

therefore

(1.1.16) ∀n ∈ N :

m
∑

i=1

ci,nµp(χEi,n
) ∈ C

(

Nf(σ(U,T )(p))
)

where ci,n = (c1i,n, c
2
i,n, · · · ). Finally, since σ(U,T )(p) is assumed to be closed, the

proposition follows. �

2. A compatibility criterion

Although smoothers can be useful in several areas, the aim of this paper
is its application in differential equations in which only those smoothers being
compatible with the associated vectors are useful. To build a compatibility criterion
the following result is a powerful tool.
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Theorem 2.0.4. Let (Mn,An) be a smooth manifold and (U,ϕ) a chart. Let
ht : U → U stand for the one-parameter group associated to a smooth vector field
X and

S =
((

(U, T ), σ(U,T )

)

,
(

(Rn, T ),K(Rn,T )

))

a smoother. If the following relation holds

(2.0.17)
∃δ > 0, ∀t < δ : K(Rn,T )

(

σ(U,T )

(

ht(p)
)

, ϕ
)

=

K(Rn,T )

(

σ(U,T )(p), ϕ ◦ ht

)

then S is compatible with X.

Proof. First, from
y(q, t) = K(Rn,T )

(

σ(U,T ) (ht(p)) , ϕ
)

we obtain that

ϕ(q) = y(q, t0) = K(Rn,T )

(

σ(U,T ) (p) , ϕ
)

= ϕ (Sϕ(p))

Now, it is not difficult to see that

(2.0.18)

d

dt
y

∣

∣

∣

q
=

lim
t→0

K(Rn,T )

(

σ(U,T ) (ht(p)) , ϕ
)

− K(Rn,T )

(

σ(U,T ) (h0(p)) , ϕ
)

t

and using (2.0.17) the former equation becomes

(2.0.19)

d

dt
y

∣

∣

∣

q
=

lim
t→0

K(Rn,T )

(

σ(U,T ) (p) , ϕ ◦ ht)
)

− K(Rn,T )

(

σ(U,T ) (p) , ϕ
)

t
=

lim
t→0

K(Rn,T )

(

σ(U,T ) (p) , ϕ ◦ ht − ϕ
)

t
=

lim
t→0

K(Rn,T )

(

σ(U,T ) (p) ,
ϕ ◦ ht − ϕ

t

)

and by continuity

(2.0.20)

lim
t→0

K(Rn,T )

(

σ(U,T ) (p) ,
ϕ ◦ ht − ϕ

t

)

=

K(Rn,T )

(

σ(U,T ) (p) , lim
t→0

ϕ ◦ ht − ϕ

t

)

therefore, taking into account (1.1.1) and (1.1.4),

(2.0.21)
d

dt
y

∣

∣

∣

q
= lim

t→0
K(Rn,T )

(

σ(U,T ) (p) , ωX

)

accordingly, if ϕ
(

ht(p)
)

= (x1(p, t), x2(p, t) . . . ) is solution of (1.1.6) for the initial
value p, then

(y1(q, t), y2(q, t) . . . ) = K(Rn,T )

(

σ(U,T ) (ht(p)) , ϕ
)

is solution of the equation (1.1.7) for the initial value q = Sϕ(p), being

(Y 1, Y 2 . . . ) = K(Rn,T )

(

σ(U,T ) (p) , ωX

)

�
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Corollary 2.0.5. With the same conditions as in the preceding theorem, if p is a
fixed point for Sϕ and x(p, t) =

(

x1(p, t), x2(p, t) . . .
)

is solution of the initial value
problem

(2.0.22)







d

dt
x(p, t) = X

(

x(p, t)
)

x(p, t0) = ϕ(p)

then y(p, t) =
(

y1(p, t), y2(p, t) . . .
)

= K(Rn,T )

(

σ(U,T ) (ht(p)) , ϕ
)

is solution for the
initial value problem

(2.0.23)







d

dt
y(p, t) = Y

(

y(p, t)
)

= K(Rn,T )

(

σ(U,T ) (p) , ωX

)

y(p, t0) = ϕ(p)

Remark 2.0.6. The smoother defined in (2.0.39) satisfies the conditions of the
former corollary, because each point (x, y) of R

2 is a fixed-point. However, the
smoother

S =
((

(U, T ), σ(U,T )

)

,
(

(Rn, T ),K(Rn,T )

))

such that the law σ(U,T ) sends each point (x0, y0) ∈ R2 into the subset

A(x0,y0) =

{

(x, y) ∈ R
2 | x0 ≤ x ≤ x0 + 1 − y

y0
, 0 ≤ y ≤ ex0

}

the associated transform of which is

(2.0.24)

K(R2,T ) : f(x, y) 7→ 2

3y

∫∫

σ(U,T )(x,y)

f(x+ u, y + v) dudv =

2

3y

∫ 0

−y

∫ 1− v
y

0

f(x+ u, y + v) dudv

is compatible with the vector
(

1
y

)

and sends the point (x, y) into (x+ 7
9 ,

4
9y),

this is to say, Sϕ(x, y) = (x+ 7
9 ,

4
9y), Thus, there is no fixed point for Sϕ. Of course,

this smoother transforms the solution (t+ x0, y0e
t) of the equation

(2.0.25)











d

dt
x(t) = 1

d

dt
y(t) = y(t)

for the initial value (x0, y0) at t = 0, into the solution (t + x0 + 7
9 ,

4
9y0e

t) of the

same equation for the initial value (x0 + 7
9 ,

4
9y0).

Definition 2.0.7. Given a smoother

S =
((

(U, T ), σ(U,T )

)

,
(

(Rn, T ),K(Rn,T )

))

defined over a chart (U,ϕ) of a smooth manifold (M,An), and a smooth vector field
X, define the derivative ∇XS by the following expression.

(2.0.26)

∇XS|p =

lim
t→0

K(Rn,T )

(

σ(U,T ) (ht(p)) , ϕ
)

− K(Rn,T )

(

σ(U,T ) (p) , ϕ ◦ ht

)

t
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Corollary 2.0.8. If ∇XS = 0, then S is compatible with X.

Proof. Obviously, taking into account Definition 2.0.7, from ∇XS = 0, the state-
ment (2.0.17) follows. �

Definition 2.0.9. Given a smooth vector field X, the associated one-parameter
group of which is ht : U → U , say a measure-field {µp | p ∈ U} to be invariant
with respect to X, provided that for every p ∈ U and each measurable subset E of
σ(U,T )(p) the following relation holds

(2.0.27) ∀t ∈ R : µht(p) (Nht(E)) = µp(E)

accordingly the measure µp(E) remains unaltered under the one-parameter group
ht : U → U associated to X.

Remark 2.0.10. In [4] it is shown that, for a wide class of vector fields, each
differentiable-map ψ : U → C satisfying the equation

(2.0.28) X ψ̆(p) =

(

n
∑

i=1

X i ∂

∂xi
ψ(x1, x2 . . . )

)

˘= 0

satisfies also the equation

(2.0.29)
d

dt
ψ(ht(p)) = 0

accordingly, ψ(ht(p)) does not depend upon the parameter t; where for every con-
tinuous function f , f˘ denotes the maximal extension by continuity. Thus, an
invariance criterion can consist of proving the existence of a differentiable map
ψE : U → R, for each measurable subset E ⊆ U , such that

(2.0.30)

{

ψE(p) = µp(E)

X ψ̆E(p) = 0

Theorem 2.0.11. If a measure field {µp | p ∈ U} is invariant with respect to X

and, for each t ∈ R, the member of corresponding one-parameter group ht : U → U
is a cAlg(N)-morphism, then the smoother

S =
((

(U, T ), σ(U,T )

)

,
(

(Rn, T ),K(Rn,T )

))

such that

(2.0.31) K(V,T )

(

σ(U,T )(p), ϕ
)

=

∫

· · ·
∫

σ(U,T )(p)

ϕdµp

is compatible with X.

Proof. First, because, for each t ∈ R, the map ht : U → U is assumed to be a
cAlg(N)-morphism, then by virtue of (1.0.4) we have that

(2.0.32)

K(V,T )

(

σ(U,T )(ht(p)), ϕ
)

=

K(V,T )

(

Nht

(

σ(U,T )(p)
)

, ϕ
)

=

∫

· · ·
∫

Nht

(

σ(U,T )(p)
)

ϕdµp
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and because

(2.0.33) Nht

(

σ(U,T )(p)
)

=
{

ht(q) | q ∈ σ(U,T )(p)
}

then

(2.0.34)

∫

· · ·
∫

Nht

(

σ(U,T )(p)
)

ϕdµp =

∫

· · ·
∫

σ(U,T )(p)

ϕ ◦ ht dµht(p)

therefore, since the invariance of {µp | p ∈ U} with respect to X is assumed, then
for every subset E ⊆ σ(U,T )(p) the following relation holds

µht(p)

(

Nht(E)
)

= µp(E)

therefore from (2.0.34) it follows that

(2.0.35)

∫

· · ·
∫

σ(U,T )(p)

ϕ ◦ ht dµht(p) =

∫

· · ·
∫

σ(U,T )(p)

ϕ ◦ ht dµp

consequently,

(2.0.36)

K(V,T )

(

σ(U,T )(ht(p)), ϕ
)

=
∫

· · ·
∫

σ(U,T )(p)

ϕ ◦ ht dµp = K(V,T )

(

σ(U,T )(p), ϕ ◦ ht

)

accordingly, the smoother S satisfies the conditions of the preceding theorem. �

Example 2.0.12. Consider the initial value problem

(2.0.37)























d

dt
x(t) = 1

d

dt
y(t) = 0.1 cos

(

x(t)
)

(

x(0), y(0)
)

= (x0, y0)

the solution of which is

(2.0.38)

{

x(t) = x0 + t

y(t) = y0 + 0.1
(

sin(t+ x0) − sin(x0)
)

where we are assuming the function 0.1 cos
(

x(t)
)

, in the second equation of (2.0.37),

to be the consequence of a perturbation working over the vector field
(

1
0

)

. The map

σ, sending each (x, y) ∈ R2 into the closed set [x−π, x+π]× [y−1, y+1], together
with the operator K defined as follows
(2.0.39)

K :
(

f1(x, y), f2(x, y)
)

7→
( 1

4π

∫ 1

−1

∫ π

−π

f1(x+ u, y + v)dudv,

1

4π

∫ 1

−1

∫ π

−π

f2(x+ u, y + v)dudv
)
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form a smoother such that K transforms the vector
(

1
0.1 cos(x)

)

of the equation

(2.0.37) into the perturbation-free vector
(

1
0

)

, therefore it transforms also (2.0.37)
into the following initial value problem,

(2.0.40)























d

dt
x(t) = 1

d

dt
y(t) = 0

(

x(0), y(0)
)

= (x0, y0)

Now, it is not difficult to see K to be compatible with the vector field of the equa-
tion (2.0.37), therefore K transforms also the solution (2.0.38) of (2.0.37) into the
solution of (2.0.40), as one can see in the following equality

(2.0.41)































1

4π

∫ 1

−1

∫ π

−π

(x0 + u+ t) : dudv = x0 + t

1

4π

∫ 1

−1

∫ π

−π

(

y0 + v + 0.1
(

sin(x0 + u+ t)−

sin(x0 + u)
))

dudv = y0

and

(2.0.42)

{

x(t) = x0 + t

y(t) = y0

is nothing but the general solution of (2.0.40). Thus, K sends (2.0.37) into (2.0.40)
and also sends the general solution of (2.0.37) into the perturbation-free solution
(2.0.42) of (2.0.40).
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APPROXIMATION OF FIXED POINTS OF ASYMPTOTICALLY

PSEUDOCONTRACTIVE MAPPINGS IN BANACH SPACES
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Abstract. Let T be an asymptotically pseudocontractive self-mapping of a non-
empty closed convex subset D of a reflexive Banach space X with a Gâteaux differ-
entiable norm. We deal with the problem of strong convergence of almost fixed points
xn = µnT nxn + (1 − µn)u to fixed point of T . Next, this result is applied to deal
with the strong convergence of explicit iteration process zn+1 = vn+1(αnT nzn +(1−
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1. Introduction

Let D be a nonempty closed convex subset of a real Banach space X and let T :
D → D be a mapping. Given an x0 ∈ D and a t ∈ (0, 1), then, for a nonexpansive
mapping T , we can define contraction Gt : D → D by Gtx = tTx+(1−t)x0, x ∈ D.
By Banach contraction principle, Gt has a unique fixed point xt in D, i.e., we have

xt = tTxt + (1 − t)x0.

The strong convergence of path {xt} as t → 1 for a nonexpansive mapping T on a
bounded D was proved in Hilbert space independently by Browder [2] and Halpern
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[7] in 1967 and in a uniformly smooth Banach space by Reich [10]. Later, it has
been studied in various papers (see [12], [14], [15], [23], [28]).

The asymptotically nonexpansive mappings were introduced by Goebel and Kirk
[4] and further studied by various authors (see [1], [6], [7], [12], [17], [19], [21], [22],
[24], [25], [27]).

Recently, Schu [20] has considered the strong convergence of almost fixed points
xn = µnT

nxn of an asymptotically nonexpansive mapping T in a smooth and
reflexive Banach space having a weakly sequentially continuous duality mapping.
Unfortunately, Schu’s results do not apply to Lp spaces if p 6= 2, since none of these
spaces possess weakly sequentially duality mapping.

The object of this paper is to deal with the problem of strong convergence of the
sequence of almost fixed points defined by the equation

(1) xn = µnT
nxn + (1 − µn)u

for an asymptotically pseudocontractive mapping T in a reflexive Banach space with
the Gâteaux differentiable norm. In particular, Corollary 1 improves and extends
the results of [12], [14], [16], [20] and [23] to the larger class of asymptotically pseu-
docontractive mappings. Further, we deal with the problem of strong convergence
of the explicit iteration process

zn+1 = vn+1(αnT
nxn + (1 − αn)xn) + (1 − vn+1)u

by applying Corollary 1.
It is well known that the Mann iteration process ([13]) is not guaranteed to con-

verge to a fixed point of a Lipschitz pseudocontractive defined even on a compact
convex subset of a Hilbert space (see [10]). In [11], Ishikawa introduced a new
iteration process, which converges to a fixed point of a Lipschitz pseudocontractive
mapping defined on a compact convex subset of a Hilbert space. Schu [22] first
studied the convergence of the modified Ishikawa iterative sequence for completely
continuous asymptotically pseudocontractive mappings in Hilbert spaces. Schu’s
result has been extended to asymptotically pseudocontractive type mappings de-
fined on compact convex subsets of a Hilbert space (see [4], [15]). In application
point of view, compactness is a very strong condition. One of important features
of our approach is that it allows relaxation of compactness.

2. Preliminaries

Let X be a real Banach space and D a subset of X. An operator T : D → D is
said to be asymptotically pseudocontractive ([24]) if and only if, for each n ∈ N and
u, v ∈ D, there exist j ∈ J(u− v) and a constant kn ≥ 1 with limn→∞ kn = 1 such
that

〈Tnu− Tnv, j〉 ≤ kn‖u− v‖2,

where J : X → 2X∗

is the normalized duality mapping defined by

J(u) = {j ∈ X∗ : 〈u, j〉 = ‖u‖2, ‖j‖ = ‖u‖}.
The class of asymptotically pseudocontractive mappings is essentially wider than
the class of asymptotically nonexpansive mappings (T : D → D for which there
exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

‖Tnu− Tnv‖ ≤ kn‖u− v‖
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for all u, v ∈ D and n ∈ N). In fact, if T is an asymptotically nonexpansive
mapping with a sequence {kn}, then for each u, v ∈ D, j ∈ J(u − v) and n ∈ N ,
we have

〈Tnu− Tnv, j〉 ≤ ‖T nu− Tnv‖‖u− v‖ ≤ kn‖u− v‖2.

The normal structure coefficient N(X) of X is defined ([2]) by

N(X) =

{

diamD

rDD
: D is a nonempty bounded convex subset of X

with diam D > 0

}

,

where rD(D) = infx∈D{supy∈D ‖x − y‖} is the Chebyshev radius of D relative to
itself and diamD = supx,y∈D ‖x− y‖ is the diameter of D. The space X is said to
have the uniformly normal structure if N(X) > 1.

Recall that a nonempty subset D of a Banach space X is said to satisfy the
property (P) ([12]) if the following holds:

(P) x ∈ D ⇒ ωω(x) ⊂ D,

where ωω (x) is weak ω-limit set of T at x, i.e.,

{y ∈ C : y = weak − lim
j
Tnjx for some nj → ∞}.

The following result can be found in [12].

Lemma 1. Let D be a nonempty bounded subset of a Banach space X with uni-
formly normal structure and T : D → D be a uniformly L-Lipschitzian mapping
with L < N(X)1/2. Suppose that there exists a nonempty bounded closed convex
subset C of D with property (P ). Then T has a fixed point in C.

A Banach limit LIM is a bounded linear functional on `∞ such that

lim inf
n→∞

tn ≤ LIMtn ≤ lim sup
n→∞

tn

and
LIMtn = LIMtn+1

for all bounded sequence {tn} in `∞. Let {xn} be a bounded sequence of X .
Then we can define the real-valued continuous convex function f on X by f(z) =
LIM‖xn − z‖2 for all z ∈ X .

The following Lemma was give in [8].

Lemma 2 [8]. Let X be a Banach space with the uniformly Gâteaux differentiable
norm and u ∈ X. Then

f(u) = inf
z∈X

f(z)

if and only if
LIM〈z, J(xn − u)〉 = 0

for all z ∈X, where J : X → X∗ is the normalized duality mapping and 〈·, ·〉 denotes
the generalized duality pairing.
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3. The Main Results

In this section, we establish strong convergence of sequence {xn} defined by
the equation (1) in a reflexive Banach space with uniformly Gâteaux differentiable
norm.

Suppose now that D is a nonempty closed and convex subset of a Banach space
X and T : D → D is an asymptotically pseudocontractive mapping (we may always
assume kn ≥ 1 for all n ≥ 1). Suppose also that {λn} is a sequence of real number
in (0,1) such that limn→∞ λn = 1.

Now, for u ∈ D and a positive integer n ∈ N , consider a mapping Tn on D
defined by

Tnx =
(

1 − λn

kn

)

u+
λn

kn
Tnx, x ∈ D.

In the sequel, we use the notations F (T ) for the set of fixed points of T and µn

for λn

kn
.

Lemma 3. For each n ≥ 1, Tn has exactly one fixed point xn in D such that

xn = µnT
nxn + (1 − µn)u.

Proof. Since Tn is a strictly pseudocontractive mapping on D, it follows from Corol-
lary 1 of [5] that Tn possesses exactly one fixed point xn in D.

Lemma 4. If the set

G(u, Tu) = {x ∈ D : 〈T nu− u, j〉 > 0 for all j ∈ j(x− u), n ≥ 1}

is bounded, then the sequence {xn} is bounded.

Proof. Since T is asymptotically pseudocontractive, for j ∈ J(xn − u), we have

〈µn(Tnxn − u) + µn(u− Tnu), j〉 ≤ λn‖xn − u‖2,

which implies

〈Tnu− u, j〉 ≥ 1 − λn

µn
‖xn − u‖2

since µn(Tnxn − u) = xn − u. If x 6= 0, we have

〈Tnu− u, j〉 > 0

and it follows that xn ∈ G(u, Tu) for all n ≥ 1 and hence {xn} is bounded.

Before presenting our main result, we need the following:

Definition 1. Let D be a nonempty closed subset of a Banach spaces X , T : D →
D be a nonlinear mapping and M = {x ∈ D : f(x) = minz∈D f(z)}. Then T is said
to satisfy the property (S) if the following holds:

(S)
For any bounded sequence {xn} in D,

lim
n→∞

‖xn − Txn‖ = 0 implies M ∩ F (T ) 6= ∅.
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Theorem 1. Let D be a nonempty closed and convex subset of a reflexive Banach
space X with a uniformly Gâteaux differentiable norm, T : D → D be a continuous
asymptotically pseudocontractive mapping with a sequence {kn} and {λn} be a se-
quence of real numbers in (0, 1) such that limn→∞ λn = 1 and limn→∞

kn−1
kn−λn

= 0.

Suppose that for u ∈ D, the set G(u, Tu) is bounded and the mapping T satisfies
the property (S). Then we have the following:

(a) For each n ≥ 1, there is exactly one xn ∈ D such that

xn = µnT
nxn + (1 − µn)u.

(b) If limn→∞ ‖xn − Txn‖ = 0, then it follows that there exists the sunny non-
expansive retraction P from D onto F(T) such that {xn} converges strongly
to Px.

Proof. The part (a) follows from Lemma 3. So, it remains to prove part (b). From
Lemma 4, {xn} is bounded and so we can define a function f : D → R+ by

f(z) = LIM‖xn − z‖2

for all z ∈ D. Since f is continuous and convex, f(z) → ∞ as ‖z‖ → ∞ and X is
reflexive, f attains it infimum over D. Let z0 ∈ D such that f(z0) = minz∈D f(z)
and let M = {x ∈ D : f(x) = minz∈D f(z)}. Then M is nonempty because z0 ∈ M.
Since {xn} is bounded by Lemma 4 and T satisfied the property (S), it follows that
M ∩ F (T ) 6= ∅. Suppose that v ∈ M ∩ F (T ). Then, by Lemma 2, we have

LIM〈x− v, J(xn − v)〉 ≤ 0

for all x ∈ D. In particular, we have

(2) LIM〈u− v, J(xn − v)〉 ≤ 0.

On the other hand, from the equation (1), we have

(3) xn − Tnxn = (1 − µn)(u− Tnxn) =
1 − µn

µn
(u− xn).

Now, for any v ∈ F (T ), we have

〈xn − Tnxn, J(xn − v)〉 = 〈xn − v + Tnv − Tnxn, J(xn − v)〉
≥ −(kn − 1)‖xn − v‖2

≥ −(kn − 1)K2

for some K > 0 and it follows from (3) that

〈xn − u, J(xn − v)〉 ≤ λn(kn − 1)

kn − λn
K2.

Hence we have

(4) LIM〈xn − u, J(xn − v)〉 ≤ 0.
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Combining (2) and (4), then we have

LIM〈xn − v, J(xn − v)〉 = LIM‖xn − v‖2 ≤ 0.

Therefore, there is a subsequence {xni} which converges strongly to v. To complete
the proof, suppose there is another subsequence {xnk

} of {xn} which converges
strongly to y (say). Since limn→∞ ‖xn − Txn‖ = 0 and T is continuous, then y is
a fixed point of T . It then follows from (4) that

〈v − u, J(v − y)〉 ≤ 0

and

〈y − u, J(y − v)〉 ≤ 0.

Adding these two inequalities yields

〈v − y, J(v − y)〉 = ‖v − y‖2 ≤ 0

and thus v = y. This prove the strong convergence of {xn} to v ∈ F (T ). Now we
can define a mapping P from D onto F (T ) by limn→∞ xn = Pu. From (4), we have

〈u− Pu, J(v − Pu)〉 ≤ 0

for all u ∈ D and v ∈ F (T ). Therefore, P is the sunny nonexpansive retraction.
This completes the proof.

Remark 1. The assumption of λn such that λn ∈ ( 1
2 , 1) with kn ≤ 2λ2

n

2λn−1 implies

limn→∞
λn(kn−1)
(kn−λn) = 0 (see Lemma 1.4 of [16]).

Next, we substitute the property (S) mentioned in Theorem 1 by assuming that
T is uniformly L-Lipschitzian in Banach space with the uniformly normal structure
and D does have the property (P) (see [12]).

Corollary 1. Let X be a Banach space with the uniformly Gâteaux differentiable
norm, N(X) be the normal structure coefficient of X such that N(X) > 1, D be
nonempty closed convex subset of X. T : D → D be a uniformly L-Lipschitzian
asymptotically pseudocontractive mapping with a sequence {kn} and L < N(X)1/2

and {λn} be a sequence of real numbers in (0, 1) such that limn→∞ λn = 1 and
limn→∞

kn−1
kn−λn

= 0. Suppose that every closed convex bounded subset of D satisfies

the property (P ). Then we have

(a) For each n ≥ 1, there is exactly one xn ∈ D such that

xn = µnT
nxn + (1 − µn)u.

(b) If limn→∞ ‖xn − Txn‖ = 0, then it follows that there exists the sunny non-
expansive retraction P from D onto F(T) such that the sequence {xn} con-
verges strongly to Px.
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Remark 2. (1) Theorem 1 and Corollary 1 can be applied to all uniformly convex
and uniformly smooth Banach spaces and, in particular, all LP spaces, 1 < p <∞.

(2) As was mentioned in the introduction, Theorem 1 extends and improves
the corresponding results of [12], [14], [16], [20] and [23] to much larger class of
asymptotically pseudocontractive mappings and to more general Banach spaces X
considered here.

If we choose {λn} ⊂ (0, 1) such that limn→∞ λn = 1 and limn→∞
kn−1

kn−λn
= 0

(such a sequence {λn} always exists. For example, taking λn = min{1−
√
kn − 1, 1−

1
n}), then the following result is a direct consequence of Corollary 1:

Corollary 2. Let D be nonempty closed convex and bounded subset of a uniformly
smooth Banach space X, T : D →D be an asymptotically nonexpansive mapping
with Lipschitzian constant kn and {λn} be a sequence of real numbers in (0, 1) such
that limn→∞ λn = 1 and limn→∞

kn−1
kn−λn

= 0. Then we have the following:

(a) For u ∈ D each n ≥ 1, there is exactly one xn ∈ D such that

xn = µnT
nxn + (1 − µn)u.

(b) If limn→∞ ‖xn − Txn‖ = 0, there exists the sunny nonexpansive retraction
P from D onto F(T) such that {xn} converges strongly to Px.

We immediately obtain from Corollary 2 the following result (Theorem 1 of Lim
and Xu [8]) with additional information that almost fixed points converges to y,
where y is fixed point of T nearest point to u.

Corollary 3. Let D be a nonempty closed convex and bounded subset of a uniformly
smooth Banach space and T : D →D be an asymptotically nonexpansive mapping.
Let {λn} be a sequence in (0, 1) such that limn→∞ λn = 1 and limn→∞

kn−1
kn−λn

= 0.

Suppose that, for any x ∈ D, {xn} is a sequence in the defined by (1). Suppose in
addition that the following condition:

lim
n→∞

‖xn − Txn‖ = 0

holds. Then there exists the sunny nonexpansive retraction P from D onto F(T)
such that {xn} converges strongly to Px.

4. Applications

Halpern [9] has introduced the explicit iteration process {zn+1} defined by zn+1 =
λn+1Tzn for approximation of a fixed point for a nonexpansive self-mapping T de-
fined on the unit ball of a Hilbert space. Later, this iteration process has been
studied extensively by various authors and has been successfully employed to ap-
proximate fixed points of various class of nonlinear mappings (see [15], [20], [23]).

In this section, we establish some strong convergence theorems for the results of
the explicit iteration process {zn+1} defined by

zn+1 = vn+1(αnT
nzn + (1 − αn)zn) + (1 − µn+1)u
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by applying the results concerning the implicit iteration process {xn} defined by

xn = µnT
nxn + (1 − µn)u

of the last section.

First, we shall introduce a definition, which is partly due to Halpern [7].

Let {an} and {vn} be sequence of real numbers in (0,∞) and (0,1), respectively.
Then ({an}, {vn}) is said to have property (A) ([17]):

(a) {an} is decreasing,
(b) {vn} is strictly increasing,
(c) there is a sequence {βn} of natural number such that

(c-1) {βn} is strictly increasing,

(c-2) limn→∞βn(1 − vn) = ∞,

(c-3) limn→∞
1−vn+βn

1−vn
= 1,

(c-4) limn→∞
an−an+βn

1−vn
= 0.

The following lemma was proved in [23]:

Lemma 5 [23]. Let D be a nonempty bounded and convex subset of a normed
space X, 0 ∈ D, {Sn} be a sequence self-mappings on D, {Ln} be a sequence of
real numbers in [1,∞] such that ‖Snx − Sny‖ ≤ Ln‖x − y‖ for all x, y ∈ D and
n ≥ 1, {λn} ⊂ (0, 1), {an} ⊂ (0,∞) be such that ({an}, {vn}) has property (A)
and { 1−vn

1−λn
} is bounded, where vn = λn/Ln, and {xn} be a sequence in D such

that xn = vnSn(xn) for all n ≥ 1 and limn→∞ xn = v. Suppose that there exists a
constant d > 0 such that

‖Sm(x) − Sn(x)‖ ≤ d|am − an|

for all m,n ≥ 1 and x ∈ D. Suppose also that, for an arbitrary points z0 ∈ D, {zn}
is a sequence in D such that zn+1 = vn+1Sn(zn) for all n ≥ 1. Then limn→∞ zn = v.

Xu [26] has proved that, if X is q-uniformly smooth (q > 1), then there exists a
constant c > 0 such that

(5) ‖x+ y‖q ≤ ‖x‖q + q〈y, Jq(x)〉 + c‖y‖q

for all x, y ∈ X , where the mapping Jq : X → 2X∗

is a generalized duality mapping
defined by

Jq(x) = {j ∈ X∗ : 〈x, j〉 = ‖x‖q, ‖j‖ = ‖x‖q−1}.
Typical examples of such space are the Lesbesgue Lp, the sequence `p and the
Sobolev Wm

p spaces for 1 < p <∞. In fact, these spaces are p-uniformly smooth if
1 < p ≤ 2 and 2-uniformly smooth for p ≥ 2.

Before, presenting our results, we need the following:

Lemma 6. Let q > 1 be a real number, D be a nonempty closed subset of a q-
uniformly smooth Banach space X, T : D → D be a uniformly L-Lipschitzian and
asymptotically pseudocontractive mapping with a sequence {kn} and {λn} and {αn}
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be two sequences of real numbers in (0, 1). Suppose that {Gn} is a self-mapping on
D defined by Gnx = αnT

nx+(1−αn)x for all x ∈ D. Then we have the following:

(a) ‖Gnx−Gny‖ ≤ Ln‖x− y‖ for all x, y ∈ D and n ≥ 1, where

Ln = [1 + qαn(kn − 1) + cαq
n(1 + L)q]

1
q .

(b) For u ∈ D and each n ≥ 1, there is exactly one xn ∈ D such that

xn = vnGn(xn) + (1 − vn)u,

where vn = λn/Ln.
(c) If u = 0, then it follows that xn = vnαn

1−vn(1−αn)T
nxn for all n ≥ 1.

Proof. To prove part (a), set Fn = I − Tn, where I denotes the identity operator.
Then, for each n ≥ 1, Gn = I − αnFn and ‖Fnx − Fny‖ ≤ (1 + L)‖x − y‖ for all
x, y ∈ D. Since

〈Fnx− Fny, Jq(x − y)〉 ≥ −(kn − 1)‖x− y‖2

for all x, y ∈ D and n ≥ 1, using (5), we obtain

‖Gnx−Gny‖q

= ‖x− y − αn(Fnx− Fny)‖q

≤ ‖x− y‖q − qαn〈Fnx− Fny, Jq(x − y)〉 + cαq
n(1 + L)q‖x− y‖q

≤ [1 + qαn(kn − 1) + cαq
n(1 + L)q]‖x− y‖q.

To prove part (b), for u ∈ D and n ≥ 1, define a mapping Tn : D → D by

Tnx = vnGnx+ (1 − vn)u, x ∈ D.

Since vn ∈ (0, 1), Tn is a contraction mapping on D. Thus, by the Banach contrac-
tion principle, Tn has exactly one xn ∈ D such that xn = vnGnxn +(1− vn)u. This
completes the proof.

The following lemma can be shown by simple calculation:

Lemma 7. Let D be a nonempty closed convex subset of a Banach space X, T :
D → D be an asymptotically nonexpansive mapping with a sequence {kn} and
{λn} and {αn} be two sequences of real numbers in (0, 1). Suppose that {Gn} is
a sequence of self-mappings on D defined by Gnx = αnT

nx + (1 − αn)x for any
x ∈ D. Then we have the following:

(a) ‖Gnx−Gny‖ ≤ kn‖x− y‖ for all x, y ∈ D and n ≥ 1.
(b) For u ∈ D and each n ≥ 1, there is exactly one xn ∈ D such that

xn = µnGnxn + (1 − µn)u,

where µn = λn/kn.

We now prove the main result of this section.
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Theorem 2. Let q > 1 be a real number, D be a nonempty closed convex and
bounded subset of a q-uniformly smooth Banach space X, T : D → D be a uniformly
L-Lipschitzian asymptotically pseudocontractive mapping with a sequence {kn} and

L < N(X)
1
2 and {λn} and {αn} be two sequences of real numbers in (0, 1) such

that limn→∞ λn = 1, limn→∞
Ln−1

Ln−λn
= 0 and limn→∞

1−vn

αn
= 0, where Ln =

[1 + qαn(kn − 1) + cαq
n(1 + L)q]

1
q and vn = λn/Ln. Suppose that ({αn}, {vn})

has property (A), { 1−vn

1−λn
} is bounded and limn→∞ ‖yn − Tyn‖ = 0 for any bounded

sequence {yn} in D with limn→∞ ‖yn − Tnyn‖ = 0. Suppose also that, for any
u, z0 ∈ D, {zn} is a sequence in D defined by

zn+1 = vn+1(αnT
nzn + (1 − αn)zn) + (1 − vn+1)u.

Then there exists the sunny nonexpansive retraction P from D onto F(T) such that
{zn} converges strongly to Pu.

Proof. Without loss of generality, we may assume that u = 0. For n ≥ 1, set
ηn = vnαn

(1−vn)+vnαn
. Then {ηn} ⊂ (0, 1) and ηn = (1 + 1

vn
( 1−vn

αn
))−1 for all n ≥ 1.

Since limn→∞ vn = 1 and limn→∞
1−vn

αn
= 0, it follows that limn→∞ ηn = 1 and

hence, by Lemma 6 and Corollary 1, the sequence {xn} defined by xn = ηnT
nxn

converges strongly to Pu. Let {Gn} be a sequence of self mappings on D defined
by

Gn(x) = αnT
nx+ (1 − αn)x, x ∈ D.

By Lemma 6, for each n ≥ 1, there is exactly one xn ∈ D such that xn = vnGn(xn)
and hence xn = ηnT

nxn. By Corollary 1, we have that {xn} converges strongly to
some fixed point of T. Since zn = ηnGn(zn) for all n ≥ 1 and ‖Gm(x) −Gn(x)‖ ≤
|αm − αn| diam D for all m,n ≥ 1 and x ∈ D. It follows from Lemma 5 that {zn}
converges strongly to Pu. This completes the proof.

Remark 3. (1) Theorem 2 extends Theorem 2.4 of Schu [23] to the wider class of
asymptotically pseudocontractive mappings and from a Hilbert spaces to the more
general Banach space X considered here.

(2) Another iteration procedure for uniformly L-Lipschitzian asymptotically
pseudocontractive mapping T in a Hilbert space may be found in the work of
Schu [22] with the condition that the given mapping T is completely continuous.

Corollary 3. Let D be a nonempty closed convex and bounded subset of a uniformly
smooth Banach space X, T : D → D be a uniformly asymptotically regular and
asymptotically nonexpansive mapping with a sequence {kn} and {αn} be sequence

of real numbers in (0, 1) with limn→∞ λn = 1, limn→∞ αn = 0, limn→∞
(kn−1)

(kn−λn) = 0

and limn→∞
1−µn

an
= 0. Suppose also that, for any u, z0 ∈ D, {zn} is a sequence in

D defined by

zn+1 = µn+1(αnT
nzn + (1 − αn)zn) + (1 − µn)u, n ≥ 1.

Then {zn} converges strongly to some fixed point of T.

Remark 4. Schu [19], [21] and Tan and Xu [24] have studied the weak convergence
for the sequence {zn} defined by (the modified Mann iteration process) zn+1 =
αnT

nzn + (1 − αn)zn to fixed point of asymptotically nonexpansive mapping T in
a uniformly convex Banach space with the Fréchet differentiable norm or with a
weakly sequentially duality mapping.
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§1. Introduction

Let n ≥ 2, Br = {x ∈ Rn; |x| < r}, g(x) = x on ∂B1. Recall the Ginzburg-
Landau type functional

Eε(u) =
1

2

∫

B1

|∇u|2 +
1

4ε2

∫

B1\BΓ

(1 − |u|2)2 +
1

4ε2

∫

BΓ

|u|2,

on the class functions H1
g (B1, R

n). The functional Eε(u) is related to the Ginzburg-
Landau model of superconductivity with normal impurity inclusion such as super-
conducting normal junctions (cf. [5]) if n = 2. B1 \ BΓ and BΓ represent the
domains occupied by superconducting materials and normal conducting materials,
respectively. The minimizer uε is the order parameter. Zeros of uε are known as
Ginzburg-Landau vortices which are of significance in the theory of superconduc-
tivity(cf. [1]). The paper [7] studied the asymptotic behaviors of the minimizer of
Eε(u,B1) on the function class H1

g (B1, R
2) and discussed the vortex-pinning effect.

For the simplified Ginzburg-Landau functional, many papers stated the asymptotic
behavior of the minimizer uε as ε → 0. When n = 2, the asymptotics of uε were
well-studied by [1]. In the case of higher dimension, for the radial minimizer uε of
Eε(u,B1), some results on the convergence had been shown in [14] as ε→ 0. There
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were many works for the radial minimizer in [12]. Other related works can be seen
in [2] [3] [8] and [17] etc.

Assume p > n. Consider the minimizers of the p-Ginzburg-Landau type func-
tional

Eε(u,B1) =
1

p

∫

B1

|∇u|p +
1

4εp

∫

B1\BΓ

(1 − |u|2)2 +
1

4εp

∫

BΓ

|u|4,

on the class functions

W = {u(x) = f(r)
x

|x| ∈W 1,p(B1, R
n); f(1) = 1, r = |x|}.

By the direct method in the calculus of variations we can see that the minimizer
uε exists and it will be called radial minimizer. In this paper, we suppose that
Γ ∈ (0, ε]. The conclusion of the case of Γ = O(ε) as ε→ 0 is still true by the same
argument. we will discuss he location of the zeros of the radial minimizer. Based on
the result, we shall establish the uniqueness of the radial minimizer. The asymptotic
behavior of the radial minimizer be concerned with as ε→ 0. The estimates of the
rate of the convergence for the module of minimizer will be presented.

We will prove the following theorems.

Theorem 1.1. Assume uεis a radial minimizer of Eε(u,B1). Then for any given
η ∈ (0, 1/2) there exists a constant h = h(η) > 0 such that

Zε = {x ∈ B1; |uε(x)| < 1 − 2η} ⊂ B(0, hε) ∪ BΓ.

Moreover, the zeros of the radial minimizer are contained in Bhε as Γ ∈ (0, hε].
When Γ ∈ (hε, ε], the zeros are contained in BΓ \B(0, hε).

Theorem 1.2. For any given ε ∈ (0, 1), the radial minimizers of Eε(u,B1) are
unique on W .

Theorem 1.3. Assume uε is the radial minimizer of Eε(u,B1). Then as ε→ 0,

(1.1) uε → x

|x| , in W 1,p
loc (B1 \ {0}, Rn);

(1.2) uε → x

|x| , in C1,β
loc (B1 \ {0}, Rn),

for some β ∈ (0, 1).

Theorem 1.4. Let uε(x) = fε(r)
x
|x| be the radial minimizer of Eε(u,B1). Then

for any T > 0, there exist C, ε0 > 0 such that as ε ∈ (0, ε0),

∫ 1

T

rn−1[(f ′
ε)

p +
1

εp
(1 − f2

ε )2]dr ≤ Cεp.

sup
r∈[T,1]

(1 − fε(r)) ≤ Cεp−n
2 .

Some basic properties of minimizers are given in §2. The main purpose of §3 is
to prove Theorem 1.1. In §4 and §5 we present the proof of (1.1). The proof of
Theorem 1.2 is given in §6. §7 gives the proof of (1.2). Theorem 1.4 is derived in
§8.



62 SOUTHWEST JOURNAL OF PURE AND APPLIED MATHEMATICS

§2. Preliminaries

In polar coordinates, for u(x) = f(r) x
|x| we have

|∇u| = (f2
r + (n− 1)r−2f2)1/2,

∫

B1

|u|p = |Sn−1|
∫ 1

0

rn−1|f |p dr,
∫

B1

|∇u|p = |Sn−1|
∫ 1

0

rn−1(f2
r + (n− 1)r−2f2)p/2 dr.

It is easily seen that f(r) x
|x| ∈ W 1,p(B1, R

n) implies f(r)r
n−1

p −1, fr(r)r
n−1

p ∈
Lp(0, 1). Conversely, if f(r) ∈ W 1,p

loc (0, 1], f(r)r
n−1

p −1, fr(r)r
n−1

p ∈ Lp(0, 1), then
f(r) x

|x| ∈W 1,p(B1, R
n). Thus if we denote

V = {f ∈W 1,p
loc (0, 1]; r

n−1
p fr, r

(n−1−p)/pf ∈ Lp(0, 1), f(r) ≥ 0, f(1) = 1},
then V = {f(r);u(x) = f(r) x

|x| ∈ W}.
Substituting u(x) = f(r) x

|x| ∈ W into Eε(u,B1), we obtain

Eε(u,B1) = |Sn−1|Eε(f)

where

Eε(f) =
1

p

∫ 1

0

(f2
r + (n− 1)r−2f2)p/2rn−1dr

+
1

4εp

∫ 1

Γ

(1 − f2)2]rn−1 dr +
1

4εp

∫ Γ

0

f4rn−1 dr.

This implies that u = f(r) x
|x| ∈ W is the minimizer of Eε(u,B1) if and only if

f(r) ∈ V is the minimizer of Eε(f).

Proposition 2.1. The set V defined above is a subset of {f ∈ C[0, 1]; f(0) = 0}.
Proof. Let f ∈ V and h(r) = f(r

p−1
p−n ).Then

∫ 1

0

|h′(r)|p dr = (
p− 1

p− n
)p

∫ 1

0

|f ′(r
p−1
p−n )|pr

p(n−1)
p−n dr

= (
p− 1

p− n
)p−1

∫ 1

0

sn−1|f ′(s)|p ds <∞

by noting fs(s)s
(n−1)/p ∈ Lp(0, 1). Using interpolation inequality and Young in-

equality, we have that for some y > 1,

‖h‖W 1,y((0,1),R) <∞,

which implies that h(r) ∈ C[0, 1] and hence f(r) ∈ C[0, 1].
Suppose f(0) > 0, then f(r) ≥ s > 0 for r ∈ [0, t) with t > 0 small enough since

f ∈ C[0, 1]. We have
∫ 1

0

rn−1−pfp dr ≥ sp

∫ t

0

rn−1−p dr = ∞,

which contradicts r(n−1)/p−1f ∈ Lp(0, 1). Therefore f(0) = 0 and the proof is
complete.

It is not difficult to prove the following
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Proposition 2.2. The functional Eε(u,B1) achieves its minimum on W by a func-
tion uε(x) = fε(r)

x
|x| .

Proposition 2.3. The minimizer uε satisfies the equality

(2.1)

∫

B1

|∇u|p−2∇u∇φdx− 1

εp

∫

B1\BΓ

uφ(1 − |u|2)dx+
1

εp

∫

BΓ

uφ|u|2dx = 0,

(2.2) ∀φ = f(r)
x

|x| ∈ C∞
0 (B1, R

n). u|∂B1 = x.

Proof. Denote uε by u. For any t ∈ [0, 1)and φ = f(r) x
|x| ∈ C∞

0 (B1, R
n), we have

u+ tφ ∈W as long as t is small sufficiently. Since u is a minimizer we obtain

dEε(u+ tφ,B1)

dt
|t=0 = 0,

namely,

0 =
d

dt
|t=0

∫

B1

1

p
|∇(u+ tφ)|p +

1

4εp

∫

B1\BΓ

(1 − |u+ tφ|2)2dx

+
1

4εp

∫

BΓ

|u+ tφ|4dx

=

∫

B1

|∇u|p−2∇u∇φdx− 1

εp

∫

B1\BΓ

uφ(1 − |u|2)dx+
1

εp

∫

BΓ

uφ|u|2dx.

By a limit process we see that the test function φ can be any member of {φ =
f(r) x

|x| ∈W 1,p(B1, R
n);φ|∂B1 = 0}.

Similarly, we also derive
The minimizer fε(r) of the functional Eε(f) satisfies

∫ 1

0

rn−1(f2
r + (n− 1)r−2f2)(p−2)/2(frφr + (n− 1)r−2fφ) dr

(2.3)

=
1

εp

∫ 1

Γ

rn−1(1 − f2)fφ dr − 1

εp

∫ Γ

0

rn−1f3φ dr, ∀φ ∈ C∞
0 (0, 1).

By a limit process we see that the test function φ in (2.3) can be any member of

X = {φ(r) ∈W 1,p
loc (0, 1];φ(0) = φ(1) = 0, φ(r) ≥ 0, r

n−1
p φ′, r

n−p−1
p φ ∈ Lp(0, 1)}

Proposition 2.4. Let fε satisfies (2.3) and f(1) = 1. Then fε ≤ 1 on [0,1].

Proof. Denote f = fε in (2.3) and set φ = f(f2 − 1)+. Then
∫ 1

0

rn−1(f2
r + (n− 1)r−2f2)(p−2)/2[f2

r (f2 − 1)+ + ffr[(f
2 − 1)+]r

+ (n− 1)rn−3f2(f2 − 1)+] dr +
1

εp

∫ 1

Γ

rn−1f2(f2 − 1)2+ dr

+
1

εp

∫ Γ

0

rn−1f4(f2 − 1)+ dr = 0

from which it follows that

1

εp

∫ 1

Γ

rn−1f2(f2 − 1)2+ dr +
1

εp

∫ Γ

0

rn−1f4(f2 − 1)+ dr = 0

Thus f = 0 or (f2 − 1)+ = 0 on [0, 1] and hence f = fε ≤ 1 on [0,1].
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Proposition 2.5. Assume uε is a weak radial solution of (2.1)(2.2). Then there
exist positive constants C1, ρ which are both independent of ε such that

(2.4) ‖∇uε(x)‖L∞(B(x,ρε/8)) ≤ C1ε
−1, if x ∈ B(0, 1 − ρε),

(2.5) |uε(x)| ≥
10

11
, if x ∈ B1 \B(0, 1 − 2ρε).

Proof. Let y = xε−1 in (2.1) and denote v(y) = u(x), Bε = B(0, ε−1). Then

(2.6)

∫

Bε

|∇v|p−2∇v∇φdy =

∫

Bε\B(0,Γε−1)

v(1 − |v|2)φdy −
∫

B(0,Γε−1)

vφ|v|2dy

∀φ ∈W 1,p
0 (Bε, R

n). This implies that v(y) is a weak solution of (2.6). By using the
standard discuss of the Holder continuity of weak solution of (2.6) on the boundary
(for example see Theorem 1.1 and Line 19-21 of Page 104 in [4]) we can see that
for any y0 ∈ ∂Bε and y ∈ B(y0, ρ0) (where ρ0 > 0 is a constant independent of ε),
there exist positive constants C = C(ρ0) and α ∈ (0, 1) which are both independent
of ε such that

|v(y) − v(y0)| ≤ C(ρ0)|y − y0|α.
Choose ρ > 0 sufficiently small such that

(2.7) y ∈ B(y0, 2ρ) ⊂ B(y0, ρ0), and C(ρ0)|y − y0|α ≤ 1

11
,

then

|v(y)| ≥ |v(y0)| − C(ρ0)|y − y0|α = 1 − C(ρ0)|y − y0|α ≥ 10

11
.

Let x = yε. Thus

|uε(x)| ≥
10

11
, if x ∈ B(x0, 2ρε)

where x0 ∈ ∂B1. This implies (2.5).
Taking φ = vζp, ζ ∈ C∞

0 (Bε, R) in (2.6), we obtain
∫

Bε

|∇v|pζpdy ≤ p

∫

Bε

|∇v|p−1ζp−1|∇ζ||v|dy +

∫

Bε\B(0,Γε−1)

|v|2(1 − |v|2)ζpdy

+

∫

B(0,Γε−1)

|v4|ζpdy.

For the ρ in (2.7), setting y ∈ B(0, ε−1 − ρ), B(y, ρ/2) ⊂ Bε, and

ζ = 1 in B(y, ρ/4), ζ = 0 in Bε \B(y, ρ/2), |∇ζ| ≤ C(ρ),

we have
∫

B(y,ρ/2)

|∇v|pζp ≤ C(ρ)

∫

B(y,ρ/2)

|∇v|p−1ζp−1 + C(ρ).

Using Holder inequality we can derive
∫

B(y,ρ/4)
|∇v|p ≤ C(ρ). Combining this with

the Tolksdroff’ theorem in [19] (Page 244 Line 19-23) yields

‖∇v‖p
L∞(B(y,ρ/8)) ≤ C(ρ)

∫

B(y,ρ/4)

(1 + |∇v|)p ≤ C(ρ)

which implies
‖∇u‖L∞(B(x,ερ/8)) ≤ C(ρ)ε−1.
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Proposition 2.6. Let uε be a radial minimizer of Eε(u,B1). Then

(2.8) Eε(uε, B1) ≤ Cεn−p + C,

with a constant C independent of ε ∈ (0, 1).

Proof. Denote

I(ε,R) = Min{
∫

B(0,R)

[
1

p
|∇u|p +

1

εp
(1 − |u|2)2];u ∈WR},

where WR = {u(x) = f(r) x
|x| ∈ W 1,p(B(0, R), Rn); r = |x|, f(R) = 1}. Then

I(ε, 1) = Eε(uε, B1)

(2.9)

=
1

p

∫

B1

|∇uε|pdx+
1

4εp

∫

B1\BΓ

(1 − |uε|2)2dx+
1

4εp

∫

BΓ

|uε|4dx

= εn−p[
1

p

∫

B(0,ε−1)

|∇uε|pdy +
1

4

∫

B(0,ε−1)\B(0,Γε−1)

(1 − |uε|2)2dy

+
1

4

∫

B(0,Γε−1)

|uε|4dy] = εn−pI(1, ε−1).

Let u1 be a solution of I(1, 1) and define

u2 = u1, if 0 < |x| < 1; u2 =
x

|x| , if 1 ≤ |x| ≤ ε−1.

Thus u2 ∈ Wε−1 and,

I(1, ε−1)

≤ 1

p

∫

B(0,ε−1)

|∇u2|p +
1

4

∫

B(0,ε−1)\B(0,Γε−1)

(1 − |u2|2)2 +
1

4

∫

B(0,Γε−1)

|uε|4

=
1

p

∫

B1

|∇u1|p +
1

4

∫

B1

(1 − |u1|2)2 +
1

4

∫

B1

|u1|4dx+
1

p

∫

B(0,ε−1)\B1

|∇ x

|x| |
p

= I(1, 1) +
(n− 1)p/2|Sn−1|

p

∫ ε−1

1

rn−p−1dr

= I(1, 1) +
(n− 1)p/2|Sn−1|

p(p− n)
(1 − εp−n) ≤ C.

Substituting this into (2.9) yields (2.8).

§3. Proof of Theorem 1.1

Proposition 3.1. Let uε be a radial minimizer of Eε(u,B1). Then for some con-
stant C independent of ε ∈ (0, 1]

(3.1)
1

εn

∫

B1\BΓ

(1 − |uε|2)2 +
1

εn

∫

BΓ

|uε|4 ≤ C.

Proof. (3.1) can be derived by multiplying (2.8) by εp−n.
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Proposition 3.2. Let uε be a radial minimizer of Eε(u,B1). Then for any η ∈
(0, 1/2), there exist positive constants λ, µ independent of ε ∈ (0, 1) such that if

(3.2)
1

εn

∫

AΓ,1−ρε∩B2lε

(1 − |uε|2)2 ≤ µ,

where AΓ,1−ρε = B(0, 1− ρε) \BΓ, B2lε is some ball of radius 2lε with l ≥ λ, then

(3.3) |uε(x)| ≥ 1 − η, ∀x ∈ AΓ,1−ρε ∩ Blε.

Proof. First we observe that there exists a constant C2 > 0 which is independent of ε
such that for any x ∈ B1 and 0 < ρ ≤ 1, |B1∩B(x, r)| ≥ |AΓ,1−ρε∩B(x, r)| ≥ C2r

n.
To prove the proposition, we choose

(3.4) λ =
η

2C1
, µ =

C2

Cn
1

(
η

2
)n+2,

where C1 is the constant in (2.4). Suppose that there is a point x0 ∈ AΓ,1−ρε ∩Blε

such that |uε(x0)| < 1 − η. Then applying (2.4) we have

|uε(x) − uε(x0)| ≤ C1ε
−1|x− x0| ≤ C1ε

−1(λε)

= C1λ =
η

2
, ∀x ∈ B(x0, λε),

hence (1 − |uε(x)|2)2 > η2

4 , ∀x ∈ B(x0, λε). Thus

∫

B(x0,λε)∩AΓ,1−ρε

(1 − |uε|2)2 >
η2

4
|AΓ,1−ρε ∩ B(x0, λε)|

(3.5)

≥ C2
η2

4
(λε)n = C2

η2

4
(
η

2C1
)nεn = µεn.

Since x0 ∈ Blε ∩ B1, and (B(x0, λε) ∩ AΓ,1−ρε) ⊂ (B2lε ∩ AΓ,1−ρε), (3.5) implies
∫

B2lε∩AΓ,1−ρε

(1 − |uε|2)2 > µεn,

which contradicts (3.2) and thus (3.3) is proved.

Let uε be a radial minimizer of Eε(u,B1). Given η ∈ (0, 1/2). Let λ, µ be
constants in Proposition 3.2 corresponding to η. If

(3.6)
1

εn

∫

B(xε,2λε)∩AΓ,1−ρε

(1 − |uε|2)2 ≤ µ,

then B(xε, λε) is called η− good ball, or simply good ball. Otherwise it is called
η− bad ball or simply bad ball.

Now suppose that {B(xε
i , λε), i ∈ I} is a family of balls satisfying

(i) : xε
i ∈ AΓ,1−ρε, i ∈ I ; (ii) : AΓ,1−ρε ⊂ ∪i∈IB(xε

i , λε);

(3.7) (iii) : B(xε
i , λε/4) ∩B(xε

j , λε/4) = ∅, i 6= j.

Denote Jε = {i ∈ I ;B(xε
i , λε) is a bad ball}.
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Proposition 3.3. There exists a positive integer N such that the number of bad
balls

Card Jε ≤ N.

Proof. Since (3.7) implies that every point in B1 can be covered by finite, say m
(independent of ε) balls, from (3.1)(3.6) and the definition of bad balls,we have

µεnCardJε ≤
∑

i∈Jε

∫

B(xε
i ,2λε)∩AΓ,1−ρε

(1 − |uε|2)2

≤ m

∫

∪i∈Jε B(xε
i ,2λε)∩AΓ,1−ρε

(1 − |uε|2)2

≤ m

∫

B1\BΓ

(1 − |uε|2)2 ≤ mCεn

and hence Card Jε ≤ mC
µ ≤ N .

Proposition 3.3 is an important result since the number of bad balls CardJε is
always finite as ε turns sufficiently small.

Similar to the argument of Theorem IV.1 in [1], we have

Proposition 3.4. There exist a subset J ⊂ Jε and a constant h ≥ λ such that
∪i∈JεB(xε

i , λε) ⊂ ∪i∈JB(xε
j , hε) and

(3.8) |xε
i − xε

j | > 8hε, i, j ∈ J, i 6= j.

Proof. If there are two points x1, x2 such that (3.8) is not true with h = λ, we take
h1 = 9λ and J1 = Jε \ {1}. In this case, if (3.8) holds we are done. Otherwise
we continue to choose a pair points x3, x4 which does not satisfy (3.8) and take
h2 = 9h1 and J2 = Jε \ {1, 3}. After at most N steps we may choose λ ≤ h ≤ λ9N

and conclude this proposition.

Applying Proposition 3.4, we may modify the family of bad balls such that the
new one, denoted by {B(xε

i , hε); i ∈ J}, satisfies

∪i∈JεB(xε
i , λε) ⊂ ∪i∈JB(xε

i , hε), Card J ≤ Card Jε,

|xε
i − xε

j | > 8hε, i, j ∈ J, i 6= j.

The last condition implies that every two balls in the new family are not intersected.
Now we prove our main result of this section.

Theorem 3.5. Let uε be a radial minimizer of Eε(u,B1). Then for any η ∈
(0, 1/2), there exists a constant h = h(η) independent of ε ∈ (0, 1) such that Zε =
{x ∈ B1; |uε(x)| < 1−η} ⊂ B(0, hε)∪BΓ. In particular the zeros of uε are contained
in B(0, hε) ∪ BΓ.

Proof. Suppose there exists a point x0 ∈ Zε such that x0∈B(0, hε). Then all points
on the circle S0 = {x ∈ B1; |x| = |x0|} satisfy |uε(x)| < 1 − η and hence by virtue
of Proposition 3.2 and (2.5), all points on S0 are contained in bad balls. However,
since |x0| ≥ hε, S0 can not be covered by a single bad ball. S0 can be covered by
at least two bad balls. However this is impossible. Theorem is proved.
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Complete the proof of Theorem 1.1.. Using Theorem 3.5 and (2.5), we can
see that |uε(x)| ≥ min( 10

11 , 1 − 2η), x∈B(0, h(η)ε) ∪ BΓ. When Γ ∈ (0, hε], this
means

(3.9) |uε(x)| ≥ min(
10

11
, 1 − 2η), x∈B(0, h(η)ε).

When Γ ∈ (hε, ε], from Theorem 3.5 we know that |uε| ≥ 1 − η on B1 \ BΓ.
Moreover, similar to the proof of Proposition 3.2, we may still obtain: for any given
η ∈ (0, 1/2), there are λ = η

2C1
, µ2 = C2λ

n(η
2 )n+2, such that if for l > λ,

(3.10)
1

εn

∫

BΓ∩B2lε

|uε|4 ≤ µ2

holds, then |uε(x)| ≤ η, ∀x ∈ BΓ ∩ Blε. We will take (3.10) as the ruler which
distinguishes the good and the bad balls. The ball B(xε, λε) satisfying

1

ε2

∫

BΓ∩B(xε,2λε)

|uε|4 ≤ µ2

is named the bad ball in BΓ. Otherwise, the ball B(xε, λε) is named the good ball
in BΓ. Similar to the proof of Proposition 3.3, from proposition 3.1 we may also
conclude that the number of the good balls is finite. Moreover, by the same way to
the proof of Theorem 3.5, we obtain that

(3.11) {x ∈ BΓ; |uε(x)| > η} ⊂ Bhε and |uε(x)| ≤ η as x ∈ BΓ \Bhε.

§4. Uniform estimate

Let uε(x) = fε(r)
x
|x| be a radial minimizer of Eε(u,B1), namely fε be a minimizer

of Eε(f) in V . From Proposition 2.6, we have

(4.1) Eε(fε) ≤ Cεn−p.

for some constant C independent of ε ∈ (0, 1).
In this section we further prove that for any given R ∈ (0, 1), there exists a

constant C(R) such that

(4.2) Eε(fε;R) ≤ C(R)

for ε ∈ (0, ε0) with ε0 > 0 sufficiently small, where

Eε(f ;R) =
1

p

∫ 1

R

(f2
r + (n− 1)r−2f2)p/2rn−1 dr +

1

4εp

∫ 1

R

(1 − f2)2rn−1 dr.

Proposition 4.1. Given T ∈ (0, 1). There exist constants Tj ∈ [ (j−1)T
N+1 , jT

N+1 ],

(N = [p]) and Cj , such that

(4.3) Eε(fε;Tj) ≤ Cjε
j−p

for j = n, n+ 1, ..., N , where ε ∈ (0, ε0) with ε0 sufficiently small.
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Proof. For j = n, the inequality (4.3) can be obtained by (4.1) easily. Suppose that
(4.3) holds for all j ≤ m. Then we have, in particular,

(4.4) Eε(fε;Tm) ≤ Cmε
m−p.

If m = N then we have done. Suppose m < N , we want to prove (4.3) for j = m+1.
From (4.4) and integral mean value theorem, we can see that there exists Tm+1 ∈

[ mT
N+1 ,

(m+1)T
N+1 ] such that

(4.5)
1

εp
(1 − f2

ε )2|r=Tm+1 ≤ CEε(uε, ∂B(0, Tm+1)) ≤ Cmε
m−p.

Consider the minimizer ρ1 of the functional

E(ρ, Tm+1) =
1

p

∫ 1

Tm+1

(ρ2
r + 1)p/2dr +

1

2εp

∫ 1

Tm+1

(1 − ρ)2dr

It is easy to prove that the minimizer ρε of E(ρ, Tm+1) on W 1,p
fε

((Tm+1, 1), R+)
exists and satisfies

(4.6) −εp(v(p−2)/2ρr)r = 1 − ρ, in (Tm+1, 1),

(4.7) ρ|r=Tm+1 = fε, ρ|r=1 = fε(1) = 1

where v = ρ2
r + 1. Since fε ≤ 1, it follows from the maximum principle

(4.8) ρε ≤ 1.

Applying (4.1) we see easily that

(4.9) E(ρε;Tm+1) ≤ E(fε;Tm+1) ≤ CEε(fε;Tm+1) ≤ Cεm−p.

Now choosing a smooth function 0 ≤ ζ(r) ≤ 1 in (0,1] such that ζ = 1 on
(0, Tm+1), ζ = 0 near r = 1 and |ζr| ≤ C(Tm+1), multiplying (4.6) by ζρr(ρ = ρε)
and integrating over (Tm+1, 1) we obtain
(4.10)

v(p−2)/2ρ2
r |r=Tm+1 +

∫ 1

Tm+1

v(p−2)/2ρr(ζrρr + ζρrr) dr =
1

εp

∫ 1

Tm+1

(1 − ρ)ζρr dr.

Using (4.9) we have

|
∫ 1

Tm+1

v(p−2)/2ρr(ζrρr + ζρrr) dr|

(4.11)

≤
∫ 1

Tm+1

v(p−2)/2|ζr |ρ2
r dr +

1

p
|
∫ 1

Tm+1

(vp/2ζ)r dr −
∫ 1

Tm+1

vp/2ζr dr|

≤ C

∫ 1

Tm+1

vp/2 +
1

p
vp/2|r=Tm+1 +

C

p

∫ 1

Tm+1

vp/2dr

≤ Cεm−p +
1

p
vp/2|r=Tm+1
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and using (4.5)(4.7)(4.9) we have

| 1

εp

∫ 1

Tm+1

(1 − ρ)ζρr dr| =
1

2εp
|
∫ 1

Tm+1

((1 − ρ)2ζ)r dr −
∫ 1

Tm+1

(1 − ρ)2ζr dr|

(4.12)

≤ 1

2εp
(1 − ρ)2|r=Tm+1 +

C

2εp

∫ 1

Tm+1

(1 − ρ)2 dr| ≤ Cεm−p.

Combining (4.10) with (4.11)(4.12) yields

v(p−2)/2ρ2
r|r=Tm+1 ≤ Cεm−p +

1

p
vp/2|r=Tm+1 .

Hence for any δ ∈ (0, 1),

vp/2|r=Tm+1 = v(p−2)/2(ρ2
r + 1)|r=Tm+1 = v(p−2)/2ρ2

r|r=Tm+1 + v(p−2)/2|r=Tm+1

≤ Cεm−p +
1

p
vp/2|r=Tm+1 + v(p−2)/2|r=Tm+1

= Cεm−p + (
1

p
+ δ)vp/2|r=Tm+1 + C(δ)

from which it follows by choosing δ > 0 small enough that

(4.13) vp/2|r=Tm+1 ≤ Cεm−p.

Now we multiply both sides of (4.6) by ρ− 1 and integrate. Then

−εp

∫ 1

Tm+1

[v(p−2)/2ρr(ρ− 1)]r dr + εp

∫ 1

Tm+1

v(p−2)/2ρ2
r dr +

∫ 1

Tm+1

(ρ− 1)2 dr = 0.

From this, using(4.5)(4.7)(4.13), we obtain

E(ρε;Tm+1) ≤ C|
∫ 1

Tm+1

[v(p−2)/2ρr(ρ− 1)]r dr|(4.14)

= Cv(p−2)/2|ρr||ρ− 1|r=Tm+1 ≤ Cv(p−1)/2|ρ− 1|r=Tm+1

≤ (Cεm−p)(p−1)/p(Cεm)1/2 ≤ Cεm−p+1.

Define wε = fε, for r ∈ (0, Tm+1); wε = ρε, for r ∈ [Tm+1, 1]. Since that fε

is a minimizer of Eε(f), we have Eε(fε) ≤ Eε(wε). Thus, it follows that

Eε(fε;Tm+1) ≤
1

n

∫ 1

Tm+1

(ρ2
r + (n− 1)r−2ρ2)p/2rn−1 dr+

1

4εp

∫ 1

Tm+1

(1− ρ2)2rn−1 dr

by virtue of Γ ≤ ε < Tm+1 since ε is sufficiently small. Noticing that
∫ 1

Tm+1

(ρ2
r + (n− 1)r−2ρ2)p/2rn−1dr −

∫ 1

Tm+1

((n− 1)r2ρ2)p/2rn−1dr

=
p

2

∫ 1

Tm+1

∫ 1

0

[ρ2
r + (n− 1)r−2ρ2)s+ (n− 1)r−2ρ2(1 − s)](p−2)/2dsρ2

rr
n−1dr

≤ C

∫ 1

Tm+1

(ρ2
r + (n− 1)r−2ρ2)(p−2)/2ρ2

rr
n−1dr

+ C

∫ 1

Tm+1

((n− 1)r−2ρ2)(p−2)/2ρ2
rr

n−1dr

≤ C

∫ 1

Tm+1

(ρp
r + ρ2

r)dr
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and using (4.8) we obtain

Eε(fε;Tm+1)

≤ 1

p

∫ 1

Tm+1

((n− 1)r−2ρ2)p/2rn−1 dr + C

∫ 1

Tm+1

(ρp
r + ρ2

r)dr

+
C

4εp

∫ 1

Tm+1

(1 − ρ2)2dr

≤ 1

p

∫ 1

Tm+1

((n− 1)r−2)p/2rn−1 dr + CE(ρε;Tm+1).

Combining this with (4.14) yields (4.3) for j = m+1. It is just (4.3) for j = m+1.

Proposition 4.2. Given T ∈ (0, 1). There exist constants TN+1 ∈ [ NT
N+1 , T ] and

CN+1 such that

Eε(uε;TN+1) ≤ (n− 1)p/2 |Sn−1|
p

∫ 1

TN+1

rn−p−1dr

+ CN+1ε
N+1−p, N = [p].

Proof. From (4.3) we can see Eε(uε;TN) ≤ CεN−p. Hence by using integral mean
value theorem we know that there exists TN+1 ∈ [ NT

N+1 , T ] such that

(4.15)
1

p

∫

∂B(0,TN+1)

|∇uε|pdx+
1

4εp

∫

∂B(0,TN+1)

(1 − |uε|2)2dx ≤ CεN−p.

Denote ρ2 is a minimizer of the functional

E(ρ, TN+1) =
1

p

∫ 1

TN+1

(ρ2
r + 1)p/2dr +

1

2εp

∫ 1

TN+1

(1 − ρ)2dr

on W 1,p
fε

((TN+1, 1), R+ ∪ {0}). It is not difficult to prove by maximum principle
that

(4.16) ρ2 ≤ 1.

By the same way of the derivation of (4.14), from (4.3) and (4.15) it can be con-
cluded that

(4.17) E(ρ2, TN+1) ≤ C(TN+1)ε
N+1−p.

Noticing that uε is a minimizer and ρ2
x
|x| ∈W2, we also have

Eε(fε;TN+1) ≤ Eε(ρ2;TN+1)

(4.18)

≤ 1

p

∫ 1

TN+1

[ρ2
2r + ρ2

2(n− 1)r−2]p/2rn−1dr +
1

2εp

∫ 1

TN+1

(1 − ρ2)
2dr.
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On the other hand,

∫ 1

TN+1

[ρ2
r + (n− 1)r−2ρ2]p/2rn−1dr −

∫ 1

TN+1

[(n− 1)r−2ρ2]p/2rn−1dr

=
p

2

∫ 1

TN+1

∫ 1

0

[ρ2
r + (n− 1)r−2ρ2](p−2)/2s+ (n− 1)r−2ρ2(1 − s)dsρ2

rr
n−1dr

≤ C

∫ 1

TN+1

[ρ2
r + (n− 1)r−2ρ2](p−2)/2ρ2

rr
n−1dr

+ C

∫ 1

TN+1

[(n− 1)r−2ρ2](p−2)/2ρ2
rr

n−1dr ≤ C

∫ 1

TN+1

[ρp
r + ρ2

r]dr.

Substituting this into (4.18), we have

Eε(fε;TN+1)

≤ 1

p

∫ 1

TN+1

(n− 1)p/2ρp
2r

n−p−1dr + C

∫

TN+1

(ρp
2r + ρ2

2r)dr

+
1

2εp

∫ 1

TN+1

(1 − ρ2)
2dr

≤ 1

p

∫ 1

TN+1

(n− 1)p/2ρp
2r

n−p−1dr + CεN+1−p

≤ 1

p
(n− 1)p/2

∫ 1

TN+1

rn−p−1dr + CεN+1−p,

by using (4.16) and (4.17). This is the conclusion of Proposition.

§5. W 1,p convergence

Based on the Proposition 4.2, we may obtain better convergence for radial min-
imizers.

Theorem 5.1. Let uε = fε(r)
x
|x| be a radial minimizer of Eε(u,B1). Then

(5.1) lim
ε→0

uε =
x

|x| , in W 1,p(K,Rn)

for any compact subset K ⊂ B1 \ {0}.
Proof. Without loss of generality, we may assume K = B1 \ B(0, TN+1). From
Proposition 4.2, we have

(5.2) Eε(uε,K) = |Sn−1|Eε(fε;TN+1) ≤ C

where C is independent of ε. This and |uε| ≤ 1 imply the existence of a subsequence
uεk

of uε and a function u∗ ∈W 1,p(K,Rn), such that

(5.3) lim
εk→0

uεk
= u∗, weakly in W 1,p(K,Rn),
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(5.4) lim
εk→0

|uεk
| = 1, in Cα(K,R), α ∈ (0, 1 − n/p).

(5.4) implies u∗ = x
|x| . Noticing that any subsequence of uε has a convergence

subsequence and the limit is always x
|x| , we can assert

(5.5) lim
ε→0

uε =
x

|x| , weakly in W 1,p(K,Rn).

From this and the weakly lower semicontinuity of
∫

K |∇u|p, using Proposition 4.2,
we know that

∫

K

|∇ x

|x| |
p ≤ limεk→0

∫

K

|∇uε|p ≤ limεk→0

∫

K

|∇uε|p

≤ Cε[p]+1−p + |Sn−1|
∫ 1

TN+1

((n− 1)r−2)p/2rn−1 dr

and hence

lim
ε→0

∫

K

|∇uε|p =

∫

K

|∇ x

|x| |
p

since
∫

K

|∇ x

|x| |
p = |Sn−1|

∫ 1

TN+1

((n− 1)r−2)p/2rn−1 dr.

Combining this with (5.4)(5.5) completes the proof of (5.1).

From (3.5) we also see that the zeroes of the radial minimizer uε(x) = fε(r)
x
|x|

are in BR for given R > 0 if ε is small enough.

§6 Uniqueness and regularized property

Theorem 6.1. For any given ε ∈ (0, 1), the radial minimizers of Eε(u,B1) are
unique on W .

Proof. Fix ε ∈ (0, 1). Suppose u1(x) = f1(r)
x
|x| and u2(x) = f2(r)

x
|x| are both

radial minimizers of Eε(u,B1) on W , then they are both weak radial solutions of
(2.1) (2.2). Thus

∫

B1

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)∇φdx

=
1

εp

∫

B1\BΓ

[(u1 − u2) − (u1|u1|2 − u2|u2|2)]φdx

− 1

εp

∫

BΓ

(u1|u1|2 − u2|u2|2)φdx.

Set φ = u1 − u2 = (f1 − f2)
x
|x| . Take η sufficiently small such that h < 1.
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Case 1. When Γ ≤ hε, we have

∫

B1

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)∇(u1 − u2)dx

(6.1)

=
1

εp

∫

B1

(f1 − f2)
2dx− 1

εp

∫

B1

(f1 − f2)
2(f2

1 + f2
2 + f1f2)dx

=
1

εp

∫

B1\B(0,hε)

(f1 − f2)
2[1 − (f2

1 + f2
2 + f1f2)]dx

+
1

εp

∫

B(0,hε)

(f1 − f2)
2dx− 1

εp

∫

B(0,hε)

(f1 − f2)
2(f2

1 + f2
2 + f1f2)dx.

Letting η < 1
2 − 1

2
√

2
in (3.9), we have f1, f2 ≥ 1/

√
2 on B1 \ B(0, hε) for any

given ε ∈ (0, 1). Hence

∫

B1

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)∇(u1 − u2)dx ≤ 1

εp

∫

B(0,hε)

(f1 − f2)
2dx.

Applying (2.11) of [19], we can see that there exists a positive constant γ inde-
pendent of ε and h such that

(6.2) γ

∫

B1

|∇(u1 − u2)|2dx ≤ 1

εp

∫

B(0,hε)

(f1 − f2)
2dx,

which implies

(6.3)

∫

B1

|∇(f1 − f2)|2dx ≤ 1

γεp

∫

B(0,hε)

(f1 − f2)
2dx.

Denote G = B(0, hε). Applying Theorem 2.1 in Ch II of [16], we have ‖f‖ 2n
n−2

≤
β‖∇f‖2 as n > 2, where β = 2(n−1)

n−2 . Taking f = f1 − f2 and applying (6.3), we

obtain f(|x|) = 0 as x ∈ ∂B1 and

[

∫

B1

|f | 2n
n−2 dx]

n−2
n ≤ β2

∫

B1

|∇f |2dx ≤ β2γ−1

∫

G

|f |2dxε−p.

Using Holder inequality, we derive

∫

G

|f |2dx ≤ |G|1− n−2
n [

∫

G

|f | 2n
n−2 dx]

n−2
n ≤ |B1|1−

n−2
n h2ε2−pβ

2

γ

∫

G

|f |2dx.

Hence for any given ε ∈ (0, 1),

(6.4)

∫

G

|f |2dx ≤ C(β, |B1|, γ, ε)h2

∫

G

|f |2dx.

Denote F (η) =
∫

B(0,h(η)ε)
|f |2dx, then F (η) ≥ 0 and (6.4) implies that

(6.5) F (η)(1 − C(β, |B1|, γ, ε)h2) ≤ 0.
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On the other hand, since C(β, |B1|, γ, ε) is independent of η, we may take 0 < η <
1
2 − 1

2
√

2
so small that h = h(η) ≤ λ9N = 9N η

2C1
(which is implied by (3.4)) satisfies

1 < C(β, |B1|, γ, ε)h2 for the fixed ε ∈ (0, 1), which and (6.5) imply that F (η) = 0.
Namely f = 0 a.e. on G, or f1 = f2, a.e. on B(0, hε). Substituting this into (6.2),
we know that u1 − u2 = C a.e. on B1. Noticing the continuity of u1, u2 which is
implied by Proposition 2.1, and u1 = u2 = x on ∂B1, we can see at last that

u1 = u2, on B1.

When n = 2, using

(6.6) ‖f‖6 ≤ β‖∇f‖3/2

which implied by Theorem 2.1 in Ch II of [16], and by the same argument above
we can also derive u1 = u2 on B1.

Case 2. When hε < Γ ≤ ε. Similar to (6.1), by taking η < 1
2 − 1√

2
and using

(3.11) we get

∫

B1

|∇(f1 − f2)|pdx ≤
∫

B1

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)∇(u1 − u2)dx

(6.7)

≤ 1

εp

∫

B1\BΓ

(f1 − f2)
2[1 − (f2

1 + f2
2 + f1f2)]dx

+ C(ε)η2

∫

BΓ\Bhε

(f1 − f2)
2dx + C(ε)

∫

B(0,hε)

(f1 − f2)
2dx

≤ C(ε)η2

∫

BΓ\Bhε

(f1 − f2)
2dx+ C(ε)

∫

B(0,hε)

(f1 − f2)
2dx.

Substituting

η2C(ε)

∫

BΓ\Bhε

(f1 − f2)
2dx ≤ Cη2

∫

B1

(f1 − f2)
2dx

≤ Cη2(

∫

B1

(f1 − f2)
6dx)1/3 ≤ Cη2

∫

B1

|∇(f1 − f2)|2dx

(which implied by (6.6)) into (6.7) and choosing η sufficiently small, we have

∫

B1

|∇(f1 − f2)|2dx ≤ C

∫

Bhε

(f1 − f2)
2dx,

this is (6.3). The other part of the proof is as same as the Case 1. The theorem is
proved.

In the following, we will prove that the radial minimizer uε can be obtained as the
limit of a subsequence uτk

ε of the radial minimizer uτ
ε of the regularized functionals

Eτ
ε (u,B1) =

1

p

∫

B1

(|∇u|2 + τ)p/2 +
1

4εp

∫

B1\Γ
(1 − |u|2)2 +

1

4εp

∫

Γ

|u|4, (τ > 0)

on W as τk → 0, namely
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Theorem 6.2. Assume that uτ
ε be the radial minimizer of Eτ

ε (u,B1) in W . Then
there exist a subsequence uτk

ε of uτ
ε and ũε ∈ W such that

(6.8) lim
τk→0

uτk
ε = ũε, in W 1,p(B1, R

n).

Here ũε is just the radial minimizer of Eε(u,B1) in W .

It is not difficult to proof that the minimizer uτ
ε is a classical solution of the

equation

(6.9) −div(v(p−2)/2∇u) =
1

εp
u(1 − |u|2), on B1 \BΓ;

−div(v(p−2)/2∇u) =
1

εp
u|u|2, on BΓ

and also satisfies the maximum principle: |uτ
ε | ≤ 1 on B1, where v = |∇u|2 + τ . By

virtue of the uniqueness of the radial minimizer, we know ũε = uε. Thus the radial
minimizer uε can be regularized by the radial minimizer uτ

ε of Eτ
ε (u,B1).

Proof of Theorem 6.2.. First, from (2.8) we have

(6.10) Eτ
ε (uτ

ε , B1) ≤ Eτ
ε (uε, B1) ≤ CEε(uε, B1) ≤ Cε2−p

as τ ∈ (0, 1), where C does not depend on ε and τ . This and |uτ
ε | ≤ 1 imply that

‖uτ
ε‖W 1,p(B1) ≤ C(ε). Applying the embedding theorem we see that there exist a

subsequence uτk
ε of uτ

ε and ũε ∈ W 1,p(B1, R
n) such that

(6.11) uτk
ε → ũε, weakly in W 1,p(B1, R

n),

(6.12) uτk
ε −→ ũε, in C(B1, R

n), ,

as τk → 0. Since (6.11) and the weakly low semicontinuity of the functional
∫

B1
|∇u|p, we obtain

(6.13)

∫

B1

|∇ũε|p ≤ limτk→0

∫

B1

|∇uτk
ε |p.

From (6.12) it follows ũε ∈W . This means Eτk
ε (uτk

ε , B1) ≤ Eτk
ε (ũε, B1), i.e.,

(6.14) limτk→0E
τk
ε (uτk

ε , B1) ≤ lim
τk→0

Eτk
ε (ũε, B1).

We can also deduce
∫

B1\Γ
(1 − |uτk

ε |2)2 +

∫

Γ

|uτk
ε |4 →

∫

B1\Γ
(1 − |ũε|2)2 +

∫

Γ

|ũε|4

from (6.12) as τk → 0. This and (6.14) show

limτk→0

∫

B1

(|∇uτk
ε |2 + τk)p/2 ≤ lim

τk→0

∫

B1

(|∇ũε|2 + τk)p/2 =

∫

B1

|∇ũε|p.

Combining this with (6.13) we obtain
∫

B1
|∇uτk

ε |p →
∫

B1
|∇ũε|p as τk → 0, which

together with (6.11) implies ∇uτk
ε → ∇ũε, in L

p(B1, R
n). Noticing (6.12) we have

the conclusion uτk
ε → ũε, in W

1,p(B1, R
n) as τk → 0. This is (6.8).

On the other hand, we know

(6.15) Eτk
ε (uτk

ε , B1) ≤ Eτk
ε (u,B1)

for all u ∈ W . Noticing the conclusion limτk→0E
τk
ε (uτk

ε , B1) = Eε(ũε, B1) which
had been proved just now we can say Eε(ũε, B1) ≤ Eε(u,B1) when τk → 0 in
(6.15), which implies ũε be a minimizer of Eε(u,B1).
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§7. Proofs of (1.2)

Proposition 7.1. Assume uτ
ε = u = f(r) x

|x| . Then there exists C > 0 which is

independent of ε, τ such that

‖f‖C1,α(K,R) ≤ C, ∀α ≤ 1/2,

where K ⊂ (0, 1) is an arbitrary closed interval.

Proof. From (6.9) it follows that f solves

− (A(p−2)/2fr)r − (n− 1)r−1A(p−2)/2fr + r−2A(p−2)/2f(7.1)

=
1

εp
f(1 − f2), on (Γ, 1)

where A = f2
r + (n − 1)r−2f2 + τ . Take R > 0 sufficiently small such that K ⊂⊂

(2R, 1 − 2R). Let ζ ∈ C∞
0 ([0, 1], [0, 1]) be a function satisfying ζ = 0 on [0, R] ∪

[1 − R, 1], ζ = 1 on [2R, 1 − 2R] and |∇ζ| ≤ C(R) on (0, 1). Differentiating (7.1),
multiplying with frζ

2 and integrating, we have

−
∫ 1

0

(A(p−2)/2fr)rr(frζ
2)dr − (n− 1)

∫ 1

0

(r−1A(p−2)/2fr)r(frζ
2)dr

+

∫ 1

0

(r−2A(p−2)/2f)r(frζ
2)dr =

1

εp

∫ 1

0

[f(1 − f2)]r(frζ
2)dr.

Integrating by parts yields

∫ 1

0

(A(p−2)/2fr)r(frζ
2)rdr +

∫ 1

0

A(p−2)/2(frζ
2)r[(n− 1)r−1fr

− r−2f ]dr ≤ 1

εp

∫ 1

0

(1 − f2)f2
r ζ

2dr.

Denote I =
∫ 1−R

R ζ2(A(p−2)/2f2
rr + (p− 2)A(p−4)/2f2

r f
2
rr)dr, then for any δ ∈ (0, 1),

there holds

(7.2) I ≤ δI + C(δ)

∫ 1−R

R

Ap/2ζ2
r dr +

1

εp

∫ 1−R

R

f2
r (1 − f2)ζ2dr

by using Young inequality. From (7.1) we can see that

1

εp
(1 − f2) = f−1[−(A(p−2)/2fr)r − (n− 1)r−1A(p−2)/2fr + r−2A(p−2)/2f ].

Applying Young inequality again we obtain that for any δ ∈ (0, 1),

1

εp

∫ 1

0

(1 − f2)f2
r ζ

2dr ≤ δI + C(δ)

∫ 1−R

R

A(p+2)/2ζ2dr.

Substituting this into (7.2) and choosing δ sufficiently small, we have

(7.3) I ≤ C

∫ 1−R

R

Ap/2ζ2
rdr + C

∫ 1−R

R

A(p+2)/2ζ2dr.
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To estimate the second term of the right hand side of (7.3), we take φ = ζ2/qf
(p+2)/q
r

in the interpolation inequality (Ch II, Theorem 2.1 in [16])

‖φ‖Lq ≤ C‖φr‖1−1/q
L1 ‖φ‖1/q

L1 , q ∈ (1 +
2

p
, 2).

We derive by applying Young inequality that for any δ ∈ (0, 1),

∫ 1−R

R

fp+2
r ζ2dr ≤ C(

∫ 1−R

R

ζ2/q |fr|(p+2)/qdr)(7.4)

· (
∫ 1−R

R

ζ2/q−1|ζr||fr|(p+2)/q + ζ2/q |fr|(p+2)/q−1|frr|dr)q−1

≤ C(

∫ 1−R

R

ζ2/q |fr|(p+2)/qdr)(

∫ 1−R

R

ζ2/q−1|ζr ||fr|(p+2)/q

+ δI + C(δ)

∫ 1−R

R

A
p+2

q − p
2 ζ4/q−2dr)q−1.

We may claim

(7.5)

∫ 1−R

R

Ap/2dr ≤ C,

by the same argument of the proof of Proposition 4.2, where C is independent of
ε and τ . In fact, from (6.10) we may also derive (4.17). Noting uτ

ε is a radial
minimizer of Eτ

ε (u,B1), replacing (4.18) we obtain

Eτ
ε (fε

x

|x| ;B1 \B(0, TN+1)) ≤ CE(ρ2;TN+1)

≤ C

p
(n− 1)p/2

∫ 1

TN+1

rn−p−1dr + CεN+1−p.

This means that (7.5) holds.
Noting q ∈ (1 + 2

p , 2), we may using Holder inequality to the right hand side of

(7.4). Thus, by virtue of (7.5),

∫ 1−R

R

fp+2
r ζ2dr ≤ δI + C(δ).

Substituting this into (7.3) we obtain

∫ 1−R

R

A(p−2)/2f2
rrζ

2dr ≤ C,

which, together with (7.5), implies that ‖Ap/4ζ‖H1(R,1−R) ≤ C. Noticing ζ = 1 on

K, we have ‖Ap/4‖H1(K) ≤ C. Using embedding theorem we can see that for any

α ≤ 1/2, there holds ‖Ap/4‖Cα(K) ≤ C. It is not difficult to prove our proposition.
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Theorem 7.2. Let uε = fε(r)
x
|x| be a radial minimizer of Eε(u,B1). Then for any

compact subset K ⊂ B1 \ {0}, we have

lim
ε→0

uε =
x

|x| , in C1,β(K,Rn), β ∈ (0, 1)

Proof. For every compact subset K ⊂ B1 \ {0}, applying Proposition 7.1 yields
that for some β ∈ (0, 1/2] one has

(7.6) ‖uτ
ε‖C1,β(K) ≤ C = C(K),

where the constant does not depend on ε, τ .

Applying (7.6) and the embedding theorem we know that for any ε and some
β1 < β, there exist wε ∈ C1,β1(K,Rn) and a subsequence of τk of τ such that as
k → ∞,

(7.7) uτk
ε → wε, in C1,β1(K,Rn).

Combining this with (6.8) we know that wε = uε.

Applying (7.6) and the embedding theorem again we can see that for some
β2 < β, there exist w ∈ C1,β2(K,Rn) and a subsequence of τk which can be
denoted by τm such that as m→ ∞,

(7.8) uτm
εm

→ w, in C1,β2(K,Rn).

Denote γ = min(β1, β2). Then as m→ ∞, we have

‖uεm − w‖C1,β(K,Rn) ≤ ‖uεm − uτm
εm

‖C1,β(K,Rn)(7.9)

+ ‖uτm
εm

− w‖C1,β(K,Rn) ≤ o(1)

by applying (7.7) and (7.8). Noting (1.1) we know that w = x
|x| .

Noting the limit x
|x| is unique, we can see that the convergence (7.9) holds not

only for some subsquence but for all uε. Applying the uniqueness theorem (Theorem
6.1) of the radial minimizers, we know that the regularizable radial minimizer just
is the radial minimizer. Theorem is proved.

§8. Proof of Theorem 1.4

First (3.1) shows one rate that the minimizer fε converge to 1 as ε → 0. More-
over, proposition 4.2 implies that for any T > 0,

(8.1)
1

4εp

∫ 1

T

(1 − f2
ε )2rn−1dr ≤ C.

In the following we shall give other better estimates of the rate of the convergence
for the radial minimizer fε than (8.1).
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Theorem 8.1. Let uε(x) = fε(r)
x
|x| be the radial minimizer of Eε(u,B1). For

any T > 0, there exists a constant C > 0 which is independent of ε such that as ε
sufficiently small,

(8.2)

∫ 1

T

|f ′
ε|prn−1dr +

1

εp

∫ 1

T

(1 − f2
ε )2rn−1dr ≤ Cε[p]+1−p.

Here [p] is the integer number part of p. Moreover, as ε→ 0,

(8.3)
1

p

∫

B1\BT

|∇uε|p +
1

4εp

∫

B1\BT

(1 − |uε|2)2 → 1

p

∫

B1\BT (0)

|∇ x

|x| |
p.

Proof. By proposition 4.2 we have

(8.4) Eε(fε;BT ) ≤ 1

p

∫ 1

T

(n− 1)p/2rn−p−1dr + Cε2([p]+1−p)/p,

thus,

(8.5)

∫ 1

T

(1 − fε)
2dr ≤ C(T )εp,

for any T > 0. On the other hand, Jensen’s inequality implies

Eε(fε;BT ) ≥ 1

p

∫ 1

T

|f ′
ε|prn−1dr

+
1

p

∫ 1

T

((n− 1)
f2

ε

r2
)p/2rn−1dr +

1

4εp

∫ 1

T

(1 − f2
ε )2rn−1dr.

Combining this with (8.4) we have

1

p

∫ 1

T

((n− 1)
f2

ε

r2
)p/2rn−1dr ≤ Eε(fε;BT )(8.6)

≤ Cε2([p]+1−p)/p +
1

p

∫ 1

T

(n− 1)p/2rn−p−1dr.

Applying (8.5) and Hölder’s inequality we obtain
∫ 1

T

((n− 1)r−2)p/2rn−1dr −
∫ 1

T

((n− 1)r−2f2
ε )p/2rn−1dr

=

∫ 1

T

(n− 1)p/2rn−p−1(1 − fp
ε )dr ≤ C(T )

∫ 1

T

(1 − fε)dr

≤ C(

∫ 1

T

(1 − fε)
2dr)1/2 ≤ Cεp/2.

Substituting this into (8.6) we obtain

−Cεp/2 ≤ Eε(fε;BT )(8.7)

− 1

p

∫ 1

T

((n− 1)r−2)p/2rn−1dr ≤ Cε[p]+1−p.

Noticing
1

p

∫

B1\BT (0)

|∇ x

|x| |
p =

|Sn−1|
p

∫ 1

T

((n− 1)r−2)p/2rn−1dr,

from (8.7) we can see that both (8.2) and (8.3) hold.
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Theorem 8.2. Let uε(x) = fε(r)
x
|x| be the radial minimizer of Eε(u,B1) on W .

Then there exist C, ε0 > 0 such that as ε ∈ (0, ε0),

(8.8)

∫ 1

T

rn−1[(f ′
ε)

p +
1

εp
(1 − f2

ε )2]dr ≤ Cεp.

(8.9) sup
r∈[T,1]

(1 − fε(r)) ≤ Cεp−n
2 .

(8.8) gives the estimate of the rate of fε’s convergence to 1 in W 1,p[T, 1] sense,
and that in C0[T, 1] sense is showed by (8.9).

Proof. It follows from Jensen’s inequality that

Eε(fε;T ) =
1

p

∫ 1

T

[(f ′
ε)

2 +
(n− 1)

r2
f2

ε ]p/2rn−1dr

+
1

4εp

∫ 1

T

(1 − f2
ε )2rn−1dr

≥ 1

p

∫ 1

T

(f ′
ε)

prn−1dr +
1

4εp

∫ 1

T

(1 − f2
ε )2rn−1dr

+
1

p

∫ 1

T

[n− 1]p/2

rp
fp

ε r
n−1dr.

Combining this with Proposition 4.2 yields

1

p

∫ 1

T

(f ′
ε)

prn−1dr +
1

4εp

∫ 1

T

(1 − f2
ε )2rn−1dr

≤ 1

p

∫ 1

T

[n− 1]p/2

rp
(1 − fp

ε )rn−1dr + Cε[p]+1−p.

Noticing (8.1), we obtain

1

p

∫ 1

T

(f ′
ε)

prn−1dr +
1

4εp

∫ 1

T

(1 − f2
ε )2rn−1dr(8.10)

≤ C

∫ 1

T

[n− 1]p/2

rp
(1 − fε)r

n−1dr + Cε[p]+1−p

≤ Cεp/2 + Cε[p]+1−p ≤ Cε[p]+1−p.

Using Proposition 4.2 and (8.10), as well as the integral mean value theorem we
can see that there exists

T1 ∈ [T, T (1 + 1/2)] ⊂ [R/2, R]

such that

(8.11) [(fε)
2
r + (n− 1)r−2f2

ε ]r=T1 ≤ C1,
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(8.12) [
1

εp
(1 − f2

ε )2]r=T1 ≤ C1ε
[p]+1−p.

Consider the functional

E(ρ, T1) =
1

p

∫ 1

T1

(ρ2
r + 1)p/2dr +

1

2εp

∫ 1

T1

(1 − ρ)2dr.

It is easy to prove that the minimizer ρ3 of E(ρ, T1) in W 1,p
fε

((T1, 1), R+ ∪ {0})
exists.

By the same way to proof of (4.14), using (8.11) and (8.12) we have

E(ρ3, T1) ≤ v
p−2
2 ρ3r(1 − ρ3)|r=T1 ≤ C1(1 − ρ3(T1)) ≤ CεF [1],

where F [j] = [p]+1−p
2j + (2j−1)p

2j , j = 1, 2, · · · . Hence, similar to the proof of Propo-
sition 4.2, we obtain

Eε(fε;T1) ≤ CεF [1] +
1

p

∫ 1

T1

[n− 1]p/2

rp−1
dr.

Furthermore, similar to the derivation of (8.10), using (8.1) we may get

∫ 1

T1

(f ′
ε)

prn−1dr +
1

εp

∫ 1

T1

(1 − f2
ε )2rn−1dr ≤ CεF [1] + Cεp/2 ≤ C2ε

F [1].

Set Tm = R(1− 1
2m ). Proceeding in the way above (whose idea is improving the

exponents of ε from F [k] to F [k + 1] step by step), we can see that there exists
some m ∈ N satisfying F [m− 1] ≤ p

2 ≤ F [m] such that

∫ 1

Tm

(f ′
ε)

prdr +
1

εp

∫ 1

Tm

(1 − f2
ε )2rn−1dr(8.13)

≤ Cε
[p]+1−p

2m + (2m
−1)p

2m + Cεp/2 ≤ Cεp/2.

Similar to the derivation of (8.11) and (8.12), it is known that there exists Tm+1 ∈
[Tm, 3Tm/2] such that

(8.14) [(fε)
2
r + (n− 1)r−2f2

ε ]r=Tm+1 ≤ C,

(8.15) [
1

εp
(1 − f2

ε )2]r=Tm+1 ≤ Cεp/2.

The minimizer ρ4 of the functional

E(ρ, Tm+1) =
1

p

∫ 1

Tm+1

(ρ2
r + 1)p/2dr +

1

2εp

∫ 1

Tm+1

(1 − ρ)2dr

in W 1,p
fε

((T1, 1), R+) exists. By the same way to proof of (4.14), using (8.15) and

(8.14) we have

E(ρ4, Tm+1) ≤ v
p−2
2 ρ4r(1 − ρ3)|r=Tm+1 ≤ C(1 − ρ4(Tm+1)) ≤ CεG[1],
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where G[j] = p/2
2j + (2j−1)p

2j , j = m + 1,m + 2, · · · . By the argument of proof of
Proposition 4.2, we obtain

Eε(fε;Tm+1) ≤ CεG[1] +
1

p

∫ 1

Tm+1

[n− 1]p/2

rp−1
dr.

Furthermore, similar to the derivation of (8.10), using (8.13) we may get

∫ 1

Tm+1

(f ′
ε)

prn−1dr +
1

εp

∫ 1

Tm+1

(1 − f2
ε )2rn−1dr ≤ CεG[1].

Proceeding in the way above (whose idea is improving the exponents of ε from
G[k] to G[k + 1] step by step), we can see that for any k ∈ N ,

∫ 1

Tm+k

(f ′
ε)

prn−1dr +
1

εp

∫ 1

Tm+k

(1 − f2
ε )2rn−1dr ≤ Cε

p/2

2k + (2k
−1)p

2k .

Letting k → ∞, we derive

∫ 1

R

(f ′
ε)

prn−1dr +
1

εp

∫ 1

R

(1 − f2
ε )2rn−1dr ≤ Cεp.

This is (8.8).
From (8.8) we can see that

(8.16)

∫ 1

T

(1 − f2
ε )2rn−1dr ≤ Cε2p.

On the other hand, from (5.2) and |uε| ≤ 1 it follows that ‖fε‖W 1,p((T,1),R) ≤ C.
Applying the embedding theorem we know that for any r0 ∈ [T, 1],

|fε(r) − fε(r0)| ≤ C|r − r0|1−1/p, ∀r ∈ (r0 − ε, r0 + ε).

Thus

(1 − fε(r))
2 ≥ (1 − fε(r0))

2 − ε1−1/p ≥ 1

2
(1 − fε(r0))

2.

Substituting this into (8.16) we obtain

Cε2p ≥
∫ 1

T

(1 − f2
ε )2rn−1dr ≥

∫ r0+ε

r0−ε

(1 − f2
ε )2rn−1dr ≥ 1

2
(1 − fε(r0))

2εn

which implies 1−fε(r0) ≤ Cεp− n
2 . Noting r0 is an arbitrary point in [T, 1], we have

sup
r∈[T,1]

(1 − fε(r)) ≤ Cεp−n
2 .

Thus (8.9) is derived and the proof of Theorem is complete.
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ON THE LARGE PROPER

SUBLATTICES OF FINITE LATTICES

Zhang Kunlun, Song Lixia and Sun Yikang

Abstract. In this present note, We study and prove some properties of the large
proper sublattices of finite lattices. It is shown that every finite lattice L with |L| > 4

contains a proper sublattice S with |S| ≥ [2(|L| − 2)]1/3 + 2 > (2|L|)1/3.
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1 Introduction

In [2], Tom Whaley proved the following classic result about sublattices of lat-
tices.

Theorem 1.1. If L is a lattice with k = |L| infinite and regular, then either
(1) there is a proper principal ideal of L of size k,or
(2) there is a proper principal filter of L of size k, or
(3) Mk, the modular lattice of height 2 and size k, is a 0, 1-sublattice of L.

Corollary 1.2. If L is infinite and regular, then L has a proper sublattice of car-
dinality |L|.

In [4], Ralph Freese, Jennifer Hyndman, and J. B. Nation proved the following
classic result about sublattices of finite ordered set and finite lattices.

Theorem 1.3. Let P be a finite ordered set with |P | = n. Let γ = dn1/3e. Then
either

(1) there is a principal ideal I of P with |I | ≥ γ , or
(2) there is a principal filter F of P with |F | ≥ γ , or
(3) P contains a super-antichain A with |A| ≥ γ.
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Theorem 1.4. Let L be a finite lattice with |L| = n+2. Then one of the following
must hold.

(1) There exists x < 1 with |(x]| ≥ n1/3;

(2) There exists y > 0 with |[y)| ≥ n1/3 ;

(3) Mβ is a 0, 1-sublattice of L, where β = dn1/3e.
The above result gives some lower bound of the large proper sublattices of finite

ordered set and finite lattices, but they are not so good. In this present note, We
give a new lower bound of the large proper sublattices of finite lattices. Our first
main result is that:

Theorem 1.5. Let L be a finite lattice with |L| = n > 4. Then there exists proper
sublattice S ⊂ L with |S| ≥ [2(n− 2)]1/3 + 2 > (2|L|)1/3.

2 Definitions and Lemmas

Let (P,≤) be a poset and H ⊂ P , a ∈ P . The a is an upper bound of H if and
only if h ≤ a for all h ∈ H . An upper bound a of H is the least upper bound of H if
and only if , for any upper bound b of H , we have a ≤ b. We shall write a = supH .
The concepts of lower bound and greatest lower bound are similarly defined; the
latter is denoted by inf H . Set
M(P ) = {(a, b) ∈ P × P | sup{a, b}andinf{a, b}exist in P}

(x] = {a ∈ P |a ≤ x}; [x) = {a ∈ P |x ≤ a}; [x]P = (x] ∪ [x).

Nx =
⋃

a≥x

(a] ∪
⋃

b≤x

[b).

where x ∈ P .

Definition 2.1. A poset (L,≤) is a lattice if sup{a, b} and inf{a, b} exist for all
a, b ∈ L.

Theorem 2.2. . A poset (P,≤) is a lattice if and only if M(P ) = P

Definition 2.3. If (A,≤) is a poset, a, b ∈ A, then a and b are comparable if
a ≤ b or a ≥ b. Otherwise, a and b are incomparable, in notation a‖b. A chain is,
therefore, a poset in which there are no incomparable elements. An unorderedposet
is one in which a‖b for all a 6= b. (A,≤) is a convex poset if C(P ) = {a ∈ P |a 6=
inf P, a 6= supP and a 6 ‖ x for all x ∈ P} = ∅.

Definition 2.4. Let (A,≤) be a poset and let B be a non-void subset of A. Then
there is a natural partial order ≤B on B induced by ≤: for a, b ∈ B.a ≤B b if and
only if a ≤ b, we call (B,≤B), (or simply, (B,≤)) a subposet of (A,≤)

Definition 2.5. Let (A,≤) be a poset and let B be a subposet of A. If M(B) =
M(A)∩(B×B) and supB{a, b} =supA{a, b}, infB{a, b} = infA{a, b} for all (a, b) ∈
M(B), then we call (B,≤) a semi− sublattice of (A,≤)

Definition 2.6. A chain C in a poset P is a nonvoid subset which, as a subposet,
is a chain. An antichain C in a poset P is a nonvoid subset which, as a subposet,
is unordered.
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Definition 2.7. The length, l(C) of a finite chain is |C| − 1. A poset P is said
to be of length n (in formula l(P ) = n) where n is a natural number, if and only if
there is a chain in P of length n and all chain in P are of length ≤ n. The width
of poset P is m, where m is a natural number, if and only if there is an antichain
in P of m elements and all antichain in P have ≤ m elements.

We say that A ⊂ P is a super-antichain if no pair of distinct elements of A has
a common upper bound or a common lower bound. Let S ⊂ P

Lemma 2.8. . If P is a convex poset , let x ∈ P , then (x], [x) and [x]P = (x]∪ [x)
are proper semi-sublattices of P .

Lemma 2.9. If P is a convex poset with |P | > 1, let η = maxx∈P |[x]P |, then
|Na| − 1 ≤ 1

2 (η − 1)2 for all a ∈ P .

Proof. Since η be the largest size of a proper semi-sublattice [x]P of P , so that
|[x]P | ≤ η for all x ∈ P . For a ∈ P , if s = |{y ∈ (a]|x ≤ y ⇒ x = y for all x ∈ P}|
and t = |{y ∈ [a)|y ≤ x⇒ y = x for all x ∈ P}|, then

|Na| ≤ t(η − s− 1) + s(η − t− 1) + 1 = (η − 1)(s+ t) − 2ts+ 1

where 0 ≤ s+ t ≤ η− 1. A little calculus shows that this is at most 1
2 (η− 1)(η−

1) + 1. Then |Na| − 1 ≤ 1
2 (η − 1)2 �

Lemma 2.10. If P is a finite convex poset with k = (2|P |)1/3 , then either
(1) there is a proper semi-sublattice [a]P of P of size |[a]P | ≥ k, or
(2) P contains a super-antichain of size k.

Proof. . Suppose that (1) fail. We will construct a super-antichain by transfinite
induction. Let |P | = n. For every a ∈ P set

Na =
⋃

x≥a

(x] ∪
⋃

y≤a

[y).

We form a super-antichain A as follows. Choose a1 ∈ P arbitrarily. Given
a1, · · · , am, choose am+1 ∈ P − ⋃1≤i≤mNai as long as this last set is nonempty.

Thus we obtain a sequence a1, · · · , ar where r ≥ dn/( 1
2 (η − 1)2 + 1)e ≥ n/( 1

2η
2)

such that {a1, · · · , ar} is a super-antichain. Since r( 1
2η

2) ≥ n, either η ≥ (2n)1/3

or r ≥ (2n)1/3, that is. either η ≥ (2|P |)1/3 or r ≥ (2|P |)1/3. �

Definition 2.11. Let (L,∨,∧) is a finite lattice, a ∈ L, it is join-irreducible if
a = b ∨ c implies that a = b or a = c; it is meet-irreducible if a = b ∧ c implies
that a = b or a = c. An element which is both join- and meet- irreducible is called
doubly irreducible, let Irr(L) denote the set of all doubly irreducible elements of L.

3 Main Theorems

Theorem 3.1. Let L be a finite lattice with |L| = n > 4 and P = L \ {0, 1},
C(P ) = ∅. Then one of the following must hold.

(1) There exists proper sublattice S = [a]P ∪ {0} (or S = [a]P ∪ {1}) ⊂ L with
|S| ≥ (2(n− 2))1/3 + 1;

(2) Mk is a 0, 1-sublattice of L, where k = d(2(n− 2))1/3 + 2e.
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Proof. Let P = L\{0, 1}. Note that this makes |L| = n and let η = maxx∈P |[x]P |.
Then by lemma 2.10 we have :

either there is a semi-sublattice [a]P of P of size |[a]P | ≥ (2(n− 2))1/3,
or P contains a super-antichain of size (2(n− 2))1/3.
Observe that [a]∪{0}and [a]∪{1} are proper sublattice of lattice L(for all a ∈ P ).

Thus either there is a proper sublattice S = [a]P ∪ {0}(or S = [a]P ∪ {1}) of L of

size |S| ≥
√

[3]2(n− 2) + 1, or L contains a Mk of size (2(n− 2))1/3 + 2. �

Corollary 3.2. Let L be a finite lattice with |L| = n > 4 and C(L \ {0, 1}) = ∅.
Then there exists proper sublattice S ⊂ L with |S| ≥ (2(n− 2))1/3 + 2;

Theorem 3.3. Let L be a finite lattice with |L| = n > 4 and C(L \ {0, 1}) 6= ∅.
Then there exists proper sublattice S ⊂ L with |S| ≥ 1

2 (n+ 3).

Proof. Let a ∈ C(L \ {0, 1}) 6= ∅. Then either a ≤ x or a ≥ x for all x ∈ L. Thus
we have

L = [a]L = (a] ∪ [a).

Therefore
(1) If min{|(a]|, |[a)|} = 2, then we have: max{|(a]|, |[a)|} = n− 1 ≥ 1

2 (n+ 3) ;

(2) If min{|(a]|, |[a)|} > 2, then we have: max{|(a]|, |[a)|} ≥ 1
2 (n − 3) + 3 =

1
2 (n+ 3).

The proof is complete. �

Proof. [Proof of Theorem 1.5] This proof is obvious from Lemma 2.10 and Theorem
3.3. �

4 the large proper sublattices of finite modular lattices

In the construction of the super-antichain in Lemma 2.10 we started with an
arbitrary element a1. We record this stronger fact in the next theorem.

Theorem 4.1. Let L be a finite lattice with |L| = n > 4 and C(L \ {0, 1}) = ∅,
let P = L \ {0, 1} and η = maxx∈P |[x]P ∪ {0, 1}|. Then every element of L is
contained in a 0, 1-sublattice Mk of L with k( 1

2 (η − 2)2) ≥ n− 2. In particular, if

n− 2 > 1
2 (η − 2)2, then L is complemented.

Proof. This proof is obvious from Lemma 2.8 and Theorem 3.3. �

A simple application is:

Theorem 4.2. Let L be a finite modular lattice with |L| = n > 4. Then L has a

proper sublattice S with |S| ≥
√

2n.

Proof. Let P = L \ {0, 1}.
Case 1. When C(P ) = C(L \ {0, 1}) 6= ∅. the proof is trivial( by Theorem 3.3

).
Case 2. When C(P ) = C(L \ {0, 1}) = ∅. If n − 2 ≤ 1

2 (η − 2)2, then L has a

sublattice S = [a]P ∪ {0, 1} with |S| = η ≥
√

2(|L| − 2) + 2 ≥
√

2n (by Theorem
4.1). So we may assume that n − 2 > 1

2 (η − 2)2, whence by Theorem 4.1, L is
complemented. The result is true for L ∼= Mk, so we may assume that L has height
greater than 2. There is a element b ∈ L \ {0, 1} with |[b]L| = η > 3 (L has height
greater than 2), then there exists a element b′ ∈ [b]L\{0, b, 1}. And we haveNb 6= P
by n − 2 > 1

2 (η − 2)2. Hence there exists a element c ∈ P \ Na. Since c 6∈ Na,
sublattice {0, b, b′, c′1} of L is a pentagon, contrary to our assumption. �
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Definition 4.3. For a finite lattice L , let

λ(L) = max
S∈Sub(L),S 6=L

|S|

Theorem 4.4. Let L be a finite lattice with |L| = n. Then λ(L) = n − 1 if and
only if Irr(L) \ {0, 1} 6= ∅.

Proof. . The proof is trivial. �
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A CLASS OF RUSCHEWEYH - TYPE HARMONIC

UNIVALENT FUNCTIONS WITH VARYING ARGUMENTS

G.Murugusundaramoorthy

Abstract. A comprehensive class of complex-valued harmonic univalent functions
with varying arguments defined by Ruscheweyh derivatives is introduced. Necessary
and sufficient coefficient bounds are given for functions in this class to be starlike.
Distortion bounds and extreme points are also obtained.
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1. Introduction

A continuous function f = u + iv is a complex- valued harmonic function in
a complex domain G if both u and v are real and harmonic in G. In any simply
connected domain D ⊂ G we can write f = h + g where h and g are analytic in
D. We call h the analytic part and g the co-analytic part of f. A necessary and
sufficient condition for f to be locally univalent and orientation preserving in D is
that |h′(z)| > |g′(z)| in D (see [2]).

Denote by H the family of functions f = h + g that are harmonic univalent
and orientation preserving in the open unit disc U = {z : |z| < 1} for which
f(0) = h(0) = 0 = fz(0)− 1. Thus for f = h+ g in H we may express the analytic
functions for h and g as

h(z) = z +

∞
∑

m=2

amz
m, g(z) = b1z +

∞
∑

m=2

bmz
m (0 ≤ b1 < 1). (1)

Note that the family H of orientation preserving,normalized harmonic univalent
functions reduces to S the class of normalized analytic univalent functions if the
co-analytic part of f = h+ g is identically zero that is g ≡ 0.
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For f = h+ g given by (1) and n > −1, we define the Ruscheweyh derivative of
the harmonic function f = h+ g in H by

Dnf(z) = Dnh(z) +Dng(z) (2)

where D the Ruscheweyh derivative (see[5]) of a power series φ(z) = z+
∞
∑

m=2
φmz

m

is given by

Dnφ(z) =
z

(1 − z)n+1
∗ φ(z) = z +

∞
∑

m=2

C(n,m)φmz
m

where

C(n,m) =
(n+ 1)m−1

(m− 1)!
=

(n+ 1)(n+ 2) . . . (n+m− 1)

(m− 1)!
.

The operator ∗ stands for the hadamard product or convolution product of two
power series

φ(z) =

∞
∑

m=1

φmz
m and ψ(z) =

∞
∑

m=1

ψmz
m

defined by

(φ ∗ ψ)(z) = φ(z) ∗ ψ(z) =

∞
∑

m=1

φmψmz
m.

For fixed values of n(n > −1), let RH(n, α) denote the family of harmonic
functions f = h+ g of the form (1) such that

∂

∂θ
(argDnf(z)) ≥ α, 0 ≤ α < 1, |z| = r < 1. (3)

We also let VH (n, α) = RH(n, α)∩VH , where VH [3], the class of harmonic functions
f = h+g for which h and g are of the form (1) and their exists φ so that , mod 2π,

βm + (m− 1)φ ≡ π, δm + (m− 1)φ ≡ 0, m ≥ 2, (4)

where βm = arg(am) and δm = arg(bm).
Note that RH(0, α) = SH(α) [4], is the class of orientation preserving harmonic

univalent functions f which are starlike of order α in U, that is ∂
∂θ (argf(reiθ)) > α

where z = reiθ in U. In [1] , it is proved that the coefficient condition

∞
∑

m=2

m (|am| + |bm|) ≤ 1 − b1

is sufficient for functions f = h + g and of the form (1) to be in SH(0). Recently
Jahangiri and Silverman [3] gave the sufficient and necessary conditions for func-
tions f = h + g of the form (1) to be in VH(α) where 0 ≤ α < 1. Further note
that if n = 0 and the co-analytic part of f = h+ g is zero, then the class VH (n, α)
reduces to the class studied in [6].
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In this paper, we will give the sufficient condition for f = h + g given by (1)
to be in the class RH(n, α), and it is shown that these coefficient condition is also
necessary for functions in the class VH (n, α). Finally we obtain distortion theorems
and characterize the extreme points for functions in VH (n, α).

2.Coefficient Bounds

In our first theorem we obtain a sufficient coefficient bound for harmonic func-
tions in RH(n, α)

Theorem 1. Let f = h+ g given by (1). If

∞
∑

m=2

(

m− α

1 − α
|am| + m+ α

1 − α
|bm|

)

C(n,m) ≤ 1 − 1 + α

1 − α
b1 (5)

where a1 = 1 and 0 ≤ α ≤ 1, then f ∈ RH(n, α).

Proof. To prove f ∈ RH(n, α), by definition of RH(n, α) we only need to show
that if (5) holds then the required condition (3 ) satisfied. For (3) we can write

∂

∂θ
(argDnf(z)) = Re

{

z(Dnh(z))′ − z(Dng(z))′

Dnh(z) −Dng(z)

}

= Re
A(z)

B(z)
.

Using the fact that Re w ≥ α if and only if |1− α+w| ≥ |1 + α−w|, it suffices to
show that

|A(z) + (1 − α)B(z)| − |A(z) − (1 + α)B(z)| ≥ 0. (6)

Substituting for A(z) and B(z) in (6), which yields

|A(z) + (1 − α)B(z)| − |A(z) − (1 + α)B(z)|

≥ (2 − α)|z| −
∞
∑

m=2

[mC(n,m) + (1 − α)C(n,m)]|am||z|m

−
∞
∑

m=1
[mC(n,m) − (1 − α)C(n,m)]|bm| |z|m − α|z|

−
∞
∑

m=2
[mC(n,m) − (1 + α)C(n,m)]|am||z|m

−
∞
∑

m=1
[mC(n,m) + (1 + α)C(n,m)]|bm| |z|m

≥ 2(1 − α)|z|
{

1 −
∞
∑

m=2

m−α
1−α |am||z|m−1C(n,m) −

∞
∑

m=1

m+α
1−α |bm||z|m−1C(n,m)

}

≥ 2(1−α)|z|
{

1 − 1 + α

1 − α
b1 −

( ∞
∑

m=2

m− α

1 − α
C(n,m)|am| +

∞
∑

m=2

m+ α

1 − α
C(n,m)|bm|

)}

.

(7)
The last expression is non negative by (5), and so f ∈ RH(n, α).

Now we obtain the necessary and sufficient conditions for function f = h+ g be
given with (4).
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Theorem 2. Let f = h+ g be given by (1). Then f ∈ VH (n, α) if and only if

∞
∑

m=2

{

m− α

1 − α
|am| + m+ α

1 − α
|bm|

}

C(n,m) ≤ 1 − 1 + α

1 − α
b1 (8)

where a1 = 1 and 0 ≤ α < 1.

Proof. Since VH(n, α) ⊂ RH(n, α), we only need to prove the ”only if” part of
the theorem. To this end, for functions f ∈ VH (n, α), we notice that the condition
∂
∂θ (argDnf(z)) ≥ α is equivalent to

∂

∂θ
(argDnf(z)) − α = Re

{

z(Dnh(z))′ − z(Dng(z))′

Dnh(z) −Dng(z)
− α

}

≥ 0.

That is

Re









(1 − α)z +

( ∞
∑

m=2

(m− α)C(n,m)|am|zm −
∞
∑

m=1

(m+ α)C(n,m)|bm|zm

)

z +
∞
∑

m=2
C(n,m)|am|zm +

∞
∑

m=1
C(n,m)|bm|zm









≥ 0.

(9)
The above condition must hold for all values of z in U. Upon choosing φ according
to (4) we must have

(1 − α) − (1 + α)b1 −
( ∞
∑

m=2
(m− α)C(n,m)|am|rm−1 +

∞
∑

m=2
(m+ α)C(n,m)|bm|rm−1

)

1 + |b1| +
( ∞
∑

m=2
C(n,m)|am| +

∞
∑

m=2
C(n,m)|bm|

)

rm−1

≥ 0.

(10)
If the condition (8) does not hold then the numerator in (10) is negative for r
sufficiently close to 1. Hence there exist a z0 = r0 in (0,1) for which quotient of
(10) is negative. This contradicts the fact f ∈ VH (n, α) and so proof is complete.

Corollary 1. A necessary and sufficient condition for f = h+g satisfying (8) to
be starlike is that arg(am) = π−2(m−1)π/k, and arg(bm) = 2π−2(m−1)π/k , (k =
1, 2, 3, . . . ).

Our next theorem on distortion bounds for functions in VH (n, α) which yields a
covering result for the family VH (n, α).

Theorem 3. If f ∈ VH (n, α) then

|f(z)| ≤ (1 + |b1|)r +
1

C(n, 2)

(

1 − α

2 − α
− 1 + α

2 − α
|b1|
)

r2, |z| = r < 1

and

|f(z)| ≥ (1 + |b1|)r −
1

C(n, 2)

(

1 − α

2 − α
− 1 + α

2 + α
|b1|
)

r2, |z| = r < 1. (11)
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Proof. We will only prove the right hand inequality in (11). The argument for
the left hand inequality is similar. Let f ∈ VH (n, α) taking the absolute value of f,
we obtain

|f(z)| ≤ ((1 + |b1|)|r| +
∞
∑

m=2

(|am| + |bm|)|r|m

≤ (1 + b1)r + r2
∞
∑

m=2

(|am| + |bm|

That is

|f(z)| ≤ (1 + |b1|)r +
1 − α

C(n, 2)(2 − α)

( ∞
∑

m=2

(2 − α)C(n, 2)

1 − α
|am| + (2 − α)C(n, 2)

1 − α
|bm|

)

r2

≤ (1 + |b1|)r +
1 − α

C(n, 2)(2 − α)

[

1 − 1 + α

1 − α
|b1|
]

r2

≤ (1 + |b1|)r +
1

C(n, 2)

(

1 − α

2 − α
− 1 + α

2 − α
|b1|
)

r2.

Corollary 2. Let f of the form (1) be so that f ∈ VH (n, α). Then

{

w : |w| < 2C(n, 2) − 1 − [C(n, 2) − 1]α

(2 − α)C(n, 2)
− 2C(n, 2) − 1 − [C(n, 2) − 1]α

(2 + α)C(n, 2)
b1

}

⊂ f(U).

(12)
We use the coefficient bounds to examine the extreme points for VH (n, α) and

determine extreme points of VH (n, α).

Theorem 4. Set λm = (1−α)
(m−α)C(n,m) and µm = 1+α

(m+α)C(n,m) . For b1 fixed, the

extreme points for VH (n, α) are

{z + λmxz
m + b1z} ∪ {z + b1z + µmxzm} (13)

where m ≥ 2 and |x| = 1 − |b1|.
Proof. Any function f in VH (n, α) may expressed as

f(z) = z +

∞
∑

m=2

|am|eiβmzm + b1z +

∞
∑

m=2

|bm|eiδmzm,

where the coefficients satisfy the inequality (5). Set

h1(z) = z, g1(z) = b1z, hm(z) = z+λme
iβmzm, gm(z) = b1z+µme

iδmzm for m = 2, 3, . . . .

WritingXm = |am|
λm

, Ym = |bm|
µm

, m = 2, 3, . . . andX1 = 1−
∞
∑

m=2
Xm; Y1 = 1−

∞
∑

m=2
Ym

we have,

f(z) =

∞
∑

m=1

(Xmhm(z) + Ymgm(z)).
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In particular, setting

f1(z) = z+b1z and fm(z) = z+λmxz
m +b1z+µmyzm, (m ≥ 2, |x|+ |y| = 1−|b1|)

we see that extreme points of VH (n, α) are contained in {fm(z)}.
To see that f1(z) is not an extreme point, note that f1(z) may be written as

f1(z) =
1

2
{f1(z) + λ2(1 − |b1|)z2} +

1

2
{f1(z) − λ2(1 − |b1|)z2},

a convex linear combination of functions in VH (n, α).
To see that is not an extreme point if both |x| 6= 0 and |y| 6= 0, we will show

that it can then also be expressed as a convex linear combinations of functions in
VH(n, α). Without loss of generality, assume |x| ≥ |y|. Choose ε > 0 small enough

so that ε < |x|
|y| . Set A = 1 + ε and B = 1− | εxy |. We then see that both

t1(z) = z + λmAxz
m + b1z + µmyBzm

and
t2(z) = z + λm(2 −A)xzm + b1z + µmy(2 −B)zm,

are in VH (n, α) and note that

fn(z) =
1

2
{t1(z) + t2(z)}.

The extremal coefficient bounds shows that functions of the form (13) are the
extreme points for VH (n, α), and so the proof is complete.
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MULTIPLE RADIAL SYMMETRIC

SOLUTIONS FOR NONLINEAR BOUNDARY

VALUE PROBLEMS OF p-LAPLACIAN
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Abstract. We discuss the existence of multiple radial symmetric solutions for non-
linear boundary value problems of p-Laplacian, based on Leggett-Williams’s fixed
point theorem.
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1. Introduction.

In this paper, we consider the existence of multiple radial symmetric solutions
of the p-Laplacian equation

(1.1) −div(|∇u|p−2∇u) = g(x)f(x, u), x ∈ Ω,

subject to the nonlinear boundary value condition

(1.2) B

(

∂u

∂ν

)

+ u = 0, x ∈ ∂Ω

where Ω ⊂ Rn is the unit ball centered at the origin, ν denotes the unit outward
normal to the boundary ∂Ω, g(x), f(x, s) and B(s) are all the given functions. In
order to discuss the radially symmetric solutions, we assume that g(x) and f(x, s)
are radially symmetric, namely, g(x) = g(|x|), f(x, s) = f(|x|, s). Let w(t) ≡ u(|x|)
with t = |x| be a radially symmetric solution. Then a direct calculation shows that

(1.3) (tn−1ϕ(w′(t)))′ + tn−1g(t)f(t, w(t)) = 0, 0 < t < 1,
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c©2003 Cameron University
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where ϕ(s) = |s|p−2s and p > 1, with the boundary value condition

(1.4) w′(0) = 0,

(1.5) w(1) +B(w′(1)) = 0.

Such a problem arises in many different areas of applied mathematics and the fields
of mechanics, physics and has been studied extensively, see [1]–[6]. In particular,
the Leggett-Williams fixed point theorem has been used to discuss the multiplicity
of solutions. For example, He, Ge and Peng [1] considered the following ordinary
differential equation

(ϕ(y′))′ + g(t)f(t, y) = 0, 0 < t < 1,

which corresponds to the special case n = 1 of the equation (1.3), with the boundary
value conditions

y(0) −B0(y
′(0)) = 0,

y(1) −B1(y
′(1)) = 0.

They used the Leggett-Williams fixed point theorem and proved the existence of
multi-nonnegative solutions.

In this paper, we extent the results in [1] with n ≥ 1. We want to use Leggett-
Williams’s fixed-point theorem to search for solutions of the problem (1.3)–(1.5)
too.

This paper is organized as follows. Section 2 collects the preliminaries and
statements of results. The proofs of theorems will be given subsequently in Section
3.

2. Preliminaries and Main Results
As a preliminary, we first assume that the given functions satisfy the following

conditions Preliminaries and Main Results
(A1) f : [0, 1]× [0,+∞) → [0,+∞) is a continuous function.
(A2) g : (0, 1) → [0,+∞) is continuous and is allowed to be singular at the end

points of (0, 1), g(t) 6≡ 0 on any subinterval of (0, 1). In addition,

0 <

∫ 1

0

g(r)dr < +∞.

(A3) B(s) is a continuous, nondecreasing, odd function, defined on (−∞,+∞).
And there exists a constant m > 0, such that

0 ≤ B(s) ≤ ms, s ≥ 0.

In order to prove the existence of the multi-radially symmetric solutions of the
problem (1.3)–(1.5), we need some lemmas.

First, we introduce some denotations. Let E = (E, ‖ · ‖) be a Banach space,
P ⊂ E is a cone. By a nonnegative continuous concave functional α on P , we mean
a mapping α : P → [0,+∞) that is α is continuous and

α(tw1 + (1 − t)w2) ≥ tα(w1) + (1 − t)α(w2),
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for all w1, w2 ∈ P , and all t ∈ [0, 1]. Let 0 < a < b, r > 0 be constants. Denote

Pr = {w ∈ P |‖w‖ < r},

and
P (α, a, b) = {w ∈ P |a ≤ α(w), ‖w‖ ≤ b}.

We need the following two useful lemmas.
Lemma 2.1 (Leggett-Williams’s fixed point theorem)Let T : P c → P c be com-

pletely continuous and α be a nonnegative continuous concave functional on P such
that α(w) ≤ ‖w‖, for all w ∈ P c. Suppose there exist 0 < a < b < d ≤ c such that

(B1) {w ∈ P (α, b, d)|α(w) > b} 6= ∅ and α(Tw) > b, for w ∈ P (α, b, d),
(B2) ‖Tw‖ < a, for ‖w‖ ≤ a, and
(B3) α(Tw) > b, for w ∈ P (α, b, c) with ‖Tw‖ > d.

Then, T has at least three fixed points w1, w2 and w3 satisfying

‖w1‖ < a, b < α(w2), and ‖w3‖ > a, α(w3) < b.

Lemma 2.2 Let w ∈ P and δ ∈ (0, 1/2). Then
(C1) If 0 < σ < 1,

w(t) ≥















‖w‖t
σ

, 0 ≤ t ≤ σ,

‖w‖(1 − t)

(1 − σ)
, σ ≤ t ≤ 1.

(C2) w(t) ≥ δ‖w‖, for all t ∈ [δ, 1− δ].
(C3) w(t) ≥ ‖w‖t, 0 ≤ t ≤ 1, if σ = 1.
(C4) w(t) ≥ ‖w‖(1 − t), 0 ≤ t ≤ 1, if σ = 0.

Here σ ∈ [0, 1], such that

w(σ) = ‖w‖ ≡ sup
t∈[0,1]

|w(t)|.

We want to use the fixed-point theorem in Lemma 2.1 to search for solutions of
the problem (1.3)–(1.5). By (A2), there exists a constant δ ∈ (0, 1/2), so that

L(x) ≡ ψ
(

∫ x

δ

g(t)dt
)

+ ψ
(

∫ 1−δ

x

g(t)dt
)

, δ ≤ x ≤ 1 − δ,

is a positive and continuous function in [δ, 1− δ], where ψ(s) ≡ |s| 1
(p−1) sgn s is the

inverse function of ϕ(s) = |s|p−2s. For convenience, we set

L ≡ min
δ≤x≤1−δ

L(x),

and

λ = (m+ 1)ψ
(

∫ 1

0

g(r)dr
)

.

And in this paper, we set the Banach space E = C[0, 1] with the norm defined by

‖w‖ = sup
t∈[0,1]

|w(t)|, w ∈ E.
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The cone P ⊂ E is specified as,

P = {w ∈ E|w is a nonnegative concave function in [0, 1]}.

Furthermore, we define the nonnegative and continuous concave function α satis-
fying

α(w) =
w(δ) + w(1 − δ)

2
, w ∈ P.

Obviously,
α(w) ≤ ‖w‖, for all w ∈ P.

Under all the assumptions (A1)–(A3), we can get the main result as follows
Theorem 2.1 Let a, b, d, δ be given constants with 0 < a < δb < b < b/δ ≤ d,

and let the following conditions on f and ϕ are fulfilled:

(D1) For all (t, w) ∈ [0, 1]× [0, a], f(t, w) < ϕ
(a

λ

)

;

(D2) Either

i) lim sup
w→+∞

f(t,w)
wp−1 < ϕ

(

1
λ

)

, uniformly all t ∈ [0, 1], or

ii) f(t, w) ≤ ϕ
(

η
λ

)

, for all (t, w) ∈ [0, 1] × [0, η] with some η ≥ d, λ > 0;

(D3) f(t, w) > ϕ

(

2b

δL

)

, for (t, w) ∈ [δ, 1− δ] × [δb, d] with some L > 0.

Then, the problem (1.3)–(1.5) have at least three radially symmetric solutions w1,
w2 and w3, such that

‖w1‖ < a, α(w2) > b, and ‖w3‖ > a, α(w3) < b.

3. Proofs of the Main Results
We are now in a position to prove our main results.
Proof of Theorem 2.1. Define T : P → E, w 7→ W , where W is determined

by

W (t) =(Tw)(t)

,B ◦ ψ
(

∫ 1

0

rn−1g(r)f(r, w(r))dr
)

+

∫ 1

t

ψ
(

s−(n−1)

∫ s

0

rn−1g(r)f(r, w(r))dr
)

ds, t ∈ [0, 1],

for each w ∈ P .
First we prove each fixed point of W in P is a solution of (1.3)– (1.5). By the

definition of W , we have

W ′(t) = (Tw)′(t) = −ψ
(

t−(n−1)

∫ t

0

rn−1g(r)f(r, w(r))dr
)

.

Noticing that
∣

∣

∣
− ψ

(

t−(n−1)

∫ t

0

rn−1g(r)f(r, w(r))dr
)∣

∣

∣

=
∣

∣

∣− ψ
(

∫ t

0

(r

t

)n−1

g(r)f(r, w(r))dr
)∣

∣

∣

≤
∣

∣

∣− ψ
(

∫ t

0

g(r)f(r, w(r))dr
)∣

∣

∣,
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and by the integrability of g and f , we have

(3.1) lim
t→0+

W ′(t) = lim
t→0+

ψ
(

∫ t

0

g(r)f(r, w(r))dr
)

= 0.

Considering

W ′(0) = lim
t→0

W (t) −W (0)

t
,

and
W (t) −W (0)

=

∫ 1

t

ψ
(

s−(n−1)

∫ s

0

rn−1g(r)f(r, w(r))dr
)

ds

−
∫ 1

0

ψ
(

s−(n−1)

∫ s

0

rn−1g(r)f(r, w(r))dr
)

ds

= −
∫ t

0

ψ
(

s−(n−1)

∫ s

0

rn−1g(r)f(r, w(r))dr
)

ds,

and by using L′Hospital’s rule, we get

W ′(0) = lim
t→0

W (t) −W (0)

t

= lim
t→0

(

W (t) −W (0)
)′

= − lim
t→0

ψ
(

t−(n−1)

∫ t

0

rn−1g(r)f(r, w(r))dr
)

ds

=0.

Recalling (3.1), we know that W ′(t) is right-continuous at the point t = 0, and
W ′(0) = 0, namely, the fixed point of W satisfies (1.4). By the assumption (A1)
and (A2), we also have

W ′(t) = (Tw)′(t) ≤ 0.

Then ‖Tw‖ = (Tw)(0). On the other hand, since

W (1) = Bψ

(∫ 1

0

rn−1g(r)f(r, w(r))dr

)

,

and

B(W ′(1)) = −Bψ
(∫ 1

0

rn−1g(r)f(r, w(r))dr

)

,

we see that
W (1) +B(w′(1)) = 0,

namely, the fixed point of W also satisfies (1.5).
Next we show that the conditions in Lemma 2.1 are satisfied. We first prove

that condition (D2) implies the existence of a number c where c > d such that

W : P c → P c.
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If ii) of (D2) holds, by the condition (A3), we see that

‖Tw‖ =(Tw)(0)

=B ◦ ψ
(

∫ 1

0

rn−1g(r)f(r, w(r))dr
)

+

∫ 1

0

ψ
(

s−(n−1)

∫ s

0

rn−1g(r)f(r, w(r))dr
)

ds

≤mψ
(

∫ 1

0

rn−1g(r)f(r, w(r))dr
)

+

∫ 1

0

ψ
(

∫ s

0

(r

s

)n−1

g(r)f(r, w(r))dr
)

ds

≤(m+ 1)ψ
(

∫ 1

0

g(r)f(r, w(r))dr
)

≤(m+ 1)ψ
(

∫ 1

0

g(r)ϕ
( η

λ

)

dr
)

=(m+ 1)ψ
(

∫ 1

0

g(r)dr
)

ψ
(

ϕ
(η

λ

))

=
η

λ
(m+ 1)ψ

(

∫ 1

0

g(r)dr
)

=η, for w ∈ P η .

Then, if we select c = η, there must be W : P c → P c.

If i) of (D2) is satisfied, then there must exist D > 0 and ε < ϕ(1/λ), so that

(3.2)
f(t, w)

wp−1
< ε, for (t, w) ∈ [0, 1]× [D,+∞).

Let M = max{f(t, w)| 0 ≤ t ≤ 1, 0 ≤ w ≤ D}. By (3.2), we obtain

(3.3) f(t, w) ≤M + εwp−1, for (t, w) ∈ [0, 1]× [0,+∞).

Selecting a proper real number c, so that

(3.4) ϕ(c) > max
{

ϕ(d),M
(

ϕ

(

1

λ

)

− ε
)−1}

.
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Utilizing (3.2), (3.3) and (3.4), we have

‖Tw‖ =(Tw)(0)

=B ◦ ψ
(

∫ 1

0

rn−1g(r)f(r, w(r))dr
)

+

∫ 1

0

ψ
(

s−(n−1)

∫ s

0

rn−1g(r)f(r, w(r))dr
)

ds

≤mψ
(

∫ 1

0

rn−1g(r)f(r, w(r))dr
)

+

∫ 1

0

ψ
(

∫ s

0

(r

s

)n−1

g(r)f(r, w(r))dr
)

ds

≤(m+ 1)ψ
(

∫ 1

0

g(r)f(r, w(r))dr
)

≤(m+ 1)ψ
(

∫ 1

0

g(r)(M + εwp−1)dr
)

=(m+ 1)ψ

(

∫ 1

0

g(r)

(

M

(

ϕ

(

1

λ

)

− ε

)−1(

ϕ

(

1

λ

)

− ε

)

+ εwp−1

)

dr

)

≤(m+ 1)ψ

(∫ 1

0

g(r)

(

ϕ(c)

(

ϕ

(

1

λ

)

− ε

)

+ εcp−1

)

dr

)

=(m+ 1)ψ
(

∫ 1

0

g(r)dr
) c

λ
= c, for w ∈ P c.

So we obtain ‖W‖ ≤ c, that is W : P c → P c.
Then we want to verify that W satisfies the condition (B2) in Lemma 2.1. If

‖w‖ ≤ a, then by the condition (D1), we know

f(t, w) < ϕ
(a

λ

)

, for 0 ≤ t ≤ 1, 0 ≤ w ≤ a.

We use the methods similarly to the above, and can get ‖W‖ = ‖Tw‖ < a, that is,
W satisfies (B2).

To fulfill condition (B1) of Lemma 2.1, we note that w(t) ≡ (b + d)/2 > b,
0 ≤ t ≤ 1, is the member of P (α, b, d) and α(w) = α((b + d)/2) > b, hence
{w ∈ P (α, b, d)| α(w) > b} 6= ∅. Now assume w ∈ P (α, b, d). Then

α(w) =
w(δ) + w(1 − δ)

2
≥ b, and b ≤ ‖w‖ ≤ d.

Utilizing the condition (C2) in Lemma 2.2, we know that for all s, which satisfying
δ ≤ s ≤ 1 − δ, there has

δb ≤ δ‖w‖ ≤ w(s) ≤ d.

And meanwhile, we can select a proper ε, so that

(ε

s

)n−1

>

(

ε

1 − δ

)n−1

>
1

2
.
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Combining the condition (D3), we can see

α(Tw) =
(Tw)(δ) + (Tw)(1 − δ)

2
≥ (Tw)(1 − δ)

≥
∫ 1

1−δ

ψ

(∫ s

0

(r

s

)n−1

g(r)f(r, w(r))dr

)

ds

≥
∫ 1

1−δ

ψ

(∫ s

ε

(r

s

)n−1

g(r)f(r, w(r))dr

)

ds

≥
∫ 1

1−δ

ψ

(∫ s

ε

(ε

s

)n−1

g(r)f(r, w(r))dr

)

ds

≥
∫ 1

1−δ

ψ

(

(ε

s

)n−1
∫ 1−δ

δ

g(r)f(r, w(r))dr

)

ds

>

∫ 1

1−δ

ψ

(

1

2

∫ 1−δ

δ

g(r)ϕ

(

2b

δL

)

dr

)

ds

=
1

2
δψ

(

∫ 1−δ

δ

g(r)dr

)

2b

δL

≥ b.

That is (B1) is well verified.
Finally, we prove (B3) of Lemma 2.1 is also satisfied. For w ∈ P (α, b, c), we have

‖Tw‖ > d. By using the condition (C2) in Lemma 2.2, we get

α(Tw) =
(Tw)(δ) + (Tw)(1 − δ)

2
≥ δ‖Tw‖ > δd > b.

Then, the condition (B3) in Leggett-Williams’s fixed point theorem is well verified.
Using the above results and applying Leggett-Williams’s fixed point theorem,

we can see that the operator W has at least three fixed points, that is the problem
(1.3)–(1.5) have at least three radially symmetric solutions w1, w2 and w3, which
satisfying

‖w1‖ < a, α(w2) > b, and ‖w3‖ > a, α(w3) < b.

The proof is complete.
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CLASSES OF RUSCHEWEYH-TYPE

ANALYTIC UNIVALENT FUNCTIONS

Saeid Shams, S. R. Kulkarni and Jay M. Jahangiri

Abstract. A class of univalent functions is defined by making use of the Ruscheweyh
derivatives. This class provides an interesting transition from starlike functions to
convex functions. In special cases it has close inter-relations with uniformly starlike
and uniformly convex functions. We study the effects of certain integral transforms
and convolutions on the functions in this class.
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1. Introduction

Let A denote the family of functions f that are analytic in the open unit disk
U = {z : |z| < 1} and normalized by f(0) = f ′(0) − 1 = 0. Consider the subclass
T consisting of functions f in A, which are univalent in U and are of the form
f(z) = z−∑∞

n=2 anz
n, where an ≥ 0. Such functions were first studied by Silverman

[6]. For α ≥ 0, 0 ≤ ¡
¯
1 and fixed λ > −1, we let D(α, β, λ) denote the set of all

functions in T for which

Re

(

z(Dλf(z))′

Dλf(z)

)

> α

∣

∣

∣

∣

z(Dλf(z))′

Dλf(z)
− 1

∣

∣

∣

∣

+ β.

Here, the operator Dλf(z) is the Ruscheweyh derivative of f , (see [4]), given by

Dλf(z) =
z

(1 − z)1+λ
∗ f(z) = z −

∞
∑

n=2

anBn(λ)zn,

where ∗ stands for the convolution or Hadamard product of two power series and

Bn(λ) =
(λ + 1)(λ+ 2) − (λ+ n− 1)

(n− 1)!
.
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The family D(α, β, λ), which has been studied in [5], is of special interest for it
contains many well-known as well as new classes of analytic univalent functions. In
particular, for α = 0 and 0 ≤ λ ≤ 1 it provides a transition from starlike functions
to convex functions. More specifically, D(0, β, 0) is the family of functions starlike of
order β and D(0, β, 1) is the family of functions convex of order β. For D(α, 0, 0),
we obtain the class of uniformly α-starlike functions introduced by Kanas and
Wisniowski [2], which can be generalized to D(α, β, 0), the class of uniformly α-
starlike functions of order β. Generally speaking, D(α, β, λ) consists of functions
F (z) = Dλf(z) which are uniformly α-starlike functions of order β inU . In Section
2 we study the effects of certain integral operators on the class D(α, β, λ). Section
3 deals with the convolution properties of the class D(α, β, λ) in connection with
Gaussian hypergeometric functions.

2. Integral transform of the class D(α, β, λ).
For f ∈ A we define the integral transform

Vµ(f)(z) =

∫ 1

0

µ(t)
f(tz)

t
dt,

where µ is a real-valued, non-negative weight function normalized so that
∫ 1

0 µ(t)dt =
1. Some special cases of µ(t) are particularly interesting such as µ(t) = (1+c)tc, c >
−1, for which Vµ is known as the Bernardi operator, and

µ(t) =
(c+ 1)δ

µ(δ)
tc
(

log
1

t

)δ−1

, c > −1, δ ≥ 0

which gives the Komatu operator. For more details see [3].
First we show that the class D(α, β, λ) is closed under Vµ(f).
Theorem 1. Let f ∈ D(α, β, λ). Then Vµ(f) ∈ D(α, β, λ).
Proof. By definition, we have

Vµ(f)(z) =
(c+ 1)δ

µ(δ)

∫ 1

0

(−1)δ−1tc(log t)δ−1

(

z −
∞
∑

n=2

anz
ntn−1

)

dt

=
(−1)δ−1(c+ 1)δ

µ(δ)
lim

γ→0+

[

∫ 1

γ

tc(log t)δ−1

(

z −
∞
∑

n=2

anz
ntn−1

)

dt

]

.

A simple calculation gives

Vµ(f)(z) = z −
∞
∑

n=2

(

c+ 1

c+ n

)δ

anz
n.

We need to prove that

∞
∑

n=2

n(1 + α) − (α+ β)

1 − β

(

c+ 1

c+ n

)δ

anBn(λ) < 1. (2.1)

On the other hand (see [5], Theorem 1), f ∈ D(α, β, λ) if and only if

∞
∑

n=2

n(1 + α) − (α+ β)

1 − β
anBn(λ) < 1.
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Hence c+1
c+n < 1. Therefore (2.1) holds and the proof is complete.

The above theorem yields the following two special cases.
Corollary 1. If f is starlike of order β then Vµ(f) is also starlike of order β.
Corollary 2. If f is convex of order β then Vµ(f) is also convex of order β.
Next we provide a starlikeness condition for functions in D(α, β, λ) under Vµ(f).
Theorem 2. Let f ∈ D(α, β, λ). Then Vµ(f) is starlike of order 0 ≤ γ < 1 in

|z| < R1 where

R1 = inf
n

[

(

c+ n

c+ 1

)δ
(1 − γ)[n(1 + α) − (α+ β)]

(n− γ)(1 − β)
Bn(λ)

]
1

n−1

.

Proof. It is sufficient to prove

∣

∣

∣

∣

z(Vµ(f)(z))′

Vµ(f)(z)
− 1

∣

∣

∣

∣

< 1 − γ. (2.2)

For the left hand side of (2.2) we have

∣

∣

∣

∣

z(Vµ(f)(z))′

Vµ(f)(z)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∑∞
n=2(1 − n)

(

c+1
c+n

)δ

anz
n−1

1 −∑∞
n=2

(

c+1
c+n

)δ

anzn−1

∣

∣

∣

∣

∣

∣

∣

≤
∑∞

n=2(n− 1)
(

c+1
c+n

)δ

an|z|n−1

1 −∑∞
n=2

(

c+1
c+n

)δ

an|z|n−1

.

This last expression is less than 1 − γ since.

|z|n−1 <

(

c+ n

c+ 1

)

(1 − γ)[n(1 + α) − (α+ β)]

(n− γ)(1 − β)
Bn(λ).

Therefore, the proof is complete.
Using the fact that f is convex if and only if zf ′ is starlike, we obtain the

following
Theorem 3. Let f ∈ D(α, β, λ). Then Vµ(f) is convex of order 0 ≤ γ < 1 in

|z| < R2 where

R2 = inf
n

[

(

c+ n

c+ 1

)δ
(1 − γ)[n(1 + α) − (α + β)]

n(n− γ)(1 − β)
Bn(λ)

]
1

n−1

.

3. A Convolution Operator on D(α, β, λ).
Denote by F1(a, b, c; z) the usual Gaussian hypergeometric functions defined by

F1(a, b, c; z) =

∞
∑

n=0

(a)n(b)n

(c)nn!
zn, |z| < 1, (3.1)

where

(a)n =
Γ(a+ n)

Γ(a)
, c > b > 0 and c > a+ b.
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It is well known (see [1]) that under the condition c > b > 0 and c > a+ b we have

∞
∑

n=0

(a)n(b)n

(c)nn!
=

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

For every f ∈ T we define the convolution operator Ha,b,c(f)(z) as

Ha,b,c(f)(z) =2 F1(a, b, c; z) ∗ f(z),

where 2F1(a, b, c; z) is the Gaussian hypergeometric function defined in (3.1). For
determining the resultant of Ha,b,c(f)(z) if we set

k =
Γ(c)

Γ(a)Γ(b)Γ(c− a− b+ 1)

then we have

Ha,b,c(f)(z) =
(

z +
∑∞

n=1
(a)n(b)n

(c)nn! z
n+1
)

∗
(

z −∑∞
n=1 an+1z

n+1
)

z −∑∞
n=1

(a)n(b)n

(c)nn! an+1z
n+1 = z − Γ(c)

Γ(a)Γ(b)

∑∞
n=1

Γ(a+n)Γ(b+n)
Γ(c+n)Γ(n+1)an+1z

n+1

= z − k
∑∞

n=1

[

an+1z
n+1

∑∞
n=0

[

(c−a)m(1−a)m

(c−a−b+1)mm!

∫ 1

0 t
b+n−1(1 − t)c−a−b+mdt

]]

= z+k
∫ 1

0
tb−1

t (1−t)c−a−b
2F1(c−a, 1−a, c−a−b+1; 1−t)

(

−∑∞
n=1 an+1t

n+1zn+1
)

dt

= z + k
∫ 1

0
tb−1(1 − t)c−a−b

2F1(c− a, 1 − a, c− a− b+ 1; 1 − t) f(tz)−tz
t dt

= z + k
∫ 1

0
tb−1(1 − t)c−a−b

2F1(c− a, 1 − a, c− a− b+ 1; 1 − t) f(tz)
t dt

−zk
∫ 1

0 t
b−1(1 − t)c−a−b

2F1(c− a, 1 − a, c− a− b+ 1; 1− t)dt.
If we set

µ(t) = ktb−1(1 − t)c−a−b
2F1(c− a, 1 − a, c− a− b+ 1; 1 − t) (3.2)

then it is easy to see that
∫ 1

0
µ(t)dt = 1. Consequently

Ha,b,c(f)(z) =

∫ 1

0

µ(t)
f(tz)

t
dt,

where µ(t) is as in (3.2).
This paves the way to state and prove our next theorem.
Theorem 4. Let f ∈ D(α, β, λ). Then Ha,b,c(f) ∈ D(α, β, λ1) where

λ1 ≤ inf
n

[

(c)n−1(n− 1)!

(a)n−1(b)n−1
Bn(λ) − 1

]

.

Proof. Since

Ha,b,c(f)(z) = z −
∞
∑

n=2

(a)n−1(b)n−1

(c)n−1(n− 1)!
anz

n

we need to show that

∞
∑

n=2

[n(1 + α) − (α+ β)](a)n−1(b)n−1

(1 − β)(c)n−1(n− 1)!
anBn(λ1) < 1. (3.3)
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The inequality (3.3) holds if

(a)n−1(b)n−1

(c)n−1(n− 1)!
Bn(λ1) < Bn(λ).

Therefore

λ1 <
(c)n−1(n− 1)!

(a)n−1(b)n−1
Bn(λ) − 1

which completes the proof.
The starlikeness of the functions in D(α, β, λ) under Ha,b,c is investigated in the

following theorem.
Theorem 5. Let f ∈ D(α, β, λ). Then Ha,b,c(f) ∈ S∗(γ) for |z| < R and

R = inf
n

[

[n(1 + α) − (α+ β)](1 − γ)(c)n−1(n− 1)!

(n− γ)(1 − β)(a)n−1(b)n−1
Bn(λ)

]
1

n−1

.

Proof. We need to show that
∣

∣

∣

∣

zH ′
a,b,c(f)(z)

Ha,b,c(f)(z)
− 1

∣

∣

∣

∣

< 1 − γ. (3.4)

For the left hand side of (3.4) we have

∣

∣

∣

∣

zH ′
a,b,c(f)(z)

Ha,b,c(f)(z)
− 1

∣

∣

∣

∣

≤
∑∞

n=2
(n−1)(a)n−1(b)n−1

(c)n−1(n−1)! an|z|n−1

1 −∑∞
n=2

(a)n−1(b)n−1

(c)n−1(n−1)!an|z|n−1
.

This last expression is less than 1 − γ if

∞
∑

n=2

(n− γ)(a)n−1(b)n−1

(1 − γ)(c)n−1(n− 1)!
an|z|n−1 < 1. (3.5)

Using the fact, see [1], that f ∈ D(α, β, λ) if and only if

∞
∑

n=2

n(1 + α) − (α+ β)

1 − β
anBn(λ) < 1,

we can say (3.5) is true if

(n− γ)(a)n−1(b)n−1

(1 − γ)(c)n−1(n− 1)!
|z|n−1 <

n(1 + α) − (α+ β)

1 − β
Bn(λ).

Or equivalently

|z|n−1 <
[n(1 + α) − (α+ β)](1 − γ)(c)n−1(n− 1)!

(n− γ)(1 − β)(a)n−1(b)n−1
Bn(λ)

which yields the starlikeness of the family Ha,b,c(f).
For α = λ = 0 and γ = β we obtain the following
Corollary 3. Let f ∈ S∗(β). Then Ha,b,c(f) ∈ S∗(β) in |z| < R1 for

R1 = inf
n

[

(c)n−1(n− 1)!

(a)n−1(b)n−1

]
1

n−1

.
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