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Non-abelian cohomology in a topos

Introduction

If S : 0 // A �
� u // B v // C // 0 is a short exact sequence of abelian group objects of

a topos E, then it is well known that the global section functor Γ(−) = HomE(1,−) when
applied to the sequence S yields, in general, only an exact sequence of ordinary abelian
groups of the form

1 // Γ(A) �
�
// Γ(B) // Γ(C) ,

since any global section of C can, in general, only be locally lifted past the epimorphism v.
But since the sequence consists of abelian groups, it is a standard fact of the homological
algebra of the abelian category Grab(E) that the deviation from exactness of Γ can be
measured by the abelian group valued functor H1(−) = Ext1(ZE,−) taken in Grab(E)
since Γ(C)

∼−→ Hom
Grab(E)

(ZE, C) and “pull-back” along s : ZE −→ C provides a group

homomorphism ∂1 : Γ(C) −→ H1(A) such that the extended sequence

0 // Γ(A) �
�
// Γ(B) // Γ(C) // H1(A) // H1(B) // H1(C)

is exact. Similarly, Yoneda splicing provides a homomorphism

∂2 : H1(C) −→ H2(A) (= Ext2(ZE, A))

which measures the deviation from exactness of H1(−) applied to the original sequence,
and the same process may be continued with the definition of Hn(−) = ExtnGrab(E)(ZE,−).
Moreover, if E is a Grothendieck topos, all of the groups in question are small since
Hn(−) may be computed by injective resolutions as the right derived functors of Γ,
Hn(−) ∼= RnΓ( ). Given the fundamental nature of the functor Γ, the groups Hn(A)
are called the cohomology groups of topos E with coefficients in A, and for any object X
in E, the same process applied to the topos E/X yields the corresponding cohomology
groups of the object X.

All these foregoing facts, however, depend heavily on the abelian nature of the given
short exact sequence of groups and the question immediately poses itself of what, if any-
thing, can be done if the original sequence does not consist of abelian groups but, for
instance, consists of non-abelian groups, or just of a group, a subgroup, and the homo-
geneous space associated with the subgroup, or is even reduced to the orbit space under
a principal group action? Primarily through the work of GROTHENDIECK (1953) and
FRENKEL (1957), the answer in each of these cases was shown to be found through
the use of the classical observation from fiber bundle theory that for an abelian coeffi-
cient group π, the group H1(π) was isomorphic to the group of isomorphism classes of
“principal homogeneous spaces” of the topos on which the group π acted and that except
for the absence of a group structure, by taking the pointed set of isomorphism class of
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such principal homogeneous spaces as the definition of H1(π) (for a non abelian π) one
could recover much of what was possible in the abelian case. For instance, H1(π) is still
functorial in π, is always supplied with a coboundary map ∂1 : Γ(C) −→ H1(A) and in
the case of an exact sequence of groups gives rise to an exact sequence

1 // Γ(A) �
�

// Γ(B) // Γ(C)

∂1

// H1(A) // H1(B) // H1(C)

of groups and pointed sets (along with a technique for recovering the information on the
equivalence relations associated with these maps which would normally be lost in such a
sequence in the absence of the group structures).

In and of themselves, the sets H1(π) are of considerable interest because of their ability
to provide classification of objects which are locally isomorphic to objects of a given form.
In outline this occurs as follows: one is given a fixed object on which π operates and a
representative principal homogeneous space from H1(π); a simple construction is available
which uses the principal space to “twist” the fixed object into a new one which is locally
isomorphic to the original, and each isomorphism class of such objects is obtained in
this fashion by an essentially uniquely determined principal homogeneous space. [Thus
for example given any object T in a topos H1(Aut(T )) classifies objects of E which are
locally isomorphic to T , H1(G`n(Λ)) classifies isomorphism class of Λ-modules which are
locally free of rank n . etc. ] For this reason the (right-) principal homogeneous spaces
under π of E which represent elements of H1(π) are called the π-torsors of the topos and
we will follow this same terminology.

Given a homomorphism v : B −→ C, the pointed mapping H1(v) : H1(B) −→ H1(C)
which establishes the functoriality of H1 is obtained by a particular case of this just
mentioned twisting construction which in fact defines a functor (T 7−→ vT ) from the
groupoid of B-torsors into the groupoid of C-torsors. A C-torsor so obtained from a B-
torsor is said to be obtained by “extending the structural group of the original torsor along
v”. The problem of characterizing those C-torsors which can be obtained by extension
of the structure group along an epimorphism v : B −→ C or, more precisely, given a
C-torsor, to find an “obstruction” to its being “lifted” to a B-torsor, thus becomes the
fundamental problem to be solved for the continuation of the exact sequence to dimension
2.

However, unless the kernel A of the epimorphism is a central sub-group (in which case
the abelian group H2(A) provides the solution) this problem appears considerably more
difficult than any of those yet encountered in this “boot strap” approach. For instance,
even if A is abelian, H2(A) does not work unless A is central and even then one still has
the problem of a satisfactory definition of an H2 for B and C.

In GIRAUD (1971), Giraud gave an extensive development of a 2-dimensional non-
abelian cohomology theory devised by himself and Grothendieck intended to solve this
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problem for arbitrary topoi much as DEDECKER (1960, 1963) had been able to do in
case of sheaves over a paracompact space.

The approach taken by Giraud was based on the following observation of Grothendieck:
The “obstruction” to a “lifting” of any given C-torsor E to a torsor under B is “already
found”: Consider, for any C-torsor E, the following fibered category: for any object X
in the topos let RX(E) be that category whose objects are the “local liftings of E to B”,
i.e. ordered pairs (T, α) consisting of a torsor T in TORS(E/X;B|X) together with an
isomorphism α : vT

∼−→ E|X, where E|X and B|X are the corresponding pull-backs of
E and B in E/X. With the natural definition of morphism, RX(E) becomes a groupoid
for each X, and a pseudofunctor R(E) on E by pull-back along any arrow f : X −→ Y .
R(E) is now said to be trivial provided R1(E) 6= ∅ , i.e., here if a global lifting is possible
and E 7→ R(E) defines the desired obstruction. In the axiomatic version, such a fibered
category was called by Giraud a gerbe (I5.0) but in order to recover some linkage with the
coefficient group Giraud was forced to introduce the notion of a “tie” or “band” (fr. lien)
(I3.1) which functions in the place of the coefficient group. Each gerbe has associated
with it a tie and Giraud defined his H2

GIR(L) as the set of cartesian equivalence classes
of those gerbes of E which have tie L. The resulting H2 is not, in general, functorial and
gives rise only partially to the full 9-term exact sequence of pointed sets originally desired.

In addition to this just mentioned “snag” in the definition of the desired exact se-
quence, the difficulties of this approach are well known, not the least formidable of them
being the extensive categorical background required for a full comprehension of the initial
definitions.

This paper and its sequel attempt to ameliorate a number of the difficulties of this
approach by replacing the externally defined gerbes of the Giraud theory with certain
very simply defined internal objects of the topos which we will call the bouquets of E.
In analogy with the above cited example of Grothendieck we can motivate their presence
in the theory as follows: For a given C-torsor E, in the place of the “gerbe of liftings
of E to B”, there is a much simpler object which we may consider: the B-object which
we obtain by restricting the (principal) action of C on E to B via the epimorphism
v : B −→ C. The resulting action is, of course, not principal so that E does not become
a B-torsor. However, if we include the projection of E ×B onto E along with the action
map α|v : E × B −→ E as parts of the structure, the resulting system forms the source
(S) and target (T ) arrows of an internal groupoid in E

E ×B
α|v

//

pr
// E

whose “objects of objects” is E and whose “object of arrows” is E × B. Since E was a
C-torsor and v : B −→ C was an epimorphism, the resulting internal groupoid enjoys two
essential properties

(a) it is (internally) non empty, i.e. the canonical E −→ 1 is an epimorphism, and
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(b) it is (internally) connected, i.e., the canonical map

〈T, S〉 = 〈pr, α|v〉 : E ×B −→ E × E

is an epimorphism.

We will call any groupoid object of topos E which enjoys properties (a) and (b) above a
bouquet of E with the above example called the 2-coboundary bouquet ∂2(E) of the torsor
E. As we will show, it carries all of the obstruction information that the gerb of liftings
of E does. Indeed, if we take the obvious generalization of principal homogeneous group
actions to groupoid actions to define torsors under a groupoid (15.6), then we have an
equivalence of categories

RX(E)
≈ // TORS(X; ∂2(E)) .

Every bouquet G∼∼ of E has naturally associated with it a tie, defined through the a
descent datum furnished by the canonical action (by “inner isomorphism”) of G∼∼ on its
internal subgroupoid of automorphisms (for ∂2(E) this subgroupoid is a locally given
group, i.e. a group defined over a covering of E, to which A is locally isomorphic) and in
this way these somewhat mysterious “ghosts of departed coefficient groups” find a natural
place in our version of the theory. (I.3).

We take for morphisms of bouquets the essential equivalences, i.e. internal versions
of fully faithful, essentially epimorphic functors, and consider the equivalence relation
generated by these functors (which because we are in a topos, do not necessarily admit
quasi-inverses). For a given tie L of E we now define H2(E;L) as connected component
classes (under essential equivalence) of the bouquets of E which have their tie isomorphic
to L.

The principal result of Part (I) of this paper is the following (Theorem (I5.21) and
(I8.21)). The assignment, G∼∼ 7−→ TORSE(G∼∼), defines a neutral element (I4.1) preserving
bijection

T : H2(E;L) ∼ // H2
GIR(E;L).

Among other things, this result shows that this non-abelian H2 (as we have already
remarked for H1) is also concerned with the classification of objects (the bouquets) which
are internal to the topos. This is further reinforced by the simple observation that since
a bouquet of E is just the internal version of the classical notion of a Brandt groupoid,
Brandt’s classical theorem characterizing such groupoids [BRANDT (1940)] still holds
locally: a bouquet of E is a category object of E which is locally essentially equivalent to
a locally given group (I2.5).

In the course of proving (I8.21) we also establish a number of relations between external
and internal completeness (§I7, in particular I7.5 and I7.13) which are closely related to
the work of JOYAL (1974), PENON and BOURN (1978), BUNGE and PARÉ (1979) as
well as STREET (1980) and are of interest independently of their application here.
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In Part (II) of this paper we introduce the notion of a 2-cocycle defined on a hypercov-
ering of E with coefficients in a locally given group (II2.0) and by proving that every such
cocycle factors through a bouquet of E show that H2(L) may be computed by such cocy-
cles (II4.3)much as VERDIER (1972) showed was possible in the abelian case. We then
use these cocycles to establish two results of Giraud (II5.2, II6.3) (“The Eilenberg-Mac
Lane Theorems”): If Z(L) is the global abelian group which is the center of the tie L, then

(a) H2(L) is a principal homogeneous space under the abelian group H2(Z(L)), so that
if H2(L) 6= ∅ then H2(L)

∼−→ H2(Z(L)).

(b) There is an obstruction O(L) ∈ H3(Z(L)) which is null if and only if H2(L) 6= ∅ .

(Whether every element of H3 has such an “obstruction interpretation” remains an
open question at the time of this writing).

In Part (III) of this paper we explore all of these notions in the “test topos” of G-sets.
Here we show that since the notion of localization is that of passage to the underlying
category of sets, a bouquet is just a G-groupoid which, on the underlying set level, is
equivalent (as a category) to some ordinary group N . Moreover, since every such bou-
quet defines (and is defined by) an ordinary extension of G by the group N we obtain
a new description of the classical Ext(G;N) (III4.2). We also show (III6.0) that, as Gi-
raud remarked, a tie here is entirely equivalent to a homomorphism of G into the group
OUT(N) [ = AUT(N)/INT(N)] of automorphism classes of some group N , i.e. to an
abstract kernel in the sense of ElLENBERG-MAC LANE (1947 II) and thus that the the-
orems of Part (II) are indeed generalizations of the classical results since our non-abelian
2-cocycles are shown to be here entirely equivalent to the classical “factor-systems” for
group extensions of SCHREIER (1926).

An appendix is given which reviews the background of the formal “theory of descent”
necessary for understanding many of the proofs which occur in the paper.

Since the subject of non-abelian cohomology has for such a long time remained an
apparently obscure one in the minds of so many mathematicians, it will perhaps be
worthwhile to make some further background comments on the results of Part III which
may be taken as a guiding thread for a motivation of much that appears both here and
the preceding fundamental work of Grotbendieck and Giraud:

On an intuitive basis the background for the definition of H2
GIR(E; L) may be said to lie

in sophisticated observations on the content of the seminal Annals papers of Eilenberg and
Mac Lane on group cohomology [EILENBERG-MAC LANE 1947(I). 1947(II) particularly
as presented in MAC LANE (1963). In these papers the extensions of a group G by a (non-
abelian) kernel N were studied via the notion of an “abstract kernel”, ϕ : G −→ OUT(N)
- every extension induces one - and its relations with the groups H2(G; Z(N)) and
H3(G; Z(N)) as defined by them.

Now from the point of view of topos theory. their groups Hn(G;A) where A is a
G-module may quite literally be taken to be (a cocycle computation of) the cohomology
of the topos of G-sets with coefficients in A viewed as an internal abelian group in this
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topos, itself the topos of sheaves on the group G viewed as a site with the discrete topology
(since a right G-set is just a functor from Gop into sets).

[This cohomological fact may easily be seen if one notes that the category of abelian
group objects in G-sets is equivalent to the category of G-modules viewed as modules over
the group ring. Alternatively it may be seen by using Verdier’s theorem (cited above)
which shows that for any topos E the “true” cohomology groupsHn(E, A) (= Extn(ZE;A))
may be computed in the simplicial Čech fashion as equivalence classes of n-cocycles under
refinement provided that one replaces coverings by hypercoverings (essentially simplicial
objects obtained from coverings by covering the overlaps) and then notes that in the
topos of G-sets, every hypercovering may be refined by a single standard covering pro-
vided by the epimorphism Gd

// // 1 (G operating on itself by multiplication). The
n-cocycles (and coboundaries) on this covering then may easily be seen to be in bijective
correspondence with the ordinary Eilenberg-Mac Lane ones.]

Furthermore, since any group object in this topos of G-sets is equivalent to an ordinary
homomorphism ψ : G −→ AutGr(N) and if N is abelian, then an abstract kernel is just an
abelian group object in the relations with H2(G; Z(N)) starting with Schreier’s classical
observation that every extension defines and is defined by a “factor set” and proceeded
from there.

Now again from the point of view of topos theory a factor set is almost a sheaf of
groups on G viewed as a category with a single object and hence almost a group object
in the topos of G-sets, quite precisely, it is a pseudofunctor F( ) : Gop ; Gr (a functor up
to coherent natural isomorphisms) with fibers in the (2-category of) groups and natural
transformations of group homomorphisms. Every pseudo-functor on G defines and is
defined by a Grothendieck fibration F −→ G and here the fibrations defined by factor sets
are precisely the extensions of G, with those defined by actual functors corresponding
to split extensions (hence the term split (fr. scindé)for those pseudo-functors which are
actual functors). For an arbitrary site S this leads to the notion of a gerbe defined either
as a particular sort of pseudofunctor defined on the underlying category of the site or as
the particular sort of fibration over S which the pseudo functor defines. The required
relationship with the topology of the site is that of “completeness”, i.e. it is a “stack”
(fr. champ) in the sense that every descent datum (= compatible gluing of objects or
arrows in the fibers) over a covering of the topology on S is “effective”, that is, produces
an object or arrow at the appropriate global level. [This property of being complete for a
fibration is precisely that same as that of being a sheaf for a presheaf when viewed as a
discrete fibration (i.e., corresponding to a functor into sets).]

As every factor set defines canonically an abstract kernel, every gerbe canonically
defines a tie and Grothendieck and Giraud thus define H2(E;L) for the topos E of sheaves
on S as the set of cartesian equivalence classes of gerbes on S which have tie isomorphic
to L. The resulting theory, however, is “external to E”, taking place, at best, within the
category of categories over E and not “within” the topos E.

What has been added to their theory in this paper may be viewed as similar to
what happened with the interpretation of H1(G;A) and its original definition as crossed
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homomorphisms modulo principal crossed homomorphisms: Viewed in the topos of G-
sets, a crossed homomorphism is bijectively equivalent to a l-cocycle on the standard
covering Gd

// // 1 with coefficients in the abelian group object A. Every such l-cocycle
defines and can be defined by an object in this topos, namely an A-torsor (i.e., here, a non-
empty G-set on which the G-module A operates equivariantly in a principal, homogeneous
fashion). H1(G;A) is then seen to be isomorphism classes of such torsors [c.f. SERRE
(1964)] Except for the abelian group structure that the resulting set inherits from A, as
we have already remarked, this interpretation theory can be done for non-abelian A in
any topos and the resulting set of isomorphism classes can be taken as the definition of
H1(E;A) and thus seen to be computable in the Čech fashion by refining cocycles on
coverings.

What we have observed here is that there are similar internal objects available for
the non-abelian H2, the bouquets [internal Brandt groupoids, if one prefers, equivalent
to K(A, 2)-torsors in the abelian case (DUSKIN (1979))] which play an entirely similar
role provided that one relaxes the definition of equivalence to that of essential equivalence
and takes the equivalence relation generated, much as one has to do in Yoneda-theory
in dimensions higher than one. [If one wishes, this latter “problem” can be avoided by
restricting attention to the “internally complete” bouquets, but those that seem to arise
naturally such as the coboundary bouquet ∂2(E) of a torsor do not enjoy this property.]
We have also observed that by using hypercoverings in place of coverings there is also
internal to the topos always the notion of a non-abelian 2-cocyc1e (corresponding to a
factor set in the case of G-sets) which may be used to compute H2 and to prove at least
two out of three of the classical theorems of Eilenberg and Mac Lane.

So far as the author knows, the observation that every Schreier factor set defines and
is defined by a bouquet in G-sets, or put another way, that every extension of G by
N corresponds to an internal nonempty connected groupoid in G-sets which is on the
underlying set level (fully) equivalent to N , is new.

In the sequel to this paper we will use the results of I and II to explore the case of
(global) group coefficients (where the tie is that of a globally given group) and to repair
the “snag” in Giraud’s 9-term exact sequence, including there a much simpler proof of
exactness in the case of H1. We will also use these results to explain Dedecker’s results
for paracompact spaces as well as those of DOUAI (1976). A brief introduction to this
portion may be found in JOHNSTONE (1977) which is also a good introduction to the
“yoga of internal category theory” used in our approach.

The results of Part (I) and a portion of Part (III) were presented, in outline form, at
the symposium held in Amiens, France in honor of the work of the late Charles Ehresmann
(DUSKIN (1982)). In connection with this it is fitting to note, as we did there, that it
was EHRESMANN (1964) who first saw the importance of groupoids in the definition of
the non-abelian H2.

The results of Part II were written while the author was a Research Fellow of the School
of Mathematics and Physics at Macquarie University, N.S.W. Australia in the summer of
1982. The author gratefully acknowledges the support of Macquarie University and its
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faculty at this time as well as the National Science Foundation which generously supported
much of the original work.

The author would also like to thank Saunders Mac Lane for many thoughtful comments
on the exposition and Ms. Gail Berti for her generous assistance in typing a difficult
manuscript.

Buffalo, NY
February 20, 1983

10



NON-ABELIAN COHOMOLOGY IN A TOPOS

Part (I): The theory of bouquets and gerbes

In what follows it will generally be assumed that the ambient category E is a Grothen-
dieck topos, i.e. the category of sheaves on some U -small site. It will be quite evident,
however, that a considerable portion of the theory is definable in any Barr-exact cate-
gory [BARR (1971)] provided that the term “epimorphism” is always understood to mean
“(universal) effective epimorphism”.

1. THE CATEGORY OF BOUQUETS OF E.

Recall that in sets a groupoid is a category in which every arrow is invertible. In any
category E we make the following

Definition (1.0). By a groupoid object (or internal groupoid) of E we shall mean (as
usual) an ordered pair G∼∼ = (Ar(G∼∼),Ob(G∼∼)) of objects of E such that

(a) for each object U in E , the sets HomE(U,Ar(G∼∼)) and HomE(U,Ob(G∼∼)) are the
respective sets of arrows and objects of a groupoid (denoted by HomE(U,G∼∼)) such
that

(b) for each arrow f : U −→ V , the mappings

Hom(f,Ar(G∼∼)) : HomE(V,Ar(G∼∼)) // HomE(U,Ar(G∼∼)) and

Hom(f,Ob(G∼∼)) : HomE(V,Ob(G∼∼)) // HomE(U,Ob(G∼∼))

defined by composition with f are the respective arrow and object mappings of a
functor (i.e. morphism of groupoids)

HomE(f,G∼∼) : HomE(V,G∼∼) // HomE(U,G∼∼) .

Conditions (a) and (b), of course, simply state that the canonical functor

〈HomE(- ,Ar(G∼∼)) , HomE(- ,Ob(G∼∼))〉 : Eop // (ENS)× (ENS)

factors through the obvious underlying set functor U : GPD // ENS× ENS .
As is well known for any such “essentially algebraic structure” the above definition (in

the presence of fiber products) is equivalent to giving a system

G∼∼ : Ar(G∼∼)
T
×
S

Ar(G∼∼)
µ(G∼∼)

// Ar(G∼∼)
S(G∼∼)

//

T (G∼∼)
// Ob(G∼∼)

I(G∼∼)

��
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of objects and arrows of E which, in addition to satisfying in E the usual commutative
diagram conditions expressing the properties of source (S), target (T ), identity assignment
(I) and composition (µ) of composable arrows that any category satisfies in sets, also has
the commutative squares

(1.0.0) Ar(G∼∼)×Ob(G∼∼) Ar(G∼∼)
pr2 //

µ(G∼∼)

��

Ar(G∼∼)

T (G∼∼) and

��

Ar(G∼∼)
T (G∼∼)

// Ob(G∼∼)

(1.0.1) Ar(G∼∼)×Ob(G∼∼) Ar(G∼∼)
pr2 //

µ(G∼∼)

��

Ar(G∼∼)

S(G∼∼)

��

Ar(G∼∼)
S(G∼∼)

// Ob(G∼∼)

cartesian (i.e., “pull-backs”) as well since this latter condition will, in addition, guarantee
that every arrow of the category is invertible. An object u : U → Ob(G∼∼) of the groupoid
HomE(U,G∼∼) will sometimes be called a U -object of G∼∼. Similarly, a U -arrow of G∼∼ will
then be an arrow f : U −→ Ar(G∼∼) of E. In HomE(U,G∼∼) its source is Sf and its target is
Tf , f : Sf −→ Tf . Composition of composable U -arrows is given by composition in E
with µ(G).
Remark. If we include in this system the canonical projections which occur in these
diagrams, the resulting system defines a (truncated) simplicial object in E

(1.0.2) Ar(G∼∼)×Ob(G∼∼) Ar(G∼∼)
pr1 //
µ //

pr2

// Ar(G∼∼)
S //

T
//

]] dd

Ob(G∼∼)
bb

= = =

X2

d2 //
d1

//

d0

// X1

d1 //

d0

//

s1

ee

s0

__
X0

s0

aa

whose coskeletal completion to a full simplicial object (c.f. DUSKIN (1975, 1979)) for
definitions of these terms) is called the nerve of G∼∼. We note that a simplicial object of
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E is isomorphic to the nerve of a groupoid object in E if and only if for i = 0, · · · , n the
canonical maps

(1.0.3) 〈d0, · · · , d̂i, · · · , dn〉 : Xn
// Λi

into the “object of boundaries of n-simplices whose ith face is missing (the “i-horn Λi”)
are isomorphisms for all n ≥ 2. Thus viewed, groupoids in E may be identified with such
“exact Kan-complexes” in SIMPL(E).

Definition (1.2). By an (internal) functor F∼∼ : G∼∼1
−→ G∼∼2

of groupoid objects we shall
mean an ordered pair of arrows(

Ar(F∼∼) : Ar(G∼∼1
) −→ Ar(G∼∼2

) , Ob(F∼∼) : Ob(G∼∼1
) −→ Ob(G∼∼2

)
)

such that for each object U of E, the corresponding pair of mappings

HomE(U, F∼∼) : HomE(U,G∼∼1
) −→ HomE(U,G∼∼2

)

defines a functor in sets. Similarly an (internal) natural transformation
ϕ : F∼∼1

−→ F∼∼2
of (internal) functors will be an arrow ϕ : Ob(G∼∼1

) −→ Ar(G∼∼2
) such that

the corresponding mapping HomE(U,ϕ) defines a natural transformation of HomE(U, F∼∼1
)

into HomE(U, F∼∼2
) for each object U of E. A (full) equivalence of groupoids will be a

pair of functors G∼∼ : G∼∼1
−→ G∼∼2

, H∼∼ : G∼∼2
−→ G∼∼1

such that for each U in E, the functor
HomE(U,G∼∼) has HomE(U,H∼∼) as a quasi-inverse.

Each of these terms has a corresponding equational statement in terms of commuting
diagrams in E, the (easy) formulation of which we leave to the reader.

We thus have defined over E the (2-category) GPD(E) of (internal) groupoids, func-
tors and natural transformations (and note that it is fully imbedded in the (2-category)
category SIMPL(E) of simplicial objects, simplicial maps, and homotopies of simplicial
maps of E via the functor Nerve).

It is obvious from the form of the preceding definitions that because of the Yoneda
lemma all of the “essentially algebraic” theorems about groupoids in sets (i.e. those
that can be stated in terms of equations involving certain maps between finite inverse
limits) transfer diagramatically to the corresponding statements in GPD(E) and that this
portion of “internal category theory” is essentially identical to that found in sets. This
is, of course, not true in E for all statements which commonly occur in category theory,
in particular those that in sets assert (non unique) existence. For instance, in sets, a fully
faithful functor F∼∼ : G∼∼1

−→ G∼∼2
which is essentially surjective (i.e. has the property that

given any object G of G∼∼2
there exists an object H of G∼∼1

such that F∼∼(H) is isomorphic
to G) is a full equivalence since, using the axiom of choice, any such functor admits a
quasi-inverse. In an arbitrary topos, epimorphisms replace surjective map but since not
every epimorphism admits a section, the theorem fails. Nevertheless it is this notion of
essential equivalence (and the equivalence relation which it generates) which we need in
this paper. For groupoids in E, this becomes the following diagrammatic

Definition (1.1). By an essential equivalence of G∼∼1
with G∼∼2

we shall mean a functor
F∼∼ : G∼∼1

−→ G∼∼2
which satisfies the following two conditions:

13
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(a) F∼∼ is fully faithful (i.e. the commutative diagram

(1.1.0) A1

Ar(F∼∼)
//

〈T,S〉

��

A2

〈T,S〉

��

O1 ×O1
Ob(F∼∼)×Ob(F∼∼)

// O2 ×O2

is cartesian); and

(b) F∼∼ is essentially epimorphic (i.e., the canonical map T · prA2
: O1 ×2 A2 −→ O2

obtained by composition from the cartesian square

(1.1.1) O1 ×2 A2

prA2 //

prO1

��

A2

S

��

T // O2

O1
Ob(F∼∼)

// O2

is an epimorphism).

Remark (1.2). The first of these conditions (a) is essentially algebraic and is equivalent
to the assertion that for each U in E, the functor

HomE(U, F∼∼) : HomE(U,G∼∼1
) −→ HomE(U,G∼∼2

)

is fully faithful. The second condition is “geometric”, however, and does not guarantee
that HomE(U, F∼∼) is essentially surjective for each U . In fact, if it is, then the epimor-
phism T · prA2

: O1 ×S A2 −→ O2 is split by some section s : O2 −→ O1 ×2 A2 in E, a
condition much too strong for our intended applications. What does survive since we are
in a topos is the notion that F∼∼ is “locally” essentially surjective, i.e. given any object

u : U −→ Ob(G∼∼2
) in HomE(U,G∼∼2

), there exists an epimorphism c : C // // U and an

object v : C // // Ob(G∼∼1
) in HomE(U,G∼∼1

) such that F∼∼(v) = Ob(F )u is isomorphic to

uc : C −→ Ob(G∼∼2
) in HomE(C,G∼∼2

). In effect, just define c as the epimorphism obtained
by pulling back the epimorphism T · prA2

along u and define v as the composition of pr2

and the projection prO1
. The terminology ”local” is fully justified since this is equivalent

to saying that for any object in the site of definition of the topos, there exists a covering
of the object over which the restricted statement is indeed true. It thus coincides with
the usual topological concept if the site consists of the open sets of a topological space.

We now are in a position to define the objects of the topos to which the relation of
essential equivalence will be applied. They too have both an essentially algebraic and a
“geometric” component to their

Definition (1.3). A groupoid object G∼∼ : A
S //

T
// O in E will be called a bouquet of E

provided it satisfies the additional two conditions

14
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(a) G∼∼ is (internally) non-empty (i.e., the canonical map Ob(G∼∼) // 1 into the termi-

nal object of E is an epimorphism); and

(b) G∼∼ is (internally) connected (i.e., the canonical map

〈T, S〉 · Ar(G∼∼) −→ Ob(G∼∼)×Ob(G∼∼)

is an epimorphisim.)

As we have already remarked in (1.2), these conditions do not guarantee that for each
U , the groupoid HomE(U,G∼∼) is nonempty and connected but rather only that these two
properties are locally true: (a) for any object U in E , there exists a covering (read
epimorphism) C // // U on which the groupoid HomE(C,G∼∼) is nonempty and (b) for

any U -objects x, y : U
//
// Ob(G∼∼) there exists a covering d : D // // U on which the

restrictions xd and yd are isomorphic in the groupoid HomE(D,G∼∼), i.e. any two objects
in HomE(U,G∼∼) are locally isomorphic. Note that this does not imply that there exists a

covering C of the entire site (read C // // 1 ) on which the groupoid HomE(U,G∼∼) is non
empty and connected.

(1.4) Every functor F∼∼ : G∼∼1
// G∼∼2

of bouquets is necessarily essentially epimorphic,

thus F∼∼ is an essential equivalence of bouquets if and only if F∼∼ is fully faithful. In effect,

given any U -object u : U // Ob(G∼∼2
) of G∼∼2

, the fact that G∼∼1
is locally non empty means

that there exists an epimorphism p : C // // U and a C-object x : C // Ob(G∼∼1
) and

thus a pair (up,Ob(F )x) : C
//
// Ob(G∼∼2

) of C objects in G∼∼2
. But since G∼∼2

is locally

connected, there exists an epimorphism C ′
p′
// // C for which the restrictions upp′ and

Ob(F∼∼)xp′ are isomorphic in HomE(U,G∼∼2
). Thus the composition pp′ : C ′ // // U and the

C ′ object xp′ of G∼∼1
produce a cover of U on which the asserted property holds and F is

thus essentially epimorphic.

We will designate by BOUQ(E) the 2-subcategory of GPD(E) whose objects are the

bouquets of E and whose morphisms are essential equivalences of bouquets, with natural
transformations of essential equivalences (necessarily all isomorphisms) for 2-cells.

(1.5) Examples of Groupoids and bouquets:

(1.5.0) Trivially, any epimorphism X // // 1 defines a bouquet, namely

X ×X
pr1 //

pr2

// X viewed as a groupoid in which there is exactly one arrow connecting any

two objects. Similarly the kernel pair X ×Y X
pr1 //

pr2

// X of any epimorphism p : X // // Y

defines a bouquet in the topos E/Y of objects of E above Y [whose objects are arrows

15
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of E of the form Z // Y and whose arrows are commutative triangles Z1
//

��

Z2

��

Y

]

since in E/Y , Y is terminal and the product of p with itself in E/Y is just X ×Y X.
(1.5.1) Every group object of E (i.e. groupoid G∼∼ of E for which the canonical map

Ob(G∼∼) // 1 into the terminal object is an isomorphism) is clearly a bouquet of E (and

an essential equivalence of group objects is just an isomorphism). Thus any group object
in the topos E/X is bouquet of the topos E/X. Viewed in E, a group object in E/X is
simply a groupoid in E whose object of objects is X and whose source and target arrows
coincide (S = T ), thus in sets just a family of groups indexed by X. If the canonical map
X // 1 is an epimorphism then such a groupoid will be called a locally given group
since this amounts to a group object defined over a cover of E. A group object of E itself
will, in contrast, be often referred to as a globally given group.
(1.5.2) Every bouquetG∼∼ of E has canonically associated with it a locally given group (1.5.1),
namely, its subgroupoid E(G∼∼) −→ G∼∼ of automorphisms of G∼∼ defined through the cartesian
square

(1.5.2a) E(G∼∼) �
�

//

pr

��

Ar(G∼∼)

〈T,S〉

��

Ob(G) ∆ // Ob(G)×Ob(G∼∼)

For any object U of E, HomE(U, E(G∼∼)) represents the subgroupoid arrows of HomE(U,G∼∼)

of the form f : x // x for some U -object x : U // Ob(G∼∼) . Since Ob(G∼∼) // 1 is

epic, this is indeed a locally given group and thus may be viewed as a group object in
the category E/Ob(G∼∼). In the next section we will show that every bouquet is “locally
essentially equivalent” to this particular locally given group.
(1.5.3) The notion of a group G acting on a set E (on the right, say) can be easily
axiomatized in an essentially algebraic fashion and thus defined in E via an action map
α : E ×G // E which represents an action of HomE(U,G) on HomE(U,E) for each ob-

ject U of E. If one adds the projection prE : E ×G // E to this action one obtains the

target (prE) and source (α) arrows of a groupoid E ×G //
// E in E whose composition

is defined through the multiplication in G. Set-theoretically this amounts to viewing a
right action on a set as defining the arrows (x, g) : xg // x of a groupoid whose objects
consist of the elements of E.

In order that such a groupoid be a bouquet it is necessary and sufficient that the object
on which the group acts be a homogeneous space under the group action, i.e., that the
canonical maps 〈prE, α〉 : E ×G // E × E and E // 1 be epimorphisms. It follows

that any torsor under G (i.e., any principal homogeneous space under an action of G) is
a bouquet of E. [A group action is said to be principal if the canonical map 〈prE, α〉 is
a monomorphism.]
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(1.5.4) In particular, if p : G1
// G2 is an epimorphism of group objects of E and E is

a torsor under G2, then the restriction of the action of G2 on E to G1 via the epimorphism
p makes E into a homogeneous space under G1 which when viewed as a bouquet is called
the 2-coboundary bouquet ∂2(E) of the torsor E along the epimorphism p. It will play a
key role in the extension of the classical six term exact sequence of groups and pointed
sets (referred to in the introduction) to dimension 2.
(1.5.5) If E is a homogeneous space under G which admits a global section x : 1 // E ,
then the internal group Gx of automorphisms of x in the bouquet defined by E may be
constructed via the cartesian square

(1.5.5a) Gx
� � //

��

E ×G

〈prE ,α〉

��

1
〈x,x〉

// E × E

and identified with the isotropy subgroup of x in G since it is isomorphic to the represen-
tation of the set of g ∈ G such that xg = x. The resulting inclusion functor

(1.5.5b) Gx
� � //

��

E ×G

pr

��

α

��

1 x
// E

furnishes an example of an essential equivalence of bouquets which clearly does not in
general admit a quasi-inverse. Such is the case furnished by any short exact sequence

1 // A �
� u // B v // C // 1 of groups of E which is not split on the underlying

object level: C itself becomes a homogeneous space under B via the epimorphism v and
A may be identified with the isotropy subgroup of the unit section of C. Thus the short
exact sequence gives rise to the essential equivalence

(1.5.5c) A �
�

//

��

C ×B

pr

��

Pm

��

1 e
// C

of bouquets of E which admits no quasi-inverse.

2. BOUQUETS AND LOCALLY GIVEN GROUPS

(2.0) Localization. The process of “localization” to which we have alluded in the pre-
ceding sections is best viewed as taking place categorically “within the topos E” in the
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following fashion: As we have used the term, given some property of objects and arrows
of E, or more generally of some diagram d in E, to say that the property “locally true”
has not meant that for each object X in the site of definition of E the property holds in
the corresponding diagram of sets d(X) but rather that for each X there exists a cover-

ing (Xα
// X)α∈I in the topology of the site such that the restricted diagram d(Xα)

enjoys the property for each α. But since the topos E is the topos of sheaves on the site,
the preceding notion is equivalent to the assertion of the existence of an epimorphism
c : C // // 1 in E such that the diagram of sets d(C) enjoys the property in question.

Now the topos E is isomorphic the topos E/1 and “pull back along c” defines a functor

of localization c∗ : E(
∼−→ E/1) // E/C into the topos of objects above C. Its value at

any X in E is just X × C pr
// C which we will denote by X|C and refer to as “X

localized over C”. Since c∗ has both left and right adjoints any categorical property of
a diagram d in E is preserved when localized to the corresponding (localized) diagram
d|C in E/C. Moreover, since there is a one-to-one correspondence between arrows from

C to X in E and arrows C // X|C in E/C (and thus to global sections of X|C since

C is terminal E/C), the diagram of sets d(C) is just the diagram of global sections of
the localized diagram d|C in E/C. Thus the local properties of d have become the global
properties of d|C in E/C.

This enables us to generalize the above informal notion of localization “within the
topos E” as follows: given any categorically stateable property of a diagram d in E, to
say that d enjoys the property locally will simply mean that there exists an epimorphism
c : C // // 1 such that the localized diagram d|C enjoys the property in the topos E/C.
Thus for example, objects X and Y of E are locally isomorphic will mean that there
exists an epimorphism C // // 1 such that the objects X|C and Y |C are isomorphic
in E/C. This in turn is easily seen to be equivalent to the assertion that the canonical

map Iso(X, Y ) // 1 is an epimorphism since there is a one-to-correspondence between

arrows Z // Iso(X, Y ) and isomorphisms α : X|Z // X|Z and to say for any given

object T , that the canonical map T // 1 is an epimorphism is equivalent to saying
that, locally, T admits a global section.

The functor of localization over an epimorphism c∗ preserves and reflects limits and
epimorphisms. It thus also preserves and reflects both monomorphisms and isomorphisms
and commutativity of diagrams. Thus, for instance, a simplicial object X• of E is the
nerve of a category (resp., groupoid) object in E if and only if locally it is the nerve of a
category (resp. groupoid) object in E. Similarly a category G∼∼ is a bouquet of E if and
only if locally it is a bouquet of E.

A small amount of caution is necessary to make clear “where the localization is taking
place”. For instance an epimorphism f : X // // Y need not be locally split (since the

axiom of choice need not hold even locally there may be no epimorphism C // // 1

for which f |C : X|C // Y |C admits a section in E/C. However, considered as an

object in the topos E/Y (where Y is terminal) there does exist an epimorphism in E/Y
18
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f
//

f
��

Y

id
��

Y

 such that pull back over it does produce a splitting since this is

just saying in E/Y that the canonical map to the terminal object is an epimorphism.
In addition, it should also be clear that local existence of objects and arrows need not

imply global existence. However, since an epimorphism c : C // // 1 is a morphism of
effective descent (c.f. appendix), the functor of localization gives rise to an equivalence
of the topos E with the category of algebras over the monad (triple) defined by the
endofunctor c

!
c∗ : E/C −→ E/C. This category of algebras is easily seen to be equivalent

to the category of objects of E/C supplied with a descent datum (i.e. a compatible
gluing), thus local existence of objects and arrows of E only produces global existence
(i.e. existence in E) for “compatibly glued” objects or arrows in E/C.

In the following paragraphs we shall make use of localization to give a characterization
of the bouquets of E which should make their connection with group cohomology at least
plausible.

(2.1) Bouquets and group objects.
First recall that our definition of a bouquet is just the “internal version” of the classical

set theoretic notion of a “Brandt groupoid”, i.e. a connected non empty category in which
every arrow is an isomorphism. In BRANDT [1940], Brandt gave a structure theorem for
such groupoids which showed that they are characterized by a group G and a non-empty
set S in such a fashion that the set of arrows of the groupoid admitted a bijection onto
the set S × S × G [cf. BRUCK (1958)]. In present terminology he simply showed that
any Brandt groupoid is equivalent (as a category) to a group (considered as a groupoid
with a single object) which could be taken to be the subgroup(oid) of automorphisms of
any chosen object of the groupoid. From a modern point of view the proof of the theorem
is elementary: Simply pick an object x of the groupoid G∼∼ and look at the subgroupoid

aut(x) of arrows of G∼∼ of the form a : x // x . The inclusion functor aut(x) �
�

// G∼∼ is

fully faithful and since G∼∼ is connected it is essentially surjective (for every object of G∼∼
is isomorphic to x). Since the axiom of choice holds, this essential equivalence admits a

quasi-inverse P : G∼∼
// aut(x) which is also fully faithful, so that the square

(2.1.0) Ar(G∼∼) P //

〈T,J〉

��

aut(x)

��

Ob(G∼∼)×Ob(G∼∼) // 1× 1(
∼−→ 1)

is cartesian (1.1.a) and Ar(G∼∼) ∼ // Ob(G∼∼)×Ob(G∼∼)× aut(x) as asserted. By taking any

non-empty set S for Ob(G∼∼) and defining the arrows of G∼∼ via the cartesian square (2.1.0)
the converse of the theorem is established. Note also that since G∼∼ is connected for any
choice of objects x and y the groups aut(x) and aut(y) are isomorphic by an isomorphism
which is itself unique up to an inner automorphism.
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If G∼∼ is a bouquet of a topos E for which the canonical maps Ob(G∼∼) // // 1 and

Ar(G∼∼)
〈T,S〉
// Ob(G∼∼)×Ob(G∼∼) both admit sections s0 : 1 // Ob(G∼∼) and

t : Ob(G∼∼)×Ob(G∼∼) // Ar(G∼∼) , then Brandt’s theorem holds without modification in-

ternally in E since for all objects U in E, the groupoid HomE(U,G∼∼) is a Brandt groupoid
(in sets) and the group object autG∼∼(s0) defined by the cartesian square

(2.1.1) autG(s0) �
�

//

��

Ar(G∼∼)

〈T,S〉

��

1
〈s0,s0〉 // Ob(G∼∼)×Ob(G∼∼)

together with its canonical inclusion functor

(2.1.2) is : autG∼∼(s0) �
�

// G

is an equivalence of groupoids in E with a quasi inverse defined using the section t to pro-
duce a choice of isomorphisms s1 : Ob(G∼∼) // Ar(G∼∼) internally connecting any object

of G∼∼ to s0. As in case of sets any two groups autG∼∼(s0) and autG∼∼(s′0) are isomorphic in an
essentially unique function.

Conversely, any category object G∼∼ which is equivalent to a group object G is a bouquet
of E whose canonical epimorphism both admit sections of the form s0 and t. Such a
bouquet of E will be said to be split by the group G.

Note that from the simplicial point of view if G∼∼ is split, then the sections

s0 : 1 // Ob(G∼∼) and s1 : Ob(G∼∼) // Ar(G∼∼) form the first two steps of a contracting

homotopy on the 1-truncated nerve of G∼∼ since s0 just internally picks an object s0 of G∼∼ and

s1 just defines an isomorphism s1(x) : s0
// x for each object x of G∼∼. But since any such

contracting homotopy can be used to define a section t(x, y) = s1(y)s1(x)−1 : x // y we

see that a bouquet G∼∼ is split (by some group G) if and only if Cosk1(Ner(G∼∼)) admits a
contracting homotopy.

Of course, in an arbitrary topos a given bouquet G∼∼ may have one of its canonical

epimorphisms split without the other one being split: For example let v : B // C be
an epimorphism of groups and let Cδ be the trivial torsor under C, (C acting on itself
by multiplication) then the co boundary torsor ∂2(C) of Cδ along v (1.5.4) always has

a canonical section for Ob(∂2(Cδ)) // // 1 furnished by the unit map for C but admits

a section for Ar(∂2(Cδ))
〈T,S〉
// Ob(∂2(Cδ))×Ob(∂2(Cδ)) if and only if the epimorphism

v : B // C admits a section on the under lying object level. Similarly if v : B // C
admits a section on the underlying object level and E is a non trivial torsor under C,

then ∂2(E) admits a section for 〈T, S〉 but not for Ob(∂2(E)) // // 1 . Thus these two
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possibilities must be considered separately in an arbitrary topos:

(2.2) Lemma. For any bouquet G∼∼ of E, in order that there exist a group G and an

essential equivalence P : G∼∼
// G (we shall say that G∼∼ is split on the right by some

group G) it is necessary and sufficient that the canonical epimorphism

〈T, S〉 : Ar(G∼∼) // Ob(G∼∼)×Ob(G∼∼) admits a section t : Ob(G∼∼)×Ob(G∼∼) // Ar(G∼∼)

which has the following properties

(a) t is normalized (i.e., t∆ = I(G∼∼) ⇐⇒ for all x ∈ Ob(G∼∼), t(x, x) = id(x) ) and

(b) t is multiplicative (i.e., µ(G∼∼)(t× t) = tpr13 ⇐⇒ for all x, y, z ∈ Ob(G∼∼)

t(x, y)t(y, z) = t(x, z) ).

Moreover, any two such groups G are locally isomorphic.
These two properties just say simplicially that the canonical simplicial map

p : Ner(G∼∼) // Cosk0(Ner(G∼∼)) admits a simplicial section or, equivalently, that the

canonical functor from G∼∼ to the groupoid Ob(G∼∼)×Ob(G∼∼)
//
// Ob(G∼∼) admits a func-

torial section. [Note that any section t may be assumed to be normalized (since if it

is not, the section t′(x, y) = t(x, y)t(g, y) is) and that if Ob(G∼∼) // // 1 also admits a

section then any section t may be replaced with a functorial one. ]

In effect if such a functor P exists, then the square

(2.2.1) Ar(G∼∼) P //

〈T,S〉

��

G

��

Ob(G∼∼)×Ob(G∼∼)

e#

FF

// 1× 1(
∼−→ 1)

e

DD

is cartesian and the unit section e of G defines a functorial section e# of 〈T, S〉 which has
the property that Pe# = e.

Conversely if 〈T, S〉 admits a functorial section,then the canonical action of G∼∼ on the

subgroupoid E(G∼∼) �
�

// G of automorphisms of G∼∼ (1.5.2) by inner isomorphisms may

be combined with t to define a gluing t∗ (c.f. Appendix ) on E(G∼∼) viewed as a locally

given group defined on the covering Ob(G∼∼) // // 1

(2.2.2) pr∗0(E)
t∗−→
∼

pr1(E)
::
//

		 ��

E(G)

��

P // G

��

Ob(G∼∼)×Ob(G∼∼) //
//
Ob(G∼∼) // 1
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via the group isomorphism

(2.2.3) t∗ : (x, y, a : x→ x) � // (x, y, t(x, y)−1 at (x, y) : y → y)

in Gr(E/ (Ob(G∼∼)×Ob(G∼∼)).
Since t is functorial, t∗ is a descent datum on E(G∼∼) for this covering which, since we

are in a topos, is effective and thus produces a group G on the global level which is locally
isomorphic to the locally given group E(G∼∼). G∼∼ is made essentially equivalent to G by
the functor defined through the image of the internal composition t(Sf, Tf) f under

the canonical epimorphism of descent p : E(G) // // G . Clearly, any two such groups

are locally isomorphic to E(G∼∼). [ An alternative description of this construction may be

found in (II 7) in connection with the notion of neutral cocycles. ]
On the other side of G∼∼, we have the following

(2.3) Lemma. For any bouquet G∼∼ of E, in order that there exist a group G and an

essential equivalence J : G // G∼∼ (we shall say that G∼∼ is split from the left by G) it is

necessary and sufficient that the canonical epimorphism Ob(G∼∼) // // 1 admits a section

s0 : 1 // Ob(G∼∼) . Moreover, any two such groups are locally isomorphic.

In effect, the proof of Brandt’s theorem involves no use of choice up to the point
of construction of a quasi inverse. Thus given a section s0 : 1 // Ob(G∼∼) , the carte-

sian square (2.1.1) now identifies G isomorphically with the group autG∼∼(s0) and canon-
ically defines an essential equivalence of G with the bouquet G∼∼. For any two sections

s0 and s′0 : 1 // Ob(G∼∼) , the cartesian square

(2.3.0) isoG∼∼(s′0, s0) �
�

//

����

Ar(G∼∼)

〈T,S〉

��

1
〈s0,s′0〉

// Ob(G∼∼)×Ob(G∼∼)

furnishes an epimorphism pr1 : isoG∼∼(s′0, s0) // // 1 and a local isomorphism of s′0 and s0

which defines a local isomorphism of autG∼∼(s0) and autG∼∼(s1). Thus any two such groups
are locally isomorphic.

(2.4) What now survives of Brandt’s theorem for a bouquetG∼∼ in an arbitrary topos, where
the axiom of choice fails to hold? If the topos E is Boolean, then the axiom of choice
holds locally (i.e. for any epimorphism f : X −→ Y in E, there exists an epimorphism

C // // 1 on which the epimorphism X|C f |C
// Y |C admits a section in the topos E/C ).

In this case for any bouquet G∼∼ one can find an epimorphism C // // 1 for which both of
the canonical epimorphisms of G∼∼|C admit sections and Brandt’s theorem holds without
modification; thus here, in a Boolean topos a bouquet is simply a category which is locally
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(fully) equivalent to a group object defined over some covering of E, i.e. what we have
called a locally given group.

In an arbitrary topos, the canonical epimorphism Ob(G∼∼) // // 1 is always locally split

since the epimorphism itself may be viewed as defining a covering C = Ob(G∼∼) // // 1

over which the diagonal

∆: Ob(G∼∼) −→ Ob(G∼∼)×Ob(G∼∼)
∼−→ Ob(G∼∼|C)

defines a canonical section of Ob(G∼∼)|C // // 1 in the topos E/C. Thus in E/Ob(G∼∼) the

Lemma (2.3) is applicable and then we have an essential equivalence

JC : autG|C(∆) �
�

// G∼∼|C . Thus any bouquet G∼∼ is locally essentially equivalent to locally

given group. But this is characteristic since conversely, for any category object G∼∼ of E if

there is a covering C // // 1 of E and a group object G of E/C for which there exists

an essential equivalence i : G // G∼∼|C in E/C, then G∼∼|C is a bouquet in E/C and thus

must have been a bouquet in E.
Thus any bouquet of E is just a category of E which is locally essentially equivalent

to a locally given group which may be taken to be autG∼∼|Ob(G∼∼)(∆) in E/Ob(G∼∼). But what
is this group object? A simple calculation reveals that it is canonically isomorphic to
the subgroupoid E(G∼∼) of automorphisms of G∼∼ (1.5.2) now viewed as a group object in
E/Ob(G∼∼), i.e., in the topos E/Ob(G∼∼) we have a canonical essential equivalence

(2.4.0) E(G∼∼) �
�

//

��

Ob(G∼∼)× Ar(G∼∼)

Ob(G∼∼)×T

��

Ob(G∼∼)×S

��

Ob(G∼∼)

id

""

∆ // Ob(G∼∼)×Ob(G∼∼)

pr1

xx

Ob(G∼∼)

and, in summary,we have proved

Theorem (2.5). A bouquet of E is an internal category G∼∼ of E which is locally essentially
equivalent to a locally given group (which may be taken to be the subgroupoid E(G∼∼) of
internal automorphisms of G∼∼ considered as a group object in the topos E/Ob(G) ).

3. THE TIE OF A BOUQUET

(3.0) Since every bouquet G∼∼ : A
T
//

S //
O of E is locally essentially equivalent to the locally

given group E(G∼∼) of its internal automorphisms on the covering O // // 1 the question
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immediately arises: Is there a globally given group G // // 1 and a covering C : C // // 1

over which one has locally an essential equivalence G|C // G∼∼|C ? Suppose that G is

such a group and C is such a covering. Then the product C ′ = C ×O gives a covering of
both 0 and C and 1 over which one has essential equivalences

E(G∼∼)|C ′ � � // G∼∼|C ′ and G|C ′ � � // G∼∼|C ′

but then it follows that the groups E(G∼∼)|C ′ and G|C ′ are locally isomorphic over some

cover C ′′ // // C ′ (2.3) and thus that one has an epimorphism p : C ′′ // // O over which

the groups G|O and E(G∼∼) are isomorphic. Now given any epimorphism p : C ′′ // // O ,
the cartesian square

(3.0.0) A′′
pr2 //

pr1

��

A

〈T,S〉

��

C ′′ × C ′′
p×p

// O ×O

defines a bouquet G∼∼
′′ : A′′ //

//
C ′′ and an essential equivalence

(3.0.1) A′′
pr2 //

�� ��

A

�� ��

C ′′ p
// O

for which the groups E(G∼∼)|C ′′ and E(G∼∼
′′) are canonically isomorphic (as can be easily

seen from reasoning on the cube

(3.0.2) A′′

��

pr2 // A

〈T,S〉

��

E(G′′) //
+ �

99

��

E(G)
, �

::

��

C ′′ × C ′′ p×p
// O ×O

C ′′
∆

88

p
// O

∆

::

where the dotted arrow is that unique one which makes the top and front squares com-

mutative).
It follows that, up to essential equivalence, in this case we may restrict our attention

to bouquets G∼∼ : A //
//
O of E and group objects G of E which have the property that
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one has an isomorphism E(G∼∼)
∼−→ G|O of group objects in E/O. Since this means that

we have a cartesian square

(3.0.3) E∼∼ //

��

G

��

O // // 1

in E which makes E∼∼(G∼∼) a localization of G over O, it should follow that we could recover
G from the group E∼∼(G∼∼) by means of a descent datum somehow supplied intrinsically by
the bouquet G∼∼. Now there is indeed a naturally occurring candidate for the provision of
such a descent datum: the canonical action of G∼∼ on E∼∼(G) by inner isomorphisms used

in (2.2) in conjunction with a functorial section t of A
〈T,S〉−−−→ O × O. Thus consider the

diagram

(3.0.4) O ×O ×O //
//
//
O ×O

pr1

//

pr2 //
O // // 1

A×O A //
//
//

OOOO

A
T

//

S //

〈T,S〉

OOOO

O

id

OO

In the category E/A, we have the group isomorphism

(3.0.5) int(G∼∼)−1 : A×S E∼∼
‖

A×T E∼∼
∼oo

‖

S∗(E∼∼) T ∗(E∼∼)∼oo

given by the assignment

(f : x −→ y, a : y −→ y) 7→ (f : x −→ y, f−1af : x −→ x)

As a “gluing” it is easily seen to satisfy the “cocycle condition” when restricted to the
category E/A ×O A (c.f. Appendix). Thus in order that it define a true descent datum

d : pr∗1(E) ∼ // pr∗2(E) in E/O × O it is necessary and sufficient that it have the same
restriction when pulled back along the two projections of the graph of the equivalence
relation associated with the epimorphism 〈T, S〉 : A // // O ×O . Since this equivalence

relation consists of the object of internal ordered pairs of arrows x
g
//

f
//
y which have the

same source and target, int(G∼∼)−1 defines a descent datum on E∼∼(G∼∼) if and only if for all
a : y −→ y and all pairs (f, g), f−1af = g−1ag, i.e. “inner isomorphism” be independent
of choice of representative. But since f−1af = (g−1f)−1g−1ag(g−1f) and g−1f : x −→ x
is an automorphism, this can occur only if aut(x) is abelian for all x, i.e. if and only if

E(G∼∼) // O is an abelian group object in E/O, a clearly untenable assumption if we
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wish to consider bouquets which are locally essentially equivalent to the localization of a
given non-abelian group (where E(G∼∼) −→ O cannot be abelian for this would force G to
be.)
(3.1) The fibered category of ties of E. What does survive here even if E∼∼(G∼∼)→ O is not
abelian is based on the observation that int(f)−1 and int(g)−1 while not identical for all
f and g do differ by an inner automorphism of x (that defined by g−1f : x −→ x ) and
thus are equal modulo an inner automorphism. This necessitates the replacement of the
fibered category (Cf. Appendix) of locally given groups with a new fibered category called
the ties (fr. lien) of E.

This new fibered category is defined as follows: First we define the fibered category
Tie(E) of pre-ties of E. Its fiber at any object X of E has as objects the group objects of
E/X. Its morphisms, however, consist of the global sections (over X) of the coequalizer
(i.e. orbit space)

(3.1.0) HomX(G1, G2)×G2 //
//
HomX(G1, G2) // HomX(G1, G2)

of the sheaf of group homomorphisms of G1 into G2 under the action of G2 by composition
with inner automorphisms of G2. Under pullbacks this defines a fibered category over E
in which morphisms still glue along a covering even though “true existence” may be only
local over a some covering C // // X of X. We now define the fibered category TIE(E)
of ties of E by completing it to a stack so that every descent datum in Tie(E) over a

covering X // // Y is effective. An object of the fiber of TIE(E) over the terminal object
1 will be called a (global) tie of E. As we shall see when we discuss the Grothendieck-
Giraud theory later in this paper, it will be convenient to regard a tie of E as represented
by an equivalence class under refinement of a descent datum in Tie(E) on some locally

given group E∼∼ −→ O over a covering O // // 1 of E, i.e., by some given global section of
Hex(pr∗1(E∼∼), pr∗2(E∼∼)) over O ×O.
(3.2) Clearly, from our preceding analysis, for any bouquet G∼∼, the canonical action by
inner isomorphisms supplies E∼∼(G∼∼) −→ O with such a descent datum and hence defines,
not a global group but rather a global tie which is unique up to a unique isomorphism.
It will be called the tie of the bouquet G∼∼ and will be denoted by tie(G∼∼). If J∼∼ : G∼∼1

−→ G∼∼2

is an essential equivalence of bouquets, then tie(G∼∼1
)
∼−→ tie(G∼∼2

). More details of an
alternative description of this may be found in parts II2.1 and II2.4.

4. THE SECOND COHOMOLOGY CLASS H2(E;L)

We now give the following

Definition (4.0). Let L be a given global tie. We define the 2-category BOUQ(E;L) as the

2-subcategory of BOUQ(E) consisting of the bouquets of E which have lien isomorphic

to L (together with essential equivalences as morphisms). We will designate the class
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of connected components of the underlying category by H2(E;L) and call it the second
cohomology class of E with coefficients in the tie L. Note that under this relation, a
bouquet G∼∼0

is in the same connected component as G∼∼n provided there exists a finite
sequence of bouquets and essential equivalences

(4.0.0) G∼∼n−1
// G∼∼n

��

G∼∼1

��

// G∼∼2

G∼∼0

which connects G∼∼0
and G∼∼n. Moreover, it can be shown that, in fact, one step is sufficient :

In effect, for any essential equivalences of bouquets of the form

(4.0.1) G∼∼2

J∼∼2

��

G∼∼1 J∼∼1

// G∼∼

define the 2-fibered product G∼∼1

2
×G∼∼ G∼∼2

of G∼∼1
with G∼∼2

over G∼∼ as the representation of
the groupoid which has as objects triplets of the form
(A1, A2, α) : J∼∼1

(A1)
∼−→ J∼∼2

(A2) in Ob(G∼∼1
) × Ob(G∼∼2

) × Ar(G∼∼) and as arrows, pairs
(f : A1 −→ B1 , g : A2 −→ B2) in Ar(G∼∼1

) × Ar(G∼∼2
) such that J∼∼2

(g)α = βJ∼∼1
(f) in G∼∼.

Using the canonical projection functors one obtains a square of functors

(4.0.2) G∼∼1

2
×G∼∼ G∼∼2

pr1

��

pr2 // G∼∼2

J∼∼2

��

G∼∼1 J∼∼1

// G∼∼

00

which is commutative up to a natural isomorphism and for which it is easy to show (e.g.

using Barr’s embedding [BARR (1971)]) that G∼∼1

2
×G∼∼ G∼∼2

is itself a bouquet with both
projections essential equivalences.

If E is a site, we define H2(E;L) as H2(E˜;L) where E is the associated topos of the
sheaves on the site and finally, if G is a sheaf of groups, then we define the (unrestricted)
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second cohomology class of E with coefficients in the group G as H2(E; tie(G)) and point
this class by the class of the group G, considered as a bouquet whose tie is that of G. In
this case the class of G will be called the trivial or unit class of H2(E; tie(G)).

(4.1) Neutral elements. In general, for a given global tie L there may be no globally given
group G whose tie is isomorphic to L, indeed, H2(E;L) may be empty, there being no
bouquet whatever in E whose tie is isomorphic to L. The obstruction to this is measured
by an element of H3(E;Z(L)) where Z(L) is the “center of L” and will be discussed in
(II 6.0) after we have shown how H2(E;L) may be computed using cocycles. If there
exists a group G of E whose tie is isomorphic to L, then H2(E;L) is non-empty since
any representative of the class of G in H2(E;L) including G itself will also have its tie
isomorphic to L. Such a tie will be said to be representable (by a group of E) and any
bouquet which lies in such a class will be said to be neutral. The connected component
classes of the neutral bouquets will then form a subset of H2(E;L) which we will denote
by H2(E;L)′ and call the neutral elements of H2(E;L). In the case of H2(E;G), where
G is a global group, the (neutral) class of G will be called the trivial (or unit) element of
H2(E;G).

Because of the nature of the equivalence relation (connected component class) which
defines H2(E;L) the neutrality of a given bouquet may not be readily apparent. We have,
however, the following recognition

Theorem (4.2). For any bouquet G∼∼ and group G of E, the following statements are
equivalent:

(a) G∼∼ lies in the same connected component as the group G (i.e., G∼∼ is neutral);

(b) G∼∼ lies in the same connected component as a bouquet T∼∼ which admits a global

section s : 1 −→ Ob(T∼∼) for which G
∼−→ autT∼∼(s) ↪→ T∼∼ (i.e., T∼∼ is split from the left

by G, (2.3));

(c) There exists an essential equivalence J∼∼ : U∼∼ −→ G∼∼ where U∼∼ is a bouquet of E whose
object of arrows (and groupoid) structure is defined by an isomorphism
Ar(U∼∼)

∼−→ Ob(U∼∼)×Ob(U∼∼)×G (i.e., U∼∼ is split from the right by G (2,2)).

In effect, if G∼∼ lies in the same connected component as a group G, then the identity map
id(1) : 1 −→ 1 ∼= Ob(G) furnishes a splitting for G∼∼ and G∼∼ thus lies in the same connected
component as a bouquet which is split from the left by G (take G for the bouquet T∼∼) so
that, trivially, (a) implies (b). If G∼∼ lies in the same component as a bouquet T∼∼ which is
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split from the left then one has a diagram of essential equivalences

(4.2.0) U∼∼
P∼∼1 //

P∼∼0

��

autT∼∼(s) (∼= G)
� _

��

V∼∼1 J∼∼1

//

J∼∼0

��

T∼∼

G∼∼

where we have taken for U∼∼ the 2-fibered product (4.0.2) of J∼∼1
with the inclusion defined

by the splitting s : 1 −→ T∼∼. But since P∼∼1
is an essential equivalence of U∼∼ with the group

G , the square

(4.2.1) Ar(U∼∼) //

〈T,S〉

��

G

��

Ob(U∼∼)×Ob(U∼∼) // 1

is cartesian with J∼∼0
P∼∼0

: U∼∼ −→ G∼∼ furnishing the desired essential equivalence for the
implication of (c) by (b). Finally, since the condition on U∼∼ in (c) is just the provision

of an essential equivalence U∼∼
J∼∼1−−−−→ G∼∼, (c) implies (a) and the chain of equivalences is

complete.
REMARK (4.2.1). In (5.6) we will define the notion of an E-torsor under a groupoid G∼∼
and in (8.1.6) we will define for any bouquet G∼∼ (in a Grothendieck topos) its (internal)

completion G̃∼∼, supplied with an essential equivalence H∼ : G∼∼ −→ G̃∼∼. With these objects
in hand, we may add to the above chain of equivalences the following two equivalent
conditions:

(d) there exists an E-torsor E∼∼ under G∼∼ (whose sheaf of automorphisms is isomorphic
to G), i.e. TORS(E;G∼∼) 6= ∅;

(e) the completion G̃∼∼ of G∼∼ is split from the left by the group G.

(4.2) H2(E;L) is not, in general, functorial on morphisms of ties and H2(E; tie(G)) does
not, in general, lead to a continuation of the cohomology exact sequence of groups and
pointed sets associated with a short exact sequence of groups in E. We will rectify this
at a later point by considering a certain class of members of BOUQ(E) associated with a

given group G and related to the sequence in question.
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For now, we will define a neutral element preserving bijection of the above defined
H2(E;L) with the set of the same name defined in GIRAUD (1971).

5. THE FUNCTOR FROM BOUQUETS TO GERBES

Recall the following

Definition (5.0). If E is a U -small site for some universe U , then a gerbe (over E) is a
fibered category F over E (c.f. Appendix) which satisfies the following conditions:

(a) F is a stack (fr. champ), i.e., both objects and arrows in the fiber over any covering
glue (c.f. Appendix);

(b) F is fibered in U -small groupoids ; i.e., for each object X in E, the category fiber FX
is a U -small groupoid;

(c) there is a covering of E such that each of the fibers over that covering are non empty;
and

(d) any objects x and y of a fiber FX are locally isomorphic.

From (a) it follows that for any object x in FX , the presheaf AutX(x) on E/X is, in fact,
a sheaf and that for any isomorphism f : x −→ y in FX , the induced group isomorphism
of AutX(x) with AutX(y) is unique up to an inner automorphism. Thus conditions (c)
and (d) define the existence of a global tie over E (which is unique up to a unique iso-
morphism) and is called the tie of the gerbe F. For any tie L , Grothendieck and Giraud
make the following

Definition (5.1). The second cohomology set of E with coefficients in the tie L, H2
Gir(L) is

the set of equivalence classes (under cartesian equivalence of fibered categories) of those
gerbes of E which have tie L. If G is a sheaf of groups, then H2

Gir(tie(G)) is pointed
by class of the gerbe TORSE(G) of G-torsors over E, whose fiber at any X in E is the
groupoid of torsors (i.e., principal homogenous spaces) in E/X under the group G|X.
(5.2) Torsors under a groupoid. We now intend to establish a mapping (Theorem (5.21))
of our H2(E;L) into H2

Gir(E;L) which will turn out to be a bijection. To do this we must
extend the standard definition of torsor under a sheaf of groups to that of a torsor under
a sheaf of groupoids. Recall that this is done as follows:

Definition (5.3). Let G∼∼ : A //
//
O be a groupoid in a topos E. By an internal (Con-

travariant) functor from G∼∼ into E (or a (right-) operation of G∼∼ on an object E of E
, or more simply, a G∼∼-object of E) we shall mean an object E of E supplied with
an arrow P0 : E −→ O together with an action ξ : E ×

P0,T
A −→ E such that for all
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T ∈ Ob(E), HomE(T, α) defines a right action of the groupoid HomE(T,G∼∼) on the set
HomE(T,E) −→ HomE(T,O) in the usual operator set theoretic sense,

(5.3.0) E ×T A
pr

//

pr

��

ξ

��

A

T

��

S

��

E
P0

//

��

O

1

Using the obvious definition of G∼∼-equivariant map of such G∼∼-objects (or internal nat-
ural transformation) we obtain the category OPER(E;G∼∼) (also denoted by EG∼∼op

) of G∼∼
objects of E and equivariant maps of G∼∼-objects. For each object X of E we also have the
corresponding category of G∼∼-objects of E above X, defined by OPER(E/X;G∼∼X). Under
pull-backs this defines the corresponding fibered category OPERE(G∼∼) of G∼∼ objects over E.

(5.4) For each global section 1
dxe−−→ O of O, we have the corresponding internal repre-

sentable functor defined by dxe which is defined using the fibered product 1×TA
S prA−−−−→ O

for “total space” and the composition in G∼∼ to define the action. In sets this just gives
the category G∼∼/dxe of G∼∼ objects above the object dxe. We have the following immediate
result:

THEOREM (5.5). In order that an internal functor (G∼∼-object) be representable, i.e.
isomorphic to G∼∼/dxe for some global section dxe : 1 −→ O, it is necessary and sufficient
that it satisfy the following two conditions

(a) the canonical map 〈prE, ξ〉 : E ×T A −→ E × E is an isomorphism (i.e., the action
ξ is a principal homogeneous action); and

(b) the canonical mapping E −→ 1 admits a splitting s : 1 −→ E (i.e. E is globally
non empty).

In effect, since G∼∼ is a groupoid, the operation of G∼∼ on G∼∼/dxe by composition is always

principal and the composition of the arrows x : 1 −→ O
id−→ A canonically defines a

splitting of G∼∼/dxe −→ 1. Conversely, if s0 : 1 −→ E is a splitting of E −→ 1 and
G∼∼ operates principally, then the endomorphism of E with itself defined by s0 lifts to
s1 : E −→ E ×O A and the square

(5.5.0) E
prA s1 //

��

A

T

��

1
P0 s0 // O
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is cartesian.
We now make the following

Definition (5.6). By a G∼∼-torsor of E above X we shall mean an G∼∼X-object of E/X which
is locally representable, i.e. becomes representable when restricted to some covering of
E/X. For the canonical topology on E, this is entirely equivalent to the following two
conditions on the defining diagram in E

(5.6.0) E ×T A
pr

//

pr

��

ξ

��

A

T

��

S

��

E //

P

��

O

X

(a) the canonical map E ×T A
〈prE ,ξ〉−−−−→ E ×X E is an isomorphism, and

(b) the canonical map p : E −→ X is an epimorphism.

A torsor is thus representable, if and only if it is split, i.e. p admits a section s : X −→ E.

(5.7) Again, since this definition is stable under pull backs we have the corresponding
fibered category TORSE(G∼∼) of G∼∼-torsors of E whose fiber at any X is TORS(E/X;G∼∼|X).
If G is a group object in E, we immediately recover the usual definition of G-objects of
E and G-torsors of E. Note also that a group, as a category, has up to isomorphism
only one representable functor, which is just Gd, i.e. G acting on itself on the right by
multiplication.

(5.8) As with the case of group objects, OPER(E, G∼∼) is functorial on functors
J∼∼ : G∼∼1

−→ G∼∼2
of groupoids OPER(E, J∼∼) : OPER(E, G∼∼2

) −→ OPER(E, G∼∼1
) is just defined

by “restricting” the G∼∼2
-action on to the object E

P0−−→ O2 to that of G∼∼1
on EJ0×P0O1

pr−−→
O1. Also, as with groups, OPER(E, J∼∼) has a left exact left adjoint which carries torsors
under G∼∼1

to torsors (above the same base) under G∼∼2
. Its restriction to the corresponding

categories of torsors will be denoted by

(5.8.0) TORSX(J∼∼) : TORS(E/X,G∼∼1
) // TORS(E/X,G∼∼2

) .

In (5.16) we will give this construction in detail as it is used in the proof of the theorem
which follows.

We may now state the principal result of this section:

Theorem (5.9). Let E be a Grothendieck topos (over some small U -site) and G∼∼ a groupoid
object of E. Then
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1◦ the fibered category TORSE(G∼∼) is a U-small stack of groupoids over E (i.e., each
of the fibers is a U -small groupoid and descent data on G∼∼-torsors defined over a
covering is always effective (on both objects and arrows.)

2◦ if G∼∼ is a bouquet, then TORSE(G∼∼) is a gerbe whose tie is isomorphic to the tie of
G∼∼.

3◦ If J∼∼ : G∼∼1
−→ G∼∼2

is an essential equivalence, then

TORS(J∼∼) : TORS(G∼∼1
) // TORS(G∼∼2

)

is a (full) cartesian equivalence of fibered categories.

In effect, for 1◦ note that every morphism of G∼∼-torsors over an arrow f : X → Y in E
is cartesian, i.e. the commutative square in the diagram of morphisms of G∼∼-torsors

(5.9.0) O

E1
f1 //

77

PX

����

E2

>>

PY

����

X
f

// Y

is cartesian (since the action is principal and PX is a universal effective epimorphism, the
fact that the square

(5.9.1) E1 ×O A
f1×A //

prE1

��

E2 ×O A

prE2

��

E1 f1

// E2

is necessarily cartesian makes the Grothendieck lemma [GROTHENDIECK (1962)] ap-
plicable or, equivalently Barr’s embedding theorem for which this lemma is a principal
example). Thus if f is the identity (so that one has a morphism of G∼∼-torsors over X)
f1 : F1 −→ F2 is an isomorphism and each fiber is a groupoid. That torsors defined over
a covering and supplied with descent data necessarily glue is a similar diagram chasing
exercise from the theory of Barr-exact categories whose proof we leave to the reader.

That each fiber is equivalent to a category whose objects and arrows are members of
the universe U is based on the following
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Lemma (5.10). Let p : C // // X be an epimorphism and

(5.10.0) C• : C ×X C ×X C //
//
//
C ×X C //

//
C // // X

its (truncated) nerve. The groupoid TORS(C•/X;G∼∼) of G∼∼-torsors above X which are split
(i.e. representable with a given representation) when restricted along the epimorphism p is
equivalent to the groupoid SimplE(C•, G∼∼) of simplicial homotopies of simplicial mappings
of C• into (the nerve of) G∼∼. (This latter groupoid is, of course. isomorphic to the groupoid
of internal functors and natural transformations of the internal groupoid whose structural
maps are given by C × C //

//
C into the internal groupoid G∼∼ .)

Using this lemma and passing to the filtered limit under refinement we see that the
set of isomorphism classes of the TORS(X;G) is equivalent to that of the groupoid

lim−→
C∈Epi/X

TORS(C/X;G) . Since every epimorphism is refined by a representable cover-

ing (i.e. an epimorphism of the form
∐
x∈I

a(x) −→ X , where x is an object of the original

site, and a(x) is its associated sheaf ) we have that

(5.10.1) TORS(X;G∼∼) ≈ lim−→
C•∈Cov(X)

SimplE(C•, G∼∼)

and thus is a U -groupoid since it is equivalent to a groupoid whose objects and arrows
are members of the universe U .

The proof of Lemma (5.10) is a modification of the classical proof which classifies
torsors under a group by means of Čech-cocycles with coefficients in a group and will
be given elsewhere since it is properly a part of the general theory of monadic (“triple”)
cohomology combined with a generalization of Grothendieck’s notion of lim−→ .

(5.11) for the proof of part 2◦ of Theorem (5.9) we first note that if G∼∼ : A //
//
O is

a bouquet then the epimorphism O // // 1 supplies us with a covering of E for which
TORS(O;G∼∼) is non-empty. In effect, the canonical split G∼∼-torsor above O which repre-
sents the identity arrow id(O) : O −→ O is always present:

(5.11.0) A×O A //

�� ��

A

T

��

S

��

A
S

//

T

��

O

����

id

@@

O

id

EE

id(O)

::

// // 1 .

We now must show that any two G∼∼-torsors above X are locally isomorphic. For this we
will use the following lemma and its immediate corollary (the proofs of which we leave to
the reader ).
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Lemma (5.12). (Internal Yoneda Lemma): Let E be a split torsor above X which rep-

resents the X-object x : X −→ O and let F∼∼ = (F
f0−→ O,α) be any G∼∼-object above X.

There is a bijective correspondence between the set of operator maps of E into F above
X (i.e., internal natural transformations) and the set of arrows f : X −→ F such that
f0f = x, i.e. the value of x at F ).

(5.12.0) OPERX(E,F∼∼)
∼−→ ΓX(F ×O X)

def
= ΓX(F (x))

Corollary(5.13). Let E1 and E2 be split G∼∼-torsors above X, with E1 representing xl : X −→
O and E2 representing x2 : X −→ O. The set of G∼∼-torsor maps above X of E1 into E2

is in bijective correspondence with the set all arrows f : X −→ A such that Sf = xl and
Tf = x2.

(5.13.0) TORSX(E1, E2)
∼−→ ΓX(HomX(x1, x2)) .

(5.14) Now let E1 and E2 be arbitrary G∼∼-torsors above X. Since E1 is split when
pulled back along the epimorphism p1 : E1 −→ X where it represents f 1

0 : E1 −→ O, and
E2 is split when pulled back along the epimorphism P2 : E2 −→ X where it represents
f 2

0 : E2 −→ O, both are split when pulled back along El ×X E2
p1 pr−−→ X. Now since G∼∼

is a bouquet, so that 〈T, S〉 : A // // O ×O is an epimorphism, we may continue to pull

them back along the epimorphism pr1 : A# −→ E1 ×X E2 defined through the cartesian
square

(5.14.0) A#
pr2 //

pr1

��

A

〈T,S〉

��

E1 ×X E2 〈f1
0 pr2 , f

2
0 pr2〉

// O ×O

where they remain split and represent, respectively, f 1
0 pr1 and f 2

0 pr1. But there, the
arrow pr2 : A# −→ A represents an isomorphism between these two split torsors. Thus
both of the original torsors become isomorphic when localized over the epimorphism
p1pr1pr1 : A# −→ X.

We have now shown that TORS(G∼∼) is a gerbe. Let us look at its tie which is calculated
by gluing (the tie of a representable localization of) the sheaf of groups Aut(A) −→
O where A is the split torsor defined by A

T // O
id

ff which represents the identity map

id(O) : O −→ O. But for any t : U −→ O, Aut(A)(U) = TORST (A|U,A|U) which by
Corollary 6, is just bijectively equivalent to the set of all arrows f : u −→ A such that
Sf = t and Tf = t which, in turn, is bijectively equivalent to the set of all arrows from U
into the group object E(G∼∼) −→ O of internal automorphisms of G∼∼. Thus Aut(A) −→ O
is just isomorphic to the locally given group E(G∼∼) −→ O which we used to define the tie
of G∼∼ and thus the two liens are isomorphic.
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(5.15) In order to prove part 3◦ of Theorem (5.9), note that any functor
J∼∼ : G∼∼1

−→ G∼∼2
gives rise to the following augmented bisimplicial diagram in E (called the

internal profunctor from G∼∼2
to G∼∼1

adjoint to J∼∼ ).

(5.15.0) (O1 ×T A2)× A2 × A1
H∼

//

pr
//

pr

��

H∼(F )−1

��

(O1 ×T A2)×T A2

��

H∼(F )−1

��

pr
// A1

T

��

S

��

cc

(O1 ×T A2)×T A2
H∼

//

pr
//

pr

��

O1 ×T A2

Spr

��

pr
// O1

F

gg

A2
S

//

T //
O2

in which the object O1 ×T A2 = {(X, a : A −→ F (x))} plays two roles: first, supplied
with the arrow Spr : (X, A −→ F (X)) 7→ A, simple composition with an arrow B

u−→ A
in A2 defines an action of G∼∼2

on O1×T A2 which is compatible with pr : O1×T A2 −→ O1

and makes the lower horizontal augmented complex into a torsor under G∼∼2
which is split

by the arrow
F : X 7→ (x, id : (F (X) −→ F (X)). It thus is the G∼∼2

torsor above O1 which repre-
sents the object mapping Ob(F∼∼) : Ob(G∼∼1

) −→ Ob(G∼∼2
). Second, supplied with the arrow

pr: O1 ×T A2 −→ O1, the groupoid G∼∼1
acts on it via the mapping

H∼(F )−1 : (X, A
a−→ F (X), Y

f−→ X) 7→ (Y, A
F (f)−1a−−−−−→ F (Y )) . This action is moreover

clearly compatible with Spr : O1 ×T A2 −→ O2 and is a principal action under G∼∼1
if and

only if J∼∼ : G∼∼1
−→ G∼∼2

is fully faithful and thus is a torsor under G∼∼1
above O2 if and

only if J∼∼ : G∼∼1
−→ G∼∼2

is an essential equivalence. It follows then that if J∼∼ is an essential

equivalence, then (O1 ×T A2)×T A2
pr−→ A2 is also a torsor under G∼∼1

(above A2) as is its
pull back over A2×T,S A2 along pr : A2×T,S A2 −→ A2. In any case, a similar observation
shows that pr : (O1 ×T A2) ×T A2 −→ A1 is a split torsor under G∼∼2

above Al and so is
its pull back to A1 ×T,S A. Thus, in summary, we see that any functor J∼∼ : G∼∼1

−→ G∼∼2

gives rise to a canonical simplicial complex of split G∼∼2
-torsors whose augmentation is the

nerve of the category G∼∼, and if J∼∼ is an essential equivalence, to a simplicial complex of
G∼∼1

-torsors whose augmentation is the nerve of G∼∼2
.

(5.16) Using this pair of complexes (5.15) we now note the functor

TORS(X; J∼∼) : TORS(X;G∼∼1
) −→ TORS(X;G∼∼2

)

is obtained as follows: given any G∼∼1
-torsor above X, its structural maps into G∼∼1

may
be used to pull back the simplicial complex of split G∼∼2

-torsors to obtain a simplicial
complex of G∼∼2

-torsors over the nerve of the torsor. But when viewed as the nerve of a
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covering of X this complex may be viewed as defining a descent datum on the G∼∼2
-torsor

U = (O1 ×T A2)×O E
pr−→ E, where E is the total space of the G∼∼1

-torsor E −→ X. Since
G∼∼2

-torsors defined on a covering of X glue to produce an G∼∼2
-torsor above X, we define

the image of E under TORS(X; J∼∼) to be the so glued G∼∼2
-torsor T above X.

(5.16.0)

(O1 ×T A2)× A2 × A1
H∼

//

pr
//

pr

��

H∼(F )−1

��

(O1 ×T A2)×T A2

��

H∼(F )−1

��

pr
// A1

T

��

S

��

U × A1

99

pr
//

�� ��

E × A1

@@

�� ��

(O1 ×T A2)×T A2
H∼

//

pr
//

pr

��

O1 ×T A2

Spr

��

pr
// O1

U ×T A2

77

//
//

��

U

99

//

��

E

f0

@@

PE

��

A2
S

//

T //
O2

T ×T A2

77

//
//
T

g0

88

pr
// X

In more conventional terms. this defines T as the quotient of U under the “diagonal”
action of G∼∼1

:

(e, f0(e), A
h−→ F (F0(e)) , Y

u−→ f0(e)) 7→ (eu, Y, A
F (u)−1h−−−−−→ F (Y )) .

(5.17) We now may construct a quasi-inverse for TORS(X; J∼∼) given that J∼∼ is an essential
equivalence which, as we have already noted, is itself equivalent to the assertion that
Spr : O1 ×T A2 −→ O2 is a G∼∼1

-torsor above O2. If so, then given an G∼∼2
-torsor T above

X, Spr1 (and its associated simplicial system) may be pulled back to T to give a descent
datum on this G∼∼1

-torsor on the nerve of T viewed as a covering of X. Consequently, it
may be glued to give an G∼∼1

-torsor E above X whose image under TORS(X; J∼∼) is easily
seen to be isomorphic to the original T . Since it is clear that TORS(X; J∼∼) is fully faithful,
this completes the proof of 3◦ of Theorem (5.9).
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(5.18) Example. Let p : A −→ B be an epimorphism of groups and T a torsor under
B. If ∂2(T ) is the coboundary bouquet associated with T along p (1.5), then the gerbe
TORS(∂2(T )) is cartesian equivalent to the gerbe of liftings of T to A as defined in GI-
RAUD (1971). This will be discussed in detail when we discuss separately the cohomology
of groups.
(5.19) Now let E be a U -small site and E˜ its associated category of sheaves. From Theo-
rem (5.9) it follows that for any bouquet G∼∼ with tie L, the restriction TORS(E;G∼∼) of the

gerbe TORS(E˜;G∼∼) to E (whose fiber for any representable X is just TORS(E˜/a(X);G∼∼)
where a(X) is the associated sheaf) is a gerbe over E whose tie is also L. Moreover. if
G∼∼1

and G∼∼2
lie in the same connected component of BOUQ(E˜, L), then TORS(E;G∼∼1

) is
cartesian equivalent to TORS(E;G∼∼2

). Thus we have
Theorem (5.20). The assignment

G∼∼ 7−→ TORS(E;G∼∼)

defines a functor

(5.20.0) TORSE : BOUQ(E˜;L) −→ GERB(E;L)

which, in turn, induces a mapping

(5.20.1) T : H2(E;L) −→ H2
Gir(E;L)

which preserves the base point (if L
∼−→ tie(G)) and also neutral classes. (A gerbe is said

to be neutral if and only if it admits a cartesian section).
We now may state the main result of this paper,

Theorem (5.21). The mapping

T : H2(E;L) −→ H2
Gir(E;L)

is a bijection which carries the set of equivalence class of neutral elements, H2(E;L)′,
bijectively onto H2

Gir(E;L)′ , the equivalence classes of the neutral elements of H2
Gir(E;L) .
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6. THE FUNCTOR FROM GERBES TO BOUQUETS.

We will establish this theorem (5.21) by defining a functor from GERB(E;L) to
BOUQ(E;L) which will induce an inverse for T . Background information for the con-
structions used in this and the following section may be found in the Appendix.
(6.0) To this end recall [GIRAUD (1962)] that if F is a category over E, then for each
object X in E we may consider the category CartE(E/X,F) whose objects are cartesian
E functors from the category E/X of objects of E above X into F and whose morphisms
are E-natural transformations of such E-functors. If FX denotes the category fiber of
F at X (whose arrows are those of F which project onto the identity of X), then eval-

uation of such a cartesian functor at the terminal object X
id−→ X of E/X defines a

functor evX : CartE(E/X,F) −→ FX which is an equivalence of categories provided F is
a fibration. If E is U -small and F is fibered in U -small categories, then the assignment
X 7→ CartE(E/X,F) defines a presheaf of U -small categories and thus a category object of
Ê which will be denoted by CartE(E/−,F). The split fibration over E which it determines
is denoted by SF and is called the (right) split fibration E-equivalent to F.
(6.1) Now suppose that E is a U -small site. Since the associated sheaf functor
a : Ê −→ E˜ is left-exact, we may apply the functor to the nerve of category object
CartE(E/−,F) and obtain a sheaf of categories aCartE(E/−,F) together with a canonical
functor (in CAT(Ê))

(6.1.0) Ar(CartE(E/−,F)) a1

//

T

��

S

��

aAr(CartE(E/−,F))

a(T )

��

a(S)

��

Ob(CartE(E/−,F)) a0

// aOb(CartE(E/−,F))

a : CartE(E/−,F) // aCartE(E/−,F) .

(The split fibration over E determined by aCartE(E/−,F) is denoted by KSF). We may
now state
Theorem (6.2).

1◦ If F is fibered in groupoids, then CartE(E/−,F) [as well as aCartE(E/−,F)] is a
groupoid (and conversely);

2◦ if F is a stack then a : CartE(E/−,F) // aCartE(E/−,F) is an equivalence of

categories in Ê (and conversely);

3◦ if F is a gerbe with tie L, then aCartE(E/−,F) is a bouquet with tie L in E˜ (and
conversely).
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On the basis of Theorem (6.2) we see that the assignment

F 7→ aCartE(E/−,F)

defines a functor

(6.2.1) aCartE(E/−,−) : GERB(E;L) −→ BOUQ(E;L)

and thus a mapping

(6.2.2) a : H2
Gir(E;L) −→ H2(E;L)

which we claim provides an inverse for T : H2(E;L) −→ H2
Gir(E;L) [(5.20.1)].

In order to prove Theorem (6.2) and complete the proof of Theorem (5.21), we shall
now discuss certain relations between “internal and external completeness” for fibrations
and category objects.
(6.3) Remark. We note that a portion of the “internal version” of what follows (specifi-
cally Theorem (7.5) 1◦ ) was enunciated by JOYAL (1974) and later, but independently,
by PENON and BOURN (1978). It is also closely related to work of BUNGE and PARÉ
(1979) establishing a conjecture of LAWVERE (1974) as well as that of STREET (1980).
Our principal addition here is the relation between external and internal completeness.

7. EXTERNAL AND INTERNAL COMPLETENESS.

(7.0) The informal and intuitive definition of a stack which we have used so far (“every
descent datum on objects or arrows is effective” or “objects and arrows from the fibers
over a covering glue”) GROTHENDIECK (1959) implicitly uses the respective notions
of fibered category (c.f. Appendix) (defined as a pseudo functor F( ) : Eop −→ CAT as
formalized by Grothendieck in 1960 [GROTHENDIECK (1971)] and covering as defined
in the original description of Grothendieck topologies formalized in ARTIN (1962).(loc.
cit.)
For the formal development of the theory, however, both of these notions proved cum-
bersome and were replaced by the intrinsic formulation of GIRAUD (1962, 1971) which
replaces “covering” by “covering seive” (which we shall view as a subfunctor R ↪→ X of
a representable X in Ê as in DEMAZURE (1970) ) and notes that every descent datum
over a covering of X corresponds to an E-cartesian functor

(7.0.0) E/R d //

��

F

��
E
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from the category E/R of representables of Ê above the covering presheaf R (the corre-
sponding covering seive of X ) into the fibration (E-category) defined by the pseudofunctor
F( ) . [c.f. Appendix].

Thus every descent datum on arrows, respectively, on both objects and arrows is effec-
tive if and only if the canonical restriction functor

(7.0.1) i : CartE(E/X,F) // CartE(E/R,F)

is fully faithful, respectively, an equivalence of categories for every covering subfunctor
R ↪→ X in the topology of the site.

The corresponding terminology for a fibration F −→ E over a site E is then

Definition (7.1). A fibration F is said to be precomplete, respectively, complete, pro-
vided that for every covering seive R ↪→ X of a representable X, the canonical functor
i : CartE(E/X,F) // CartE(E/R,F) is fully faithful, respectively, an equivalence of cat-
egories.

Since every fibration is determined up to equivalence by its associated pseudo-functor
we see that “a stack is just a complete fibration”.

(7.2) We now look at the “internal version” of this notion. Let E be a topos and
G∼∼ : A //

//
O a category object in E. The presheaf of categories defined by the as-

signment X 7→ HOME(X,G∼∼) ( = HomE(X,A) //
//
HomE(X,O) ) considered as a pseudo-

functor defines a split fibration, its “externalization” EXX(G∼∼) −→ E, which has as objects
the arrows x : X −→ O of E, and for which an arrow α : x −→ y of projection f : X −→ Y
in EXX(G∼∼), is just an arrow α : X −→ A in E

(7.2.0) A

T

��

S

��

X

f

��

α

99

x
%%
O

Y

y

99

such that Sα = x and Tα = yf . Such an arrow is cartesian if and only if α is an
isomorphism in the category HomE(X,G∼∼) = EXX(G∼∼)X , the fiber at X.

(7.3) Now let C•/X : C ×X C ×X C //
//
//
C ×X C //

//
C // // X be the nerve of a cov-

ering p : C // // X . It is not difficult to see that a descent datum on HomE(−, G∼∼) over

the covering C // // X is nothing more than a simplicial map d : C•/X −→ Nerve(G∼∼)
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(7.3.0) C ×X C ×X C

���� ��

d2 // A×O A

���� ��

C ×X C

pr2

��

pr1

��

d1

// A

T

��

S

��

C

����

d0

// O

X

i.e., an internal functor from the groupoid C ×X C //
//
C into G∼∼. Similarly, a mor-

phism of such descent data is nothing more than a homotopy of such simplicial maps,
i.e. an internal natural transformation of such internal functors. Consequently, a datum
is effective if and only if there exists an arrow x : X −→ O such that the trivial functor
defined through xp : C −→ O is isomorphic to d. Thus EXX(G∼∼) −→ E is complete (for

the canonical topology) if and only if for every epimorphism C // // X , the canonical
restriction functor

PG∼∼ : HomE(X,G∼∼) −→ SimplE(C•/X,G∼∼)

is an equivalence of categories. But if G∼∼ is a groupoid, we have already noted (5.10)
that SimplE(C•/X,G∼∼) is equivalent to the category of G∼∼-torsors above X which are split

when restricted along C // // X , while HomE(X,G∼∼) is equivalent to the category of split
G∼∼-torsors above X. Under refinement, we thus obtain that EXX(G∼∼) −→ E is complete if
and only if the canonical functor

(7.3.1) Spl TORS(X;G∼∼) −→ TORS(X;G∼∼)

is an equivalence of categories, i.e. every torsor splits.
(7.4) If every G∼∼-torsor is split, then G∼∼ may be seen to possess an additional property of
“injectivity” in GPD(E): If H : J∼∼1

−→ J∼∼2
is any essential equivalence, then the restriction

functor

(7.4.0) CATE(H,G∼∼) : CATE(J∼∼2
, G∼∼) −→ CATE(J∼∼1

, G∼∼)

is an equivalence of categories.
In effect, let us first show that if H is any essential equivalence, then CATE(H,G∼∼)

is always fully faithful (for any groupoid G∼∼). To this end recall that as we have already
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noted, H is an essential equivalence if and only if in the diagram (5.15.0) which defines
the internal profunctor adjoint to H, the vertical columns HA2 and HD2 are each torsors
under J∼∼1

: A1 //
//
O1 . Thus, in particular

(7.4.1) (D ×T A2)×T A1
pr

//

H∼H−1
//
O1 ×T A2

Spr
// O2

is left exact with Spr defining its quotient. Now let α, β : O2 //
//
A be a pair of arrows

of E which define internal natural transformations of functors F,G : J∼∼2 //
//
G∼∼ which

have the property that α∗H = β∗H : FH −→ GH in CAT(E). We will show that it then
follows that αSpr = β Spr in E so that α = β. For this it suffices to make the verification
in sets. Here let (X, x : A −→ H(X)) be an element of O1×T A2; its image under αSpr is
just αA : F (A) −→ G(A), and under β Spr, βA : F (A) −→ G(A). Since we have natural
transformations, each of the pair of squares in

(7.4.2) F (A)

F (x)

��

βA
//

αA //
G(A)

G(x)

��

FH(X)
βH(X)

//

αH(X)
//
GH(X)

is commutative. By hypothesis αH(x) = pH(x), but then αA = βA since F (x) and G(x)
are isomorphisms. Thus CAT(H,G∼∼) is faithful. That it is full may be seen as follows: let
θ : FH −→ GH be a natural transformation. We will define an arrow ᾱ : O1 ×T A2 −→
A which coequalizes pr and H∼H−1. By passage to quotient this will define an arrow
α : O2 −→ A in E which will define the desired internal natural transformation from F
into G. Thus let (X, x : A −→ H(X)) be given along with θ : FH −→ GH. Define the
image of (X, x : A −→ H(X)) as ᾱ(X, x) = G(x)−1θXF (x) : F (A) −→ G(A). Since for
each f : Y −→ X, the two squares in the diagram

(7.4.3) F (A)

F (x)

��

α(X,x)
// G(A)

G(x)

��

F (H(X))

FH(f−1)

��

θX
// GH(X)

GH(f−1)

��

F (H(Y ))
θY

// GH(Y )

are commutative with FH(f−1)F (x) = F (H(f−1)x) and GH(f−1)G(x) = G(H(f−1)x),
we see that ᾱ coequalizes pr andH∼H−1 and the desired natural transformation is produced
in CAT(E).
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Now suppose that any torsor under G∼∼ is split and let F : J∼∼1
−→ G∼∼ be given, we wish

to produce a functor, F̃ : J∼∼2
−→ G∼∼ such F̃H

∼−→ F .

(7.4.4) J∼∼1

��

H // J∼∼2

F̃

∼←−

}}
G∼∼

But since HO2 is an J∼∼1
-torsor above O2, TORS(J∼∼)(HO2) is a torsor under G∼∼ above O2

and TORS(H)(HA2) is a torsor under G∼∼ above A2, since both of these split we obtain by

composition arrows F̃0 : O2 −→ O and F̃1 : A2 −→ A in E which are easily seen to define
the desired functor F̃ : J∼∼2

−→ G∼∼.
Finally, suppose the CAT(−, G∼∼) carries essential equivalences into equivalences. Since,

for any covering C ×X C //
//
C // X , the canonical functor

(7.4.5) C ×X C

�� ��

// X

id

��

id

��

C // // X

is an essential equivalence, we see that this condition immediately implies that EXX(G∼∼)
is complete.

In summary, we have established the following

Theorem (7.5). For any topos E, and any groupoid G∼∼ in E, the following statements are
equivalent :

1◦ EXX(G∼∼) −→ E is a complete fibration (i.e. every descent datum is effective),

2◦ For any covering C ×X C //
//
C // X of X, the fully faithful functor

HomE(X,G∼∼) −→ SimplE(C•/X,G∼∼)

is an equivalence of categories (i.e. Čech-cohomology is essentially trivial);

3◦ For any object X in E, the fully faithful functor

Spl TORSE(X;G∼∼) −→ TORSE(X;G∼∼)

is an equivalence of categories (i.e. every torsor under G∼∼ is split);
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4◦ For any essential equivalence of groupoids H : J∼∼1
−→ J∼∼2

the fully faithful functor

CATE(H,G∼∼) : CATE(J∼∼2
, G∼∼) −→ CATE(J∼∼1

, G∼∼)

is essentially surjective and thus a full equivalence (i.e. given any functor
F : J∼∼1

−→ G∼∼, there exists a functor F̃ : J∼∼2
−→ G∼∼ such that F̃H

∼−→ F ).

Remark. A similar theorem holds for category objects, locally representable functors,
and existence of adjoints.

Definition (7.6). A groupoid which satisfies any one and hence all of the equivalent con-

ditions of Theorem (7.5) will be said to be (internally) complete. A functor c : G∼∼ −→ G̃∼∼
will be called a completion of G∼∼ provided any other functor G∼∼ −→ L∼∼ into a complete

groupoid L∼∼ factor essentially uniquely through G̃∼∼. Such a completion is essentially unique
and we have the following

Corollary (7.7). If G∼∼ is complete, then

(a) any essential equivalence H : G∼∼ −→ T∼∼ admits a quasi-inverse H ′ : T∼∼ −→ G∼∼;

(b) c : G∼∼ −→ G̃∼∼ ia a completion of G∼∼ if and only if G̃∼∼ is complete and c is an essential
equivalence.

(7.8) We are now in a position to return to our original situation where E is a U -small
site and F −→ E is a fibration fibered in U -small groupoids. We have the following

Lemma (7.9).

(a) For any presheaf P in Ê, one has a natural equivalence of groupoids

Nat(P,CartE(E/−,F))
≈−→ CartE(E/P,F) ;

(b) as a groupoid object in Ê, CartE(E/−,F) is complete in the canonical topology on
Ê.

Here E/P −→ E denotes the fibered category of representables above P . It is, in

fact the restriction to E of the fibration EXX (
id
//

id //
P ) −→ Ê where P

id
//

id //
P is

the discrete groupoid object defined by the object P of Ê. Of course Nat(P,Q) =
HomÊ(P,Q).

In effect, a natural transformation from P into Ob(CartE(E/−,F)) is entirely equiva-

lent to an internal functor from the discrete internal groupoid P
id
//

id //
P into the category
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CartE(E/−,F) and thus defines a cartesian functor from the restrictions to E of the cor-

responding externalizations EXXE(P
id
//

id //
P ) and

EXXE(CartE(E/−,F)). But EXXE(P
id
//

id //
P ) is isomorphic to the split fibration E/P S−→ E

and EXXE(CartE(E/−,F)) is, by definition SF −→ E, the split fibration E-equivalent to
F. Hence such a natural transformation defines a cartesian functor from E/P into F. In-
versely given a cartesian functor C : E/P −→ F, define the transformation C ′T : F (T ) −→
CartE(E/T,F) via C ′T (T

t−→ F ) = Ct∗ : E/T −→ F where t∗ : E/T −→ E/F is the cartesian
functor defined by composition with t : T −→ F . That this is indeed natural follows from
the fact that for any f : U −→ T in E, the triangle

(7.9.0) U
f

//

P (f)(t) ��

T

t��

P

is commutative in Ê (when we have identified objects and arrows of E with the presheaves
of representable functors which they define in Ê).

For part (b), let p : E
P−→ be the projection map for a torsor in Ê under CartE(E/−,F)

and let q :
∐
α∈I

Xα −→ F be the representation of F as a full quotient of representables

xα : Xα −→ F . Since E(X) −→ P (X) is surjective for each X ∈ Ob(E), q lifts to a map
q :
∐
Xα −→ E such that pq′ = q and hence to functor of

ρ :

(∐
Xα ×Xρ //

//∐
Xα

)
// CartE(E/−,F) .

Moreover, since the torsor is locally split when restricted along q, it is split in Ê if and
only if its “defining cocycle” P is isomorphic to the restriction of a functor

s̃ :
(
F

id
//

id //
F
)

// CartE(E/−,F)

along the canonical functor

(7.9.1)
∐
Xα ×F Xβ

�� ��

// F

id

��

id

��∐
Xα q

// F

q• : C• // F
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But this canonical functor is always fully faithful with q(T ) surjective on each repre-
sentable T . Consequently, the restriction to E of the externalization of q•,
EXX(q•) : EXX(C•) −→ EXX(E) is a cartesian equivalence of fibered categories over E and
we may define the desired natural transformation s̃ : F −→ CartE(E/−,F) as that essen-
tially unique transformation s̃ which corresponds under part (a) to the functor ˜̃s which
makes the diagram

(7.9.2) EXX(C0)
EXX(p)

//

oo
��

SF

oo

��

EXX(F )
h

E/F

˜̃s // F

commutative in CartE.

Corollary (7.10). If E is a site and F −→ E is fibration, then F is precomplete, respectively,
complete if and only if the following two equivalent conditions hold :

(a) For every covering subfunctor R of a representable X, the canonical restriction func-
tor Nat(X,CartE(E/−,F)) −→ Nat(R,CartE(E/−,F)) is fully faithful, respectively,
an equivalence of categories ;

(b) For every covering (Xα −→ X)α∈I (in the topology of E), the canonical restric-
tion functor Nat(X,CartE(E/−,F)) −→ SimplÊ(C•/X,CartE(E/−,F)) defined by

the projection of the nerve C• :
∐
X0 ×X Xβ //

//∐
Xα

P // X into X is fully

faithful, respectively, an equivalence of categories.

Both of these observations are immediate since (Xα −→ X)α∈I is a covering if and only if
the image of the projection p :

∐
Xα −→ X is a covering subfunctor of X. We may now

return to the proof of Theorem (6.2) part 2◦. We shall split it into several parts.

Lemma (7.11). F −→ E is precomplete if and only if any one and hence all of the following
equivalent conditions are satisfied :

(a) for any X ∈ Ob(E) and arrow

X
〈x,y〉−−−−−−→ Ob(CartE(E/−,F))×Ob(CartE(E/−,F))

the presheaf above X defined by the cartesian square

(7.11.0) HomX(x, y)

��

pr
// Ar(CartE(E/−,F))

〈T,S〉

��

X
〈x,y〉

// Ob(CartE(E/−,F))×Ob(CartE(E/−,F))
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is a sheaf (above X).

(b) for any X ∈ Ob(E) and any pair of objects x, y in FX , the presheaf HomX(x, y)

on E/X defined by HomX(x, y)(T
f−→ X) = HomFT (Ff (x),Ff (y)) is a sheaf (in the

induced topology on E/X);

(c) if for any presheaf P , L(P ) designates the presheaf whose value at X is given by
L(X)= lim−→

R∈Cov(X)

Nat(R,P ), so that LL(P ) is the associated sheaf functor aP , and

` : P −→ L(P ) is the canonical map, then the canonical functor

(7.11.1) A = Ar(CartE(E/−,F))

�� ��

T

��

S

��

`A // L(Ar(CartE(E/−,F)))

LT

��

LS

��

O = Ob(CartE(E/−,F))
`0
// L(Ob(CartE(E/−,F)))

CartE(E/−,F) ` // LCartE(E/−,F)

is fully faithful ;

(d) the canonical functor

(7.11.2) Ar(CartE(E/−,F))

T

��

S

��

aA
// aAr(CartE(E/−,F))

a(T )

��

a(S)

��

Ob(CartE(E/−,F)) a0

// aOb(CartE(E/−,F))

a : CartE(E/−,F) // aCartE(E/−,F)

is fully faithful.

In effect, the equivalence of precomp1eteness with (a) and (b) is a literal translation
of the definition since the presheaf of sections of HomX(x, y) −→ X in Ê is isomorphic to
the presheaf defined in (b). The equivalence of (c) with (d) may be established by noting
that the canonical functor a is the composite of the two canonical functors

(7.11.3) A

�� ��

`A // L(A)

�� ��

� � `SA // LL(A)

�� ��

O
`O

// L(O) �
�

`LO
// LL(O)
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where LP (X)= lim−→
R∈Cov(X)

HomÊ(R,P ) for any presheaf P . Now ` is fully faithful if and

only if the square

(7.11.4) A
`A //

〈T,S〉

��

L(A)

��

O ×O
`0×`0

// LO × LO

is cartesian. Now if (7.11.4) is cartesian then so is the square

(7.11.5) LA
L(`A)

//

��

LL(A)

��

LO × LO
L(`0)×L(`0)

// LLO × LLO

since L is left exact. But since L(`P ) = `L(P ) for any presheaf P , this now implies that
`L is fully faithful and hence that a is fully faithful. But if a is fully faithful then so is `
since `LA is always a monomorphism. Thus (c) and (d) are equivalent.

We now show that (d) is equivalent to (b). But this immediate since
HomX(x, y) −→ X is a sheaf over X if and only if the commutative square

(7.11.6) HomX(x, y) //

��

aHomX(x, y)

��

X // a(X)

is cartesian (by a standard lemma from the theory of Grothendieck topologies [c.f. DE-
MAZURE (1970)]). Thus, by composition of commutative squares, (7.11.6) is cartesian
if and only if a is fully faithful.

Lemma (7.12). If F is precomplete, then the following statements are equivalent:

(a) ` : CartE(E/−,F) −→ LCartE(E/−,F) is essentially epimorphic;

(b) ` : CartE(E/−,F) −→ LCartE(E/−,F) admits a quasi inverse in CAT(Ê);
(c) a : CartE(E/−,F) −→ aCartE(E/−,F) is an equivalence of categories in CAT(Ê);

If ` is essentially epimorphic and fully faithful, then by Theorem (7.5), ` admits a quasi
inverse since CartE(E/−,F) is complete in the canonical topology on Ê (i.e. every torsor
splits).
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But if ` admits a quasi-inverse, then so does L(`) and hence also a = (`L(`)`). Sim-
ilarly, if a is an equivalence the ` is essentially epimorphic since L(`) is fully faithful.
Consequently, the three statements are equivalent.
Remark. This Lemma and the following Theorem hold without the assumption that F is
fibered in groupoids, the proof will be given elsewhere.

Lemma (7.13). Let F −→ E be a U -fibration on a U -small site E, fibered in groupoids.
Then F is complete if and only if any one (and hence all) of the following equivalent
conditions are satisfied:

(a) ` : CartE(E/−,F) −→ LCartE(E/−,F) is an essential equivalence;

(b) ` : CartE(E/−,F) −→ LCartE(E/−,F) is an equivalence;

(c) a : CartE(E/−,F) −→ aCartE(E/−,F) is an equivalence.

In effect, let us show that for any covering c : R ↪→ X of a representable,
Hom(X,CartE(E/−,F)) −→ Hom(R,CartE(E/−,F)) is essentially surjective if and only
if ` is essentially surjective under the assumption that ` is fully faithful. Thus given any
t : R −→ O, we know that v(t) : X −→ LO is such that that square

(7.13.1) O //` // L(O)

R

t

OO

� �

c
// X

v(t)

OO

is commutative when v(t) is the corresponding equivalence class which defines L(O)(x).
If now we assume that ` is essentially surjective then there exists an arrow ṽ(t) : X −→ O

such that f : `ṽ(t)
∼−→ v(t) in the category Hom(X,L(CartE(E/−,F))). Now consider

the objects ṽ(t)c and t in Hom(R,CartE(E/−,F)). Since fc : `ṽ(t)c −→ v(t)c is then an

isomorphism and v(t)c = `t, it follows that fc : `(ṽ(t)c)
∼−→ `(t) and hence that ṽ(t)c

∼−→ t
since ` is fully faithful. Thus Hom(c,CartE(E/−,F)) is essentially surjective.

Now suppose that Hom(i,CartE(E/−,F)) is essentially surjective (and fully faithful)
and let x : X −→ L(O) be an object of Hom(X,L(CartE(E/−,F))).

(7.13.2) A

T

��

S

��

`A // L(A)

T

��

S

��

O
`O // L(O)

R

i

BB

v

OO

`1

EE

� �

c
// T

vR(i)

\\

cc OO

x

OO
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From the fundamental properties of `0 : O −→ LO we know that there exists a covering
seive c : R ↪→ X and a map u : R −→ O such that `0u = xc. Consequently there exists an
x̄ : X −→ O and an isomorphism i : R

∼−→ A in Hom(R,A) with Ti = u and Si = C. Let
vR(i) : X −→ LA be the equivalence class of i in LA(x) so that `Ai = vR(i)c. We claim
that vR(i) is an isomorphism of x with `0(x̄) so that ` will be essentially surjective. But
TvR(i)c = T`Ai = `0Ti = `0u = xc so that x = TvR(i) and SVR(i)c = S`Ai = `0Si = `0x̄c
so that `0x̄ = SvR(i), since LA is a separated presheaf. But since vR(i)c = i`A is
an isomorphism, VR(τ) : `0(x̄)

∼−→ x is the desired isomorphism and the Theorem is
established (along with Theorem (6.2(2◦)).

To complete the proof of Theorem (6.2) it now only remains to show that if F is a
gerbe with tie L, then aCartE(E/−,F) is a bouquet with tie L (and conversely). For this,
in the light of what we have already shown, it suffices to observe that in the canonical
equivalence of groupoids

(7.13.3)

Ar(CartE(E/−,F))

T

��

S

��

aA //

〈T,S〉

''

aAr(CartE(E/−,F))

a(T )

��

a(S)

��

〈a(T ),a(S)〉=a〈T,S〉

��

Ob(CartE(E/−,F))×Ob(CartE(E/−,F))

pr

ww

pr

ww

// a(O)× a(O)

��
��

Ob(CartE(E/−,F)) a0

//

��

aOb(CartE(E/−,F))

��

1 // a(1)
∼−→ 1

CartE(E/−,F) a // aCartE(E/−,F)

the conditions (c) and (d) of the definition of a gerbe (5.0) immediately translate via
representability into the respective assertions (c′): the canonical map
Ob(CartE(E/−,F)) −→ 1 is a covering (in the induced topology on Ê) and (d′): the

canonical map 〈T, S〉 : A −→ O × O is a covering (in the induced topology on Ê). But
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from a standard theorem on Grothendieck topologies [DEMAZURE (1970)], such a natural
transformation is covering if and only if its image under the associated sheaf functor is
an epimorphism in E˜, thus here (since a is left exact) if and only if aCartE(E/−,F) is a
bouquet. Since ties are preserved under equivalences and the tie of F is the same as the
tie of CartE(E/−,F) the entirety of Theorem (6.2) has now been established.

The preceding lemma combined with (6.2) now give two corollaries:

Corollary (7.14). If F is (externally) complete in the topology of E then aCartE(E/−,F)

is (internally) complete in E˜, i.e. in E˜ every torsor under aCartE(E/−,F) splits.

In effect let p : E −→ X be the projection map of a torsor under aCartE(E/−,F) above

X in E˜. Since p is an epimorphism of sheaves, its image p(E) ↪→ X in Ê is a covering

seive of X and E // // P (E) becomes a torsor under aCartE(E/−,F) above P (E) in

Ê. If a∗ designates a quasi-inverse for the functor a in CAT(Ê) we have that the torsor
a∗(E −→ p(E)) is split under CartE(E/−,F) since

CartE(E/−,F) is complete in the canonical topology of Ê. Thus

a(a∗(E −→ p(E))
∼−→ E −→ p(E) is split with a splitting s : p(E) −→ E. But X is

a sheaf and p(E) ↪→ X is a covering seive, hence s extends uniquely to a morphism of
sheaves s̃ : X → E which is immediately seen to be a splitting for p.

Corollary (7.15). If F is complete, then one has a chain of cartesian equivalence of fibered
categories over E

(7.15.0) F ≈−→ SF ≈−→ KSF ≈−→ TORSE(aCartE(E/−,F))

where SFX = CartE(E/X,F), KSFX = HomE˜(a(X), aCartE(E/−,F)), and
TORSE(aCartE(E/−,F)) = TORSE˜(a(X), aCartE(E/−,F)) for each representable X

in Ê.

8. COMPLETION OF THE PROOF OF THEOREM (5.21) AND RESTATEMENT OF
MAIN RESULT.

(8.0) Recall that we have let GERBE(E;L) designate the 2-category whose objects are
the gerbes of E with tie L and whose 1-morphisms are cartesian equivalences of E-
gerbes. Similarly BOUQ(E;L) designates the 2-category whose objects are bouquets

of E with tie L and whose 1-morphisms are essential equivalences of bouquets so that the
class of connected components of (the respective underlying category) of GERBE(E;L)
and BOUQ(E;L) are H2

Ger(E;L) and H2(E;L). Now let CBOUQ(E;L) be the full 2-

subcategory of BOUQ(E;L) whose objects are those bouquets which are internally com-

plete (i.e. every torsor under the bouquet splits) with π0(CBOUQ(E;L)) the class of

connected components of this latter category.
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From Theorem (6.2) and Corollary (7.14) we see that we have defined a 2-functor,

(8.0.0) aCartE(E/−,−) : GERBE(E;L) −→ CBOUQ(E;L) �
� in // BOUQ(E;L)

〈〈F 7−→ aCartE(E/−,F)〉〉 ,

which assigns to any gerbe with tie L the (internally) complete sheaf of groupoids which
is associated to the presheaf of groupoids CartE(E/−,F).

From Theorem (5.20) we see that we have defined a 2-functor,

(8.0.1) TORSE(−) : BOUQ(E;L) −→ GERBE(E;L)

〈〈G∼∼ 7−→ TORSE(G∼∼)〉〉 ,

which assigns to any bouquet with tie L the restriction to E of fibered category of
E˜-torsors under G∼∼. We may now state and prove the following refinement of Theo-
rem (5.20).

Theorem (8.1). The 2-functor aCartE(E/−,−) defines a weak 2-equivalence of the cate-
gory GERBE(E;L) with BOUQ(E;L) and a full 2-equivalence of the category GERBE(E;L)

with CBOUQ(E;L). From these one deduces bijections on the classes of connected com-

ponents

(8.1.0) H2
Gir(E;L)

∼−→ π0(CBOUQ(E;L))
∼−→ H2(E;L)

In effect, Corollary (7.15) establishes for each gerbe F a cartesian E-equivalence

(8.1.1) F ≈−→ TORSE(aCartE(E/−,F)) ,

which takes care of one composition. For the other composition let G∼∼ be a bouquet of E
and EXXE(G∼∼) −→ E be the restriction to E of external fibration which it defines.

The assignment to any object X
x−→ O of EXXE(G∼∼) of the split torsor above X under

G∼∼ defines a fully faithful cartesian functor

(8.1.2) Spl : EXXE(G∼∼) −→ TORSE(G∼∼)

which is covering since any torsor under G∼∼ is locally split. One thus obtains by functori-
ality a fully faithful covering functor in Ê
(8.1.3) CartE(Spl) : CartE(E/−, EXXE(G∼∼)) −→ CartE(E/−, TORSE(G∼∼)) .

Since for any presheaf of categories G∼∼ one has an essential equivalence(!) (in Ê)
sub: G∼∼ −→ CartE(E/−, EXXE(G∼∼))
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one has by composition fully faithful covering functor

(8.1.4) ΣG∼∼
: G∼∼ −→ CartE(E/−, TORSE(G∼∼))

and a commutative diagram in CAT(Ê)
(8.1.5) G∼∼

ΣG∼∼ //

aG∼∼ o

��

CartE(E/−, TORSE(G∼∼))

aCoo

��

aG∼∼
aΣG∼∼ // aCartE(E/−, TORSE(G∼∼))

in which aG∼∼ is an isomorphism and aC is an equivalence. But ΣG∼∼
is covering if and only if

aΣG∼∼
is essentially epimorphic; thus we have a canonical essential equivalence in CAT(E˜)

(8.1.6) C : G∼∼ −→ aCartE(E/−, TORSE(G∼∼))

which thus admits a quasi-inverse if and only if G∼∼ is internally complete and our principal
result is established.
Remark (8.1.6). Since aCartE(E/−, TORSE(G∼∼)) is internally complete and C is an es-
sential equivalence, aCartE(E/−, TORSE(G∼∼)) may be taken as the (internal) completion
of G∼∼, for any functor from G∼∼ into a complete groupoid must factor essentially uniquely
through C. Thus in any Grothendieck topos any groupoid has a completion. If we only
have an elementary topos (without generators), the fibered category TORS(G∼∼) furnishes
an external completion for G∼∼ which may be too large to be internalized.
Remark (8.1.7). Any sheaf of groups G is pre-complete since any sheaf of categories is
pre-complete. Since a sheaf of groups has only one X-object it is complete if and only if
every torsor under G over X is isomorphic to the split torsor Gd pulled back to X, i.e.
if and only if the set of isomorphisms classes of TORS(X,G) has a single element. But

this set is, by definition H1(X;G); thus a group object G in E˜ is complete if and only if
H1(X;G) is trivial for all X.
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Part (II): The calculation of H2(L) by cocycles

(1) Hypercoverings. We briefly recall the following definitions and results modified from
VERDIER (1972). The relevant simplicial limits used are explained in DUSKIN (1975,
1979).
(1.0) Definition. Let E be a Grothendieck topos and X• −→ 1 a simplicial object of E
augmented over the terminal object of E. X• is called a hypercovering of E provided that
for each k ≥ −1, the canonical map

(1.0.0) 〈dn〉 : Xk −→ (Coskk−1(X•))k

is an epimorphism. It is said to be semi-representable if for each k ≥ 0, one has an
isomorphism Xk

∼−→
∐

i∈I Si, where Si is a member of the family of generators for E. For
any n ≥ −1, X• is said to be of type n, provided that the canonical simplicial map

(1.0.1) 〈d〉 : X• −→ Coskn(X•)

is an isomorphism.
A simplicial map f• : X• −→ Y• of hypercoverings will be said to be a refinement of

Y• . Clearly, a hypercovering of type −1 is just the constant complex K(1, 0) which has
the terminal object in every dimension, while one of type 0 is a covering of E in the usual
sense. If the site of definition of E has finite limits and colimits then every hypercovering
may be refined by a semi-representable one. The dual of category of hypercoverings and
homotopy classes of simplicial maps is filtering and Verdier has shown that if one defines
for any abelian group object A and hypercovering R• of E, the abelian group

(1.0.2) Ȟn(R• ;A) = Hom
SimplE

[R• , K(A, n)] ,

where Hom[ , ] here denotes homotopy classes of simplicial maps, then one has an
isomorphism

(1.0.3) lim−→
R•∈HO Cov(E)

Ȟn(R• ;A)
∼−→ Hn(E;A)

for all n ≥ 0 Thus by replacing coverings by hyper-coverings, ordinary cohomology may be
computed in the Čech fashion (as is classically the case for H1 using coverings). Moreover,
since every n-dimensional cocycle on a hypercovering R• defines an n-dimensional cocycle
on Coskn−1(R•) to which it is equivalent, it suffices to take hypercoverings of type n− 1
for the computation of Hn.
(2.0) Definition. Let X• be a hypercovering of a topos E. By a (normalized) 2-cocycle
on X• with coefficients in a locally given group we shall mean a system consisting of

1◦ a locally given group N
p
// X0

e

bb (i.e., an object of Gr(E/X0) called the local

coefficient group,
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2◦ a global section α ∈ Γ(IsoGr/X1 (d∗0(N), d∗1(N))) (i.e., an isomorphism

α : d∗0(N)
‖

∼ // d∗1(N)
‖

X1 ×d0 N

pr1 ((

X1 ×d1 N

pr1vv
X1

in Gr/X1) called the gluing, and

3◦ an arrow χ : X2 −→ N , called the 2-cocycle, subject to the following conditions

(a)

{
χs0 = χs1 = ed1

pχ = d1d2 (= d1d1) ;

(b)

{
s∗0(α) = idN in Gr/X0

d∗1(α)d∗0(α)−1d∗2(α)−1 = int(χ∗) in Gr/X2, (i.e., α is a “pseudo-descent datum”), and

(c) in the group HomE/X0(X3, N) ,
(χd3)−1(χd1)−1(χd2)fα01(χd0) = e (the “non-abelian 2-cocycle condition”), where
fα01(χd0) is an abbreviation for the map prN◦α◦〈d2d3, χd0〉 : X3 → N , and χ∗ : X2 →
(d1d1)∗(N) is the global section defined by χ : X2 → N . The d∗i , of course, de-
note the pull back functors in the fibered category of groups above objects of E
and follow the standard conventions.

(2.0.0) d∗0(N)

α
∼ **

prX1

��

%%

d∗1(N)

prN

��

��

N

p

��

X3

d3
//

d2
//

d1
//

d0
//
X2

d2
//

d1
//

d0
// X1

d1
//

d0
//

s0

^^
s1

dd

//

X0

s0

ee

e

ZZ

// // 1

In intuitive set-theoretic terms (or even precisely by transfer to the category of sets
by “homing” from an arbitrary test object in E) the algebraic portion of such a system
amounts to giving for each vertex x0 ∈ X0 a group Nx0 , for each edge f : x0 −→ x1 ∈ X1,
a group isomorphisms fα : Nx1 −→ Nx0 , and for each 2-simplex t a natural transformation
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of group isomorphisms χ(t) : fα2 ◦ fα0 −→ fα1 ,

(2.0.1) x0
f2 //

f1

��

x1

f0

��
x2

7−→ Nx0 Nx1

fα2oo

χ(t)
xx

Nx2

fα1

aa

fα0

OO

i.e., an element χ(t) ∈ Nx0 such that int(χ(t)) ◦ fα2 ◦ fα0 = fα1 . The cocycle condition then
says that for any 3-simplex u, the elements χ(d2(u))−1, χ(d1(u))−1, χ(d2(u)), and

(2.0.2) x1

f12

��

f13

&&
x0

f01

88

//

f02

��

x3

x2

f23

??

fα01(χ(d0(n))) of Nx0 have product equal to the unit of Nx0 .

(2.1) Example. The canonical cocycle associated with a bouquet. Let G∼∼ be a bouquet
of E. The 1-coskeleten of the nerve of G∼∼ is a hypercovering of E which is canonically
supplied with a 2-cocycle with coefficients in the subgroupoid E of internal automorphisms
of G∼∼ (considered as a group object in Gr/Ob(G∼∼)) as follows: The canonical “action”

d∗0(E) = T ∗(E)
int(G∼∼)−1

−−−−−−−−→ S∗(E) = d∗1(E) defined by “inner morphisms”

(2.1.0) int(f−1) : (f : x0 −→ x1, a : x1 −→ x1) 7→ (f : x0 −→ x1, f
−1af : x0 −→ x0)

provides the canonical gluing when coupled with the assignment

(2.1.1) χ : x0
f2 //

f1

��

x1

f0

��
x2

7−→ χ(f0, f1, f2) : f−1
1 f0f2 : x0 −→ x0

for the canonical 2-cocycle. That χ and α define a pseudo descent datum is an immediate
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consequence of the commutativity of the square

(2.1.2) x0
f2 //

f−1
1 f0f2

��

x1

f0

��
x0 f1

// x2 ,

while the 2-cocycle condition follows from the equality

(2.1.3) (f−1
01 f

−1
12 f02)(f−1

02 f
−1
23 f03)(f−1

03 f13f01)f−1
01 (f−1

13 f23f12)f01 = id(x0) ,

which holds for any 3-simplex (2.0.2) in Cosk1(G∼∼).

(2.2) Definition. Let (χ1, α1, N1) and (χ2, α2, N2) be 2-cocycles on a fixed hypercovering
X• of E. By a morphism of (χ1, α1, N1) into (χ2, α2, N2) we shall mean a pair (θ, ξ)
consisting of a homomorphism ξ : N1 −→ N2 in Gr/X0 together with a global section
θ∗ ∈ Γ(d∗1(N2)) (or equivalently, an arrow θ : X1 −→ N2 such that p2θ = d1) which
satisfies the following two conditions:

(a) In Gr/X1, int(θ∗)d∗1(ξ)α1 = α2d
∗
0(ξ) ,

(b) In the group HomE/X0(X2, N2),
χ2 [dα2

2 (θd0)] ·θd2 = (θd1)(ξχ1) where α2(θd0) = prN2
α2◦θd∗0 with (θd0)∗ ∈ Γ(d∗0(N2))

being the global section defined by θd0 : X2 −→ N2

(2.2.0) N1

ξ
**

!!

N2

��

X2
//
//
//

χ1

77

χ2

66

X1
//
//

θ

==

X0

s0

jj

The basic data for a morphism of 2-cocycles thus provide in Gr/X1 a natural isomorphism
θ : d∗1(ξ)α1

∼−→ α2d
∗
0(ξ)

(2.2.1) d∗0(N1)

α1

��

d∗0(ξ)
// d∗0(N2)

α2

��

d∗1(N1)
d∗1(ξ)

//

θ
∼

11

d∗1(N2)
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such that in Gr/X2, the prism

(2.2.2) d∗0(N1)
d∗0(ξ)

// d∗0(N2)

d∗1(N1)

d∗2(α1)

OO

d∗1(ξ)
// d∗1(N2)

d∗2(α2)

OO

d∗2(N1)

d∗0(α1)

aa

d∗1(α1)

VV

d∗2(ξ)
// d∗2(N2)

d∗0(α2)

aa

d∗1(α2)

VV

θd2 ++

θd1

--

χ2
$$

θd0
//χ1

$$

is commutative, i.e., one has the equality

(2.2.3) [χ2 ∗ d∗2(ξ)] · [d∗2(α2) ∗ θd0] · [θd2 ∗ d∗0(α1)] = θd1 ◦ (d∗0(ξ) ∗ χ1) ,

where d∗0(ξ) = d∗1d
∗
1(ξ) = d∗2d

∗
1(ξ), d∗1(ξ) = d∗2d

∗
0(ξ) = d∗0d

∗
1(ξ), and d∗2(ξ) = d∗0d

∗
0(ξ) =

d∗1d
∗
0(ξ), following the standard conventions of the fibered category of groups.

(2.3) For any given hypercovering X• of E the 2-cocycles and their morphisms form a
category, Z2(X•;Gr), whose composition law we leave to the reader. If f• : Y• −→ X•
is a simplicial map of hypercoverings (so that Y• refines X•) and (χ, α,N) is a 2-cocycle
defined on X•, then the triplet f ∗• (χ, α,N) = ((χf2)∗, f ∗1 (α), f ∗0 (N)) obtained by pull-
back along f• is clearly a 2-cocycle on Y• called the inverse image of (χ, α,N) under f•.
Under this functor, the 2-cocycles and their morphisms become a fibered category over the
category of hypercoverings of E which we will denote by Z2(Gr).
(2.4) Lemma. If h• : f• −→ g• is a simplicial homotopy of simplicial maps
f•, g• : Y• //

//
X• and (χ, α,N) is a 2-cocycle on X• , then we may define an isomorphism

h∗• of g∗•(χ, α,N) with f ∗• (χ, α,N) via the pair ((χh1)−1(χh0), h∗0(α)), where h0 : Y0 −→ X1

and h0, h1 : Y1 //
//
X2 are the first two structural maps of the homotopy.

In effect, since f ∗0 (N) ∼= h∗0d
∗
1(N) and g∗0(N) ∼= h∗0d

∗
0(N), h∗0(α) : g∗0(N)

∼−→ f ∗0 (N)
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provides the isomorphism while the inverse images of the 2-cocycle

(2.4.0) d∗2(N)

d∗0(α)

��

d∗1(α)

��

d∗1(N)
d∗2(α)

// d∗0(N)

χ
88

under h0 and h1 give the square

(2.4.1) d∗0(g∗0(N))

g∗1(α)

�� ��

d∗0(h∗0(α))
// d∗0(f ∗0 (N))

f∗1 (α)

��

d∗1(g∗0(N))
d∗1(h∗0(α))

// d∗1(f ∗0 (N))

(χh0)∗ o

@@

(χh1)∗

∼~~

as use of the simplicial identities will easily show.

(2.5) Definition. Let (χ1, α1, N1) be a 2-cocycle on X• and (χ2, α2, N2) be a 2-cocycle on
Y• . We will say that (χ1, α1, N1) is equivalent to (χ2, α2, N2) provided that there exists a
common refinement f• : S• −→ X• , g• : S• −→ Y• of X• and Y• such that f•(χ1, α1, N1) is
isomorphic to g•(χ1, α1, N1).

Since the category of hypercoverings is, up to homotopy, filtering, the result of (2.4)
shows this relation is indeed an equivalence relation and divides the category of 2-cocycles
over variable hypercoverings into equivalence classes which we will denote by H2(E;Gr).

(2.6) Lemma. Let (χ, α,N) be a 2-cocycle on a hypercovering X• . There exists a cocycle
(χ′, α,N) on Cosk1(X•) which is equivalent to (χ, α,N).

In effect, first note that since the canonical map 〈α〉2 : X3 −→ K2
3 = (Cosk2(X•))3

is an epimorphism, the cocycle condition holds on X• if and only if it holds on the 2-
coskeleton thus it is immediately clear that 2-coskeleta suffice. Now suppose that one has
a 2-cocycle on a hypercovering of type 2. We must produce a 2-cocycle χ′ : K1

2 −→ N
whose restriction along the epimorphism

〈d〉2 : X2
// // K1

2 = (Cosk1(X•))2 is equal to χ. To do this, simply look at the equiva-

lence relation < associated with 〈d〉2. Set theoretically it consists of those ordered pairs
(t1, t2) of 2-simplices whose corresponding 0,1, and 2 faces are identical. Since X3 is
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isomorphic to K2
3 , we now have a canonical embedding of < into K2

3 via the assignment

(2.6.0) (t1, t2) 7→
(
t1, t2, s0(d1(t1)), s0(d2(t1))

)
= x0

f2

��

f1

''
x0

s0(x0) 77

f1

//

f2

��

x2

x1

f0

BB

But χ is a 2-cocycle and thus sends the faces of this 3-simp1ex into the product

(χs0d2(t1))−1(χt2)−1(χs0d1(t2))sα0 (x0)(χt1) = e(χt2)−1e(χt1) = e

so that χt1 = χt2 and χ equalizes the two projections of <. Since 〈d〉2 is effective, by
passage to the quotient, we obtain χ1 : K1

2 −→ N such that χ′〈d〉2 = χ. Since the canonical
map 〈d〉3 : X3

∼= K2
3 −→ K1

3 is also an epimorphism, it follows that χ′ is a cocycle and the
result is established.

(2.7) Corollary. In terms of elements, a 2-cocycle (χ, α,N) on a hypercovering of type 1
verifies the following conditions:

(a) for any vertex χ ∈ X0 and any n ∈ Nx

(2.7.0) (s0(x1))α(n) = n

(b) for any 1-simplex f : x0 −→ x1 in X1

(2.7.1) χ(f, f, s0(x0)) = e = χ(s0(x1), f, f)

(c) for any 2-simplex

x0

f1 !!

f2 // x1

f0}}
x2

in X2 (∼= Cosk1(X•)2) and n ∈ Nx0 ,

(2.7.2) χ(f0, f1, f2)fα2 (fα0 (n))χ(f0, f1, f2)−1 = fα1 (n)

(d) for any 3-simplex
x1

f12

��

f13

''
x0

f01 77

f23

//

f02

��

x3

x2

f23

BB
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in X3 (∼= Cosk1(X•)3) ,

(2.7.3) χ(f13, f03, f01)fα01(χ(f23, f13, f12)) = χ(f23, f03, f02)χ(f12, f02, f01)

(2.8) A similar transcription for a morphism of 2-cocycles on a type 1 hypercover gives
the pair of equalities

(2.8.0) θs0(x) = e

(2.8.1) ξx0(fα1(n)) = θ−1
f (fα2(ξx1(n)))θf ,

and

(2.8.2) ξ(χ1(f0, f1, f2)) = θ−1
f1
χ2(f0, f1, f2)fα2

2 (θf0)θf2 .

(3) The bouquet B(χ, α,N) associated with a 2-cocycle (χ, α,N).

In this section we will show that every 2-cocycle on a hypercovering X• is equivalent
under refinement to a canonical one-defined on (the l-coskeleton of) a bouquet. The
resulting bouquet may be viewed as realizing the cocycle. From this result it will follow
that H2 may be computed using these non-abelian 2-cocycles.

(3.0) Let X• be a hypercover of E (which we may take to be of type 1 using Lemma
(2.6)) and K0

1 = (Cosk0(X•))1
∼= X0 × X0. Consider K0

1 as an object above X0 via
the arrow pr1 : K0

1 −→ X0 and X1 as an object above X0 via the arrow d1 : X1 −→ X0.

Let 〈d0, d1〉 : X1
// // K0

1 be the canonical epimorphism and consider the covering of K0
1

which this epimorphism defines,

(3.0.0) X1 ×K1 X1 ×K1 X1

pr2 //
pr1 //

pr0

//
X1 ×K0

1
X1

pr1 //

pr0

// X1
// // K0

1
∼= X0 ×X0 .

This covering is supplied canonically with maps i1 : X1 ×K1 X1 −→ X2 (∼= K1
2) and

i2 : X1×K1 X1×K1 X1 −→ X3 (∼= K1
3) (“the 0-coboundary system” c.f. DUSKIN (1975))

defined by the assignments

(3.0.1) i1 : x0

f0 //

f1

// x1 →

x0

f0 !!

s0(x0)
// x0

f1}}
x1

= (f1, f0, s0(x0))
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and

(3.0.2) i1 : x0

d0 //
d1
//

d2

//
x1 7−→

1

x0

s0(x0)

��

f1

&&

0 x0

s0(x0)
88

f0

//

s0(x0)

��

x1 3

x0

2

f2

??

= [(f2, f1, s0(x0)), (f2, f0, s0(x0)), (f1, f0, s0(x0)), (s0(x0), s0(x0), s0(x0))] .

We have the following key

(3.1) Lemma. Let (χ, α,N) be a 2-cocycle on X• . In E/X0 the mapping χ̃ =
χi1 : X1×K0

1
X1 −→ N is a (non-abelian) 1-cocycle above X0×X0 with coefficients in the

group N (i.e. an ordinary 1-cocycle with coefficients in pr∗1(N) in the category E/X0×X0) .

(3.1.0) X1 ×X1 ×X1

i2

		

//

������

N ×X0 N

������

X1 ×X X1
i1

��

χ̃
//

�� ��

N

��

K1
3

//
//
//
//
K1

2

χ

33

//
//
// X1

����

d0

//

d1 //
X0

// // 1

X0 ×X0

pr1

77

pr0

77

In effect since it is clear that χ̃s0 = χ̃∆ = e, it only remains to look at χ applied to the
3-simp1ex of (3.0.2). The 2-cocyc1e identity (2.7.3) applied here then gives the identity

χ(s0(x0), s0(x0)s0(x0))−1χ(f2, f1, s0(x0))−1χ(f0, f1, s0(x0))s0(xα0 )(χ(f2, f1, s0(x0))
= e(χ̄p1)−1(χ̄p2)(χ̄p0) = (χ̄p1)−1(χ̄p2)(χ̄p0) = e, or equivalently,

(χ̄p2)(χ̄p0) = χ̄p1, and χ is a l-cocyc1e as asserted.
(3.2) Using the l-cocycle χ̄ we will construct a bouquet following the following out-
line: Associated with χ̄ there is a canonical torsor (principal homogeneous space) X1 ×χ̄
N above X0 × X0 which realizes the l-cocycle χ̄. Using its canonical epimorphism
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to X0 × X0 and composing with the projections we will obtain a truncated complex

X1 ×χ̄ N
d1 //

d0

// X0

s0
yy

in E whose l-coskeleton will be shown to be supplied with a

2-cocycle equivalent to the original one on X• . The desired bouquet will then be defined

using X1 ×χ̄ N
d1 //

d0

// X0 for objects and arrows with composition defined through the

“fiber” (= Ker(e)) of the new cocycle.

Thus let (χ, α,N) be a 2-cocyc1e on X• . From Lemma (3.1) we know that the mapping
χ̃(f0, f1) = χ(f0, f1, s0(x0)) is a l-cocycle. It thus has canonically associated with it a
torsor above X0 × X0 under N which may be described as the quotient of the fiber
product

(3.2.0) N ×X0 X1

prx1 //

prN
��

X1

d1

��

N p
// X0

under the equivalence relation defined by the 1-cocycle:

(3.2.1) (a, f) ∼ (b, g) ⇐⇒ d0(f) = d0(g), d1(f) = d1(g), and χ̃(f, g)a = b.

i.e., as the coequalizer N ×χ̃ X1 of the equivalence pair of the diagram

(3.2.2) N ×N X1 ×K1 X1

p1 //

p0

// N ×X1
q
// // N ×χ̃ X1

where p0(a, f, g) = (χ̃(f, g)a, g) and p1(a, f, g) = (a, f) as they appear in the simplicial
diagram
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(3.2.3) N ×N

����

pr0 // N

p

��

N × (X1 ×X1)

p1

��

p0

��

pr1 //

77

X1 ×K1 X1

χ̃

99

����

N
p

// X0

e

kk

N ×X1 X1

q

����

77

prX1

// X1

〈d0,d1〉

����

e#

kk

d1

99

N ×χ̃ X1 prx1

// // X0 ×X0

pr0

FF

pr1

FF

in which the top, back and bottom squares of the cube are cartesian and
prx1

: N ×χ̃ X1
// // X0 ×X0 is deduced from prX1

so that it is an epimorphism. From

this it follows that the lower most square is also cartesian and thus that, locally
(
over the

epimorphism 〈d0, d1〉
)
, N ×χ̃ X1 is isomorphic to d∗1(N).

We now define a truncated 1-complex X•
]1

0
as follows: Its object of 1-simplices is

N ×χ̃X1 and its object of 0-simplices is X0. Its target map d0 is defined by d0 = pr0 prX1

which its source map is defined by d1 = pr1 prX1
. Its degeneracy is given by

s0 = qe#s0 : X0 −→ N ×χ̃ X1, where s0 is the degeneracy of X• and e# is the section of
N ×X0 X1 defined by the unit map of N .

(3.2.4) N ×χ̃ X1

d1 //

d0

// X0

s0

cc
// // 1.

By construction, X•
]1

0
is connected and locally non-empty and is supplied with a trun-

cated simplicial map from X•
]1

0

(3.2.5) X1

qe#

��

d1 //

d0

// X0

id(X0)

��

N ×χ̃ X1

d1 //

d0

// X0

s0

ff
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(3.3) Theorem. X•
]1

0
is supplied with the structure of a bouquet B(χ, α,N) whose

canonical 2-cocycle is equivalent under refinement to (χ, α,N) on X• .

We will prove this claim by showing that cosk1
(
X•
]1

0

)
is supplied canonically with a

2-cocycle whose fiber gives the appropriate law of composition for the bouquet. This in
turn will be done by defining a 2-cocycle structure on a complex X̃• which will become

the desired one on cosk1
(
X•
]1

0

)
after passage to quotients.

Thus define the truncated complex X̃•
]1

0
with N ×d1 X1 for 1-simplices, d̃i = diprX1

for faces, and s̃0 = e#s0 for degeneracy. The 2-cocycle structure will be defined on its
1-coskeleton using algebraic operations and the 2-cocycle structure of X• .

(3.3.0) N3 ×X1 K
1
2

//
//

//
N ×d1 N1

d̃1 //

d̃0

// X0

s̃0

cc

We first define a gluing: α̃ : d̃∗0(N) −→ d̃∗1(N) via the mapping

(3.3.1) (a, f)α̃(n) = a−1fα(n)a (product in N)

and a 2-cocycle χ̃ : N3 ×X1 K
1
2 −→ N via the mapping

(3.3.2) χ̃(a0, a1, a2, f0, f1, f2) = a−1
1 χ(f0, f1, f2)fα2 (a0)a2 (product in N).

and verify that these are the structural maps of a 2-cocycle (χ̃, α̃, N) on cosk1
(
X̃•
]1

0

)
through use of the equalities of Corollary (2.7).

In effect, let us first check normalization: for this we have the chains of equalities

(3.3.3) (e, s0(x))α̃(n) = e−1s0(x)α(n)e = s0(x)α(n) = n ,

as well as

(3.3.4) χ̃(a, a, e, f, f, s0(x0)) = a−1χ(f, f, s0(x0))s0(x0)α(a)e = a−1eae = e

and

(3.3.5) χ̃(e, a, a, s0(x1), f, f) = a−1χ(s0(x1), f, f)fα(e)a = a−1eea = e ,

so that we have normalization.
We now verify that we have a pseudo descent datum: for this we have by definition

the equality

(3.3.6)
χ̃(a0, a1, a2, f0, f1, f2)[a2, f2]α̃([a0, f0]α̃(n))χ̃(a0, a1, a2, f0, f1, f2)−1 =
(a−1

1 χ(f0, f1, f2)fα2 (a0)a2)(a−1
2 fα2 (a−1

0 fα0 (n)a0)a2)(a−1
2 fα2 (a−1

0 )χ(f0, f1, f2)−1a1) .

66



NON-ABELIAN COHOMOLOGY IN A TOPOS

But since fα2 is a homomorphism, this gives, after cancelation and use of condition (c) of
Corollary (2.7),

(3.3.7) a−1
1 χ(f0, f1, f2)fα2 (fα0 (n))χ(f0, f1, f2)−1a1 = a−1

1 fα1 (n)a1 = (a1, f1)α̃(n) ,

so that we have a pseudo descent datum.
We now verify the cocycle condition: For this, use of (c) and (d) of Corollary (2.7)

gives the chain of equalities:

χ̃(a13, a03, a01)[a01, f01]α̃(χ̃(a23, a13, a12, f23, f13, f12)) =[
a−1

03 χ(f13, f03, f01)fα01(a13)a01

] [
[a01, f01]α̃(a−1

13 χ(f23, f13, f12)fα12(a23)a12)
]

=
a−1

03 χ(f13, f03, f01)fα01(a13)a01a
−1
01 f

α
01(a−1

13 )fα01(χ(f23, f13, f12)fα01(fα12(a23))fα01(a12)a01) =
a−1

03 χ(f23, f03, f02)fα02(a23)χ(f12, f02, f01)fα01(a12)a01 =[
a−1

03 χ(f23, f03, f02)fα02(a23)a02

] [
a−1

02 χ(f12, f02, f01)fα01(a12)a01)
]

=
χ̃(a23, a03, a02, f23, f03, f02)χ̃(a12, a02, a01, f12, f02, f01)

and we have completed the verification that (χ̃, α̃, N) is a 2-cocycle on the hypercovering

X̃• .
We now verify that the definition of χ̃ and α̃ is compatible with the equivalence

relation of (3.2.1). From this it will immediately follow by passage to quotients that we
have defined a 2-cocycle structure (χ, ᾱ, N) on X• which is equivalent to the original
2-cocycle (χ, α,N) on X.

We first show that the gluing α̃ descends: thus let (a, f) and (b, g) be equivalent 1-
simplices in N ×d1 X1. This means that f and g have the same respective source and
target and

(3.3.8) χ(f, g, s0(x0))a = b

Application of condition (c) of Corollary (2.7) to the 2-simplex

(3.3.9) x0

g
!!

s0(x0)
// x0

f
}}

x1

gives the equalities

(3.3.10)
gα(η) = χ(f, g, s0(x0))s0(x0)α(fα(n))χ(f, g, s0(x0))−1 =
χ(f, g, s0(x0))fα(n)χ(f, g, s0(x0))−1 .

for al n ∈ Nx1 . We thus compute

(b, g)α̃(n) = b−1gα(n)b = [χ(f, g, s0(x0))a]−1 gα(n)χ(f, g, s0(x0))a =
a−1χ(f, g, s0(x0))−1χ(f, g, s0(x0))fα(n)χ(f, g, s0(x0))−1χ(f, g, s0(x0))a =
a−1fα(n)a = (a, f)α̃(n)
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and α̃ descends.
We now show that χ̃ descends: Thus we consider a pair of 2-simplicies,

(a0, a1, a2, f0, f1, f2) and (b0, b1, b2, g0, g1, g2), whose faces are equivalent, i.e. are such that
we have the equalities

χ(f0, g0, s0(x1))a0 = b , χ(f1, g1, s0(x0))a1 = b1 , and χ(f2, g2, s0(x0))a2 = b2 .

Then

χ̃(b0, b1, b2, g0, g1, g2) = b−1
1 χ(g0, g1, g2)gα2 (b0)b2 =

[χ(f1, g1, s0(x0))a1]−1 χ(g0, g1, g2)gα2 (χ(f0, g0, s0(x1))a0χ(f2, g2, s0(x0))a2 =
a−1

1 χ(f1, g1, s0(x0))−1χ(g0, g1, g2)gα2 (χ(f0, g0, s0(x1))gα2 (a0)χ(f2, g2, s0(x0))a2

but since gα2 (a0) = χ(f2, g2, s0(x0))fα2 (a0)χ(f2, g2, s0(x0))−1, substitution and cancellation
in the last equality becomes

= a−1
1 χ(f1, g1, s0(x0))−1χ(g0, g1, g2)gα2 (χ(f0, g0, s0(x1)))χ(f2, g2, s0(x0))fα2 (a0)a2 .

The proof will be complete provided that we can show that

(3.3.11) χ(f1, g1, s0(x0))−1χ(g0, g1, g2)gα2 (f0, g0, s0(x1))χ(f2, g2, s0(x0)) = χ(f0, f1, f2) .

For this, observe that the two 3-simplices

(3.3.12) x0

f2

��

f1

((
x0

s0(x0) 66

g1 //

g2

��

x2

x1

f0

@@

and

(3.3.13) x1

s0(x0)

��

g0

((
x0

g2
66

g1 //

g2

��

x2

x1

f0

@@

have a common face (f0, g1, g2). The cocycle identity applied here gives the equalities

(3.3.14) χ(f1, g1, s0(x0))sα0 (x0)(χ(f0, f1, f2)) = χ(f0, g1, g2)χ(f2, g2, s0(x0)) and

(3.3.15) χ(g0, g1, g2)gα2 (χ(f0, g0, s0(x1)) = χ(f0, g1, g2)χ(s0(x1), g2, g2) = χ(f0, g1, g2)
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and thus the equality

(3.3.16) χ(f1, g1, s0(x0))χ(f0, f1, f2)χ(f2, g2, s0(x0))−1 = χ(g0, g1, g2)gα2 (χ(f0, g0, s0(x0))

from which (3.3.11) immediately follows.
We have now shown that the quotient complex X• is supplied with the structure of a

2-cocycle (χ, ᾱ, N) which is clearly equivalent to the original cocycle (X,α,N) on X• via
the simplicial map (3.2.5). We now observe the fundamental property of the constructed
2-cocycle (χ, ᾱ, N).

(3.4) Lemma. For i = 0, 1, 2 the commutative squares

(3.4.0)
(
K

1

2
∼−→
)

X2

〈d̄i〉

��

χ
// N

p

��

Λ̄1
i d1 pr

// X0

are cartesian.

In effect, using Barr’s embedding it will suffice to verify this in (ENS). For this it will
clearly be sufficient to verify that the commutative squares

(3.4.1) X̃2

〈di〉

��

χ
// N

p

��

Λ̃1
i d1 pr

// X0

(which have (3.4.0) as their quotient) are, up to equivalence, cartesian. We will show
this for the 1-horn Λ̃1

1, the proof for the other two cases being entirely similar. Thus let

(a0, f0 : x1 −→ x2, a2, f2 : x0 −→ x1) be an element of Λ̃i and a ∈ Nx0 . Since X̃•
]1

0
is

connected, we may choose a 1-simplex f1 : x0 −→ x2 and define a1 ∈ Nx0 by

(3.4.2) a1 = χ(f0, f1, f2)fα2 (a0)a2a
−1 ,

so that χ̃(a0, a1, a2, f0, f1, f2) = a and 〈d0, d2〉(a0, a1, a2, f0, f1, f2) = (a0, f0, a2, f2).
Now suppose that we have 2-simplices (a0, a1, a2, f0, f1, f2) and (b0, b1, b2, g0, g1, g2)

such that (a2, f2) ∼ (b2, g2) , (a0, f0) ∼ (b0, g0) and
χ̃(a0, a1, a2, f0, f1, f2) = χ̃(b0, b1, b2, g0, g1, g2) ; we will show that (a1, f1) ∼ (b1, g1) .

This means that given the equations
(a) χ(f2, g2, s0(x0))a2 = b2,
(b) χ(f0, g0, s0(x1))a0 = b0, and
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(c) a−1
1 χ(f0, f1, f2)fα2 (a0)a2 = b−1

1 χ(g0, g1, g2)gα2 (b0)b2,

we must show that
(d) χ(f1, g1, s0(x0))a1 = b1.
We thus start with (c) and make substitutions dictated by (a) and (b). This leads to the
equality

(3.4.3)
a−1

1 χ(f0, f1, f2)fα2 (a0)a2 =
b−1

1 χ(g0, g1, g2)gα2 (χ(f0, g0, s0(x1))a0)χ(f2, g2, s0(x0))a2 ,

so that

(3.4.4)
b1 = χ(g0, g1, g2)gα2 (χ(f0, g0, s0(x1))gα2 (a0)χ(f2, g2, s0(x0))fα2 (a−1

0 )
×χ(f0, f1, f2)−1a1 .

Since gα2 (a0) = χ(f2, g2, s0(x0))fα2 (a0)χ(f2, g2, s0(x0))−1 , (3.4.4) becomes the equation

(3.4.5) b1 = χ(g0, g1, g2)gα2 (χ(f0, g0, s0(x1))χ(f2, g2, s0(x0))χ(f0, f1, f2)−1a1

and the result will follow if we can show that

(3.4.6)
χ(g0, g1, g2)gα2 (χ(f0, g0, s1(x1))χ(f2, g2, s0(x0))χ(f0, f1, f2)−1 =
χ(f1, g1, s0(x0)) .

holds.
Now from the 3-simplex

(3.4.7) x1

s0(x1)

��

g0

((
x0

g2
66

g1 //

f2

��

x2

x1

f0

@@

the cocycle identity gives the equality

(3.4.8) χ(g0, g1, g2)gα2 (χ(f0, g0, s0(x1)) = χ(f0, g1, f2)χ(s0(x1), f2, g2) ,

while the 3-simplex
x0

g2

��

f2

((
x0

s0(x0) 66

f2 //

f2

��

x1

x1

s0(x1)

@@

70



NON-ABELIAN COHOMOLOGY IN A TOPOS

gives the equality

(3.4.9) χ(f2, g2, s0(x0))−1 = χ(s0(x1), f2, g2) .

Hence after substitution and cancellation the left hand side of (3.4.6) becomes

(3.4.10)
χ(g0, g1, g2)gα2 (χ(f0, g0, s1(x1))χ(f2, g2, s0(x0))χ(f0, f1, f2)−1 =
χ(f0, g1, f2)χ(f0, f1, f2)−1 .

But the cocycle identity applied to the 3-simplex

(3.4.11) x0

f2

��

g1

((
x0

s0(x0) 66

f1

//

f2

��

x2

x1

f0

@@

gives

(3.4.12) χ(f0, g1, f2)χ(f0, f1, f2)−1 = χ(f1, g1, s0(x0))

and the result is established.

To complete the proof of Theorem (3.3) it only remains to show that X̃1

d1 //

d0

// X0 has

the structure of a bouquet. This is a consequence of the following

(3.5) Lemma. Let (χ, α,N) be a 2-cocycle on a hypercovering of type 1 for which the
commutative squares

(3.5.0) K1
2

〈di〉

��

χ
// N

p

��

Λi
// X0

are cartesian for i = 0, 1, 2. Let e# : Λ1 −→ K1
2 be the section of 〈d0, d1〉 defined by the

unit section of p and define a law of composition µ : Λ1 −→ X1 as p1e
# = µ. Then

(3.5.1) Λ1 µ //
//
//
X1

d1 //

d0

// X0``

is a bouquet whose subgroupoid of automorphisms is isomorphic to N and whose canonical
cocycle structure (2.1) is isomorphic to (χ, α,N).

In effect we have defined a non-abelian version of a “2-dimensional Kan-action” of N
on the complex X1

//
// X0

s0

ee
(DUSKIN (1979)) and the proof that the law of composition

71



JOHN W. DUSKIN

defined on the “fiber” is indeed that of a groupoid is similar to that of the abelian case.

Intuitively, the law of composition for a composable pair x0
f2−−→ x1

f0−−→ x2 is defined as
the 1-face of the unique element of the simplicial kernel

(3.5.2) x0

f1

��

f2 // x1

f0

��
x2

which has the property that χ(f0, f1, f2) = e ∈ Nχ0 . (Such a 2-simplex is said to be
commutative). Inverses are given using the horns Λ0 and Λ1, while associativity is an
immediate consequence of the cocycle identity applied to a tetrahedron all of whose faces
except for one are allowed to be commutative. (Associativity follows from the fact that
the remaining face must also be commutative.) Identification of N with the subgroupoid
of automorphisms follows from the assignment of any a ∈ Nx0 to that unique 2-simplex

(3.5.3) x0

s0(x0)
!!

s0(x1)
// x0

ã
}}

x0

which has the property that χ(ã, s0(x0), s0(x0)) = a. The cocycle identity now applied to
the 3-simplex.

(3.5.4) x0

s0(x0)

��

b̃a
((

x0

s0(x0) 66

ã
//

s0(x0)

��

x0

x0

b̃

@@

now gives the equation

(3.5.5) baχ(b̃, ba, ã) = ba ,

so that χ(b̃, b̃a, ã) = e and hence that b̃ã = b̃a and hence that a 7→ ã is an isomorphism
(since clearly ẽ = s0(x0)).

It only remains to show that (χ, α) may be identified with canonical pair (f−1af, f−1
1 f0f2).

We first identify the glueing by considering the cocycle identity applied to the three
tetrahedra
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(3.5.6)

x0

f

��

f

��

f

��
x1

s0(x1) ((

s0(x1)
// x1

x1
ã

66

x0

f

""

s0(x0)
//

f

&&

x0

ãf

��f

��

x1

x1
ã

66

x0

f

##

s0(x0)

!!s0(x0)
// x0

ãf

��

f−1ãf
// x0

f

{{
x1

This then gives immediately the identity

(3.5.7) fα(a) = χ(ã, f, f) = χ(f−1ãf, s0(x0), s0(x0))

and thus that the gluing is the canonical one.
A similar computation using the definition of f−1

1 f2f0 gives

(3.5.8) (f−1
1 f0f2)α(χ(f0, f1, f2)) = χ(f−1

1 f0f2, s0(x0), s0(x0)) ,

so that we have

(3.5.9)
χ(f−1

1 f1f2, s0(x0), s0(x0)) = χ( ˜χ(f0, f1, f2), (f−1
1 f0f2), (f−1

1 f0f2))

= χ((f−1
1 f0f2)−1 ˜χ(f0, f1, f0)(f−1

1 f0f2), s0(x0), s0(x0)) .

Thus
(f−1

1 f0f2)−1 ˜χ(f0, f1, f2)(f−1
1 f0f2) = f−1

1 f0f2

and we have
˜χ(f0, f1, f2) = f−1

1 f0f2

as desired.
This completes the proof of Lemma (3.5) and hence of Theorem (3.3).
(3.6) Remark. If G∼∼ is a bouquet and (χ, α, ξ) is its canonical cocycle, then the proceeding
construction applied here simply yields a bouquet which is canonically isomorphic to
G∼∼. In effect, the equivalence relation on ξ ×d1 A defined by the cocycle is simply the
commutativity of the square

(3.6.0) x0

a

��

b // x0

g

��
x0 f

// x1

The mapping defined by (a, f) 7→ fa then defines Ar(G∼∼) as the quotient, since it is
canonically supplied with a section via the assignment f 7→ (id(x0), f).
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(3.7) Theorem.

(a) Let (θ, ξ) : (χ1, α1, N1) −→ (χ2, α2, N2) be a morphism of 2-cocycles on a hypercov-
ering X• . Then the arrow defined by the assignment

(3.7.0) (a, f) 7−→ (θfξ(a), f)

descends and defines a functor

(3.7.1) B(θ, f) : B(χ1, α1, N1) −→ B(χ2, α2, N2)

on the associated bouquets which is an isomorphism provided (θ, ξ) is an isomor-
phism.

(b) Let (θ, ξ) : (χx, αx, Nx) −→ F ∗• (χy, αy, Ny) be an F• : X• −→ Y• morphism of cocycles
above X• and Y• . Then the arrow defined by the assignment

(3.7.2) (a, f) 7→ (θf , ξ(a), F1(f))

together with the arrow F0 : X0 −→ Y0 defines a functor

(3.7.3) B(θ, ξ) : B(χx, αx, Nx) −→ B(χy, αy, Ny)

which is an essential equivalence if and only if (θ, ξ) is an isomorphism.

In effect a morphism of 2-cocycles above X• defines a homotopy of the corresponding
1-cocycles which define the arrows of the corresponding bouquets. For an F• morphism
this gives rise to the commutative diagram of 1-torsors

(3.7.4) Nx

��

ξ
// Ny

��

X1 ×x0 Nx

����

//

::

Y 1 ×y0 Ny

::

����

X0
F0 // Y0

X1

����

::

// Y 1

����

::

X0 ×X0

B(θ,ξ)

FF

F0×F0

// Y0 × Y0

pr

FF
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in which it is easily checked that the lower square is cartesian (i.e., B(θ, ξ) is fully faithful)
if and only if the rear square is cartesian (i.e., (θ, ξ) is an equivalence under refinement).
Other details of the verification are left to the reader as an exercise in computation with
2-cocycles.

(3.8) Corollary. Let BOUQ[E] be the class of connected component classes of the cat-
egory BOUQ(E) of bouquets of E and essential equivalences and H2

Z(E) be the class of
equivalence classes under refinements of the fibered category of 2-cocycles of E. Then the
assignment (χ, α,N) 7→ B(χ, α,N) of any 2-cocycle to its associated bouquet defines a
bijection

(3.8.0) B : H2
Z(E)

∼−→ BOUQ[E] .

(4) THE TIE OF A 2-COCYCLE.
(4.0) If F is a fibered category over E which is a category of descent (i.e., such that
morphisms glue) then, following a technique similar to that used in Lemma (2.6), ARTIN
and MAZUR (1969) have shown that there is a one-to-one correspondence (that is, an
equivalence under refinement) between descent data on a hypercovering X• and descent
data on Cosk0(X•), the covering of E which is associated with X• .

This fact has several immediate consequences for us here:
(4.1) The abelian case. First, observe that if (X ′, , A′) is a 2-cocycle on X• for which
the coefficient group A′ is abelian, then condition (b) of the definition of the 2-cocycle
(2.0) asserts that the gluing α is a descent datum on A′ in the fibered category of groups
over the hypercovering X• . Since this fibered category is a category of effective descent
(i.e., both morphisms and objects glue), this gluing defines an effective descent datum on
A′ over the covering Cosk0(X•) of E. Consequently, there exists a global abelian group
A whose localization over X0 is isomorphic to A′ and whose restriction to X1 has its
projection equalize the gluing α.

(4.1.0) d∗0(A′) //

��

α

��

pr∗0(A′) //

��

α′

$$

A′
prA //

��

A

��

d∗1(A′)

		

// pr∗(A′)

��

@@

X1 〈d0,d1〉
// // X0 ×X0

pr1 //

pr0

// X0
// 1

The cocycle χ : X2 −→ A′ may now be composed with prA to produce a mapping
χ : X2 −→ A and the cocycle condition (c) then becomes

(4.1.1) (χd0)− (χd1) + (χd2)− (χd3) = 0
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(after using commutativity) and thus, quite simply, an ordinary normalized 2-cocycle
on the hypercovering X• which coefficients in the abelian group object A of E , i.e. a
simplicial mapping χ• : X• −→ K(A, 2). Clearly, every ordinary 2-cocycle on a hyper-
covering produces, by localization, a 2-cocycle with coefficients in the locally given group
A|X0) −→ X0. Moreover, equivalence under refinement becomes ordinary homotopy and
the abelian theory is immediately recoverable from our non-abelian theory.

Thus, in particular, one obtains that H2 with abelian coefficients may be computed
using K(A, 2) torsors (c.f. DUSKIN [1977]) and using VERDIER [1972] or GLENN [1982],
one obtains its coincidence with the classical (derived functor) definition.

There is a cautionary note, however, which we will discuss when we discuss cohomology
with coefficients in a (globally given) group.

(4.2) The tie of a 2-cocycle. If the coefficient group is non-abelian, condition (b) still
asserts that the gluing α defines a descent datum on N over the hypercovering X• in the
fibered category of pre-ties of E, i.e., the fibered category of groups modulo global sections
of the sheaf of inner automorphisms. Thus, while not a category of effective descent, is
a category of descent and thus defines a descent datum on N over Cosk0(X•). The cate-
gory of ties of E is the completion of this fibered category and thus what we have at the
global level is, not a group, but a tie, which we will call the tie of the cocycle (χ, α,N) and
denote by L(χ, α,N). Note that if G∼∼ is a bouquet, then the tie of the canonical 2-cocycle
associated with G∼∼, (2.1) is precisely the tie of G∼∼ as defined in (I 3.2). Clearly if two
cocycles are equivalent, then their ties are isomorphic. Thus we obtain using Corollary
(2.8) the following

(4.3) Theorem. (calculation of the non-abelian H2 by cocycles)
Let H2

Z(E;L) be the class of equivalence classes of 2-cocycles of E which have their tie
isomorphic to L, and let BOUQ[E;L] be the class of equivalence classes of E-bouquets of
E which have their tie isomorphic to L. Finally let H2

Gir(E;L) be the class of cartesian
equivalence classes of gerbes with tie L. Then one has bijections

(4.3.0) BOUQ[E;L]
∼−→ H2

Gir(E;L)
∼−→ H2

Z(E;L)

(5) THE EILENBERG-MAC LANE THEOREMS FOR A TOPOS.

(5.0) We now show that H2(E;L) is a principal homogeneous space under the abelian
group H2(E;Z(L)) , where Z(L) is the center of the tie (defined below). It will fol-
low that H2(E;L) is a set, which if non-empty, admits a (non-canonical) bijection onto
H2(E;Z(L)). We will then show that every tie has an obstruction to its being represented
as the tie of a bouquet so that H2(E;L) would then be non-empty. This obstruction
defines a cocycle of Z3(E;Z(L)) and H2(E;L) will be non empty if and only if one of
those obstruction cocycles is identically 0. Whether or not every element of H3 can be so

76



NON-ABELIAN COHOMOLOGY IN A TOPOS

represented as an obstruction to the representability of a tie by a bouquet in an arbitrary
topos is still unclear at the time of this writing.
(5.1) The center of a tie. Since every tie L of E has a representative which may be
identified with a descent datum on a locally given group in the fibered category of pre-
ties of E, we may choose some locally given group N −→ X0 on a covering X0

// // 1 and
look at the center Z(N) −→ N of N in Gr/X0. Since Z(N) is central the descent datum
on N in the category of pre-ties must define a descent datum on Z(N) (over the same
covering) in the fibered category of locally given abelian groups of E and thus by descent,
produce a global abelian group which is locally isomorphic to Z(N). This global abelian
group is clearly independent of the choice of representative for the tie L and unique up
to isomorphism. It will be called the center of the tie L and be denoted by Z(L). It
is through the use of this abelian group that the link between abelian and non-abelian
theory is obtained.

(5.2) Theorem. For any tie L of E, H2(E;L) is a principal homogenous space under
the abelian group H2(E;Z(L)). That is, H2(E;Z(L)) has a principal, transitive, action
on H2(E;L).

We first define the action: Thus represent any element of H2(E;L) by a non-abelian
cocycle on some hypercovering of E and any element ofH2(E;Z(L)) by an ordinary abelian
2-cocycle on another hypercovering. Using the filtration (up to homotopy) of the category
of hypercovers of E, both of these 2-cocycles are equivalent to ones of the same type on
a common hypercovering X• which we may take to be of type 1.

(5.2.0) Z(N)
� _

��

pr
// Z(L)

��

d∗0(N)

��

α // d∗1(N)

��

N

��

K1
2

c
**

χ

33

//
//
// X1

//
// X0

// 1

Thus let (χ, α,N) be the non abelian cocycle and c : K1
2 −→ Z(L) the abelian one. Since

the tie of (χ, α,N) is L and Z(L) is the center of L, Z(L) is locally isomorphic to Z(N)
supplied with the descent datum α|Z(N) : d∗0(Z(N))

∼−→ d∗1(Z(N)) which is the restriction
of α to the center of its respective source and target. Now designate by c′ the map
〈d1d1, c〉 : K1

2 −→ Z(N) and by c# the map inZ(N)c
′ : K1

2 −→ N . Since c is a 2-cycle, c′

has the property that

(5.2.1) f
α|Z(N)
01 (c′d0)− (c′d1) + (c′d2)− (c′d3) = 0
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and its image in N that of

(5.2.2) fα01(c#d1)−1(c#d2)(c#d3)−1 = e .

We claim that we may define an action of H2(E;Z(L)) on H2(E;L) by the class of
the product χc# in N . For this we need to show that (χc#, α,N) is again a non-abelian
2-cocycle. But

(5.2.3) d∗1(α)d∗0(α)−1d∗0(α)−1 = int(χ∗) = int(χ∗)id = int(χ∗)int(c#) = int(χ∗c#) ,

since c# is central. Similarly we have

(5.2.4)
(χc#d3)−1(χc#d2)−1(χc#d2)fα01(χc#d0)

= (χd3)−1(χd1)−1(χd2)fα01(χd0)
[
f ∗01(c#d0)(c#d1)−1(c#d2)(c#d3)−1

]
= e · e = e, since di is a homomorphism and c# is central.

We leave it to the reader to verify that the resulting definition is independent of the
choice of representatives and thus define a principal action. That it is transitive now will
follow from the following observations:
(5.3) Using the homotopy filtration of the category of hypercoverings of E, any two
cocycles may be replaced with equivalent ones defined on the same hypercovering. Thus
it suffices to only consider the case of cocycles (χ1, α1, N1) and (χ2, α2, N2) defined on X•
whose ties are isomorphic to the given tie L. Since this means that one has an isomorphism
of descent data in the category of pre-ties, after a possible further refinement of X• , one
then has an isomorphism ξ : N1

∼−→ N2 in Gr/X0 and a normalized arrow θ : X1 −→ N2

such that

(5.3.0) int(θ)d∗1(ξ)α1 = α2d
∗
0(ξ)

in Gr/X1. Using this data, we now have the following

(5.4) Lemma. Let (χ1, α1, N1) be a 2-cocycle onX• and α2 : d∗0(N2) −→ d∗1(N2) a gluing of
a group N2. Then given any isomorphism ξ : N1 −→ N2 and normalized arrow θ : X1 −→
N2 such that

(5.4.0) int(θ)d∗1(ξ)α1 = α2d
∗
0(ξ) ,

the arrow χ′1 : K ′2 −→ N2 defined by

(5.4.1) χ′1(f0, f1, f2) = θf1ξ(χ1(f0, f1, f2))θ−1
f2
fα2

2 (θ−1
f0

)

gives a 2-cocycle (χ′1, α2, N2) on X• which is isomorphic to (χ1, α1, N1).
In effect, we must show that this definition of χ′1 defines a cocycle since it is clearly

isomorphic to the original one. Thus write for any n ∈ N2, n = ξ(ξ−1(n)) and calculate

(5.4.2)

[
θf1ξ(χ1(f0, f1, f2))θ−1

f2
fα2

2 (θ−1
f0

)
]
fα2

2 (fα2
0 (n))

×
[
fα2

2 (θf0)θf2ξ(χ1(f0, f1, f2)−1θ−1
f1

]
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which we must show is equal to fα2
1 (n).

Now since

θ−1
2 fα2

2 (θ−1
f0

)fα2
2 (fα2

0 (n))fα2
2 (θf0)θf2 = θ−1

f2
fα2

2 (θ−1
f0
fα2

0 (n)θf0)θf2

and
θ−1
f0
fα2

0 (n)θf0 = θ−1
f0
fα2

0 (ξ(ξ−1(n)))θf0 = ξ(fα1
0 (ξ−1(n))) ,

we have that

θ−1
2 fα2

2 (θ−1
f0

)fα2
2 (fα2

0 (n))fα2
2 (θf0)θf2 = ξ(fα1

2 (fα1
0 (ξ−1(n)))

= ξ(χ1(f0, f1, f2)−1fα1
1 (ξ−1

1 (n))χ1(f0, f1, f2))

= ξ(χ1(f0, f1, f2))−1ξ(fα1
1 (ξ−1(n)))ξ(χ1(f0, f1, f2)) ,

so that (5.4.2) becomes

θf1ξ(χ1(f0, f1, f2))ξ(χ(f0, f1, f2)−1ξ(fα1
1 (ξ−1(n)))ξ(χ1(f0, f1, f2))ξ(χ1(f0, f1, f2)−1θ−1

f1

= θf1ξ(f
α1
1 (ξ−1(n)))θ−1

f1

= fα2
1 (ξ(ξ−1(n))) = fα2

1 (n)

as desired for the gluing condition.
We similarly calculate the cocycle identity:

(5.4.3)

χ′1(f13, f03, f01)fα2
01 (χ′1(f23, f13, f12)) =

θf03ξ(χ1(f13, f03, f01))θ−1
f01
fα2

01 (θ−1
f13

)fα2
01 (θf13)fα2

01 (ξ(χ1(f23, f13, f12)))

× fα2
01 (θ−1

f12
)fα2

01 (fα2
12 (θ−1

f23
)) ,

where fα2
01 (θ−1

f12
)fα2

01 (fα2
12 (θ−1

f23
)) = fα2

01 (θ−1
f12

)χ′1(f12, f02, f01)−1fα2
02 (θ−1

f23
)χ′1(f12, f02, f01) using

the previous result.
Now since

χ′1(f23, f03, f02)χ′1(f12, f02, f01) = θf03ξ(χ1(f23, f03, f02))θ−1
f02
fα2

02 (θ−1
f23

)

× θf02ξ(χ1(f12, f02, f01))θ−1
f01
fα2

01 (θ−1
f12

)

we will have the desired identity provided we can show that

(5.4.4)
ξ(χ1(f13, f03, f01))θ−1

f01
fα2

01 (χ1(f23, f13, f12))fα2
01 (θ−1

f12
)χ′1(f12, f02, f01)−1fα2

02 (θ−1
f23

)

= ξ(χ1(f23, f03, f02))θ−1
f02
fα2

02 (θ−1
f23

) .

But since
χ′1(f12, f02, f01)−1 = fα2

01 (θf12)θf01ξ(χ1(f12, f02, f01))−1θ−1
f02
,

the left hand side of (5.4.4) becomes

ξ(χ1(f13, f03, f01))θ−1
f01
fα2

01 (ξ(χ1(f23, f13, f12))θf01(ξ(χ1(f12, f02, f01))θ−1
f02
fα2

02 (θ−1
f23

)
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and since θ−1
f01
fα2

01 (ξ(χ1(f23, f13, f12))θf01 = ξ(fα2
01 (χ1(f23, f13, f12))), the desired equality

follows from the application of the isomorphism ξ to the cocycle identity for χ1 .

(5.5) Corollary. Any two cocycles with isomorphic ties may be replaced with respectively
equivalent ones (χ, α,N), (ρ, α,N) which are defined on the same hypercovering X• with
the same coefficient group and the same gluing.

The completion of the proof of Theorem (5.2) now immediately follows from the fol-
lowing

(5.6) Corollary. Let (χ, α,N) and (ρ, α,N) be cocycles defined on X• with the same local
group and gluing. Then χ−1ρ : K1

2 −→ N factors through the center of N and defines an
abelian 2-cocycle with coefficients in the center of L.

In effect,

int(χρ−1) : int(χ)in(ρ−1) =
[
d∗1(α)d∗0(α)−1d∗2(α)−1

] [
d∗1(α)d∗0(α)−1d∗2(α)

]−1
= id

so that χρ−1 is central. But since

(5.6.0) (χd3)−1(χd1)−1(χd2)fα01(χd0) = e = (ρd3)−1(ρd1)−1(ρd2)fα01(ρd0)

and χρ−1 is central, (5.6.0) becomes

(5.6.1) (χρ−1d3)−1(χρ−1d1)−1(χρ−1d2)fα01(χρ−1d0) = e

and the proof is completed.

(6) The obstruction to the realization of a tie by a bouquet.

(6.0) As we have already noted, H2(E;L) may be empty, what is there may not be a
bouquet G∼∼ in E which has the given global tie L as its tie. We will now show that there
is an obstruction to this lying in the abelian group H3(E;Z(L)) which is 0 if and only if
H2(E;L) 6= ∅.

To see this recall that any tie L has a representative which may be taken as a descent
datum on a locally given group over a covering of E in the fibered category of pre-ties of
E. By a suitable choice of refinements, this covering may be refined to produce a type-
2 hypercovering X• of E supplied with the basic structural ingredients of a normalized
non-abelian 2-cocycle

(6.0.0) d∗0(N)

��

α
∼

// d∗1(N)

��

N

��

K2
3

//
//
//
//
X2

a

33

//
//
// X1

d1 //

d0

// X0
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for which the relation

(6.0.1) d∗1(α)d∗0(α)−1d∗2(α)−1 = int(a∗)

holds in Gr/X2 and defines the original descent datum on N over its 0-coskeleton.
In outline, this hypercovering is constructed as follows: over a representative cover of

1,
X0 ×X0 ×X0

//
//
//X0 ×X0

//
//X0

//1

one is given a descent datum on a group N −→ X0 in category of pre-ties. The glu-
ing of this datum is a global section g ∈ ΓHex Iso(pr∗0(N), pr∗1(N)) above X0 × X0.
Since Hex Iso(pr∗0(N), pr∗1(N)) is the quotient of Iso(pr∗0(N), pr∗1(N)) by the section of
Int(pr∗(N)), we may find a covering p : C // // X0 ×X0 and global section

α̃ ∈ ΓIso((pr0p)
∗(N), (pr1p)

∗(N))

which realizes g. Since this global section is an isomorphism α̃ : (pr0p)
∗(N) −→ (pr1p)

∗(N)
in Gr/C, it may be used to define an isomorphism α : d∗0(N)

∼−→ d∗1(N) over the object
Xl = C qX0 supplied with its arrows d0 = pr0pq id : X1 −→ X0 and
d1 = pr1p q id : X1 −→ X0 which is clearly equivalent to the original g. We now take

the simplicial kernel K1
2

//
//
// X1

//
// X0 of this truncated complex and note that over

it we are given a global section of Int(α∗(N)) which defines the “cocycle condition” of
the original datum. But since Int(d∗(N)) is the quotient of d∗(N) by its center, we may
find a covering C2 of K1

2 on which we have a global section of d∗(N) which realizes the
original one. We now define X2 as the coproduct of C2 with the co-simplicial kernel of
s0 : X0 −→ X1 (to restore the degeneracies) and transform the global section of d∗(N)
back to X2. The desired hypercovering may now be considered as the 2-coskeleton of the
so defined truncated complex. Supplied with the so constructed pseudo-descent datum,
it will be said to be a pseudo descent datum which represents the tie L and we have the
following

(6.1) Theorem. Let (a, α,N) be a pseudo descent datum which represents a tie L over
a hypercovering X• of E. Define the map k : K2

2 −→ N by

(6.1.0) k = (ad3)−1(ad1)−1(ad2)fα01(ad0) (product in N).

The following statements hold:

(a) k factors through Z(N), i.e., int(k) = id;

(b) considered as a map into Z(N), k defines a 3-cocycle on X• with coefficients in
Z(L), i.e.,

fα01(kd0)− (kd1) + (kd2)− (kd3) + (kd4) = 0 in Z(N);

(c) if k = e, then (a, α,N) is a non-abelian 2-cocycle whose tie (and hence the tie of its
associated bouquet) is isomorphic to L.
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We first show that k is in the center. Now in the category Gr/X2, we have the 2-simplex
of group isomorphisms

(6.1.1) d∗2(N)
d∗0(α)

//

d∗1(α)

��

d∗1(N)

d∗2(α)

��

d∗0(N)

a

��

so that d∗1(α)d∗0(α)−1d∗2(α)−1 = int(a∗). If we pull this triangle back into Gr/K2
2 along the

faces di : K
2
2 −→ X2, the simplicial identities give a 3-simplex of groups and isomorphisms

(6.1.2) d∗2(N)

d∗21(α)

��

d∗20(α)

((

d∗3(N)

d∗32(α)
66

d∗30(α)
//

d∗31(α)

��

d∗0(N)

d∗1(N)

d∗10(α)

@@

whose respective faces have the property that

(6.1.3)
d∗i (d

∗
1(α)d∗0(α)−1d∗2(α)−1)

= (d1di)
∗(α)(d0di)

∗(α)−1(d2di)
∗(α)−1 = int(ad∗i )

for i = 0, 1, 2, 3.
But for any such 3-simplex of isomorphisms (in any category) one always has the

equality

(6.1.4)

[
d20(α)d−1

21 (α)d10(α)−1
]−1 [

d30(α)d−1
32 (α)d−1

20 (α)
]−1

×
[
d30(α)d−1

31 (α)d−1
10 (α)

]
d10(α) [d31(α)d32(α)−1d21(α)−1] d10(α)−1 = id

and hence on substitution of (6.1.3) one obtains

int(ad3)−1int(ad1)−1int(ad2)d10(α)int(ad0)d10(α)−1

= int [(ad3)−1(ad1)−1(ad2)fα01(ad0)] = id

and thus k is in the center as asserted.
To show (b) we must show that the 3-cocycle identity still holds in this case when

written multiplicatively. For this we follow the method of ElLENBERG-MAC LANE
(1954) and we write the definition of k in the form

(6.1.5) (ad1)(ad3)k = (ad2)fα01(ad0) .
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This gives for the five faces of a 4-simplex the identities

(6.1.6)

(ad1d0)(ad3d0)(kd0) = (ad2d0)fα12(ad0d0)
(ad1d1)(ad3d1)(kd1) = (ad2d1)fα02(ad0d1)
(ad1d2)(ad3d2)(kd2) = (ad2d2)fα01(ad0d2)
(ad1d3)(ad3d3)(kd3) = (ad2d3)fα01(ad0d3) , and
(ad1d4)(ad3d4)(kd4) = (ad2d4)fα01(ad0d4) .

We will now calculate the expression

(6.1.7) L = (ad2d3)fα01 ((ad0d3)fα12(ad0d1))

in two ways and then equate the result. To aid in following this calculation we define the
following (using the simplicial identities) for the 3-faces of a 4-simplex

d3d0 = d0d4 = a (1, 2, 3) d1d2 = d1d2 = f (0, 3, 4)
d1d0 = d0d2 = b (1, 3, 4) d3d1 = d1d4 = g (0, 2, 3)
d2d0 = d0d3 = c (1, 2, 4) d3d2 = d2d4 = h (0, 1, 3)
d2d0 = d0d1 = d (2, 3, 4) d2d2 = d2d3 = i (0, 1, 4)
d2d1 = d1d3 = e (0, 2, 4) d3d3 = d3d4 = j (0, 1, 2)

L then becomes for one calculation using (6.1.6) above,

L = ifα01(cfα12(d)) = ifα01(ba(kd0)) = ifα01(b)fα01(a)fα01(kd0)
= i(i−1fk(kd2))h−1gj(kd4)fα01(kd0) = (kd2)(kd4)fα01(kd0)fgj

where we have collected the central terms in front and cancelled.
For the second calculation, we first apply the isomorphism fα01 and then substitute

using the relation (6.1.6). Thus

L = ifα01(cfα12(d)) = ifα01(c)fα01(fα12(d)) = ifα01(c)j−1fα02j
= ej(kd3)j−1(e−1fg(kd1))j = (kd3)(kd1)ejj−1e−1fgj = (kd3)(kd1)fg .

We now equate the two expressions and cancel the common factor fgj to obtain the
identity

(6.1.8) (kd3)(kd1) = (kd2)(kd4)fα01(kd0)

which is just the 3-cocycle identity written multiplicatively. Thus (b) is established.
(c) is obvious from the original definition of a non-abelian 2-cocycle and its associated

tie and we can make the following

(6.2) Definition. The class O(k) in H3(E,Z(L)) defined by the 3-cocycle k (6.1.0) will
be called the obstruction to the realization of the tie L by a bouquet of E.

(6.3) Corollary. O(k) = 0 iff the tie L is representable by a bouquet of E.
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In effect, the proof of Theorem (4.3) shows that the obstruction cocycle is independent
of choice of representatives and gives the desired result.

(7) Neutral Co-cycles

(7.0) If a 2-cocycle on a hypercover X• has the form (e, α,N) where e : X2 −→ N is the
unit element of N , then the cocycle reduces to a simple descent datum on N over the
covering Cosk0(X•) and thus produces, by descent, a global group N ′ which is locally
isomorphic to N . The bouquet produced by such a cocycle is easily seen to be split on
the right by N ′ (I 4.1) and is thus neutral. We will thus define a cocycle to be neutral if
it is equivalent under refinement to a cocycle of the form (e, α,N) and with this definition
our computation theorem (3.8) is easily seem to preserve neutral elements. This will be
discussed in more detail in the sequel in connection with global group coefficients.
(7.1) Remark. IfG is a global group and O // // 1 is an epimorphism, then the canonical
cocycle on the right split bouquet whose arrows A are O × O × G is isomorphic to the
trivial cocycle (e, id, O×G) via the arrow θ : A −→ O×G given by (x, y, n) 7→ n−1 since
the equalities

(7.1.0)
(O−1)−1O−1mn︸ ︷︷ ︸n−1(m−1)n︸ ︷︷ ︸n−1 = e

(m−1)−1m−1nm︸ ︷︷ ︸m−1 = n

of (2.8) always hold trivially.
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Part (III): Bouquets and group extensions

As we remarked in the introduction, observations about the topos of E-sets where E
is a group form a “guiding thread” for motivation of much of what occurs in both the
Grothendieck-Giraud theory and what is presented in this paper. It is thus incumbent
on us to effectively translate into the move familiar terms of E-sets the notions which
occur in this paper. As we have noted before, the background definitions of “fibration”,
“cartesian functor”, “pseudo-functor” etc. have been given in the Appendix.

(1.0) If F : F −→ E is a homomorphism of groups, then, viewed as groupoids with a single
object, it is easy to see that since every arrow of F is cartesian (being an isomorphism),
F : F −→ E is a fibration if and only if F is surjective, that is, defines an extension of E
by the kernel of F , which categorically is just the fiber Fe above the single object e of E.
A normalized cleavage of this fibration (i.e. a choice of inverse images which preserves
identities) is then nothing more than a set theoretic section C of F which has the property
that C(e) = e (i.e., a transversal in the terminology of group theorists) and is a splitting
if and only if the section is a homomorphism of groups (so that F is a split extension of
E by the kernel of F ).

The pseudo-functor FC( ) : Eop ; CAT which is defined by such a cleavage is easily seen
to be entirely equivalent to the Schreier factor system defined by the transversal as we
now show.

(1.1) The pseudo-functor defined by a group extension.

If C : E −→ F is a normalized section for F : F −→ E, as a cleavage it defines for
each f : e −→ e an inverse image functor FCf : Fe −→ Fe as follows: by definition, for any
x : e −→ e in N = Fe = Ker(F ), FCf (x) is that unique element of N such that the square

(1.1.0) e

FCf (x)

��

C(f)
// e

x

��

F

F

��

e
C(f)

// e E

C

EE

e
f

// e

is commutative in F. Thus FCf (x) = c(f)−1xC(f), or in other words, FCf is just the
restriction to N of the inner automorphism int(C(f)−1) : F −→ F defined by the element
C(f)−1 of F. Similarly, for each ordered pair (f, g) in E× E, the natural transformation,
C(f, g) : FCf ◦ FCg −→ FCgf , by definition has as its value at the single object e of N that
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unique arrow in N which makes the diagram

(1.1.1) e

C(f,g)

��

)) e

))

F

F

��

e
C(gf)

// e

e
f

//

gf

OOe
g

// e E

commutative in F, i.e. C(f, g) = C(gf)−1C(g)C(f). Thus C(f, g) has precisely the
property that

(1.1.2) FCgf = int(C(f, g−1)) ◦ FCf ◦ FCg

holds for all (f, g) in E×E. Moreover, since these natural transformations always satisfy
the equalities

(1.1.3)
C(f, hg) ◦ (FCf ∗ C(g, h)) = C(gf, h) ◦ (C(f, g) ∗ FCk )

and C(e, f) = C(f, e) = e ,

with FCf ∗ (C(g, h)) = FCf (C(g, h)) and C(f, g) ∗ FCk = C(f, g), we have that the pseudo
functor defined by the cleavage C is entirely equivalent to giving mappings

FC : E −→ Aut(N)op , f 7−→ Faf , and C : E× E −→ N , (f, g) 7−→ C(f, g)

subject to the following conditions:

(1.1.4)

(a) int(C(f, g)−1) ◦ FCf ◦ FCg = FCgf , for any pair (f, g) in E× E

(b) C(f, e) = C(e, f) = e for all f ∈ E; and

(c) C(f, hg)FCf (C(g, h)) = C(gf, h)C(f, g) for all (f, g, h) ∈ E×
E× E ,

or, in other words, just a Schreier factor system for the extension with FCf as “automor-

phisms” and C(f, g) as “factors”
(
c.f., SCHREIER (1926), KUROSH (1955 ) or SCOTT

(1964)
)
.

(1.2) Remark. If N is abelian, then FC : E −→ Aut(N)op becomes a homomorphism of
groups and the equality (1.1.4(c)) may be written as

(1.2.0) FCf (C(g, h))− C(gf, h) + C(f, hg)− C(f, g) = 0 ;

thus C(−,−) is a normalized 2-cocycle of E with coefficients in the E-module N and
the Schreier factor system may be viewed as the non-abelian version of such a 2-cocycle.

86



NON-ABELIAN COHOMOLOGY IN A TOPOS

As with 2-cocycles with coefficients in an E-module, the non-abelian factor system may
also be described in simplicial terms as a simplicial map from the nerve of Eop into the
nerve of the 2-groupoid defined by N. We will show this in detail when we discuss group
cohomology in a general topos, but will briefly discuss it in(6.0).

(1.3) The Grothendieck theory associates with any pseudo-functor Eop ; CAT a fi-
bration above E which realizes the pseudo-functor in such a fashion that fibrations are
determined, up to equivalence, by their associated pseudo-functors. Here, in the case
of a group extension and any pseudo-functor with values in the 2-category of groups,
homomorphisms of groups, and natural transformations of group homomorphisms, the
Grothendieck construction for the associated fibration just gives the familiar description
of multiplication on the set E× N which the factor set determines, viz.,

(1.3.0) (g, n) · (f,m) = (gf, c(f, g)nfm) , where nf = FCf (n).

(2.) The split fibration and bouquet of E-sets determined by a group extension

(2.0) Since not every group extension can be split, the theory of group extensions provides
a convincing example that not every fibration can be replaced (up to isomorphism) with
a split fibration and thus that pseudofunctors cannot be naively replaced with functors.
Never-the-less, as we have noted (I(6.0) and Appendix), the Grothendieck-Giraud theory
does allow every fibration F to be replaced with split fibration SF which is E-cartesian
equivalent to F. In the case of a group extension F −→ E, we will see that SF −→ E is a
split fibration of the group E, fibered in groupoids rather than groups. As a split fibration,
SF is determined as the externalization of a presheaf of groupoids on E (specifically, by
CartE(E/−,F) ) that is, in more familiar terms by a groupoid object in the topos of (right)

E-sets. But since the cartesian E- equivalence F ≈−→ SF (which in general depends on the
choice of a cartesian section of F) is fully faithful, this means that the group extension F
is recoverable up to isomorphism as the group of automorphisms of any selected object
of SF and consequently that all information about the group extension F is encoded in
the category of E-sets via the E-groupoid CartE(E/−,F). On the set theoretic level,
CartE(E/−,F) turns out to be a connected non-empty groupoid, equivalent as a category,
to the group Ker(F ), that is, to a (complete) bouquet of E-sets locally equivalent to the
group Ker(F ).

Since every bouquet of E-sets turns out to determine (up to isomorphism) an extension
of E, our theory will show that the study if all possible extensions of E by a group F is
equivalent to the study of the category of category objects in the topos of E-sets which are
locally (i.e., on the underlying set level) equivalent to ordinary groups.

We will now proceed to describe the structure of CartE(E/−,F) in the more conven-
tional terms of E-sets.
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(2.1) THEOREM. Let F F−→ E be an extension of a group E. The presheaf of groupoids
CartE(E/−,F) is isomorphic to the bouquet of E-sets IΓ(F/E) whose E-set of objects is

the set Γ(F/E) of all normalized (set-theoretic) sections s : E −→ F of F F−→ E with
right E-action defined by sg(x) = s(g)−1s(gx) (product in F) and whose E-set of arrows
is the set {n : s −→ t ∈ Ker(F ) × IΓ(F/E) × IΓ(F/E)} with right E-action defined by
ng = t(g)−1ns(g) : sg −→ tg (product in F) and composition defined by the product in
Ker(f). Moreover, the extension F is split if and only if the bouquet IΓ(F/E) has an in-
variant object s (i.e., sg = s for all g ∈ E).

In effect, let e (= eE) represent the single object of E, so that the groupoid E/e has
as arrows f : x −→ y the commutative triangles

(2.1.0) e

x
��

f
// e

y
��

e

(yf = x) of E fibered over E via the fibration f : x −→ y 7→ f : e −→ e. Now let
c : E/e −→ F be any E-functor (necessarily cartesian since all arrows of F are invertible)
and for any x : e −→ e in E define sC(x) as the image in F under c of the arrow x : x −→ e
in E/e given by commutative triangle

(2.1.2) e

x
��

x // e

e
��

e

Since C is an E-functor C(x) : e −→ e must project under F onto x and carry e : eE −→ eE
onto eF .

Thus the assignment x 7→ sC(x) defines a normalized section of F .
Inversely, let s : E −→ F be a normalized section for F . Define Cs(f) : e −→ e for any

arrow e

x ��

f
// e

y��
e

as the product Cs(f) = s(y)−1s(x) in F. As is easily seen, Cs is an

E-functor which is inverse to s since the tetrahedron

(2.1.3) e

x

��

x
''

f
// e

y
ww

y

��

e

e

��
e

is always commutative in E.
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Now suppose that ϕ : C1 −→ C2 is an E-natural transformation of cartesian E-functors

from E/e −→ F, then by definition, for each object x : e −→ e in E/e, ϕ(x) :

C1(e)

=

e −→

C2(e)

=

e

projects onto e = id(e) in E and is thus an element of Ker(F ). Moreover, since for each
f : x −→ y in E/e, the prism

(2.1.4) e

ϕ(e)

��

C

s(x)
88

C1(f)
//

ϕ(x)

��

e

s(y)
ff

ϕ(y)

��

e

e

t(x)
77

C2(f)
// e

t(y)
ff

is commutative, with Cl and C2 determining and being determined by the respective
normalized sections s and t, we see that ϕ is completely determined by ϕ(e) ∈ Ker(f)
with

(2.1.5) ϕ(x) = t(x)−1ϕ(e)s(x) .

We thus have established a bijection between E-natural transformations and ordered
triplets (s, t, u) ∈ Γ(F/E)2 ×Ker(F )

(2.1.6) ϕ : C1 −→ C2 7→
(
sC1 , sC2 , ϕ(e)

)
.

Under this bijection composition of natural transformations clearly becomes multiplica-
tion in Ker(f). Notice that in ENS, we have now established an isomorphism of groupoids
together with a fully faithful functor

Ar(CartE(E/e,F))

T

��

S

��

∼ // Γ(F/E)× (Γ(F/E)×Ker(F )

pr1

��

pr2

��

// Ker(F )

��

Ob(CartE(E/e,F)) ∼ // Γ(F/E) // 1

(2.1.7) CartE(E/e,F) ∼ // IΓ(F/E) // Ker(F )
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which is, in fact, an equivalence of categories in ENS. Thus the E-groupoid CartE(E/−,F)
is a groupoid object in E-sets which is locally essentially equivalent (in fact, here, fully
equivalent) to a locally given group, viz. Ker(F ). This terminology is consistent with that
already used (I.2.) since, as is well known (and will shortly be reviewed in detail (5.0))
the underlying set functor E-sets −→ ENS is equivalent to that of localization (i.e. “pull
back”) along the epimorphism e // // 1 whose source is the E-set e = Eδ (E operating
on itself on the right by multiplication.)

We now look at the E-set structure on IΓ(F/E). For any g : e −→ e in E the E-functor
E/e −→ E/e which it defines is given by the assignment

(2.1.8) e

x
��

f
// e

y
��

e

7−→ e

gx
��

f
// e

gy
��

e

and thus the presheaf structure on CartE(E/e,F) just becomes on objects the automor-
phism 〈〈c 7→ c ◦ g

!
〉〉. Translating this into its effect on the section s : E −→ F defined by

C, we see that the result of the action of g on s is just given by

(2.1.9) sg(x) = s(g)−1s(gx) (product in F) ,

while the corresponding effect on natural transformations 〈〈ϕ 7→ ϕ ∗ g
!
〉〉 just becomes on

arrows between sections the assignment

(2.1.10) n : s −→ t 7→ ng : sg −→ tg

given by

(2.1.11) ng = t(g)−1ns(g) ∈ Ker(F ) (product in F) .

Finally, note that a section s is invariant under the action of E, if and only if for
all x, g ∈ E, sg(x) = s(x), i.e. if and only if s(g)−1s(gx) = s(x), or in other words,
s(gx) = s(g)s(x) and the section defines a splitting of the original extension F −→ E.

(2.2) Definition. IΓ(F/E) will be called the bouquet of sections of the extension of F.
In the canonical topology on the topos of E-sets, CartE(E/−,F) is complete (I.(7.1))

and thus so is the bouquet of E-sets IΓ(F/E) determined by the group extension. Moreover,
the assignment F −→ E 7→ IΓ(F/E) is obviously functorial on E-morphisms of group
extensions and defines a functor from the category Ext(E) of extensions of E into the
category of BOUQ(E) of bouquets of E-sets. We now look in the opposite direction at

(3.) The group extension determined by a bouquet of E-sets.
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(3.0) Let G∼∼ : A
S //

T
// O be a bouquet of E-sets. As a presheaf of groupoids on Eop, G∼∼

determines a split fibration F : EXX(G∼∼)
F−→ E, the externalization of G∼∼ restricted to E

(I(7.2)), whose subgroup of automorphisms Aut(α)G∼∼ −→ EXX(G∼∼) for any object α in

EXX(G∼∼) determines, we claim, an ordinary group extension AutG∼∼(α)
F−→ E of E. This

group may be described directly as follows:
Since G∼∼ is locally non empty, we may pick an object α ∈ O = Ob(U(G∼∼)) from the

underlying set of objects of G∼∼ and make the following definition: for any g ∈ E, an arrow
of projection g is an arrow of the form f : α −→ αg in A = Ar(U(G∼∼)), i.e. an element m

of A such that S(ξ) = α and T (ξ) = αg. Since A
〈T,S〉−−−→ O×O is an epimorphism, on the

underlying object level G∼∼ is connected so that the set of arrows of projection g is never
empty. AutG∼∼(α) is then defined to be the disjoint union over E of the set of arrows of
projection g ,

(3.0.0) AutG∼∼(α) = {(g, ξ) | ξ : α −→ αg ∈ A, g ∈ E} ,

and is supplied with a surjective mapping 〈〈(g, ξ) 7→ g〉〉 onto E.
Composition in AutG∼∼(α) is defined by

(3.0.1) (h, ρ : α −→ αh) · (g, ξ : α −→ αg) = (hg, ρgξ : α −→ αkg) ,

where ρgξ is given by the composition

(3.0.2) α

ρgξ
��

ξ
// αg

ρg

��

α

ρ

��

αkg αk

in G∼∼. Since G∼∼ is a category, this composition is always associative with

(3.0.3) (e, idα : α −→ αe = α)

as identity element. Moreover, since both G∼∼ and E are groupoids, AutG∼∼(α) is a group

with (g−1, α
(ξ−1)g

−1

−−−−−−→ αg
−1

) providing an inverse for (g, α
ξ−→ αg) in AutG∼∼(α)

(3.0.4) α
ξ−→ αg 7→ α

ξ−1

−−→ αg 7→ αg
−1 (ξ−1)g

−1

←−−−−−− αgg
−1=e = α .

Thus AutG∼∼(α) −→ E is indeed a group extension whose kernel is precisely the subgroup

N = AutG∼∼(α) = {n : α −→ αe (= α) | n ∈ A} ↪→ G of automorphisms of α in G∼∼. It will
be called the group extension defined by the E-bouquet G∼∼ at the object α of G∼∼.
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(3.1) Theorem. The group extension AutG∼∼(α) is, up to isomorphism, independent of

the choice of object α ∈ ob(G∼∼). Moreover, if bouquets, G∼∼ and H∼∼ lie in the same con-
nected component under the relation (generated by) essential equivalence, then AutG∼∼(α)

is isomorphic to AutH∼∼(β) for any choice of objects α and β.
In effect since G∼∼ is connected, there is an isomorphism f : α −→ β in G∼∼. We claim

that the assignment (g, ξ) 7→ (g, f gξf−1) defined by the commutative square (in G∼∼)

(3.1.0) α
f
//

ξ

��

β

fgξf−1

��

αg
fg
// βg

defines an isomorphism AutG∼∼(f) : AutG∼∼(α)
∼−→ AutG∼∼(β). Similarly, G∼∼ and H∼∼ lie in the

same connected component under essential equivalence, then one has a diagram

(3.1.1) C∼∼
//

F0

��

H∼∼

G∼∼

of fully faithful E-equivariant functors of E-bouquets which are essentially surjective on
the underlying set level. From this it immediately follows that AutG∼∼(α) is isomorphic to

AutH∼∼(β) for any choice of α and β since the assignment

(g, ξ : α −→ αg) 7→ (g, F (ξ) : F (α) −→ F (α)g = F (αg)) is an isomorphism of AutG∼∼(α)

with AutG∼∼(F (α)) for any fully faithful equivariant functor F .

(4.) Neutral elements and split extensions.

(4.0) In spite of the appearance of the composition law (3.0.1) in AutG∼∼(α), this extension

is not necessarily split since the identification of the elements of AutG∼∼(α) with the set

E × N ≡ E × AutG∼∼(α) is possible only through the choice, for each element g of E of

an isomorphism s(g) : α −→ αg in G∼∼. Chosen with s(e) = id(α) : α −→ αe = α, this
identification uses the composition in G∼∼ to define (g, n : α −→ α) for a given (g, ξ : α −→
αg) as that unique arrow of projection g which makes the square

(4.0.0) α
id //

n

��

α

ξ

��

α
s(g)

// αg
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commutative in G∼∼. Under this mapping, the multiplication in AutG∼∼(α) becomes on

E× AutG∼∼(α), the familiar product (gh, s(gh)−1s(g)s(h)s(h)−1ns(h)m) defined by a nor-

malized section s : E −→ AutG∼∼(α) of the extension. The extension is thus split if s could
be chosen as a homomorphism, but not in general.

In contrast, if the bouquet G∼∼ is an E-group, considered as an E-category with one ob-

ject
∼−→ 1, then it is easy to see that AutG∼∼(d1e) is nothing more than the split extension

(= semi-direct product) of the group E with G∼∼ with operators defined by the homomor-
phism ϕ : E −→ AutGr(G∼∼) (the group of automorphisms of the underlying group of G∼∼)
which defines G∼∼ as an E-group.

(4.1) Theorem. Let α be an object of an E-bouquet G∼∼. In order that the extension
AutG∼∼(α) be split, it is necessary and sufficient that the bouquet G∼∼ be neutral (I(4.2)).

In effect, if A = AutG∼∼(α) is split then IΓ(A/E) has an invariant object and is thus split

from the left by an E-group. Since IΓ(A/E) lies in the same component as G∼∼ , it follows
that G∼∼ is neutral. The converse follows from the preceding remarks.

Combining these remarks we have the following

(4.2) Theorem. Let Ext[E;N] be the set of isomorphism classes of extensions of E by
a group N and let BOUQ[E-sets;N] be the set of connected component classes of E-
bouquets of which are equivalent, as categories on the underlying set level, to the group
N. Then the mapping 〈〈F 7→ IΓ(F/E)〉〉 defines a bijection

(4.2.0) IΓ: Ext[E;N]
∼−−→ BOUQ[E-sets;N]

which carries split extensions onto neutral elements.
It follows that the study of group extensions is equivalent to the study of the category

of bouquets of E-sets.

(5.0) Non-abe1ian cocycles and Schreier factor Systems. In the category of E-sets every
hypercovering X• admits, on the underlying set level, a contracting homotopy since the
epimorphisms which occur in the definition all have set theoretic sections and a choice
of such sections suffices to define a contraction. Since the standard cotriple resolution
G+
• (1) −→ 1 of the terminal object 1 is universal for such simplicial objects (c.f. DUSKIN

(1975) for all details of this process), the contracting homotopy in ENS of X• defines a
simplicial map ϕ : G+

• (1) −→ X• in E-sets. But since G+
• (1)

∼−−→ Cosk0(G+
• (1)) , this

standard resolution is itself a covering, and we see that the Boolean topos of E-sets has
the property that every hypercovering may be refined by a covering, in fact here, a standard
one. It immediately follows that any 2-cocycle (χ, α,N) on a hypercovering X• (II.1.1) in
E-sets is equivalent, under refinement to a 2-cocycle ϕ∗(χ, α,N) defined on the standard
resolution G+

• (1). Thus, it suffices to look at such 2-cocycles: we shall show that they are
nothing more than Schreier factor systems (1.1). For this we need the following lemma
whose proof we leave to the reader:
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For any set X, let X × E be the free right E-set on X defined by right multiplication
of E on X × E.

(5.1) Lemma. For any set X, the functor ω
X

: E-ENS/X × E −→ ENS/X defined by
pull-back along the set map x× e : X −→ X × E ,

(5.1.0) PX
� � prP //

ω
X

(f) prX

��

P

f

��

X �
�

x×e
// X × E

is an equivalence of categories whose quasi-inverse is defined by the assignment

(5.1.1) S

g

��

S × E

g×E
��

� //

X X × E

Remark. This theorem is valid for any group object E in any topos T. For x = 1, this spe-
cializes to well known theorem (actually characteristic of the category of E-objects in any
topos ) which asserts that the category of E-objects above Eδ is equivalent to

the underlying topos under the functor which assigns to P
f−→ Eδ its fiber above the unit

element of E. This forms the basis for the justification of the statement “for E-objects the
underlying object functor is a functor of localization” since, under this equivalence it is just
the functor pull-back over Eδ −→ π : (E-objects ≈) E-objects/1 −→ E-objects/Eδ (≈
the underlying topos).

(5.2) Using Lemma (5.1) we may transfer the data and axioms for any non-abelian 2-
cocycle over the standard resolution of 1 in E-sets to an equivalent system in (ENS).
The standard resolution of 1 in E-sets is the augmented simplicial complex of E-sets and
equivariant maps whose structural operators (↓) and face maps (→) are given by
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(5.2.0)

E×E×E×E×E

E×E×E×µ

��

//
//
//
//
E×E×E×E

E×E×µ

��

//
//
// E×E×E

E×µ

��

//
// E×E

µ

��

//1× E

��

E×E×E×E
E×E×µ

//
E×µ×E //
µ×E×E //

pr2×E×E
//
E×E×E

E×µ
//

µ×E //

pr2×E
// E×E

µ
//

pr2

// E //1 in ENS

= = = = =

E3

//
//
//

εi
//
E2

ε0 //
ε1 //

ε2
// E1

ε0 //

ε1
// E0

//1 in E-sets

= =

E E−1

(from which it is easily seen that G•(1)
∼−−→ Cosk0(G•(1)) ) . From Lemma (5.1), we

see that category fibers E-sets/Ei are each equivalent to the corresponding category
(ENS)/Ei−1 via pull-back along the set map Ei−1 × s0 : Ei−1 −→ Ei , where s0 : 1 −→ E
is just the unit element of E. Using these functors and their quasi-inverses it then is a
simple matter to check that the corresponding pull-back functors

(5.2.1) ε∗i : E-sets/Ei+1 −→ E-sets/Ei

are those induced by pull-back over the structural maps of the nerve of the group E in (ENS):

(5.2.2)

E× E× E× E
//
//
//
//
E× E× E

E×µ
//

µ×E //

pr2×E
// E× E

µ
//

pr2

// E // 1 G•(1)

≈

E× E× E

E×E×E×s0

OO

id

>>

E×pr1 //
E×µ //

µ×E //

pr2×E
//
E× E

E×E×s0

OO

id

@@

pr1 //
µ //

pr2

// E

E×s0

OO

id

DD

// 1

s0

OO

Ner(E)

(5.3) We now translate the data for a 2-cocycle on G•(1): A locally given group N1,
i.e. a group object in E-sets/E0 , is equivalent to a group object in ENS/1, i.e. an
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ordinary group N in (ENS). A gluing α′ : ε∗0(N ′)
∼−→ ε∗1(N ′) is just an E-isomorphism

of groups E × N
α−→ E × N , and thus by exponential adjointness, just equivalent to

a mapping α∗ : E × E −→ AutGr(N). Finally, the cocycle χ just becomes equivalent to
ordinary mapping χ : E× E −→ N . We leave it to the reader to verify the corresponding
translation of the axioms for a 2-cocycle gives those of a factor system on E (II 2.0). Thus
we have the

(5.4) Theorem. In the category of E-sets, the set of isomorphism classes of non-abelian
2-cocycles is bijectively equivalent to the set of isomorphism classes of Schreier factor
systems of E.

(5.5) Remark. Similar remaps concern neutrality and “factor free” (X = e) Schreier
factor systems.

From (I.4.3) in order that a bouquet G∼∼ of a topos T be neutral it is also necessary and
sufficient that the groupoid TORS(T;G∼∼) be non-empty, i.e., that there exists a T-torsor
under G∼∼ or, equivalently, that there exist a simplicial map from the nerve of a covering of
T into the nerve of G∼∼. In E-sets we have for neutrality a simplicial map from the nerve of
a covering of T into the nerve of G∼∼. In E-sets we thus must have for neutrality a simplicial
map from the standard resolution of 1 into the nerve of G∼∼

E× E× E //

pr2×E

��

µ×E

��

E×µ

��

A×O A //

������

K2

}}
}}
}}

E× E //

pr2

��

µ

��

77

A

����

E //

��

;;

s1

99

O

1

;;

s0

>>

If we use the canonical set maps si to translate such a simplicial map of E-sets into
set theoretic terms, we see immediately that such a simplicial map is directly equivalent
in sets to giving an object α0 ∈ Ob(G∼∼) and a function F : E −→ A such that for each
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h ∈ E F (h) : α0 −→ αh0 and for each g, h ∈ E, the triangle

(5.5.1) α0

F (gh)
��

F (h)
// αh0

F (g)h

��

αgh0

is commutative in G∼∼. But in view of the definition of the group extension AutG∼∼(α0) this

is nothing more than a homomorphism F : E −→ AutG∼∼(α0) which splits the projection
onto E.

Thus if we started with a non-abelian 2-cocycle on a hypercovering and constructed
its associated bouquet B(X,α,N) there the bouquet B(X,α,N) is, by construction, the
fiber (X = 0) of the canonical 2-cocycle on the hypercovering Cosk1(B(X,α,N)) since
K2 = Cosk1(B(X,α,N))2 consists of the triangles of B(X,α,N) andA×OA ↪→ K2 consists
of the commutative triangles f1f0f2 = X(f0, f1, f2) = e. Thus (X,α,N) is neutral if and
only if the hypercovering on which it is defined factors through the nerve of B(X,α,N).
In E-sets this is thus just equivalent to saying that the Schreier system defined by the
cocycle is (up to equivalence) factor free ( c(g, h) = e for all g, h ∈ E × E ), a condition
classically equivalent to saying that the extension which it defines is a semi-direct product
which is, of course, equivalent to its being split. (6.0) Ties and abstract kernels.

We now will proceed to show that a tie in E-sets is fully equivalent to a homomorphism
` : E −→ Out(N) whose target is the group of outer automorphisms ( Aut(N)/Int(N) ) of
some group N , i.e. to an abstract kernel in the terminology of EILENBERG-MAC LANE
(1954). For this it is convenient to note that a Schreier factor system may succinctly be
described as a simplicial map

(6.0.0) S : Ner(E) −→ Aut(2)(N)

from the nerve of E into a simplicial complex (actually the nerve of a 2-dimensional
groupoid) whose form in low dimensions looks like

(6.0.1) N3 × Aut(N)3

//
//
//
//
N × Aut(N)2

//
//
// Aut(N) // 1 : Aut(2)(N)

and whose set of 2-simplices may be viewed as triangles of automorphisms of N , coupled
with a group element n ∈ N

(6.0.2)

N

δ

��

ϕ
// e

ρ such that int(n)ϕ = δ .

��

n

N
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This complex Aut(2)(N) is supplied canonically with a simplicial map

(6.0.3) p(2) : Aut(2)(N) −→ Ner(Out(N))

defined by the canonical surjection p : Aut(N) −→ Out(N) .
In (6.0) of Part II we noted that by refinement any tie of a topos gave rise to a system

which was precisely that of 2-cocycle (minus the cocycle condition). This in E-sets any
tie gives rise to the same system over the standard resolution G•(1). From the preceding
equivalence (5.1) it thus follows that any tie defines and is equivalent to a truncated map:

(6.0.4) ¯̀: TR2(Ner(E)) −→ TR2(Aut2(N)) .

By composition of ¯̀ with the truncated map

TR2(p(2)) : TR2(Aut(2)(N)) −→ TR2(Ner(Out(N))),

we thus obtain a homomorphism: ` : E −→ Out(N), i.e. an abstract kernel as promised.
Choosing a section for p, and using the same equivalence, we see immediately that any
such abstract kernel defines a lien and the correspondence is established as asserted.

More use of the complex Aut(2)(N) will be made in the sequel.
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APPENDIX: THE FORMALISM OF THE THEORY OF DESCENT

INTRODUCTION

If X is a topological space and (Ui)i∈I is an open covering of X, then a familiar problem
in topology is that of constructing a fiber space over X by “gluing together” a locally
given family (Ti // Ui)i∈I of fiber spaces (of some particular type) using “gluing data”

given in the form of system of compatible isomorphisms αji : Ti|Ui ∩ Uj // Tj|Ui ∩ Uj
on the restriction of the members of the given family to the overlaps. In the terminology
of the Grothendieck presentation, if such a fiber space over X can be constructed so that
its restriction to each of the members of the covering gives back (up to isomorphism) the
original family, then the fiber space may be said to have been obtained by “descent” and
that the gluing isomorphisms αji defined an ”effective descent datum”. Since any fiber
space T over X defines by restriction to the Ui (i.e., by “localization”) a locally given
family which is canonically equipped with an effective descent datum by means of the
canonical isomorphisms
Ti|Ui ∩ Uj ∼ // TUi ∩ Uj oo ∼ // TjUi ∩ Uj , the process involved here is, in fact, the study

of the properties of the “localization on a cover” functor as it carries fiber spaces of the
particular type under study into fiber spaces supplied with descent data defined on the
cover.

In the abstract version of this process the notion of a category of fiber spaces over
X defined for each space X and stable under restriction is generalized to the abstract
notion of a “fibered category”, more precisely a (contravariant) pseudofunctor defined on
the category, while the corresponding abstract notion of localization is provided through
the definition of a (Grothendieck) topology on the category. [ARTIN (1962)].

In this appendix we will first define the abstract notion of a gluing and a descent
datum over a family of arrows of some underlying category E assuming that the category
has fiber products. In this form the connection of this abstract notion with the moti-
vating topological problem will be clear. We will then show that an easy modification
of this definition will suffice in the absence of fiber products. What will also then be
clear, unfortunately, is that this definition (which goes back to Grothendieck’s original
(1960) formulation) while intuitively clear, is also enormously cumbersome to write down.
Fortunately, this state of affairs is not permanent for (following GIRAUD (1962)) we will
show that any such descent datum is entirely equivalent to a single cartesian functor from
the seive generated by the family into the fibration defined by the pseudofunctor. The
resulting formulation of the notion, while extraordinarily elegant, is still not without its
drawbacks for in contrast to what can be done for a Grothendieck topology it requires
us to go completely outside of the functor category Ê (hence outside of an extremely
well behaved, set-like topos) for its formulation. Fortunately, this difficulty as well can be
overcome for we will finally indicate how the whole process can be done in the topos Ê
of presheaves on E.
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What may be then seen is that there are at least four independent but mutually
essentially equivalent descriptions of the notions which occur in the original theory which
start from the very intuitive notions coming from topology and lead to the rather abstract
formulation within the internal category theory of Ê (or in fact in an elementary topos).
Since various writers on the subject use various combinations of portions of these different
versions (with their mutual translation not altogether obvious) we have chosen to present
them independently and to then describe their mutual equivalence as it occurs regularly
in the following table (A) in which, the four columns represent the essentially equivalent
descriptions of the corresponding fundamental notions of “the theory of descent” (the
rows) as they have evolved from the initial intuitive description (I) of Grothendieck and
its modification by Giraud (II and III) finally leading to the form (IV) in which its
extension to the elementary topoi of Lawvere -Tierney becomes clear. Of course, most of
the material presented here may be found explicitly (or implicitly) in Giraud although,
as we have remarked in the text, it is closely related to the work of many authors, among
them GRAY (1974), JOYAL (1974), PENON (1978 1979) BOURN (1978), LAWVERE
(1974), BUNGE (1979), PARÉ (1979), STREET (1982). It is hoped that by presenting
it here in at least a semi-coherent form, the work of these various authors may be made
accessible to a wider audience and, at least, its use in the text made clear.
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Ê

(R
,P

)

P
(X

)
is

a
n

is
o

fo
r

ea
ch

co
v
.

su
b

fu
n
ct

o
r

(T
h

eo
ry

of
D

es
ce

n
t)

P
se

u
d

o-
fu

n
ct

or
s

on
E

F
c (
)
:
E

o
p
;

C
A

T
(

)
F
c (
)
:
E

o
p
;

C
A

T
G

ro
th

en
d

ie
ck

fi
b

ra
ti

on
s

F
−→

E

C
a
te

g
o
ry

o
b

je
ct

s

C
:

C
a
rt

E
(E
/
−
,F

)

o
f
Ê
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THE FORMALISM OF THE THEORY OF DESCENT

Description I: (in the presence of fibre products)

(1.0) Let E be a category. A Grothendieck (pre-)topology on E is the specification for each
object S in E of a set R(S) of families of arrows of E which has the following properties:

(a) each family C ∈ R(S) has the form C = (Si // S)i∈I for some (not necessarily

unique) index set I;

(b) for each C = (Si // S) in R(S) and any arrow f : T // S in C, the family

f ∗(C) = (Si ×S T
pr
// T ) is defined and is a member of R(T );

(c) if (S1
// S) ∈ R(S) and for each i, (Tij // Si) ∈ R(Si) , then the family

(Tij // S) obtained by composition is a member of R(S);

(d) Any one member family consisting of an isomorphism T // S is a member of
R(S).

The elements of R(S) are called the coverings or refinements of S for the (pre-) topology.
A category together with a topology is called a site.
(1.1) Let F be a presheaf on the underlying category of a site, that is a functor
F : Eop // ENS . F is said to be a sheaf for the topology provided that for each covering

(Si
si // S)i∈I ∈ R(S) the diagrams of sets

(1.1.0) F (S) //
∏
i∈I

F (Si)
//
//

∏
(i,j)∈I×I

F (Si × Sj)

is exact, i.e., the mapping s � // (F (si)(s))i∈I defines a bijection onto the set of elements

(xi)i∈I ∈
∏
i∈I

F (Si) such that F (pri)(xi) = F (prj)(xj) for all (i, j) ∈ I × I. The category

of presheaves and natural transformation of presheaves on E is usually denoted by Ê. We
define the category E˜ of sheaves on the site the full subcategory of Ê consisting of the
sheaves for the given topology of the site. A category of the form E˜ for some topology
on E is called a Grothendieck topos.
(2.0) Definition: A (contravariant normalized) pseudo-functor Fc( ) : Eop ; CAT on E
[also called a fibered (or indexed) category over E] is an assignment

(1) to each object X of E of a category FcX (called the fiber at X),

(2) to each arrow f : X // Y of E of a functor Fcf : FcY // FcX (called the inverse

image functor),
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(3) to each composab1e pair X
f
// Y

g
// Z of arrows of E of a natural isomorphism,

c(f, g) : FcfFcg // Fcgf (called the cleavage isomorphism)

(2.0.0) X
f

//

gf

��

Y

g

��

Z

7−→ FcX FcY
Fcf

oo

c(f,s)

∼xx

FiZ

Fgf

``

Fcg

OO

subject to the following (coherence) conditions :

(a) for all f : X // Y in E, c(id, f) = c(f, id) = id(Ff ) (normalization)

(b) for any composable triplet X
f
// Y

g
// Z

h //W in E, the square

(2.0.1) FcfFcgFch
Fcf∗c(g,h)

// //

c(f,g)∗Fch

��

FcfFchg

c(f,hg)

��

FcgfFch c(gf,h)
// Fchgf

of natural isomorphisms of functors is commutative (2-cocycle condition).

If the pseudo functor under discussion is clear, the notation f ∗(X) is often used for the
value at X of the functor: Fcf : FcY // FcX .

(2.0.2) Remark. A pseudo-functor is, in fact, a simplicial map from Ner(Cop) into the
nerve of (a subcategory of) the 2-category CAT. A description of this will be given in
detail in the sequel to this paper.

(2.1) Examples abound in the presence of fiber products, where the fibers are most often
some appropriate subcategory of E/X which is preserved under pull-backs or “change of
base”, e.g. Gr(E/X) the category of group objects in E/X; etale spaces (i.e. local home-
omorphisms E // X ) over the category of topological spaces and continuous maps.
Many other examples have appeared in the text.

(3.0) Descent on a family.

(3.1) Definition. (in the presence of fiber products). Let E be a category and Fc( ) : Eop ;

CAT a normalized pseudo-functor on E and (xi : Xi
// X)i∈I be a family of arrows

of E which is squareable (i. e. the fiber product of any arrow T // X in E with
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any member of the family (xi)i∈I is assumed to exist). By a gluing of a family (Ai)i∈I ,
Ai ∈ ob(FXi) of objects above the family (Xi) we shall mean a system of isomorphisms

θij : Fcpri
(Ai) = pr∗i (Ai)

∼ // pr∗j(Aj) = Fcprj
(Aj), i, j ∈ I × I θij ∈ Ar(FXi×XXj) .

A gluing θij will be called a descent datum on the family Ai provided that the following
conditions are satisfied:

(a) normalization: for all i ∈ I, the isomorphism θii : pr∗1(Ai)
∼ // pr∗2(Ai)

in Ar(FXi×XXi) has the property that if ∆: Xi
� � // Xi ×X Xi is the diagonal, then

(3.1.0) ∆∗(pr∗1(Ai))
∆∗(θii) //

c(∆,pr1) o

��

∆∗(pr∗2(Ai))

c(∆,pr2)o

��

(pr1∆)∗(Ai)

=

(idXi)
∗(Ai)

idAi //

(pr2∆)∗(Ai)

=
(idXi)

∗(Ai)

is commutative in FXi ;

(b) 1-cocycle condition: for all (i, j, k) ∈ I × I × I, if
prab : Xi ×X Xj ×X Xk

// Xa ×X Xb , for (a, b) = (i, j), (j, k), (i, k), are the canon-

ical projections,

(3.1.2) Xi ×X Xj
pri //

prj

!!

Xi

xi

��

Xi ×X Xj ×X Xk
prik //

prij

99

prjk

%%

Xi ×X Xk

prj
//

pri

==

prk

!!

Xj

xj
// X

Xj ×X Xk prk
//

prj

==

Xk

xk

AA

then the diagram
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(3.1.3)

pr∗ij(pr∗i (Ai))
pr∗ij(θij)

∼
//

c(ij,i)(Ai) o
��

pr∗ij(pr∗j(Aj))

c(ij,j)(Aj)o
��

(priprij)
∗(Ai)

=

(priprik)
∗(Ai)

p̃r∗ij(θij)
//

p̃r∗ik(θik)

∼

%%

(prjprij)
∗(Aj)

=

(prjprjk)
∗(Aj)

p̃rjk(θjk)o

��

pr∗jk(pr∗j(Aj))
c(jk,j)

∼
oo

pr∗jk(θjk)o

��

pr∗ik(pr∗i (Ai))

c(ik,i)

∼

::

pr∗ik(θik)

∼

$$

(prkprjk)
∗(Ak)

=

(prkprik)
∗(Ak)

pr∗jk(pr∗k(Ak))c(jk,k)

∼oo

pr∗ik(pr∗k(Ak))

c(ik,k)

∼
99

commutative in FXi×XXj×XXk , where pr∗ab(θab) = Fcprab
(θab) and

p̃rab(θab) = c(ab, b)(θb)pr∗ab(θab)c(ab, a)−1(Aa) for (a, b) = (i, j), (j, k), and (i, k),
respectively (with c(ab, a) = c(prab, pra), the cleavage isomorphisms for the pseudo-
functor Fc( ), etc.), in brief:

(3.1.4) p̃rjk(θjk)
∗p̃r∗ij(θij) = p̃r∗ik(θik) .

(3.1.5) (FXi(Xi ×Xj ×Xk)) (FXi(Xi ×X Xj))oo
oo
oo

(FXi)oo
oo FXoo

(Xi ×X Xj ×X Xh)
//
//
// (Xi ×X Xj)

//
// (Xi) // X

(3.2) Definition (in the presence of fiber products). By a morphism of descent (or gluing)
data we will mean a family of arrows
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(f : Ai // Bi) i ∈ I, fi ∈ Ar(FXi) such that the diagram

(3.2.0) pr∗i (Ai)
pr∗i (fi)

//

θij

��

pr∗i (Bi)

ψij

��

pr∗j(Aj) pr∗j (fj)
// pr∗j(Bj)

is commutative for all (i, j) ∈ I × I. We thus have defined the category

DescE

(
Xi/X; Fc( )

)
of families of objects of Fc( ) supplied with descent data relative to the family of arrows

(xi : Xi
// X)i∈I of E. If the family of arrows is the family of open inclusions of some

open cover of a space X and the pseudofunctor is that defined by the category of fiber
spaces over variable base spaces and “restriction to an open subset”, then the above notion
is precisely the usual one of a gluing a locally given family of fiber spaces since in this case
the usual intersection of subspaces defines the fiber product of the inclusion mappings.
(3.3) Localization and descent on a family, (xi : Xi

// X), i ∈ I . If A is an object

in FcX , then the “localized” family of objects (x∗i (A))i∈I , FcXi(A) = x∗i (A) ∈ ob(FcXi) is
supplied canonically with a gluing since for any cartesian square in E

(3.3.0) Xi ×X Xj

pri

��

prj

��

Xi

xi
��

Xj

xj��

X

(with common diagonal v), we may define a gluing isomorphism θij as that unique iso-
morphism which makes the diagram

(3.3.1) pr∗1(x∗i (A))
θii
∼

//

c(pri,xi)(A) o

��

pr∗j(x
∗
j(A))

c(prj ,xj)(A)o

��

(xipri)
∗(A)

=

v∗(A)
id //

(xjprj)
∗(A)

=

v∗(A)

commutative in FcXi×XXj
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This gluing is a descent datum on the family x∗i (A), i ∈ I. In effect, for any commu-
tative cube of the form (3.1.2), the axiom (2.0.1) for the cleavage c(−,−) of Fc( ) declares
that in the cube

(3.3.2)

pr∗ij(pr∗i (x
∗
i (A)))

pr∗ij(θij)
//

pr∗ij∗c(pri,xi)(A)

��

c(prij ,pri)
∗∗x∗i (A)

##

pr∗ij(pr∗j(x
∗
j(A)))

c(prij ,prj)
∗∗x∗j (A)

##

pr∗ij∗c(prj ,xj)(A)

��

(priprij)
∗(x∗i (A))

p̃r∗ij(θij)
//

c(priprij ,xi)(A)

��

(prjprij)
∗(x∗j(A))

c(prjprij ,xj)(A)

��

pr∗j(xipri)
∗(A) id //

c(prj ,xipri)(A)

##

pr∗ij(xjprj)
∗(A)

c(prij ,xjprj)(A)

##

(xipriprij)
∗(A) id // (xjprjprij)

∗(A)

the left and right sides are commutative and hence that the isomorphism p̃r∗ij(θij) of (3.1.3)
is given by p̃r∗ij(θij) = c(prjprij, xj)c(prjprij, xi)

−1. Similarly,
p̃r∗jk(θij) = c(prkprjk, xk)c(prjprjk, xj)

−1 and p̃r∗ik(θij) = c(prkprik, xk)c(priprik, xi)
−1

so that

p̃r∗jk(θij)p̃r∗ij(θij) = c(prkprjk, xk)c(prjprjk, xj)
−1c(prjprij, xj)c(prjprij, xi)

−1 = p̃r∗ik(θij)

as desired. A similar verification gives normalization and we indeed have a descent datum.
Similarly, it is easy to see that for any arrow f : A // B in FcX ,

x∗i (f) : x∗i (A) // x∗i (B) gives a morphism of descent data and we have defined a canon-
ical functor of descent

(3.3.3) DescX : FcX // DescE(Xi/X; Fc( ))

which canonically factorizes the localization over the covering functor

(3.3.4) `ocXi/X : FcX // FamE(Xi/X; Fc( )) =
∏

i∈I FcXi

defined by A � // x∗i (A) = FcX(A) .
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(3.3.5) DescE(Xi/X; Fc( ))

U (underlying family)

��

FcX

DescX

77

`ocXi/X

// FamE(Xi/X; Fc( ))

The study of the properties of this descent functor is the subject of the “theory of descent”.
We make the following
(3.4) Definitions: A family (xi : Xi

// X), i ∈ I of arrows in E is said to be a family
of Fc( ) - 0, Fc( ) - 1, Fc( ) - 2 descent provided that the canonical functor

DescX : FcX // DescE(Xi/X; Fc( )) of (3.3.3) is faithful, fully faithful, or an

equivalence of categories, respectively. Fc( ) - 1 descent is informally referred to as
“morphisms glue”, while the additional property of essential surjectivity in F - 2 descent
is referred to as “objects glue”.

If E is supplied with a topology, then a pseudo functor on E is called a pre-stack (resp.
a stack) for the topology if every covering family for the topology is a family of Fc( ) - 1

(resp. Fc( ) - 2) descent, i.e., if both objects and arrows in the fibers over any covering glue.
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Description II: (without fibre products)

(4.0) The presence of fiber products in the definition of a pre-topology causes some
inconvenience as does the fact that several pre-topologies can have the same set of sheaves.
The notion of a topology on a category was first made intrinsic by Giraud (1962) through
the notion of a seive.
(4.1) Definition. Let E be a category. A seive of E is a set < of objects of E which has
the property that if Y ∈ R and f : X // Y is in E then X ∈ <. It will be identified
with the full subcategory of E defined by the objects of <. If X is an object of E, a seive
of X will be a seive of the category E/X of objects of E above X. If f : X // Y is an

arrow of E and R is a seive of Y , the inverse image <f of < by f will be the seive defined
by the set of all t : T // X such that ft : T // Y is (an object) in <.
(4.2) Definition. A topology on E is a mapping which associates to each X ∈ Ob(E) a
non-empty set J(X) of sieves of X (called the covering sieves or the refinements of X of
the topology) such that

(a) for each f : X // Y of E and each < ∈ J(Y ), the seive <f ∈ J(X);

(b) for each Y ∈ Ob(E), each < ∈ J(Y ), and each seive <′ of Y , <′ ∈ J(Y ) if and only
if for any object f : X // Y in <, <′f ∈ J(X).

From these axioms it follows that the intersection of two covering sieves of X is again a
covering seive and that any seive which contains a covering seive is itself covering. (Thus,
in particular, the seive E/X is always covering for any topology and the set of covering
sieves is filtering.) As with a pre-topology, a category together with a topology is called
a site.

(4.3) The category E/X is supplied with a canonical functor source S : E/X S // E
which sends any Y // X in E/X to Y . Thus for any presheaf F : Eop // ENS , we
have a presheaf F |X on E/X defined by composition with Sop and for any seive < ∈ E/X
, a presheaf F |< on < by composition with the inclusion functor into E/X. Consequently,

we have a canonical mapping lim
←−

(F |X) // lim
←−

(F |<) which is equivalent to a canonical

mapping

(4.4.0) a : F (X) // lim
←−

(F |<) ,

since X is terminal in E/X. We thus can make the following
(4.5) Definition. If E is a site and F : Eop // ENS is a presheaf on E, F is said to be
a sheaf on the site provided that for every covering seive < of X the canonical mapping
< : F (X) // lim

←−
(F |<) is a bijection.

(4.6) The topologies on a category form a partially ordered set under a refinement. We
say that a topology J1 is courser than J2 (or J2 refines J1) if for each X, J1(X) ⊆ J2(X)
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so that if F is a sheaf for J2 it is a fortiori sheaf for J1. There is a coarsest topology
called the discrete topology in which the only covering seive of X is E/X itself. For the
discrete topology any presheaf is a sheaf. Similarly there is a finest topology called the
indiscrete topology in which any seive of X is covering. The only sheaf for the indiscrete
topologies is the terminal presheaf 1 (1(X) = {∅} = 1 for all X). The intersection
∩i∈IJi of any family (Ji) of topologies (defined by ∩Ji(X) at each X) is again a topology.
Consequently, given for each X a set G(X) of sieves of X , there is a coarsest topology for
which every seive in G(X) is covering; it is said to be the topology generated by G. Any

family (xi : Xi
// X)i∈I of arrows above X generates a seive whose objects are just

those of form xis : T // Xi
// X for some s : T // Xi in E. The family is said to

be a covering family for a given topology provided that the seive generated by the family
is a covering seive for the given topology. It thus follows that any pretopo1ogy generates
a topology in which a seive may be shown to be covering if and only if it contains one
generated by some covering family of the pre-topology. Thus, a pre-sheaf F is a sheaf for
the topology generated by a pre-topology if and only if it is a sheaf for the pre-topology
in the sense of (1.1). The coarsest topology for which the representable presheaves are all
sheaves is called the canonical topology on E. A covering family (or seive)for the canonical
topology is called a strict universal epimorphic family (or seive). For any topology courser
than the canonical one, every representable functor is a sheaf. For the category of open
sets and inclusions of a topological space, it is the canonical Grothendieck topology which
is taken to give the sheaves on the space in the classical sense.

(4.7) Just as the notion of a topology on category can be made intrinsic through the
notion of a seive, the notion of a gluing and descent datum can be made independent of
fiber products through the same concept: If one is given a gluing on a family Xi

// X ,
then it is clear that any such gluing extends to give a similar formal definition of gluing
isomorphism not just on objects of the fiber FXi×XXj but in fact, on the objects of any

fiber FS provided S has a pair of arrows si : S // Xj sj : S // Xj such that xisi =

xjsj. The pair then factors through the fiber product and via inverse image provides an
isomorphism of s∗i (Ai) with s∗j(Aj). Moreover, any such isomorphism remains one under

any further factorization s : V // S . We are thus led to a definition which is entirely
equivalent to (3.3) in the presence of fiber products:

(4.8) Definition: Let E be a category FC
( ) : Eop ; CAT a normalized pseudo-functor

on E, and (xi : Xi
// X) a family of arrows of E. By a gluing of a family (Ai)i∈I

where Ai ∈ Ob(FXi) we shall mean a system of isomorphisms sij : s∗i (Ai)
∼ // s∗j(Aj) ,

sij ∈ Ar(FS) (one for each ordered pair si : S // Xi , sj : S // Xj of arrows of E for

which xisi = xjsj), subject to the following condition
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(a0) for any arrow s : V // S in E the diagram

(4.8.0) s∗(s∗i (Ai))
s∗(sij)

∼
//

c(s,si) o

��

s∗(s∗j(Aj))

c(s,sj)o

��

(sis)
∗(Ai)

vij

o
// (Ajs)

∗(Aj)

is commutative in FV . A gluing will be called a descent datum on the family (xi)
provided

(a) for any (si, si) : S
//
// Xi , sij = id: s∗i (Ai)

∼ // s∗i (Ai) ; and

(b) for each triplet (i, j, k) in I × I × I, given any commutative cube in E of the form

(4.8.1) S
si //

sj

��

Xi

xi

��

V
u //

s

BB

t

��

U
uk

ui

AA

uk

��

Xj

xj
// X

T
tk

//

tj

AA

Xk

xk

AA

the diagram
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(4.8.2)

s∗(s∗i (Ai))
s∗(sij)

//

c(s,si)

��

s∗(s∗j(Aj))

c(s,si)

��

(sis)
∗(Ai)
‖

(uiu)∗(Ai)
s̃∗(sij)

//

ũ∗(ujk)

##

(sjs)
∗(Aj)
‖

(tjt)
∗(Aj)

t̃∗(tjk)

��

t∗(t∗j(Aj))
oo

t∗(tjk)o

��

u∗(u∗i (Ai))

c

;;

u∗(ujk)

##

(tkt)
∗(Ak)
‖

(uku)∗(Ak)

t∗(t∗k(Ak))c
oo

u∗(u∗k(Ak))

c

;;

is commutative in FV .

(4.9) Definition: By a morphism of descent data (or of a gluing), we shall mean a family

of arrows fi ∈ Ar(FXi), (fi : Ai // A′i) such that the diagram

(4.9.0) s∗i (Ai)
sij

//

s∗i (fi)

��

s∗j(Aj)

s∗j (fj)

��

s∗i (A
′
i)

sij
// s∗j(Aj)

is commutative in FS for each i, j. We thus have defined the category

(4.9.1) DescE

(
Xi/X; Fc( )

)
of descent data for the psuedo functor Fc( ) relative to the family (xi : Xi

// X)i∈I of
arrows of E.

If we define the category FamE

(
Xi, X; Fc( )

)
of families of objects above, the family

(xi)i∈I as the disjoint union of the categories FcXi , xi : Xi
// X then DescE

(
Xi/X; Fc( )

)
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has a canonical a faithful underlying glued object functor

(4.9.2) U : DescE

(
Xi/X; Fc( )

)
// FamE

(
Xi/X; Fc( )

)

defined in the obvious manner where we view a family of objects above the Xi as being
supplied with the “essentially algebraic” structure of a descent datum by a system of
isomorphisms sij which satisfy the (equational) “cocycle condition” for a descent datum.

(4.10) Localization and descent on a family, xi : Xi
// X , i ∈ I. If A is an object

in F c
X then the “localized” family of objects (x∗i (A))i∈I Fcxi(A) = x∗i (A) ∈ Ob(FcXi) is

supplied canonically with a gluing since given any commutative square in E,

(4.10.0) Xi ×X Xj

si

��
v

��

sj

��

Xi

xi
��

Xj

xj��

X

(with common diagonal v), we may define a gluing isomorphism θij as that unique iso-
morphism which makes the diagram

(4.10.1) pr∗1(x∗i (A))
sij

∼
//

c(si,xi)(A) o

��

s∗j(x
∗
j(A))

c(sj ,xj)(A)o

��

(xisi)
∗(A)

=

v∗(A)
id //

(xjsj)
∗(A)

=

v∗(A)

commutative in FcS
This gluing is a descent datum on the family x∗i (A), i ∈ I. In effect, for any commu-

tative cube of the form (4.8.1), the axiom (2.0.1) for the cleavage c(−,−) of Fc( ) declares
that in the cube
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(4.10.2) s(s∗i (x
∗
i (A))(A)

s∗(sij)
//

s∗c(si,xi)

��

c(s,si)
∗∗x∗i (A)

""

s(s∗j(x
∗
j(A)))

c(s,sj)∗(x∗j (A))

!!

s∗∗c(sj ,xj)

��

(sis)
∗(x∗i (A))

s̃∗(sij)
//

c(sis,xi)(A)

��

(sjs)
∗(x∗j(A))

c(sjs,xj)(A)

��

s∗j(xisi)
∗(A) id //

c(sj ,xisi)(A)

""

s∗(xjsj)
∗(A)

c(s,xjsj)(A)

!!

(xisis)
∗(A) id // (xjsjs)

∗(A)

the left and right sides are commutative and hence that the isomorphism s̃∗(sij) of (5.3.3)
is given by s̃∗(sij) = c(sjs, xj) · c(sjs, xi)−1. Similarly,
t̃∗(sij) = c(tkt, xk) · c(tjt, xj)−1 and ũ∗(sij) = c(uku, xk) · c(uiu, xi)−1

so that
ũ∗(sij) = c(tkt, xk)c(t, txj)

−1c(sjs, xj)c(sis, xi)
−1 = t̃∗(sij)s̃

∗(sij)

as claimed. Similarly, the axiom (2.0.1) for the cleavage gives the identity condition (a)
and we have indeed defined a descent datum. Similarly, it is easy to verify for any arrow
f : A // B in FcX , x∗i (f) : x∗i (A) // x∗i (B) , defines a morphism of the corresponding
descent data and we thus have a canonical functor

(4.10.3) DescX : FcX // DescE(Xi/X; Fc( ))

which canonically factorizes the localization functor

FcX // FamE(Xi/X; Fc( ))

defined by A � // x∗i (A) = `ocXi/X .

(5.0) With the fiber product free definition of the category DescE(Xi/X; Fc( )) the defi-

nitions of a family being of Fc( )-descent (or effective descent) may be taken as identical

to those given in (3.4). Similarly, the property on a pseudo functor being a stack with
respect to a topology may be taken as unchanged (and we can even add the notion of the
topology F2

1, descent (or effective descent) as that generated by the families of Fc( )-descent

(or effective descent)). However, it is more interesting to observe that these definitions
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are from a more sophisticated point of view really “2-dimensional versions” of the notion
of sheaf as defined in (4.5). This is done through the definition of a pseudo-limit of a
pseudo-functor.
(5.1) Let F c

( ) : Eop ; CAT be a normalized pseudo-functor on E. By a (normalized

pseudo-) cone over F c
( ) we will mean a category C together with the following data:

(i) for each object X in E , we are given a functor PX : C // F c
X ,

(ii) for each arrow f : X // Y , we are given a natural transformation

αf : PX // Fcf · PY ,

(5.1.0) C
PY

��

PX

��

FY Ff
// FX

αf

��

subject to the following coherence conditions

(a) αid(X) = id(PX) for all objects X in E (normalization);

(b) for each commutative triangle

(5.1.1) X
f

//

gf   

Y

g
��

Z

in E, the tetrahedron

(5.1.2) C

PZ

~~
PX

��

PY

  

FZ
(f−1,g)

//

Ffg

  

FY

Ff

~~

FX

αgf

NN

αf

PP

��

��
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is “commutative” i.e., the canonically associated square

(5.1.3) PX
αf

//

αgf

��

FFPY

Ff∗αg

��

FgfPZ
c(f,g)−1∗P2

// FfFgPZ

of functors and natural isomorphisms is commutative.

By a psuedo-limit lim
←−

Fc( ) of a pseudo-functor Fc( ) on E, we shall mean an essentially

universal cone over F in the obvious sense that any cone over F( ) factors (in CAT) essen-
tially uniquely through lim

←−
Fc( ). It is thus unique up to an essentially unique equivalence.

Moreover, as in the case of ordinary limits in sets, lim
←−

Fc( ) exists and may be taken to be

the following category:
(5.2) The objects of lim

←−
Fc( ) are ordered pairs

(
(AX)X∈Ob(E) , (θf )f∈Ar(E)

)
of objects and

isomorphisms for whichAX ∈ FcX for eachX, θf : AX
∼ // Ff (AY ) for each f : X // Y

and which satisfy the two conditions:

(a) θid = id, and

(b) for each composable pair X
f
// Y

g
// Z in E, the square

(5.2.0) AX
θf

∼
//

θgf o

��

Ff (AY )

Ff (θg)o

��

AY

θg

��

Fgf (AZ)
c(f,g)−1

∼ // Ff (Fg(AZ)) Fg(AZ)

is commutative in the fiber FcX .

The arrows of lim
←−

Fc( ) are families (aX : AX // A′X)X∈Ob(E) such that the square

(5.2.1) AX
θf

∼
//

aX

��

Ff (AY )

Ff (aY )

��

A′X θ′f

∼ // Ff (A′Y )

is commutative for each f : X // Y in E.
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The canonical projection functors PX : lim
←−

Fc( )
// FX now furnish a universal cone

over Fc( ) when coupled with the isomorphism θf : AX // Ff (AY ) which furnish the

natural isomorphisms

(5.2.2) lim
←−

Fc( )

PY

��

PX

��

FcY Fcf
// FcX

θf��

(5.3) Notice with this definition of lim
←−

Fc( ), even if F c
( ) is a functor into CAT (so that

we have a presheaf of categories), one only has an inclusion lim
←−

F( )
� � // lim

←−
F( ) of the

ordinary limit of categories since this corresponds to those families
θf : AX

∼ // Ff (AY ) which are identities for each f : X // Y in E, if FX is a discrete

category, (so that the pseudo-functor F( ) : Eop ; CAT is just a presheaf of sets), is it
the case that lim

←−
Fc( ) reduces bijectively to the ordinary lim

←−
F as usually defined.

If E has a terminal object 1, then lim
←−

Fc( ) is equivalent to the category Fc1, the fiber

above the terminal object, since for each X ∈ ob(E), the canonical map tX : X // 1

gives rises to the functor PX = FctX : Fc1 // FcX , and for each f : X // Y in E, the

cleavage isomorphism c(f, tY )−1 gives rise to the universal cone

(5.3.0) F1
PX

��

PY

��

FY Ff
// FX

��

which makes F1
∼= // lim

←−
Fc( ) .

(5.4) Using this notion of a pseudo-limit, we now claim that the property of completeness
of a fibered category becomes a 2-dimensional generalization of the property of being a
sheaf which we recall was that for each covering seive < � � // E/X , the canonical map

F (X) ∼ // lim
←−

(F |E/X) // lim
←−

F |<

was a bijection. Here we start with a pseudo-functor Fc( ) : Eop ; CAT and a seive

< � � // E/X . Using the canonical source functor S : E/X // E we may compose

with F( ) and the inclusion i< : <op � � // E/Xop // Eop ; CAT to obtain pseudo-functors

Fc( )|X : E/Xop ; CAT and Fc( )|< : <op ; CAT. We then obtain in CAT a canonical re-
striction functor
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(5.4.0) L : lim
←−

Fc( )|X // lim
←−

Fc( )|<

and an equivalence Fc( )
≈ // lim

←−
Fc( )|X since X is terminal in F/X. We now claim that

we have a canonical equivalence of categories.

(5.4.1) DescE

(
Xi/X;Fc( )

) ≈ // lim
←−

(
Fc( )|<

)
,

where the family (xi : Xi
// X)i∈I consists of the family of objects of the seive < (or

for that matter any family which generates the seive < since any descent datum on such
a generating family clearly extends via inverse images to a descent datum on the entire
seive) such that the square

(5.4.2) FcX
`ocX //

o
��

DescE

(
Xi/X;Fc( )

)
o
��

lim
←−

Fc( )|X // lim
←−

Fc(c)|<

is essentially commutative.
This fact is easily seen once we observe that any commutative tetrahedron

(5.4.3) Xi

xik

��

xij

��

xi

''
Xj

xjk

��

xj
// X

Xk

xk

77

in E gives rise to, and is in fact equivalent to, a commutative cube of the form

(5.4.4) Xi
id //

xij

��

Xi

xi

��

Xi
id //

id

AA

xij

��

Xi

id

AA

xik

��

Xj

xj
// X

Xj xjk
//

id

AA

Xk

xk

AA
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Thus any descent datum on a family xi : Xi
// X , i ∈ I when applied to the cube

gives rise to isomorphisms aij : Ai = id∗(Ai)
∼ // x∗ij(Aj) , ajk : Aj

∼ // x∗jk(Ak) , and

aik : Ai
∼ // x∗ik(Ak) , such that the diagram

(5.4.5) Ai
aij

∼
//

aik

∼

  

x∗ij(Aj)

x̃∗ij(ajk)o

��

x∗ij(ajk)

∼

$$

x∗ik(Ak) x∗ij(x
∗
jk(Ak))c(xij ,xjk)

∼oo

is commutative in FcXi , i.e. to an object of lim
←−

Fc( )|<.

Similarly any morphism of descent defines an arrow between the corresponding objects
of lim
←−

Fc( )|<. Clearly this assignment is functorial and, in fact, fully faithful. It is also

essentially surjective since given any object ((AX), (θf )) in lim
←−

Fc( )|< and any commutative
square

(5.4.6) S
si

��
v

��

sj

��

Xi

xi
��

Xj

xj��

X

with common diagonal v, we have isomorphisms

θsj : AS
∼ // Fsj(Axj) and θsi : AS

∼ // Fsi(Axi)

which have the property that the gluing

(5.4.7) θij = θsj · θ−1
si

: Fsi(AXi) // Fsj(AXj)

is a descent datum over the family (Xi
// X) . We leave the proof of this and the

commutativity of (5.4.2) to the reader.
In summary we have now established our assertion:

(5.5) Theorem. Let E be a site and Fc( ) : Eop ; CAT. Fc( ) is a pre-stack (i.e. is pre-

complete), respectively is a stack (i.e. is complete) if and only if for each covering seive

< � � // E/X , the canonical functor

FcX
≈ // lim

←−
Fc( )|X // lim

←−
Fc( )|<
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is fully faithful, respectively, is an equivalence of categories.
(5.6) Corollary. If Fc( ) is a functor so that Fc( ) is a category object in Ê then Fc( ) is

a pre-stack if and only if the canonical functor Fc( )
// aFc( ) to the associated sheaf of

categories is fully faithful, while if it is fibered in discrete categories, so that Fc( ) is an
ordinary presheaf, then Fc( ) is a stack if and only if it is a sheaf.
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Description III: (in CAT/E)

(6.0) The preceding description of topologies, sheaves and stacks, although satisfactory
from an intuitive point of view is, as we have seen, extremely cumbersome to write down.
A more elegant formulation of each of these concepts may be provided through the concept
of a “Grothendieck fibration” which we will motivate by first examining it in the “discrete
case”.

(6.1) If F : Eop // ENS is a pre-sheaf of sets, the usual construction of the co-limit of
F describes it is as the co-equalizer of the diagram of sets

(6.1.0)
∐

f∈Ar(E)

F (T (f))
d0 //

d1

//

∐
X∈Ob(E)

F (X)

in which d0(y, f) = (y, T (f)) and d1(y, f) = (F (f)(y), S(f)). This diagram is actually the
set of arrows and objects of a category which (for reasons which will later become clear)
we will denote by E/F and amounts to nothing more than viewing an element (y, f) of∐

f∈Ar(E) F (T (f)) as defining an arrow

(y, f) : (F (f)(y), S(f)) // (y, T (f)) and composing such arrows in the obvious fash-

ion using the functor F . Moreover, if we place the canonical map (y, f) � // f and

(x,X) � // X into the picture

(6.1.1)
∐

f∈Ar(E)

F (T (f))
d0 //

d1

//

f1

��

∐
X∈Ob(E)

F (X)

f0

��

Ar(E)
T //

S
// Ob(E) ,

we see that we have defined a canonical functor

(6.1.2) s : E/F // E

which has the property that the square

(6.1.3) Ar(E/F ) T //

s1

��

Ob(E/F )

s0

��

Ar(E)
T

// Ob(E)
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is cartesian. We will call any functor F : F // E which satisfies this latter property
(6.1.3) a discrete functor and when viewing it as an object in CAT/E, a discrete fibra-

tion. The discrete fibration s : E/F // E (6.1.2) will be called the discrete fibration

associated with the presheaf F : Eop // ENS . The full subcategory of CAT/E whose
objects are the discrete fibrations will be denoted by Disc Fib/E.

(6.2) Theorem. The following categories are equivalent:

OPERENS(E)
≈ // Disc Fib/E ≈ // Ê (= HomCAT(Eop,ENS) = ENSEop)

.

The category OPERENS(E) is the familiar category of E-sets on which the category
E operates (on the right) which generalizes the notion of a monoid operating on a set.

Its objects are functions S
F0 // Ob(E) together with an action α : SF0 ×T Ar(E) // S

(α(x, f : X −→ F (x)) = xf ) such that the conditions

(a) F (xf ) = X; (b) xid = x; (c) (xf )g = xfg

all hold. The morphisms of OPER(E) are equivariant maps, i.e. maps N : S // S ′

above Ob(E) such that N(xf ) = (N(x))f .

The equivalence of the first two categories is clear. In effect, given an operation of E on

S F // Ob(E) , the projection of SF×TAr(E) onto S and the action α from the, respective

target and source mappings of category ((x, f) : xf // x) for which the functions F and

the projection to Ar(E) form a discrete functor.

The equivalence of discrete fibrations and presheaves in one direction is already estab-
lished with the construction of (6.1). The other direction is equally clear. For given any

S F // Ob(E) on which E operates, the assignment

X 7−→ SX = F−1(X) and f : X −→ Y 7−→ Sf = (y 7→ yf ) : SY −→ SX defines a presheaf
on E for which the canonical map

∐
X∈Ob(E) SX −→ S is a bijection above Ob(E). The

remainder of the (easy) details are left to the reader.

(6.3) Remark. The equivalence of OPER(E) and Disc Fib/E obviously holds in any
category C with fiber products for any category object E in C since all notions may
be defined internally in C. As a result, the category OPERC(E) plays the role of the
“internal presheaves on E” and is often denoted by CEop

and is called the category of
internal presheaves on E. If C is a topos, then so is CEop

and this topos plays the same
role as Cˆ does in the set based theory.

The usefulness of E/F // E in the definition of a topology on E and the corre-
sponding notion of a sheaf is based on the following facts;

(6.4) Lemma.
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(a) If P : Eop // ENS is a pre-sheaf and F : E′ // E is a functor then the commu-
tative square

(6.4.0) E′/P · F op //

��

E/P

��

E′
F

// E

is cartesian, i.e. “restriction of presheaves” ( P � // P · F op ) corresponds to the
pull-back of that associated discrete fibration;

(b) For any object X in E the functor S : E/X // E is discrete, with E/X ∼−→E/hX,

where hX is the representable pre-sheaf defined by X; id : E // E is discrete with

E ∼ // E/1 where 1 is the terminal presheaf, 1(X) = {φ} for all X.

(c) A subcategory < � � // E/X is a seive on X if and only if the inclusion functor is
discrete;

(d) If P is a presheaf on E, then one has a canonical bijection

(6.4.1) lim
←−

P
∼ // ΓE(E/P )

where ΓE(E/P ) is the set of functorial sections of E/P // E of E/P over E; i.e.

the set of functors ` : E // E/P such that the diagram

(6.4.2) E ` //

id
##

E/P

s

��

E
is commutative.

(a) through (c) are elementary verifications. The verification of (d) is also immediate
if one takes as the definition of lim

←−
P the equalizer

(6.4.3) lim
←−

P
� � //

∏
X∈Ob(E)

F (X)
P0 //

P1

//

∏
f∈Ar(E)

F (S(f))

where P0((xX))
X∈Ob(E)

= (x
S(f)

)
f∈Ar(E)

and P1((xX))
X∈Ob(E)

= (F (f)(x
T (f)

))
f∈Ar(E)

and notes that for any family of sets (Xi)i∈I there is a canonical bijection

(6.4.4)
∏
i∈I

Xi
∼ // ΓI

(∐
Xi

)
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since given any s ∈
∏
i∈I

Xi = {s : I −→ ∪i∈IXi | s(i) ∈ Xi for all i ∈ I}, s̃ : I //
∐
i∈I

Xi

defined by s̃(t) = (s(t), t) is a section of the canonical map
∐
i∈I

Xi
// I defined by

(x, t) 7→ t. Thus here a section s̃ : Ob(E) // F (X)X∈Ob(E) of the canonical map

s0 :
∐

X∈Ob(E)

F (X) // Ob(E) is equivalent to an element s ∈
∏

X∈Ob(E)

F (X) and is a

functorial section if and only if the map s̃# : Ar(E) //
∐
f∈I

F (T (f)) defined by s̃#(f) =

s̃(T (f)) satisfies dis̃
# = s̃S, i.e. if and only if s ∈ lim

←−
P .

(6.5) Using the Lemma (6.4), it is now immediate that a Grothendieck topology on E
may be viewed as a function which assigns to any X ∈ Ob(E) a non-empty set J(X) of
discrete subfunctors of E/X such that

(a) for any f : X −→ Y and any < ∈ J(Y ), the discrete subfunctor <f defined by the
cartesian square

<f //
� _

��

<� _

��

E/X
E/f

// E/Y

(b) for any Y ∈ Ob(E), any < ∈ J(Y ), a discrete subfunctor <′ of E/X is a member of
J(Y ) if and only if for each object f : X −→ Y in <, <′f ∈ J(X).

The corresponding property of a pre-sheaf being a sheaf may now be translated into
the property of “completeness” of the discrete fibration associated with the presheaf:

(6.6) Definition. A discrete fibration F : F // E will be said to be complete with
respect to a topology J on E provided that for every X ∈ Ob(E) and every discrete

subfunctor < � � // E/X which is a member of J(X), the canonical map

(6.6.0) HomCAT/E(E/X,F) // HomCAT/E(<,F)

(defined by restriction along the discrete inclusion < � � // E/X ) is a bijection.

(6.7) Theorem. Let F : Eop // ENS be a pre-sheaf, then F is a sheaf if and only if

the associated discrete fibration E/F s // E is complete. In effect, from the preceding
observations, we have bijections and commutativity of
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(6.7.0)

HomCAT/E(E/X,E/F )

��

∼ // ΓE/X(E/X
/
FSop) ∼ // lim

←−
(FSop) ∼ // lim

←−
(F |X) ∼= F (X)

��

HomCAT/E(<,E/F ) ∼ // Γ<(</in SopF ) ∼ // lim
←−

(FSop inop
< ) ∼ // lim

←−
(F |<)

which establishes the theorem.
The preceding translation would be only of passing interest if it were not also pos-

sible to find a similar context in which pseudo-functors also live. Fortunately there is
a construction (due to Grothendieck) which allows us to assign to each pseudo-functor
on E a category above E in a fashion which generalizes the discrete case at each level.
The properties of the resulting functors above E are not as easily determined as those of
simply being a discrete fibration, however, and must be described with more care.

(7.0) Grothendieck fibrations:

(7.1) Definition: Let F F // E be a functor and X
f
// Y an arrow in F. f is said

to be (hyper)-cartesian over the arrow F (f) : F (X) // F (Y ) provided that for each

T ∈ Ob(F), the commutative square of sets and mappings

(7.1.0) HomF(T,X)
Hom(T,f)

//

F

��

HomF(T, Y )

F

��

HomE(F (T ), F (X))
Hom(F (T ),F (f))

// HomE(F (T ), F (Y ))

is cartesian. In more visual terms this amounts to saying

(7.1.1) X
f

// Y

F

F

��

T

x̃

]]

k

AA

F (X)
F (f)

// F (Y )

E

F (T )

x

\\

F (k)

BB
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that given any k and x as above in (7.1.1), there exists a unique x̃ which makes the
above triangle commutative and projects onto x̃ (i.e., F (x̃) = x). Since f : X // Y

then represents the functor (F/Y )op // (ENS) defined by the fiber product (7.1.0) it

is unique up to a unique isomorphism in F/Y .

(7.2) For a given ξ : A // F (Y ) in E and Y in F a cartesian arrow X
f
// Y in E pro-

jecting onto g will be called an inverse image of Y by ξ and denoted by Yξ : ξ∗(Y ) // Y

or Yξ : Y ξ // Y .

(7.3) Proposition. From Definition (7.1) and the standard “calculus of cartesian squares”,

we have that given any composable pair of arrows X
f
// Y

g
// Z in F

(a) if f and g are cartesian, then gf : X // Z is cartesian;

(b) if gf is cartesian and g is cartesian, then f is cartesian;

(c) every isomorphism in F is cartesian. Any cartesian morphism which projects onto
an isomorphism is any isomorphism; in fact

(d) if F (f) is a retraction (resp. a monomorphism; resp. is an isomorphism) and f is
cartesian, then f is a retraction, (resp. a monomorphism, resp. an isomorphism);

(e) if F is fully faithful, then every arrow in F is cartesian;

(f) e.g. cartesian morphisms are stable under change of base, provided that F preserves
fibered products (i.e., pull-backs of cartesian morphisms are then cartesian).

(7.4) Definition. A functor F : F // E is said to be a (Grothendieck) fibration (or a

fibered category) provided that for any Y in F, and ξ : A // F (Y ) in E there exists an

inverse image of Y by ξ. A choice c of one inverse image Y c
ξ : Y ξ // Y for each such pair

will be said to define a cleavage for the fibration F . The cartesian arrows Y c
ξ are called the

morphisms of transport for the cleavage. We will assume that any cleavage is normalized,
i.e., the morphism of transport above any identity arrow in E is the corresponding identity
arrow of its target in F. If F admits a cleavage such that the composition of morphisms
of transport is again a morphism of transport then the F is said to be a split fibration
and the cleavage is then called a splitting.

(7.5) Proposition. Fibrations are stable under change of base (i.e. under “pull-back”)
and composition, etc. in CAT.

(7.6) Definition. By an E-category is here again meant an object of CAT/E; an E
functor is a morphism (i. e., commutative triangle) of this same category. E-natural
transformations of E-functors will be those such F2 ∗ α = id.
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(7.6.0) F1

//

↓α
//

F1
!!

F2

F2
}}E

An E-functor will be said to be cartesian provided it carries cartesian morphisms into
cartesian morphisms. We thus have the 2-category CAT/E of fibrations cartesian E-
functors and E-natural transformations of same such functors.
(7.7) Examples of fibered categories:

Clearly any discrete fibration is indeed a split fibration in the above sense in which
any arrow of F is cartesian.

(7.7.0) The arrow category Ar(E) ∼ // E2 = Hom
CAT

(∆1,E) is fibered over E by its

source functor E2 S // E

X1
f1 //

��

X2

��
=⇒ 7→ X1 −→ X2

Y1 f1

// Y2

with the commutative square

(7.7.1) X
f
//

h

��

Y

g

��

=⇒
id

Z // Z

forming the morphism of transport for a splitting which makes h the inverse image of g
by f .
(7.7.2) The arrow category E2 is fibered over E by its target functor iff E admits fiber

products. A cartesian arrow E2 T // E is simply a cartesian square and a cleavage is a
choice of fiber products: Clearly, this fibration is not, in general, split. A homomorphism
of groups (considered as groupoids with a single object is a fibration if and only if it is
surjective in which case any set theoretic section defines a cleavage (which is a splitting if

and only if the section is a homomorphism). TOPSP υ // ENS is a split fibration with
the cartesian morphisms defined by inverse image.

The justification of this notion of fibration may now be given.
Fibrations and pseudo-functors into CAT.

(7.8) If F F // E is a functor and X ∈ Ob(E), we define the fiber of F at X to be the
subcategory FX �

�
// F consisting of those arrows of F which project onto the identity
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id(X) : X // X of X in E. For example, the category E/X of objects of E above

X ∈ Ob(E) is the fiber of the target functor T : E∆1 // E at X ∈ Ob(E). Now let

F F // E be a fibration and c a selected cleavage. Any arrow f : X // Y in E will

now define a functor Fcf : FY // FX (by sending any T in FY to its inverse image over

f for the cleavage; Fcf (T ) = T f and sending each arrow U
x // T in FY to that unique

arrow in FX) which makes the diagram

(7.8.0) U f
Ucf

//

��

U

x

��

T f
T cf

// T

commutative in F for the morphisms of transport of the cleavage c. Since the compo-
sition of morphisms of transport is not necessarily a morphism of transport, the above

assignment does not define a functor E ϕ
// (CAT) . However, for any cleavage c and

any composable pair (f, g) : X
f
// Y

g
// Z in E and object T in F there exists unique

isomorphism c(f, g)(T ) in FX which makes commutative the diagram

(7.8.1) (T g)f
(T g)gf

//

c(f,g)(T )
��

T g

T cg
��

T gf
T cgf

// T

in F. It is not difficult to see that the assignment T � // c(f, g)(T ) defines a natural

isomorphism of functors c(f, g) : Fcf ◦ Fcg // Fcgf

(7.8.2) FZ

Fcgf
''

F2
g

// FY

Fcg
��

FX

c(f,g)

��

which has the property that for any composable triplet X
f
// Y

g
// Z

f
//W in E,
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the square of natural transformations of functors

(7.8.3) Fcf ◦ Fcg ◦ Fch
Fcf∗c(g,h)

//

c(f,g)∗Fch

��

Fcf ◦ Fchg

c(f,hg)

��

Fcgf ◦ Fch c(gf,h)
// Fchgf

is commutative for all composable triplets (f, g, h) in E. Normalization of the cleavage
requires further that

(7.8.4) c(id, f) = c(f, id) = id(Fcf )

for all f in E. Thus any fibration F // E with a cleavage c defines a pseudo-functor

(F, c) : Eop // CAT which is a functor provided the cleavage is a splitting.

(7.9) If H : : F // G is a cartesian E-functor of fibrations then it maps fibers into
fibers and maps the morphisms of transport of F into cartesian morphisms with the same
projections as those of G. It consequently gives for any choice of cleavages c and d of F
and G, a system Hf , f ∈ Ar(E) of natural isomorphisms

(7.9.0) FY
Hy

//

Fcf

��

GY

Gdf

��

HX Fcf

Hf o

��

FX
Hx // GX Gd

f HY

Hf
∼

77

which satisfies in addition to Hidx = id(Hx) , the compatibility condition obtained from
the diagram
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(7.9.1) FZ
HZ //

Fcg

��

Fgf

��

GZ

Gdgf

��

Gdg

��

FY
HY //

Fcf

!!

GY

Gdf

""

FX HX
// GX

Hg

..

c(f,g)
**

d(f,g)
**

Hf

//Hgf

22

which asserts that the diagram

(7.9.2) HXFcfFcg
HX∗c(f,g) //

Hf∗Fcg

��

HXFcgf

Hgf

��

Gd
fHY Fcg

Gdf∗Hg

��

Gd
fG

d
gHZ

d(f,g)∗HZ
// Gd

gfHZ

is commutative for all composable pairs X
f
// Y

g
// Z in E.

(7.10) Definition: By a morphism of pseudofunctors is meant a system Hf of natural
transformations as in (7.9.0) which satisfy the compatability condition (7.9.1).

(7.11) Similarly if α : H // J is an E-natural transformation of E-functors H and J ,

(7.11.0) F
H //

↓α
J

//

!!

G

G
}}E

then since G ∗ α = id, α induces a system of natural transformations between the corre-
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sponding fiber functors for each f : x // y in E

(7.11.1) FY
HY //

↓α(Y )

Ff

��

JY

66 GY

Gf

��

FX
↓α(X)

HX //

JX

66 GX

Hf //

Jf
33

which makes the diagram

(7.11.2) HXFf
αX∗Ff

//

Hf

��

JXFf

Jf

��

GfHY
Gf∗αY

// GfJY

commutative for all arrows f in E.

(7.12) Definition: A system of natural transformation α(X), Y ∈ ob(E) which satisfies
the conditions of (7.11) will be called a modification of the corresponding morphisms of
the pseudofunctor H and J .

It now follows that the preceding construction defines a 2-functor

Φ: CART/E // Pseudo-Functor (E)

whose target is the 2-category of pseudo-functors, morphisms of pseudofunctors and mod-
ifications of morphisms of pseudo-functors.

Conversely we have the

(7.13) Fibration defined by a pseudo-functor. If Φ: Eop ; CAT is a pseudofunctor, then
we may associate with Φ a fibration Fib(Φ) supplied canonically with a cleavage c whose
associated pseudofunctor is isomorphic to Φ. It is defined as follows:

Ob(Fib(Φ)) =
∐

x∈ob(E)

Fcx
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Ar(F(Φ)) =
∐

f∈Ar(E)

Pf , where Pf is the fiber product.

(7.13.0) Pf //

��

Ar(Fcx)

��

ob(Fcy) ob(Ff )
// ob(Fcx)

An element (B, θ : A // Fcf (B)) of Pf , f : X // Y is called an arrow of projection

f ; its source is A and its target is B. In visual terms

(7.13.1) A

θ
��

θ

&&Fcf (B) B

X
f

// Y

Thus θ : A // B in F(Φ) iff there exists f : X // Y in E such that θ : A // Fcf (B)

in FX . Composition of the arrow θ : A // Ff (B) and ξ : B // Fg(C) is defined via

the composition of the sequence

(7.13.2) A θ // Fcf (B)
Fcf (ξ)

// Fcf (Fcg(C))
c(f,g)

// Fcgf

This composition is associative and unitary thanks to normalization and the coherence
condition of (2.0). Note that θ : A // B is cartesian if and only if θ : A // Fcf (B)

is an isomorphism and the identity arrow id: Fcf (B) // Fcf (B) in FcX , viewed as an

arrow Ff (B) // B of projection f in Fib(Φ) defines a canonical cleavage so that

Fib(Φ)
pr
// E becomes a fibration with a canonical cleavage.

(7.14) In similar fashion if H : Fc // Fd is a morphism of pseudo functors, then H

is easily seen to define a cartesian E-functor, Fib(H) : Fib(Fc) // Fib(Fd ) via the

assignment to any f : X // Y arrow x : A // Fcf (B) from A into B in Fib(Fc),

x ∈ Ar(FcX), B ∈ ob(FcY ), of the fX arrow Fib(H)(x) : HX(A) // HY (B) obtained by
composition of the pair

(7.14.0) HX(A)
HX(x)

// HX(Fcf (B))
Hf (B)

// Gd
f (HY (B)).
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Note that this is indeed a cartesian functor since if x is cartesian in Fib(Fc), where
x ∈ Ar(FcX) is an isomorphism, so that HX(x), as well as Hf (B) ◦ HX(x) are also, thus
making Fib(H)(x) cartesian.
(7.15) Following the same observations, if α : H // J is a modification of morphisms
of pseudo functors (7.12) then the arrows αX(A) and Gd

f ∗ α(B) = Gd
f (α(B)) define an

E-natural transformation of Fib(H) // Fib(G) since the square

(7.15.0) HX(A)
αX(A)

//

HX(x)

��

JX(A)

JX(x)

��

HX(Fcf (B))
α(Ff (B))

//

Hf (B)

��

JX(Fcf (B))

Jf (B)

��

Gd
f (HY (B))

Gdf (αY (B))
// Gd

f (JY (B))

is then commutative for any f -arrow x : A // B in Fib(Fc).
(7.16) We leave it to the reader to establish that these two constructions indeed establish
a strong 2-equivalence of the 2-category of fibrations above E and the 2-category of pseudo
functors on Eop for which discrete fibrations are carried equivalently to pre-sheaves.

(7.16.0) CART/E

⊇

≈ // Pseudo-Fun(E)

⊇

DiscFib/E ≈ // Eˆ

(8.) Descent and CART/E

(8.0) We are now in a position to place the property of completeness of a pseudo-functor
Fc( )with respect to a topology on E (i.e. Fc( ) is a stack) completely in the context of the

2-category CART/E of fibrations and cartesian E-functors. It is based on the following
(8.1) Proposition. Let Fc( ) : Eop ; CAT be a pseudo-functor on E, lim

←−
Fc( ) the category

which is its pseudo-limit (5.2), and Fib(Fc( )) the fibration above E which is defined by Fc( )

(7.13). With these definitions one has a canonical isomorphism of categories

(8.1.0) lim
←−

Fc( )
∼ // CARTE(E,Fib(Fc( ))) = Γ(Fib(Fc( ))/E)
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where CARTE(E,Fib(Fc( ))) is the category of cartesian E-functors of E into Fib(Fc( )), i.e.
the category of cartesian sections of the fibration associated with the pseudo-functor.

In effect, by definition, an object of lim
←−

Fc( ) is an order pair ((AX)X∈ob(E), (θf )f∈Ar(E)),

where AX ∈ FcX for each X and θf : AX
∼ // Ff (AY ) , i.e. in Fib(Fc( )) a cartesian arrow

AX
θf
// AY whose projection is f : X // Y ; thus the family defines a cartesian sec-

tion of Fib(Fc( )) which is functorial since the compatibly conditions (5.2) just say that in

Fib(Fc( )), θgθf = θgf (⇔ c(f, g)Ff (θg)θf = θgf in Fcx ). Similarly, the arrows of lim
←−

Fc( )

just correspond to E-natural transformations of such functors.
(8.2) Corollary. If Fc( ) : Eop ; CAT is discrete. and thus corresponds to a presheaf

F : Eop // ENS then Fib(Fc( ))
∼ // E/F (6.1.2) and thus

lim
←−

F ∼ // CARTE(E,E/F ) since CARTE(E,E/F ) is a discrete category (i.e., is a set).

(8.3) Corollary. Let E be a site and Fc( ) : Eop ; CAT a pseudofunctor, then F c
( ) is a

pre-stack, resp. stack, if and only if for each discrete covering subfunctor < � � // E/X ,
the canonical restriction functor

(8.3.0) FcX
≈ // CARTE(E/X,Fib(Fc( )))

// CARTE(<,Fib(Fc( )))

is fully faithful, resp. an equivalence of categories. A fibration F // E which enjoys
the same respective properties is said to be precomplete, resp. complete.
(8.4) We have thus, as promised, defined a category, CART/E, in which all of the notions
of the theory of descent have a natural home. Moreover, since the categories CARTE(A,B)
of cartesian functors between E-fibrations and E-natural transformations of such functors
may also be described in terms of the corresponding category of cartesian sections after
a base change, we can for any E-category F, define the category

(8.4.0) lim
←−

(F/E) = CARTE(E,F) ,

the corresponding category of cartesian sections. It is then easily seen that the functor
defined by F // E � // lim

←−
(F/E) provides a strict right 2-adjoint for the change of

base along F // ∆0 functor (A � // E× A pr
// E)

(8.4.1) CARTE CAT/∆0
∼= CAT

E × ( )
oo

lim
←−

(-/E)

(where ∆0 is the one object category which is terminal in CAT) i.e. for any category A
one has a canonical isomorphism of categories

(8.4.2) CARTE(E× A,F) ∼ // CAT(A, lim
←−

(F/E)) (= CART
∆0

(A, lim
←−

(F/E)))
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and the fundamental properties of fibered products and sections and allow us to use the
canonical “change of base” isomorphism.

(8.4.3) CARTE(A,F) ∼ // CARTA(A,F×E A) = lim
←−

(F×A A/A)

to rewrite F - k descent as the assertion that the canonical change of base functor (“pull-

back along inclusion < � � // E/X ) which makes the diagram

FX // CARTE(<,FG)

lim(F|X/E/X)

o

OO

// lim
←−

(F|R/<)

o

OO

commute, is a k-equivalence, k = 0, 1, 2, where (by definition) the following squares are
cartesian in CAT.

(8.4.4) F|< � � //

��

F|X //

��

F

��

< � � // E/X S // E

It is in this sense that the theory of descent may be described as the “general theory of
the behavior of the functor lim

←−
along base changes of the form < � � // E/X , where < is

a discrete subfunctor (GIRAUD (1962)).
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Description IV: (in Ê)

(9.0) The preceding description, while exceedingly elegant, requires the relatively unfa-
miliar and abstract context of CART/E for its presentation and thus uses a considerable
amount of abstract (all-be-it elementary) category theory. As a consequence of this,
the amount of “abstract nonsense” used in the presentation is more than many working
mathematicians would prefer.

Fortunately, there is still another presentation of the notions involved which keeps
the reader within the relatively familiar category Ê of pre-sheaves on E. Working in
this category is a very concrete process very much like working in sets, and as Ê is
itself a topos (for E with the discrete topology) it is from observations made here that a
generalization of the theory to elementary topoi can be made.

(9) Properties of the category Ê.
(9.0) The category Ê has all set based limits and colimits which may be defined “point-
wise”: (lim

←−
Fc)(X) = lim

←−
Fc(X); (lim

−→
Fc)(X) = lim

−→
Fc(X); in particular,

(
∏
Fc)(X) =

∏
Fc(X) and (

∐
Fc)(X) =

∐
Fc(X). The canonical functor

h : E // Ê which sends any objectX to the representable functor hX(T ) = HomE(T,X)

is fully faithful, injective on objects, and has the property that HomÊ(hX , F ) ∼ // F (X)

(“Yoneda Lemma”). We thus may identify E with the subcategory of representable
functors of Ê and with this identification write hX(T ) = X(T ) = HomE(T,X) for any
X ∈ ob(E).

Under this identification an element x ∈ F (X) is identified with a natural transfor-
mation x : X // F in Ê and for any arrow f : X // Y in E the triangle

(9.0.0) X

f

��

F (f)(y)

!!
Y // F

is commutative, as is

(9.0.1) X x //

αX(x)
!!

F

α

��

G

for any natural transformation α : F // G in Ê.
(9.1) Lemma. For any presheaf P ∈ Ê, let E/P be category of objects of Ê above

P defined as usual and let E/P // E be the discrete fibration above E defined by
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P ( ), then the commutative square of categories and functors

(9.1.0) E/P h̄ //

��

Ê/P
S

��

E
h

// Ê

(where h̄ : E/P // Ê/P is defined by the assignment (x,X) � // hX
x // P ,

(x,X) ∈
∐

x∈ob(E)

P (X) obtained from the Yoneda map) is cartesian. Moreover, one has in

addition an equivalence of categories

(9.1.1) #
P

: Ê/P ≈ // (E/P)̂

which has the property that given any natural transformation f : F // P and the
corresponding functors

(9.1.2) f! : Ê/F // Ê/P
(defined by G // F � // f!(g) = fg : G // P ) and

(9.1.3) f ∗ : Ê/P // Ê/F
(defined by H h // P � // Ff ×h H pr

// F and right adjoint to f!), and

(9.1.4) f̂ : (E/P)̂ � // (E/F)̂

(defined by restriction P# : E/P op // ENS � // f op
! P# : E/P op // ENS )

diagram

(9.1.5) Ê/P #
P

≈
//

f∗

��

(E/P)̂

f!̂

��

Ê/F #
F

≈
// (E/F)̂

of categories and functors is commutative. (That is, “ restriction of presheaves corresponds
to pullback of the representing objects in Ê/P ”).

In effect the first assertion (9.1.0) is trivial and justifies the notation E/P used in

(6.1). The functor #
P

is easily constructed: Given any G
g
// P in Ê/P define
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G# : E/P op // ENS at any X
x // P in E/P as the set of all “liftings of x to G”, i.e.

as the set of natural transformations ` : X // G such that g` = x (⇔ g(X)−1{x} ⊆
G(X)), g(X) : G(X) // P (X) . Composition of any lifting with f : Y //

��

X
��

P

clearly

makes this functorial on E/P op.

A quasi-inverse for #
P

may then be defined for any presheaf H ∈ (E/P)̂ via

(9.1.6) H#(T )

αT

��

= H(t), t ∈ HomÊ (T, P )

pr g

��

P (T ) ∼ // HomÊ (T, P )

for any T ∈ ob(E) and the remainder of the observations are easily verified.

(9.2) The preceding lemma is of course applicable if P is representable, say by an object
X of E, here for instance it says that given any presheaf P on E, the restriction of P to
E/X is represented in Ê by the pull back

(9.2.0) X × P //

prX

��

P

��

X // 1

(9.3) Every presheaf on E is the canonical colimit of representables which may be de-
scribed as the colimit of diagram in Ê defined by E/P .

(9.3.0)

$$

X
f

//

��

Y //

��

•

zz

(representables)

P

thus P represents the co-equalizer of

(9.3.1)
∐

f∈Ar(E/P )

S(S(f))
d1 //

d0

//

∐
x∈ob(E/P )

S(x) // // P

where d0(T ) : (T t // SS(f), f) � // (ft, T (f)) and

d1(T ) : (T t // SS(f), f) � // (t, S(f)) .
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This assertion is just an internal translation of the definition of a natural transfor-
mation: There is a bijective correspondence between maps p : P // Q in Ê and as-

signments X x // P (in E/X) � // p(x) : X // Q such that for any f : X //

x ��

Y
��

P
in E/P , p(g)f = p(x).

The diagram (9.3.1) is actually the target (d0) and source (d1) maps category object
in Ê whose significance will be discussed shortly.

(9.4) If P is the terminal presheaf 1 , then (9.3.1) becomes the coequalizer

(9.4.0)
∐

f∈Ar(E)

S(f)
d1 //

d0

//

∐
X∈ob(E)

X // 1.

That this is a co-equalizer means that for any pre-sheaf P , the top row of the diagram

(9.4.1) ΓÊ(P ) = HomÊ(1, P )
� � //

o

��

HomÊ(
∐

X∈ob(E)

X,P )
//
//

��

HomÊ(
∐

f∈Ar(E)

S(f), P )

o
��∏

X∈ob(E)

HomÊ(X,P )
//
//

o
��

∏
f∈Ar(E)

HomÊ(S(f), P )

o
��

lim
←−

P
� � //

∏
X∈ob(E)

P (X)
//
//

∏
f∈Ar(E)

P (S(f))

is exact (i.e., is an equalizer diagram) and is bijectively equivalent by Yoneda to the
bottom row which can be taken as the usual definition of lim

←−
P . Thus we have a canonical

interpretation in Ê
(9.4.2) ΓÊ(P ) = HomÊ(1, P )

∼ // lim
←−

P

of lim
←−

P as the set of global sections of P in Ê.
The same results holds in E/P ; for any presheaf F : E/P op // ENS ,

(9.4.3) lim
←−

F
∼ // HomÊ/P (P, F#) = ΓÊ(F#/P )

where F#
// P is the object in Ê/P which is equivalent to F .
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(9.5) Combining these results we have for any presheaf P on E and any
r : R // X in Ê with X representable the natural mapping,

(9.5.0) HomÊ(X,P )
HomE(r,P )

//

o
��

HomÊ(R,P )

o
��

ΓX(X × P ) //

o
��

ΓR(R× P )

o
��

P (X) ∼ // lim
←−

P |X
ker
←−

// lim
←−

P |R

which internally translates in Ê the canonical map lim
←−

P |X // lim
←−

P |R .

(10.0) We now can translate the definition of a topology on E and the attendant notion
of a sheaf into the language of Ê. It is, in effect, immediate since a seive on X defined as
a subcategory < of E/X whose inclusion functor is discrete in < � � // E/X is equivalent

to a subfunctor R �
�

// X of the representable functor defined by X (with < isomorphic
to E/R) through the above cited equivalences. Moreover, under this identification, for

any f : Y // X and any seive < � � // E/X , the inverse image seive <f � � // E/Y
corresponds to the pull-back (inverse image)

(10.0.0) f−1(R) //
� _

��

R� _

��

Y
f

// X

in Ê. A direct translation in the language of Ê now gives the
(10.1) Definition (in Ê): A topology J on E is a function which assigns to each
X ∈ ob(E) a non-empty set J(X) of subfunctors of the representable functor X (called
the covering subfunctors of X or by abuse of language the covering sieves or refinements
of X) such that

(a) If R ∈ J(X) and f : Y // X in E then f−1(R) ∈ J(Y )

(b) Let R �
�

// X be a subfunctor of X ∈ ob(E) and C ∈ J(X), then R ∈ J(X) if (and
only if in the light of (a)) for all y : Y // C (Y ∈ ob(E)), y−1(C ∩R) ∈ J(Y ).

y−1(C ∩R) //
� _

��

C ∩R� _

��

� � // R� _

��

Y // C �
�

// X
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(10.2) From (a) and (b) it follows that R ∈ J(X), S ∈ J(X) =⇒ R ∩ S ∈ J(X)
and that if C �

�
// R �
�

// X , then C ∈ J(X) =⇒ R ∈ J(X), thus since J(X) 6= ∅,
that X ∈ J(X) as desired. Consequently, J(X) is filtering, a fact which has important
consequences in what follows. Using (10.1) we now can re-state the
(10.3) Definition (in Ê). A presheaf F is a separated pre-sheaf (resp. is a sheaf ) for the
topology J if and only if for every covering subfunctor R �

�
// X , the restriction map

(10.3.0) HomÊ(X,F ) // HomÊ(R,F )

is injective (resp. is a bijection).
Thus viewed in Ê, “F is a sheaf if and only if for any covering subfunctor R �

�
// X

given any t : R // F , there exists a unique t̃ : X // F such that the triangle

(10.3.1) R
t //

� _

��

F

X

==

is commutative”.
(10.4) The advantages of operating in E with E identified with the subcategory of rep-

resentables are numerous. For example let (Xα
α // X)α∈I be a family of arrows in E.

If the family is identified with its representables in Ê, then viewed as a subfunctor of
X, the seive generated by the family is nothing more than the subfunctor R which is the
image in X of the canonical map in Ê
(10.4.0) α :

∐
α∈I

Xα
//

�� ��

X

R
/�

??

defined by the assignment

(10.4.1) T
x // Xα

� // αx : T // X

at any T ∈ ob(E), thus t : T // R (∈ R(T )) if and only if there exists an arrow

(T z //
∐

α∈I Xα (⇔ (z, α) with z ∈ Xα(T )) such that αz = t. Thus a family is a

covering family iff its image R // X in Ê is a covering subfunctor of X.
Note also that the image R of the family is the co-equalizer of the equivalence rela-

tion on
∐
Xα defined by the canonical map

∐
α :
∐
Xα

// X , which has its graph

isomorphic in Ê to the object
∐

(α,β)∈I×I

Xα ×X Xβ, i.e. the diagram

(10.4.2)
∐

(α,β)∈I×I

Xα ×X Xβ

d1 //

d0

//

∐
α∈I

Xα
// // R (↪→ X)
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is always co-exact (a co-equalizer) in Ê. This means that for any presheaf F in Ê any

map
∐
Xα

// F which equalizes the projections d0 and d1 factors uniquely through
R, i.e.

(10.4.3) HomÊ(R,F )

‖

// HomÊ
(∐

Xα, F
) //

//

o

��

HomÊ
(∐

Xα ×X Xβ, F
)

o

��

HomÊ(R,F ) //
∏
α

F (Xα)
//
//

∏
α,β

Hom(Xα ×X Xβ, F )

is exact. Thus if R // X is a covering subfunctor, F satisfies the sheaf property if and
only if

(10.4.4) F (X)

o

��

//
∏
F (Xα)

//
//
∏

HomF̂(Xα ×X Xβ, F )

HomÊ(X,F ) // HomÊ(R,F )
� ?

OO

is exact and consequently, if the fiber products Xα ×X Xβ representable, if and only if

(10.4.5) F (X) //
∏
α∈I

F (Xα)
//
//

∏
α,β∈I×I

F (Xα ×X Xβ)

is exact so that we recover the original definition (1.1) of sheaf when the families are the
covering families of a pre-topology (1.0).

(11.0) Universal strict epimorphic families and universal effective epimorphic families.
An interesting case of the forgoing occurs if the topology on E is courser than the

canonical topology so that every representable functor is a sheaf. Let (X
xα // X)α∈I be

a covering family (in E) for such a topology, then for each T ∈ ob(E) a natural trans-

formation g :
∐
Xα

// T must factor uniquely through the canonical transformation∐
Xα

// X if and only if it equalizes the canonical maps
∐

α,β∈I×I

Xα ×X Xβ

d1 //

d2

//

∐
Xα.

Moreover, since for any f : Y // X in E, the inverse image of the covering subfunc-
tor which is the image of the (xα)α∈I is just the image of the family of transformations

(Y ×X Xα
pr
// Y )α∈I must also be covering, this same factorization property must be

true for the family ( (Y ×X Xα
// Y )α∈I for any f : Y // X in E. In language ex-

pressible entirely within the category E, this means that a family (Xα
xα // X) which
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is covering for a topology which is coarser than the canonical topology must satisfy the
following properties in E:

(a) for any T ∈ ob(E) and any pair of arrows g1, g2 : X
//
// T , g1 = g2 if and only if

for all α ∈ I, g1xα = g2xα (i.e. (Xα
xα // X)α∈I is an epimorphic family);

(b) (xα)α∈I is an epimorphic family and for any T ∈ ob(E), for any family

(gα : Xα
// T )α∈I , there exists an arrow g̃ : X // T such that xαg̃ = gα for

each α ∈ I, if and only if for all pairs U
uα // Xα , U

uβ
// Xβ in E such that

xαuα = xβuβ for all α, β ∈ I × I, gαuα = gβuβ (i.e. (xα)α∈I is a strict epimorphic
family);

(c) for any T ∈ ob(E), for any f : Y // X in E, and any pair of arrows

g1, g2 : Y
//
// T , g1 = g2 if and only if for all α ∈ I and all pairs uα : U // Xα ,

uY : U // Y such that xαuα = fuY , g1uY = g2uY (i.e. (xα)α∈I is a universal
epimorphic family);

(d) for any T ∈ ob(E), for any f : Y // X in E and for any family(
gα : U // T , uY : U // Y , uα : U // Xα

)
α∈Isuch that fuY = xαuα for

each α ∈ I and ggα = gβ for any g : V // u such that uY g = vy and uαg = vα,

α, β ∈ I× I, there exists an arrow g̃ : Y // T such that g̃uY = gα for all α ∈ I, if

and only if ugα = vgβ for all
(
u : W // U , v : W // V

)
such that uY u = vY v

(i.e., (Xα
xα // X)α∈I is a universal strict (epimorphic) family).

(11.1) In the presence of fiber products, these rather tedious to state conditions become
the following

(a) (Xα
xα // X)α∈I is an epimorphic family and for any T ∈ ob(E) any family

(gα : Xα
// T )α∈I , there exists an arrow g̃ : X // T such that g̃xα = gα if and

only if gβpr = gβpr for all cartesian squares

(11.1.0) Xα ×X Xβ

prβ
//

prα

��

Xβ

αβ

��

X xα
// X

(i.e., (Xα
xα // X)α∈I is an effective epimorphic family) and

(b) (Xα
xα // X)α∈I is an effective epimorphic family and for any f : Y // X , the

family (Y ×X Xα prY
// Y )α∈I is an effective epimorphic family, (i.e., (Xα

// X)

is a universal effective epimorphic family).
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If the family in question reduced to a single arrow p : C // X , then the corre-
sponding terminology is that of a universal strict or universal effective epimorphism and
if coproducts as well as fibre products exists in E, we can always reduce the above to
the consideration of universal effective epimorphisms. The preceding remarks thus justify
the term “universal strict epimorphic seive” for any covering subfunctor (seive) for the
canonical topology on E (4.6).

(12.) Induced Topologies on Ê and Ê/X.

(12.0) If E is supplied with a topology J , we may extend the notion of refinement to Ê
as follows:

If iR : R �
�

// P is a subfunctor of P , we define R to be a refinement (or cover-
ing subfunctor) of P provided that given any representable X and any transformation

x : X // P , the subfunctor x−1(R) �
�

// X is a refinement of X for the topology J ,

i.e. if x−1(R) ∈ J(X). If J(P ) now represents the resulting class of covering subfunctors

of P , then the assignment P � // J(P ) has the following properties:

(a) If R ∈ J(P ) and f : Q // P is an arrow in Ê,then f−1(R) ∈ J(Q) (“the inverse
image of a covering subfunctor is covering”);

(b) Given a commutative triangle of subfunctors

R �
�

//
� p

!!

C� _

��

P ,

then (i) R ∈ J(C) and C ∈ J(P ) ⇒ R ∈ J(P ) (“the composition of covering
subfunctors is covering”), and (ii) R ∈ J(P ) ⇒ C ∈ J(P ) (“if the composition of
two covering subfunctors is covering then the last one was as well”);

(c) for all F ∈ Ê, F ∈ J(F ) (“the identity subfunctor is always covering”);

(12.1) Definition. An assignment P � // J(P ) which satisfies properties (a), (b) and

(c) above will be called a topology on Ê with the above defined one said to be induced by
the topology on E.

It is easy to see that sheaves remain unchanged: F ∈ Ê is a sheaf for the induced
topology on Ê (i.e. for every covering subfunctor R ∈ J(P ), the restriction map

HomĈ(P, F ) // HomĈ(R,F ) is a bijection) if and only if F is a sheaf for the given
topology on E.
(12.2) Remark. It is easy to show that there is a one-to-one correspondence between
topologies on E and topologies on Ê in the above sense and, indeed, this is only one of
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several equivalent ways to define a topology on Ê or, in fact, in any topos or even on
an exact category in the sense of Barr. One such alternative approach is given through
the notion of a “universal closure operator” on the class of subobjects of any object
or through the same notion defined by an endomorphism j : Ω // Ω (where Ω is the
subobject classifier). All of them are given in detail in JOHNSTONE (1977) to whom the
reader is referred for details.
(12.3) Using the induced topology on Ê we can equally well define the induced topology
on Ê/P (for any presheaf P in Ê): a commutative triangle of the form

(12.3.0) ROO �
�

//

r
��

S

s
��

P

in Ê defines r as a subfunctor of s in E/P and is defined to be a covering subfunctor
if and only if R �

�
// S is a covering subfunctor of S in Ê. By restriction this gives

topologies on E/P as well as on E/X, X ∈ ob(E). The sheaves for these topologies will
be characterized after we give the construction of

( 13 ) The associated sheaf functor.

(13.0) A left adjoint for the canonical inclusion functor Ê � � // Ê of sheaves on E
into the presheaves on E may be constructed by a two step iteration of the endofunctor

L : Ê // Ê defined for any presheaf P at any object X in E by the direct limit

(13.0.1) LP (X) = lim−→
R∈J(X)

HomÊ(R,P ).

Since the inverse image of a covering subfunctor is covering, this indeed defines a presheaf
on E and an endofunctor P � // LP on Ê for which the canonical map

(13.0.2) `P (x) : P (X)
∼ // HomÊ(X,P ) // lim−→

R∈J(X)

HomÊ(R,P )

which sends each element of P (X) to its equivalence class in the direct limit defines a
natural transformation

(13.0.3) `P : P // LP

in Ê.
(13.1) Proposition. This natural transformation has from its very construction the fol-
lowing properties:
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(a) given any element covering iR : R �
�

// X and any t : R // P , the transforma-

tion v(t) : X // LP which represents the equivalence class of t in the direct limit
has the property that the diagram

(13.1.0) R� _

iR

��

t // P

`P

��

X
v(t)
// LP

is commutative in Ê.
(b) given any x : X // LP , there exists a covering subfunctor iR : R �

�
// X and a

transfunctor t : R // P such that v(t) = x.

From these two properties it follows that

(i) P is a separated presheaf (i.e. for any covering subfunctor R �
�

// X ,

Hom(X,P ) // Hom(R,P ) is injective) if and only if `P : P // LP is a mono-
morphism, and that

(ii) LP is a separated presheaf.

(13.2) Remark. P
`P // LP is not the universal separated pre-sheaf associated to P ,

the subfunctor of LP which is the image of P under `P is, however, as may be seen by
looking at the equivalence relation on P defined by `P .

Using the above facts, it follows that for any presheaf P , aP = LLP is a sheaf and
that the canonical map aP obtained from the diagonal in the commutative square

(13.2.0) P

`P

�� $$

`P // LP

`LP

��

LP
L(`P )

// LLP= aP

is the universal sheaf associated to P (i.e. the unit for the left adjoint to the inclusion

η : E˜ // Ê ). The functor a : Ê // E˜ is called the associated sheaf functor and
has the following properties:
(13.3) Theorem.

(a) a : Ê // E is a left exact left adjoint. It thus preserves all finite limits and all
co-limits;
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(b) A map p : P // Q of presheaves is covering (i.e. the image of P in Q is a covering

subfunctor for the induced topology on Ê ) if and only if a(p) : a(P ) // a(Q)

is an epimorphism in E˜. In order that a(p) : a(P ) // a(Q) be an isomorphism

( p : P // Q is then said to be bicovering) it is necessary and sufficient that both

the arrow p : P // Q and the canonical monomorphism ∆: P // P ×Q P be
covering.

(c) In order that p : P // Q considered as an object of Ê/Q be a sheaf above Q (i.e.,
that the presheaf on E/Q which is represented by P ( ) be a sheaf for the induced
topology on Ê/Q) it is necessary and sufficient that the commutative square

(13.3.0) P

p

��

aP // a(P )

a(P )

��

Q aQ
// a(Q)

be cartesian in Ê.
(13.4) Corollary:

(a) A pre-sheaf P is a sheaf if and only if the canonical map aP : P // a(P ) is an
isomorphism;

(b) In order that a subfunctor iR : R �
�

// Q be covering, it is necessary an sufficient

that a(iR) : α(R) �
�

// a(Q) be an isomorphism.

(c) Every epimorphism p : P // // Q of sheaves is covering; thus given any element x ∈
Q(X), there exists a covering family (Xa

xα // X) in E such that P (Xα)−1(xxα) ⊆
P (Xα) is non-empty for each α. (“for each X ∈ ob(E), p(X) : P (X) // Q(X) is

locally surjective”.)

(d) If Q is a sheaf, then (E/Q)̃
≈ // E /̃Q ; in particular if the topology on E is

courser than the canonical topology so that every representable functor is a sheaf,

then (E/X )̃
≈ // E /̃X .

The proofs of each of these facts are easily established and, in any case may be found in
DEMAZURE (1970 ) or SGA 4. We have summarized them here because of their relevance
to the point of this section which is to complete the description of stacks internally in the
category Ê. We will first make precise the obvious connection between split fibrations
and pre-sheaves of categories and then define and use the split fibration associated with
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any fibration to place the fibrations over E within the context of category objects in Ê.
We will then translate the notion of stack into this new context. We give the first part
of this notion in some detail, in particular the development of the functor “evaluation”
and “substitution”, for much of the confusion in the subject can be traced to insufficient
attention to the subtleties involved.

(14.) FIBRATIONS AND PRESHEAVES OF CATEGORIES.

(14.0) If F : Eop // (CAT) is a functor whose underlying set values lie in (ENS), then

F determines (and is determined by) a category object in
E = HOMCAT(Eop, (ENS)) which has the well known simplicial from

(14.0.1) F : F1 ×F0 F1

d2
//

d1
//

d0
// F1

d1
//

d0
//

s0

bb
s1

hh
F0

s0

bb

defined through F0(X) = b(F (X)), F1(X) = Ar(F (X)), with d0(X) = T (F (X)) and
d1(X) = S(F (X)) etc. in which we use the standard simplicial notation for which di
always indicates the face opposite the ith vertex. The full simplicial object in Ê is called
the nerve of the category object in Ê. It is, of course, completely determined by its
truncation.

It follows that any split fibration over E whose fibers lie in (CAT) has a splitting
which as a presheaf of categories we may identify with the corresponding internal category
object in Ê. If F is representable, then the system of objects and arrows in E which arises
through any representatives of the functors Ob(F ) and Ar(F ) is a category object is in
E and all of the category CAT(E) of category objects of E is determined in this fashion.

We will identify it with its image in Ê via the canonical Yoneda functor η : E // Ê
(given by η(X) = hX where hX(T ) = HOME(T,X) = X(T )) as usual.
(14.1) The split fibration determined by a category object.

A presheaf C of categories on E is a category object in Ê. It thus determines canon-
ically a presheaf of categories on Ê (via the assignment P � // HOMÊ(P, ) ) whose re-

striction to E (via η : E � � // Ê ) is then isomorphic to C itself. We thus may consider the

(split) fibration Φ(C) (7.13) determined by C over E and also by P � // HOMÊ(P,C)

over Ê. The latter is the (canonical) extension of Φ(C) to Ê and will be denoted by
EXX(C) and called the externalization of C. As with any internal category, the split fi-
bration determined by the category object C may be described as follows: Any object of
EXX(C) with projection P ∈ Ob(Ê) is simply a morphism x : P // Ob(C) in Ê. If

x : P // Ob(C) and y : Q // Ob(C) are objects of EXX(C) and p : P // Q is a

morphism in Ê, then an arrow θ : x // y in EXX(C) with projection p is a morphism

θ : P // Ar(C) in Ê such that Sθ = x and Tθ = yp.
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(14.1.0) P
θ //

p

�� ""

Ar(C)

T (C)

��

S(C)

��

Q y
// Ob(C)

��

i.e. an arrow from x into yp = Hom(p,C)(y) in the category HomÊ(P,C) where

Hom(f,C) : HomÊ(Q,C) // HomÊ(P,C) is the “restriction” functor defined by com-

position with p. In EXX(C) composition of θ and ξ

(14.1.1) P

�� !!

Q

��

// Ob( )

R

==

��

��

is defined by the composition ξp ◦ θ inside the category HomÊ(P,C). Note that an ar-

row of EXX(C) is cartesian if and only if the defining morphism θ : P // Ar(C) is an

invertible arrow in the category HomÊ(P,C). Thus, in particular, if the category object
C is a groupoid, every arrow in EXX(C) is cartesian. For example, since any presheaf
may be considered as a discrete groupoid object (i.e., every arrow is an identity), the cor-

responding split fibration defined by P ∈ Ob(Ê) is simply the category Ê/P S // Ê
whose restriction to E may be identified with the category E/P S // E . If P is repre-

sentable, with P
∼ // η(X) , then the split fibration over E defined by the (contravariant)

representable functor η(X) = HomE(−, X) is just the category E/X f
// E .

We now place all fibrations over E within CAT(Ê):

(15) The category object CartE(E/- ,F) in E defined by a fibration F : F // E
(15.0) If F : F // E is any E-category and X ∈ Ob(E), we may consider the category
HomE(E/X,F) of E-functors from E/X into F and its subcategory CartE(E/X,F) con-
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sisting of those E-functors which carry every arrow of E/X into a cartesian arrow in F
(since all arrows of E/X are cartesian over E). In both cases natural transformations of
E-functors are required to project onto the identity (i.e., F ∗ α = id).

(15.0.0) E/X
c //

↓α
d

//

S
""

F

F
~~E

We now look at HomE(E/X,F) in detail. If c : E/X // F is an E-functor then the value

of c on any object Y
f
// X in E/X lies in the category FY which is the fiber of F at

Y = S(f) (7 .8). In particular the value of c at the terminal object X id // X of E/X
lies in the fiber FX and any E-natural transformation of such E-functors has its value at
X lying in this same fiber, so that we have defined a functor, evaluation at X,

(15.0.1) evX : HomE(E/X,F) // FX .

(15.1) Proposition. The functor evaluation at X is fully faithful on the subcategory
CartE(E/X,F) and is an equivalence provided F is a fibration above E.

In effect let α : c1
// c2 be in CartE(E/X,F), then since

(15.1.0) Y

y
  

y
// X

id
~~

X

defines the canonical arrow from f to the terminal objectX (= idX) in E/X, c2(y) : c2(Y ) // c2(X)

is cartesian in F. Hence for any natural transformations α, β : c1 //
//
c2 , the diagram(s)

(15.1.1) c1(Y )
c1(y)

//

α(Y )

��

β(Y )

��

c1(X)

α(X)

��

β(X)

��

c2(Y )
c2(y)

// c2(X)

are commutative for any object Y
y
// X in E/X. If evX(α) = evX(β), then α(X) =

β(X) so that c2(y)α(Y ) = c2(y)β(Y ). Thus since c2(y) is cartesian, α(Y ) = β(Y ) and evX
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is faithful. That is full follows immediately from the definition of α(Y ) : c1(Y ) // c2(Y )
as that unique arrow which makes the diagram

(15.1.2) c1(Y )
c1(y)

//

α(Y )

��

c1(X)

f

��

c2(Y )
c2(y)

// c2(X)

commutative for a given f ∈ HomFX (c1(X), C2(X)).
Now suppose that F is a fibration for which some cleavage ℵ has been chosen. Let

C ∈ Ob(FX). We define a cartesian E-functor C∗ : E/X // F via the assignment

(15.1.3) Y1
α //

y1
  

Y

y2��

X

7−→ C∗(y1)

‖

C(α)
// C∗(y2)

‖

y∗1(C)
α(C)

// y∗2(C)

where y∗1(C) and y∗2(C) are the chosen inverse images of C by y1 and y2, and α(C) is that
unique arrow in F which projects onto α and makes the diagram

(15.1.4) y∗1(C)

Cy1
""

α(c)
// y∗2(C)

Cy2
||

C

commutative, with Cy1 and Cy2 the morphisms of transport for the cleavage ℵ. Note that
since Cy2α(c) = Cy1 , the fact that Cy1 and Cy2 are cartesian focus on α(C) to be cartesian

as well. Moreover, if f : C // D is an arrow in FX , the unique arrow y∗1(f) in F which
projects onto Y1 and makes the diagram

(15.1.5) y∗1(C)
Cy1 //

y∗1(f)

��

C

f

��

y∗1(D) // D

commutative, clearly defines a natural transformation f ∗ : C∗ // D∗ . Finally, the as-

signment C � // C∗ defines a functor, substitution at X,

(15.1.6) subX : FX // CartE(E/X,F)
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which is clearly a quasi-inverse for evaluation at X. In fact, if the cleavage used to define
the functor subX(C) = C∗ is normalized, than this quasi-inverse defines a functorial
section for the evaluation functor.
(15.2) Definition. For any fibration F, the assignment

(15.2.0) Y � //

f

��

CartE(E/Y,F)

X � // CartE(E/X,F)

CartE(E/f,F)

OO

defines a presheaf of categories CartE(E/- ,F) in Ê (provided the fibers of F are of the ap-

propriate size). Considered as a category object in Ê, it will be called the cartesian inter-
nalization of the fibration F. The split fibration which this category object defines over Ê
will be called the canonical extension of F to Ê and denoted by F̂ = EXX(CartE(E/- ,E)).

Its restriction to E is the split fibration defined by the functor X � // CartE(E/X,F) .

It will be denoted by S(F) and called the (right adjoint) split fibration associated with F.
(15.3) Proposition. The assignment to each object X in E of the functor evaluation at
X has the natural structure of a morphism of pseudofunctors (7.10) from the (canonical)
splitting, CartE(E/- ,F), associated with S(F) to the pseudofunctor Fχ defined by any
cleavage χ associated with the fibration F.

As a morphism of pseudofunctors, it is an equivalence with quasi-inverse defined
through substitution at X.

If F is a split fibration, then the functor substitution at X becomes a natural trans-
formation and defines an internal functor from the category object in Ê defined by any
splitting of F into the cartesian internalization CartE(E/- ,F) of the fibration F. This
internal functor is an essential equivalence (i.e., a fully-faithful and essentially epimorphic
functor in CAT(Ê) ) but does not have evaluation at X as internal quasi-inverse.

In effect let ℵ be a cleavage for the fibration F, and f : Y // X an arrow in E.

(15.3.0) FℵX

Fℵf

��

subX // CartE(E/X,F)
evX //

CartE(E/f,F)

��

FℵX

Fℵf

��

FℵY // CartE(E/Y,F) evY
// FℵY

βℵf 11 αℵf 22
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We define natural isomorphisms αℵf : evY ◦ CartE(E/f,F) ∼ // FℵX ◦ evx and

βℵf : subY ◦ Fℵf
∼ // CartE(E/f,F) ◦ subX as follows: If θ : E/X // F is a cartesian

E-functor, then since the diagram

(15.3.1) Y

f
  

f
// Y

idX
~~

X

is commutative in E/X, θ(f) : θ(f) // θ(idX) is a cartesian arrow in F which projects

onto f and has evX(θ) = θ(idX : X // X) as its target and

evy ◦ CartE(E/f,F)(θ) = evy(θ ◦ E/f) = θ ◦ E/f (idy) = θ(f ◦ idy) = θ(f) as its source.
If ℵ is a chosen cleavage for F , then Fℵf ◦ evX(θ) = fℵ(θ(idx)) is the chosen inverse

image of θ(idx) by f which has its morphism of transport fχ : fχ(θ(idx)) // θ(idx) also

projecting on f : Y // X in F. Thus there exists a unique Y -arrow (necessarily an

isomorphism since θ is cartesian) αℵf : θ(f) ∼ // fℵ(θ(idx)) which makes the diagram

(15.3.2) fℵ(θ(idx))

αℵf

��

// θ(idx)

θ(f)

θ(f)

99

commutative. The so defined α is clearly natural and defines a morphism of the canonical
splitting of S(F) to the pseudofunctor defined by the cleavage ℵ. Note that even if ℵ is a
splitting for F, α is not necessarily the identity unless F happens to be discrete.

We now turn to the definition of βℵf . If A ∈ Ob(Fℵx) then fℵ(A) : fℵ(A) // A ,

the morphism of transport at A for the cleavage ℵ, has as source the value of Fℵf at A.

subY (Fℵf (A)) is then the functor which has its value at the object t : T // Y of E/Y
the inverse image tℵ(fℵ(A)) ∈ Ob(FT ). Now on the other side of the square,
CartF(E/f)(subX(A)) = subX(A)◦E/f is the cartesian functor whose value at the object

t : T // Y of E/Y is the object (ft)ℵ(A), again in FT . Thus we may use the canonical

isomorphism ℵ(t, f) : tℵ(fℵ(A)) ∼ // (ft)ℵ(A)

(15.3.3) (ft)ℵ(A)

((
tℵ(fℵ(A))

ℵ(f,t) o

OO

// fℵ(A) // A
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to define βℵ(A) : subℵy ◦ Fℵf (A) // Cart(E/f) ◦ subx(A) as the natural isomorphism whose

value at t ∈ Ob(E/Y ) is just ℵ(f, t). This definition again clearly defines the desired natu-
ral isomorphism βℵf . Note here that if, in contrast to the definition of αℵf , if ℵ is a splitting

for the fibration F, βℵf is the identity so that substitution becomes a natural transforma-
tion of presheaves of categories and thus defines a functor of the corresponding category
objects

sub: F // CartE(E/- ,EXX(F ))

in Ê. Moreover, since for each X, subX is fully faithful with evX as a quasi-inverse, sub
is in fact an essential equivalence of category objects in Ê (actually injective on objects
provided ℵ is normalized as it is usually required to be). Since ev is not necessarily a
natural transformation and thus does not lie in CAT(Ê), it follows that sub does not in
general have a quasi-inverse in CAT(Ê) and Proposition (15.3) is established.

(16.0) The use of the category object in Ê CartE(E/- ,F) and the associated sheaf func-

tor P � // a(P ) now will allow us to internalize the notion of completeness of the fibra-

tion F within the topos Ê of presheaves on E. With this characterization the principal ad-
vantage of CAT/E over the more manageable topos Ê as a “common home” for both pre-
sheaves and fibrations disappears since all relevant information about F can be expressed
in terms of CartE(E/- ,F) using the fact that HomÊ(P,CartE(E/- ,F) ≈ CartE(E/P,F)
established in (I7.9). The characterization turns out to be surprisingly simple to state
and allows a unification of the preceding three descriptions of descent theory. The pro-
cedure is given for groupoids in the text (I6 and I7) but with minor modifications of the
definitions and the replacement of “torsor under a groupoid” with “locally representable
internal presheaf on a category” in the proofs all of the results remain valid as stated in
the text. We leave this modification to the reader and will content ourselves here with
a few observations about the re-formulation of the basic notions of descent for a pseudo-
functor FC( ) on Eop in terms of the category object CartE(E/- ,F) in Ê, defined through
the fibration F associated with Fc( ).

(16.1) First note that if C = (Xα
xα // X)α∈I is a covering of X in E, then in Ê we may

define its nerve as the simplicial object Ner(C/X)

(16.1.0)
∐
Xα ×X Xρ ×X Xγ

//
//
//

∐
Xα ×X Xα

//
∐
Xα

// X

in Ê which always exists (independently of the existence of fiber products or coproducts
in E) with the identification of the Xα with the corresponding representable functors in
Ê. Now in Ê using the properties of CartE(E/- ,F), in particular (I 7.9), it is easy to

see that a descent datum on the pseudo functor Fc( ) over the covering C = (Xα
// X)
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( 4.8 ) corresponds to nothing more than a simplicial map

(16.1.1)
∐
Xα ×Xρ ×Xγ

//

������

Ar(CartE(E/- ,F))×ob Ar(CartE(E/- ,F))

������∐
α,β∈I×I

Xα ×X Xβ
//

����

Ar(CartE(E/- ,F))

����∐
α∈I

Xα
//

��

OO

Ob(CartE(E/- ,F))

OO

X

from the (positive part of) nerve of C into the nerve of the category object CartE(E/- ,F),
while a morphism of descent data corresponds to a homotopy of the corresponding simpli-
cial maps. (Or. if one prefers, to internal functors and natural transformations from the

groupoid
∐
Xα ×Xβ //

//∐
Xα into the category CartE(E/- ,F).

In effect, the translation is simple, for instance

Nat(
∐
α∈I

Xα,Ob(CartE(E/- ,F)))
∼−−−−→

∏
α∈I

Nat(Xα,Ob(CartE(E/- ,F)))
∼−−−−→

∏
α∈I

Ob(CartE(E/Xα,F))
∼−−−−→

∏
α∈I

Ob(FcXα)

Thus the map
∐
Xα

// ob(CartE(E/- ,F)) corresponds to a family of objects in the
fibers above the Xα of the covering. Similarly the map∐

Xα ×Xβ
// Ar(CartE(E/- ,F))

corresponds to a family of (necessarily) isomorphisms of (A 4.8.0) and the simplicial iden-
tities then are equivalent to the cocycle condition (A 4.8.2). Thus using CartE(E/- ,F)
a descent datum really becomes a “Čech-cocycle on the covering with coefficients in a
category” in Ê.
(16.2) Moreover the image of

∐
Xα

// X is the covering subfunctor R �
�

// X of the

topology on E and since the category Nat(R,CartE(E/- ,F)) is equivalent to the category
CartE(R,F), which is, in turn, equivalent to the category of descent data in Fc( ) over the

covering (Xα
// X) we see that the canonical functor

(16.2.0) HomÊ(R,CartE(E/- ,F)) // SimplÊ(Ner(C/X),CartE(E/- ,F))

defined by restriction along the epimorphism
∐
Xα

// R is an equivalence of categories.

From this it follows that the category object CartE(E/- ,F)) is always complete in the
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canonical topology of Ê and that for Fc( ) to be complete in the topology of E, it is
necessary and sufficient that the canonical functor

(16.2.1) Nat(X,CartE(E/- ,F)) // SimplÊ(Ner(C+/X),CartE(E/- ,F))

defined by restriction along the covering transformation
∐
Xα

// X be an equivalence

of categories, i.e. that CartE(E/- ,F) be complete in the induced topology on Ê. In
this fashion external completeness of Fc( ) becomes internal completeness of CartE(E/- ,F)

in the induced topology on the topos Ê, and completes the translation of the original
Grothendieck formulation of descent into terms of the internal category theory of Ê as
done in I6 and I7 of the text.
(16.3) In similar terms the second version also becomes immediate in Ê; since for

any presheaf P : Eop ∼ // ENS , lim
←−

P ∼ // Γ(P ) = Nat(1, P ) and the pull back of

CartE(E/- ,F) over P , admits the equivalence

(16.3.0) CartE(E/- ,F)) P
≈ // CartE/P (E/P/- ,E/P ×E F)

the chain of isomorphisms and equivalences

lim
←−

CartE(E/- ,F)
∼−−−−→ Γ(CartE(E/- ,F)) = Nat(1,CartE(E/- ,F))

≈−−−−→ CartE(E/1,F)
∼−−−−→ CartE(E,F)

≈−−−−→ lim
←−

Fc( ) ,

the formulation of (A 5.5) becomes an immediate consequence. Note that for a presheaf
of categories C, the canonical functor substitution in Ê

sub: C // CartE(E/- ,EXXC)

is only an essential equivalence in Ê and thus the canonical functor

lim
←−

C // lim
←−

CartE(E/- ,EXX(C)) ≈ lim
←−

C

is not an equivalence unless C is complete in the canonical topology on Ê. The objects of
lim
←−

C are thus simplicial maps from a covering of all of E rather than compatible families

of elements of the C(X).

(17) The Completion of a Pre-complete Fibration.
(17.0) Our final comments of this appendix will be devoted to the description of the
completion of a pre-complete fibration since in the case of the description is particularly
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nice and will justify our handling in the text of the pre-stack of pre-ties over the original
topos.
(17.1) Theorem: Let Fc( ) be a pre-stack so that its associated fibration F is pre-complete.

Then the presheaf of categories LCartE(E/- ,F) is complete in the topology on E, with
the fully faithful bicovering cartesian functor

LSF

=

F

88

// EXXE(LCartE(E/- ,F))

induced by ` : CartE(E/- ,F) // LCartE(E/- ,F) as a universal map. Moreover, the

canonical fully faithful covering monomorphic functor LSF // KSF induced by the
fully faithful bicovering functor

`L : LCartE(E/- ,F) // LLCartE(E/- ,F) = aCartE(E/- ,F)

is a cartesian equivalence of fibered categories so that the fully faithful bicovering functor
F // KSF may equally be taken as a sheaf theoretic completion of F (c. f. GIRAUD
(1970)).

In effect let C = CartE(E/- ,F), then using I7.11(c) and (d) we know that the com-
posable pair of canonical functors

(17.1.0) C
`C
// LC

`LC
// aC (= LLC)

are both fully faithful since F is pre-complete. Thus let

C/X :
∐
Xα ×Xβ

//
//
∐
Xα

//

""

X

R
?�

OO

be the nerve of a covering of X and d : C/
+

X // LC be a simplicial map (i.e. a descent

datum over C/X in EXX(LC); we wish to show that the canonical functor (obtained by

composition) triv(p) : HomÊ(X,LC) // SimplÊ(C/X,LC) is an equivalence of cate-
gories.

We first note that triv(p) is fully faithful: Since the commutative diagram of categories
and functors

(17.1.1) HomÊ(X,LC)
`fC

//

triv(p)

��

HomÊ(X, a(C))

triv(p)

��

SimplÊ(C+/X,LC)
`LC

// SimplÊ(C+/X, aC)
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has its top and bottom functors fully faithful (since `LC is fully faithful) and its right hand
side functor fully faithful (since any sheaf of categories is always pre-complete), it follows
that the left hand side

p : HomÊ(X,LC) // SimplÊ(C+/X,LC)

is fully faithful, as desired.

We now shall show that p∗ is essentially surjective. Thus let d : C/X+ // LC be a

descent datum. We wish to show that there exists a map d′ : X // Ob(LC) such that

the trivial simplicial map: d′p : C+/X // LC is isomorphic to d in SimplÊ(C+/X,LC):

Thus consider d0 :
∐
Xα

// Ob(LC) ; since

`Ob(C) : Ob(C) // LOb(C) (= Ob(LC)) is bicovering,

d#
0 : Ob(C)×Ob(LC)

∐
Xα

//
∐
Xα

is also bicovering. Thus if we represent its source as a quotient of representables∐
Yγ // Ob(C)×Ob(LC)

∐
Xα , we obtain on composition the following diagram:

(17.1.2) Ar(C) //

����

LAr(C)

����

∐
Yγ ×X Yξ

r1 //

����

∐
Xα ×X Xβ

����

88

Ob(C) // LOb(C)

∐
Yγ

d′0

99

r0 //

q̄

�� ��

∐
Xα

d0

88

p̄

����

R′ �
�

//
� x

iR̄ ++

R
� _

iR
��

X
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in which r0 :
∐
Yγ //

∐
Xα is covering and has the square

(17.1.3)
∐
Yγ ×X Yξ

r1 //
� _

��

∐
Xα ×X Xβ

� _

��∐
Yγ ×

∐
Yγ

r0×r0 //
∐
Xα ×X

∐
Xα

cartesian since pr0 = q (so that the equivalence relation <(q̄) ∼ //
∐
Yγ ×X Yξ is iso-

morphic to the inverse image under r0 of the equivalence relation
<(p) ∼ //

∐
Xα ×X Xβ ).

Letting C ′/X be the nerve of the covering
∐
Yγ

q
// X , we see that the ri de-

fine a simplicial map of coverings r : C ′+/X // C+/X and thus by composition with

d : C+/X // LC a simplicial map dr : C ′/X // LC in which `<(`)d
′
0 = d0r0.

We now claim that since ` : C // LC is fully faithful, d′0 :
∐
Yγ // Ob(C) can be

extended to a full simplicial map (descent datum) d′ : C ′/X // C such that ` d′ = d r:

In effect recall that for any augmented simplicial object X+. // X in any category, a

simplicial map s : X+. // Ner(C) into the nerve of a category may be described as the

set of (normalized) “l-cocyles” of the co-complex of categories and functors obtained by
“homing” the complex term by term into the category C:

Hom(X+. ,C) : Hom(X0,C)
//
// Hom(X1,C)

//
//
//

oo Hom(X2,C) ,

i.e. an object x of Hom(X0,C) together with an arrow f : d1(x) // d0(x) in Hom(X1,C)

such that d0(f)d2(f) = d1(f) and s0(f) = id(x) while a homotopy of such l-cocycles is
an arrow h : x1

// x2 in Hom(X0,C) such that f2dl(h) = dl(h)fl. If X. is the nerve
of a covering then any such f is necessarily an isomorphism. Now in the case at hand
`C : C // LC is fully faithful so that we have a map of co-complexes of categories and
functors

Hom(X+. , `C) : Hom(X+. ,C) // Hom(X+. , LC)

which is term by term fully faithful and in which we have an object
α′0 :

∐
Yα // Ob(C) whose image under `C is supplied with a cocycle structure in

Hom(X+. , LC). Since Hom(Xi,C) // Hom(Xi, LC) is fully faithful, d′0 is supplied with

a cocycle structure d′ in Hom(X+. ,C) whose image under `C is dr. Thus we have obtained
the desired descent datum d′.

We may now use the fact that C = CartE(E/- ,F) is complete in the canonical topology

to obtain an arrow x : R′ // Ob(C) such that the trivial map x q̄ : C ′/X // C is

isomorphic to d′ : C ′/X // C . Now x : R′ // Ob(C) has as its source a covering
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subfunctor of X and thus, by definition of L, defines an arrow v(x) : X // LOb(C)

such that `Ob(C)x = v(x)iR′ . We claim that the trivial map defined by v(x)p is isomorphic
to d in SimplÊ(C+/X,LC). For this note that v triv(v(x)p) = `C triv(xq̄) and since
triv(xq̄) is isomorphic to d′, `Cd

′ is isomorphic to `Ctriv(xq̄). Thus since `Cd
′ = dr, we

have that dr is isomorphic to triv(v(x)p)r, that is their restrictions along r are isomorphic.
Now to conclude that triv(v(x)p) and d are isomorphic it will be sufficient to observe that
`LCd and `LCtriv(v(x)p) are isomorphic since `L : LC // LLC = aC is fully faithful(
and what we have at present is that `LCdr and `LCtriv(v(x)p)r

)
. But LLC = aC is a

sheaf and thus since

(17.1.4) SimplÊ(C+/X, a(C)) r∗ // SimplÊ(C ′/X, a(C))

SimplÊ(a(C+/X), a(C)) ar∗ //

o

OO

SimplÊ(a(C ′/X), a(C))

o

OO

is commutative with the vertical arrows isomorphisms of categories we will have the
desired conclusion provided that the functor restriction along ar is fully faithful. But

by construction the simplicial map r : C ′+/X // C/X (viewed as a functor between

groupoids) is fully faithful and has r0 : Ob(C ′+/X) // Ob(C/X) covering, hence

ar : a(C ′+/X) // a(C+/X) is an essential equivalence of groupoids (since a is left

exact and a(r0) is an epimorphism). Thus the conclusion follows from the first part of
the proof of I7.4 of the text:

In a topos, the functor “restriction along an essential equivalence” H : J1
// J2 ,

Cat(H,C) : Cat(J2,C) // Cat(J1,C)

is always fully faithful for any category C.
This completes the proof of the first part of the Theorem (I7.1). For the second part

note that since the diagram of categories and functors

(17.1.5) HomÊ(X,LC)

iXR

��

trivp

))

HomÊ(R,LC) �
�

triviR

// SimplÊ(C/X,LC)

is commutative, if trivp is an equivalence, i∗R is as well since triviR is always fully faithful.
We may use this to establish that the fully faithful functor
`LC : LC // LLC = a(C) is essentially surjective for any representable X (so that the

fibrations LS(F) = EXX(LC) and KSF = EXX a(C) are cartesian equivalent: In effect con-
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sider any map X
x // LLC . Since `LC : LOb(C) �

�
// aOb(C) is a covering monomor-

phism, the pullback

(17.1.6) LC � � `LC // LLC

R �
�

iR
//

x#

OO

X

x

OO

has iR a covering monomorphism, thus by the above remark, there exists an arrow
x′ : X // LC such that x′ iR ∼= x#. Consequently, `LCx

′ iR ∼= x iR and thus `LCx
′ ∼= x

since LLC is a sheaf. Thus a(C) is also complete in the topology of E. The univer-

sal property of a : F ≈ // SF ≈ // LSF ≈ // KSF is easily seen: In effect, using Lemma
(I7.13) of the text, if G is a complete fibration, then we have a chain of cartesian equiv-

alences G ≈ // SG ≈ // LSG ≈ // KSG . If F is pre-complete then LSF ≈ // KSF are
both complete and since KSF represents the associated sheaf of SF, we obtain the chain
of equivalences

(17.1.7)

CartE(F,G)
≈−→ CartE(SF, SG)

≈−→ CartE(SF,KSG)
≈−→ CartE(KSF,KSG)

≈−→ CartE(KSF,G)
≈−→ CartE(LSF,G) ,

as desired.
(17.2) As a particular case note that if C is a sheaf of categories, then EXX(C) is precom-
plete and if TORSE(C) represents the fibered category of locally representable functors

( above a(X) under C in E˜ ), then the canonical functor

(17.2.0) R : EXX(C) −→ TORSE(C)

which sends any X
x−→ Ob(C) to the representable internal functor defined by

a(x)
x̃−→ Ob(C) is fully faithful and covering (since by definition any member of TORSE(X;C)

is locally representable). Thus in Ê we have the commutative square of categories and
functors

(17.2.1) CartE(E/- ,EXX(C))

a`

��

R∗ // CartE(E/- ,TORSE(C))

aT

��

aCartE(E/- ,EXX(C))
a(R)

// aCartE(E/- ,TORSE(C)) .

Since TORSE(C) is complete, aT is an equivalence in Ê and a(R) is an essential equiva-
lence of sheaves of categories which is an equivalence because
aCartE(E/- ,EXX(C)) is complete. Thus in this case we have the equivalences
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(17.2.2) LCartE(E/- ,EXX(C))
≈−→ aCartE(E/- ,EXX(C))

≈−→ CartE(E/- ,TORSE(C))

as previously claimed in the text.
(17.3) Finally, note that the just described process works (after passage to a larger uni-
verse) even if the fibers of the original pre-complete fibrations were not small (as is the
case for the fibered category of pre-ties of a topos). A principal advantage of using LSF as
the completion in this case is the simplicity of the description of the completion in terms
of E: Since

LCartE(E/- ,F)(X) = lim
−→

R∈Cov(X)

HomÊ(R,CartE(E/- ,F)) = lim
−→

R∈Cov(X)

CartE(R,F) ,

we see that the completion of a pre-complete fibration may be described as equivalence
classes (under refinement) of descent data on coverings, each of one of which can be
represented concretely in terms of the fibration and a given covering as was done in part
II of the text for the resulting fibered category of ties of the topos E˜.
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