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COMMENTS ON THE DEVELOPMENT OF TOPOS THEORY

F. WILLIAM LAWVERE

Presentation

Summarizing several threads in the development of the Elementary Theory of Toposes in
its first 30 years 1970-2000, this historical article prepares the reader for later publication
such as Johnstone’s Elephant (2002) and for the author’s own steps toward an improved
foundation for algebraic geometry in the Grothendieck spirit, but using the tools of cate-
gorical logic and taking up the theme of axiomatic cohesion.

Addendum:

An important fact should be noted. It was inaccessible to me at the time of writing this
historical paper. It concerns the origins of the function-space concept that now embodies
the basic topological example of cartesian-closed category. I cited seven contributors to
that subject at the end of section 4. Later, when I telephoned David Gale to inquire
about his 1950 paper, he informed me that indeed it was in lectures at Princeton in the
late 1940’s that Witold Hurewicz defined and used the notion of k-spaces to present his
solution of the problem that he had posed to Fox (and which Fox had solved for the se-
quential case in the work cited here). It seems that (directly or indirectly) it was Hurewicz
himself who by that example inspired the other six works cited here.

There are two corrections to note:

On p. 719, the caption on the photo of the author should read F. William Lawvere.
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Comments on the Development of Topos Theory*

F. William Lawvere

State University of New York at Buffalo

0 The categorical tool applied to algebraic
geometry leads to the birth of toposes

Unification and simplification are necessary not only for the dissemination of results, but
also for the coherent advance of research in the diverse branches of mathematics. The
need for unification and simplification to render coherent some of the many mathematical
advances of the 1930’s led Eilenberg and Mac Lane [23] to devise the theory of categories,
functors and natural transformations in the early 1940’s. It is useful to distinguish general
categories from the linear ones whose explicit study began with Mac Lane in 1950 [78].
The combination of linearity and exactness known as ‘abelian’ categories was perfected
in the 50’s and early 60’s. That theory continues to enjoy many applications, for example
through the use of derived categories in analysis. A key step, midway in that develop-
ment, was Grothendieck’s Tohoku paper [42], which showed that this conceptual basis
for homological algebra over a ring also applies to linear objects varying as sheaves over
a space. Then the fact that the exactness concepts also apply in many nonlinear categories
became gradually more known and used. The concept of adjoint functors, discovered by
Kan (in the mid-1950’s) was rapidly incorporated as a key element in Grothendieck’s
foundation of algebraic geometry [1] and in the new categorical foundation of logic and
set theory [70,71]. Grothendieck and his circle at the Institut des Hautes Etudes Scien-
tifiques near Paris developed in the early 1960’s the concept of topos for use in geometry;
a simplification of that concept with additional uses was proposed by me at the Istituto
di Alta Matematica in Rome in 1969. After an initial development 1969-70 in collabo-
ration with the algebraic topologist Tierney (who had independently been lecturing on
the need for an axiomatic sheaf theory), this simplified topos theory was presented to the
1970 International Congress of Mathematicians at Nice [72]. Further development of that
proposal led to many papers and books, but in spite of these publications, many students
find it difficult to discern what topos theory is, where it came from, and where it is going.
I hope that the following sketch will help to overcome this difficulty.

The power-set axiom, which defines toposes among all categories, is discussed in
detail in section 4 below.

Since I cannot give here a step by step description, I concentrate on the history of the
mathematical ideas, both as a guide to those who want to learn and further develop these
ideas and also as an aid to those who want to trace the dates and publications. I apologize
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for inevitable omissions. Earlier versions of this paper were seen by Barr, Gabriel, Freyd,
Johnstone, Kock, Mac Lane, Ramachandran, Schanuel, and Street, whose comments are
much appreciated.

1 Functional analysis and algebraic topology need
a common home with a flexible frame

The core of mathematical theories is in the variation of quantity in space and in the emer-
gence of quality within that. The fundamental branches (such as differential geometry
and geometric measure theory) gave rise to (and extensively use) the two great auxil-
iary disciplines of algebraic topology and functional analysis. A great impetus to their
crystallization was the electromagnetic theory of Maxwell-Hertz-Heaviside and the ma-
terials science of Maxwell-Boltzmann. Both of these disciplines and both of these ap-
plications were early made explicit in the work of Volterra. As pointed out by de Rham
to Narasimhan [88], it was Volterra who in the 1880’s not only proved that the exterior
derivative operator satisfies d*> = 0, but proved also the local existence theorem which
is usually inexactly referred to as the Poincaré lemma; these results remain the core of
algebraic topology as expressed in de Rham’s theorem and in the cohomology of sheaves.
Volterra’s theory of functions of lines, presented in his 1912 Paris lectures and later called
‘functional’ analysis, was quite effectively developed by his students and by Silva and
Zorn (as pointed out by Fichera in [26]), taking open sets and closed sets not as primitive,
but as derived from more fundamental structure. In the period 1950-85 that form of func-
tional analysis was largely neglected, but it was revived in the 1980’s when some of its
key problems were solved and its applications to infinite-dimensional physics were reac-
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tivated by the explicitly categorical work of Kriegl and of his collaborators Frolicher, Nel,
and Michor [32], [65], [67], and in the explicitly topos-theoretic work of Penon, Dubuc,
and Bruno [92], [22], [6].

Indeed, in a sense, the recent work in topos theory finally organically reunites those
two strands from Volterra (algebraic topology and the covariant functional analysis ex-
plained below), strands which had long been intertwining in

- Grothendieck’s work on nuclear spaces [41] and on holomorphic duals [40];

— the Grauert-Cartan-Serre [38], [13] results on coherent analytic sheaves (where, as
Houzel and Douady pointed out more explicitly in the 1970’s [50], [20], nuclear
bornological functional-analysis plays a key role in establishing the finiteness of
certain ‘algebraic-topological’ Betti numbers);

— the Sato-Kashiwara [59] microfunctional approach to the theory of waves.

2 A flexible frame for logic and set theory
is developed first

In spite of its geometric origin, topos theory has in recent years sometimes been per-
ceived as a branch of logic, partly because of the contributions to the clarification of logic
and set theory which it has made possible. However, the orientation of many topos theo-
rists could perhaps be more accurately summarized by the observation that what is usually
called mathematical logic can be viewed as a branch of algebraic geometry, and it is useful
to make this branch explicit in itself. The central examples studied by the early model-
theorists Birkhoff [5], Tarski [100] and Robinson [94] demonstrate algebraic geometry as
the historical origin, and the advances made in the past 15 years by their successors van
den Dries [21], Macintyre [77], and others strikingly demonstrate the continuing value
to geometry. The categorical logic merely systematically shows that there is no need
for a separate, special logical terminology and notation, since implication and quanti-
fiers are adjoint functors of kinds that arise much more generally in non-poset categories.
(Specifically, implication is the poset case of the function-space transformation which is
fundamental to functional analysis, as had been observed by Curry; and quantification
is the special application, to truth-valued functors, of the general Kan extension induced
by change of domain [60]). Moreover, models themselves are functors [69], since what
syntactical ‘theories’ present is most effectively viewed itself as a certain sort of small
category. That observation was worked out by Makkai & Reyes [83], after crucial con-
tributions by Barr concerning regular categories [2] and the existence of Boolean-valued
points [3]. Work of Joyal [56] and Freyd [30], revolving around the 1972 discovery that
the completeness theorem of first-order logic is a consequence of Deligne’s theorem [17]
which affirms the existence of points for coherent toposes, also played an important role.

But there is a key refinement to the ‘classical’ Boolean mathematical logic which
is forced by the explicit recognition (which topos theory describes) of the cohesive and
variable nature of sets. To workers in algebraic geometry and analysis, it may appear
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somewhat excessive to detour through an elaborate Mitchell-Bénabou language which in
turn requires a Kripke-Joyal semantics in order to get back to the mathematical content of
a specific topos. (That sometimes-recommended procedure is strictly analogous to defin-
ing a group to be the quotient of the free group generated by itself, which analogously is
occasionally useful.) The key clause in that semantics was presupposed in the title ‘Quan-
tifiers and Sheaves’ [72], but the linear case was a theorem in Godement 1958 [37] and
indeed just expresses in terms of 20th century concepts the content of Volterra’s local
existence theorem. Briefly,

a) the rule of inference for existential quantification is just a symbolic expression of
the universal property enjoyed by the geometric image of any map (not only in the
category of sets where the axiom of choice holds, but) in any topos, whereas

b) afigure lying in such an image comes in fact only locally from figures in the domain
of the map.

For example, the image of the complex exponential map is the whole punctured plane, but
complex logarithms exist only locally. This theorem of local existence would be trivial if
all objects were projective, as the axiom of choice would require. Long before this logical
framework was pointed out (and Bénabou [4] and Joyal [56] formalized it), the mathe-
matical experience of using sheaves in geometry and analysis had produced many correct
definitions which extended concepts from the constant to the variable realm. For example,
the concept of local ring (Hakim [48]), the concept of multiplicatively-convex bornologi-
cal algebra (Houzel [49]) and many other concepts were sheafified by inserting the phrase
‘there exists a covering on which. ..’ in just the right places in the definition. Similarly,
Grothendieck and others unerringly recognized which kinds of mathematical structures
are ‘preserved by all functors which preserve finite limits and arbitrary colimits’. (A very
impressive list was produced by Grothendieck [47] during his 1973 stay in Buffalo; during
that same visit he also advocated the abandonment of his earlier complicated definition
of ‘scheme’, but unfortunately the simpler alternative he offered does not seem to have
found its way into the textbooks.) However, less experienced mathematicians have found
useful an explicit presentation of the positive logic which formalizes those definitions and
classes of structures.

The fundamental role of positive logic (also known as coherent logic or geometric
logic) suggests a refinement of the standard presentation of predicate logic. Predicates are
names for subobjects, and the basic possibility, for two subobjects of the same object (or
universe of discourse), that the first be included in the second, is logically the assertion
that one predicate entails a second. In a topos, the subobjects of a given domain form
a distributive lattice, reflected logically in terms of conjunction and disjunction opera-
tions on predicates, satisfying suitable adjointness relations (rules of inference) relative
to entailment. Entailment, finite conjunction, and disjunction are preserved by substitu-
tion along (the name of) an arbitrary domain-changing map. Substitution signifies inverse
image of subobjects, an operation which has ‘image’ as left adjoint; the latter is known
logically as existential quantification along the map. Positive logic does not explicitly
include the higher operation of universal quantification (nor its special cases of implica-
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tion and denial) even though right adjoints to internal substitution are also present in any
topos, because those right adjoints are typically not preserved by the more general substi-
tution into an arbitrary continuous map between toposes. Indeed, those continuous maps
enjoying such additional preservation (of first-order logic with alternating quantifiers) are
just the open continuous maps. Thus although in full first-order logic the entailment of
two predicates can equivalently be asserted by saying that their universally-quantified
implication has the nullary property of being ‘true’, in positive logic the fundamental
relations remain the binary entailments one for each domain (including cartesian prod-
ucts of basic domains). From the positive standpoint, quantifier elimination is related to
quantifier definability, in the sense that some favored theories have sufficiently strong ax-
ioms permitting the outright definition of universal quantification (e.g. implication and
denial) in terms of the positive operations. Moreover, if we restrict to Boolean toposes,
positive logic is just as expressive as full first-order logic, by allowing additional predi-
cates; namely, each occurence of a negative formula in an axiom can be viewed as a new
primitive predicate, characterized by two lattice axioms as an appropriate complement.

The phrase ‘elementary topos’ is a confusing relic of the relation with logic, the
term ‘elementary’ having been used by some logicians as synonymous with ‘first order’.
The origin of the phrase lies in the useful fact that the concept of topos in the Lawvere-
Tierney sense is definable in a logical language far weaker than the infinitary higher-order
language used originally by Grothendieck and his students. (Internally any topos permits
interpretation of higher-order concepts, as explained below, but that is a different matter.)
But in fact, this needed external language is actually far weaker than first-order, being
essentially equational, even the positive logical operators being needed at that level only to
define special classes of toposes (such as the two-valued toposes or the toposes satisfying
the axiom of choice).
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3 Parameter spaces and Grothendieck toposes
relative to a base topos

The original Grothendieck toposes can be located [18] in the much broader class (of
toposes in the ‘elementary’ sense) using a special case of Grothendieck’s relativisation
concept, as follows: A continuous map (or geometric morphism) from one topos to an-
other is a functor with a left exact left adjoint. For a fixed topos S, an S-topos is one
equipped with a continuous map to § and boundedly-presented as an S-cocomplete cat-
egory; a map of S-toposes is a suitable quasi-commutative triangle of continuous maps
with lower vertex .§ (which implies that the adjointness, in the map between the two S-
toposes, is itself defined over S). Then if S happens to be a universe of abstract sets, the
category of S-toposes is equivalent to that of S-toposes in the sense of Grothendieck. To
say that a topos S is a universe of abstract sets is, for mathematical purposes, to say that it
satisfies the further properties of two-valuedness and the axiom of choice (which implies
[19] that all its subobject lattices are Boolean); axioms of strong infinity can be further
imposed on S if needed, since they too are categorical invariants. However, still useful
is the continuing program of recasting mathematics relative to an arbitrary base topos S
which satisfies much weaker requirements. Theorems in such a recast mathematics (be-
sides having more explicit proofs) often have content to the general effect that classical
theorems are stable under suitable continuous variation of parameters, when S is taken
to be a topos of sheaves on the parameter space. Moreover, simpler statements can be
achieved if the baggage involved in the definition of the particular S can be suppressed.
In other words, a reference to classes being ‘small’ can often be interpreted in more than
amerely quantitative sense, since being parametrizable by an object of the base S may be
in fact a rich quality.

It is a theorem [18] that any S-topos can be constructed from S by a three-step zig-
zag: first, additional parameters are added from a chosen S-object, yielding a local home-
omorphism S’ —> S, i.e. a continuous map whose inverse functor actually preserves the
power-set construction; second, a locally-connected ‘surjection’ S —> §",i.e.acontinu-
ous map whose inverse-image functor has an S-adjoint on the left and is faithful, adds the
action (among the parameter-levels) of an internal S-category; and finally, an ‘inclusion’

SN S//, i.e. a continuous map whose forward functor is full and faithful, restricts to
those objects of S" which are compatible with a specified notion of covering. The last
equivalently amounts to requiring that the objects of s” satisfy some specified disjunc-
tive and existential axioms with respect to the action they have from S”. This elementary
theorem includes as a special case the theorem characterizing Grothendieck toposes via
sheaves of sets over general small sites. The importance of doing topos theory over a gen-
eral base topos S (even if § is restricted to be itself a Grothendieck topos, that is, even
if one is not concerned with non-standard analysis, independence results in set theory, or
higher-order recursion theory), is quite analogous to the importance, often emphasized
by Grothendieck, of doing commutative algebra over an arbitrary base ring; the compar-
ison of more-variable sets with less-variable ones arises along with and is similar to the
analogous comparison for variable quantities.
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Another conceptual characterization of S-toposes is that they are the lex-total ob-
jects in the realm of large S-parameterized categories [98], [99]. Here such a category is
called totally cocomplete if its Yoneda embedding has a left adjoint. This notion, due to
Street and Walters [99], has applications, described by Kelly [62].

The notion of a family of spaces parameterized by a space is most effectively treated
by geometers via a single map to the parameter space; the spaces in the family are the
fibers of the map; Grothendieck’s change-of-base relativization applies within any given
topos to yield, for any given object, a new topos of families parameterized by that given
base. The operation of sum (or total) of a family can only mean the left adjoint to the
inclusion of constant families, i.e. to the change of base; in this case the left adjoint is
merely the functor which forgets the map that told how the total was distributed over
the base. This tautologous meaning of sums is quite effective in usual mathematics since
the families that arise are not arbitrary, but are usually a priori bounded. The same idea
applies in set theory, except that the quest for ever-larger ordinals raises the question of the
existence of arbitrary families of small sets indexed by a small set. There are two standard
sorts of answers to this question in the form of large cardinal axioms: If by families we
mean those families definable in the first-order language whose alternating quantifiers
range over the set-category that we are describing, then the affirmation of their existence
is essentially equivalent to the replacement schema, so that the category is equivalent to
a category derived from a model of full Zermelo-Fraenkel set theory. (The inverse of the
equivalence is the classical Specker interpretation of ZF ‘sets’ as tree-like structures, also
described in an appendix to some editions of SGA4.) On the other hand, if by families
we mean ‘arbitrary’ families (this can be given a rational interpretation by imagining our
topos to be a special category object in another ‘larger’ topos), then the affirmation that
they are each derivable as the fibers of a single map in our topos is equivalent to the
‘Grothendieck universe’ property: our topos is equivalent to a category object which has
strongly inaccessible cardinality in the sense of the larger topos. Strong inaccessibility
is usually defined in terms of the existence of products of small families of small sets,
but that follows from the fact that our topos has map-spaces because the ‘product’ of the
family of fibers of a map is just the set of sections of the map. Of course, the product
functor is defined as the right adjoint to the inclusion of constant families, i.e. to the
change-of-base. Since that right adjoint exists for any topos (where, however, it consists
of the sections that are smooth in the sense of being themselves maps in the topos) one
continues to call it the infinite product and even to denote it by IT; it is doubtless not
coincidental that Weil much earlier used IT to denote a special case of this construction
arising in algebraic geometry.

4 Function spaces and cohesive power sets

The key advance in the Lawvere-Tierney formulation after the Grothendieck-Giraud for-
mulation of the topos concept is the explicit recognition of internal representability of
power sets (even in categories of non-abstract sets such as cohesive or variable sets). Thus
the power exploited by Cantor, Dedekind, and Hausdorff and other pioneers in the case
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of abstract sets became available also for direct use in geometry and analysis. The con-
tinuous maps (or geometric morphisms) in the 2-category of toposes do not necessarily
preserve this central structure up to isomorphism, but only up to a natural map. (This
‘laxity’ phenomenon would be strange for ordinary categories, but is common for other
2-categories, such as that of closed categories). Because power sets are injective objects,
their algebra can faithfully reflect the geometry (as shown in detail in Mikkelsen’s thesis
[84]); by contrast, most toposes do not have enough projective objects, which implies that
the commutation rule for internal existential quantification, as emphasized in (a) and (b)
in section 2, is really needed to move calculations ahead. The way in which the mere
existence of the power set functor implies the needed properties of toposes was elegantly
shown by Paré [91]. Thereafter, the simplest definition of ‘topos’ has been ‘category with
power set’.

The power set construction can usefully be seen as divided into two parts: First,
there is the map-space construction (discussed below) which is essential for calculus of
variations and for functional analysis generally (and for continuum physics), but which
when applied to a special codomain space yields the power set space of the domain space.
(In Synthetic Differential Geometry [64], with its projected application to Continuum
Dynamics [73,74], the application of the map-space construction to special, infinitesimal
domains yields the tangent bundle functor and higher jet-bundle functors in a form very
amenable to manipulation.)

Second, that special codomain, specifically a truth-value space or subobject classi-
fier, is assumed. This ‘objectifies the subjective’ in the sense that it postulates an object
which perfectly parameterizes the truth-values of judgements of the form ‘such and such
a figure belongs to such and such a subobject of its codomain’. By a method well un-
derstood by the pioneers of set theory and formalized for general toposes by Freyd in
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1972 [31], this in turn implies (provided the topos contains at least one object which is
not Dedekind-finite) that the subjective process of iteration can also be perfectly param-
eterized (by an absolutely-free Peano algebra; the method uses the fact that the class of
all subalgebras containing a given point is parameterizable and that any parameterizable
class of subobjects of a given object has an intersection, both of those facts following eas-
ily from the universal property of power sets). But in turn the parameterizability of com-
pleted iteration implies some physically counter-intuitive consequences such as Peano’s
space-filling curve and some methodologically awkward consequences such as Godel’s
incompleteness theorem. Thanks to recent detailed work by van den Dries [21] and others
(a kind of work that had been partly foreseen by Grothendieck in a discussion with me
in January 1982), it is now known that such consequences can be bypassed in the follow-
ing way: A suitable topos can be generated by a subcategory which contains sufficiently
many geometrically-reasonable spaces and maps, but which does not contain the infinite
discrete Peano algebras; although the latter do appear as subobjects (of the geometrical
spaces) defined by truth equations, they cannot be defined by equations valued in spaces
in the geometrical category itself.

The first part of the power set construction, the notion of map space, has seemed
objectively inevitable since Bernoulli and others pioneered the calculus of variations.
Namely, if a time interval, a body, and an ordinary space can be modelled as objects of
a category, then the space of all paths in the space, parameterized by the time interval in
ways allowed by the category, should also be an object, as should be the space of all allow-
able placements of the body in the space. Then a quantity which depends on placement,
such as potential energy, or a quantity which depends on path, such as squared velocity,
can be treated as another map in the category. Yet the three descriptions of a motion as
a path in placement space, a placement in path space, or simply as a map into ordinary
space from a space of pairs <particle, instant>, are all equivalent and indeed that equiva-
lence (for any three objects in the topos) is the axiom defining the map-space as an adjoint
functor. Typically there is an adequate notion of generalized ‘path’, so that an admissible
functional is just one which covariantly takes paths to paths; this was a key concept of the
Volterra school of functional analysis [24]. The fact that map-spaces enjoying that simple
adjointness axiom are not generally present in the usual category of topological spaces
was already noted by Fox [27], Kelley [61], Brown [8], Spanier [96], Steenrod [97], and
Day [16] and later by Frolicher [32], all of thm proposed more path-oriented categories
in order to achieve this fundamental construction.

5 Some classes of examples

How are examples of toposes constructed? Of course, sheaves of sets were needed as a
base for the categories of abelian sheaves on particular analytic or algebraic spaces treated
as in Leray, Oka, Cartan and Serre. Indeed, that is a very important line of development
continuing intensely today in partial differential equations, but for the history of that line I
refer to Gray [39] and Houzel [51]. Classically a sheaf on a space is a contravariant functor
(with pasting condition) on a poset of open regions in the space. But in some ways more
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typical are the toposes of set-valued functors on non-posets. Consider for example the
topos of simplicial sets which has enjoyed widespread use in algebraic topology since
1950, and whose special classifying role is explained in detail in Mac Lane and Moerdijk
[81], or the topos of functors from rings to sets which was the base for Cartier’s simplified
definition [14] of algebraic groups and which was the precursor of almost all constructions
of particular models of synthetic differential geometry [73,87]. A detailed treatment of a
topos of this kind which contains all analytic spaces as a full subcategory was given by
Grothendieck in the 1960 Cartan seminar [43] on families of analytic spaces, even before
Grothendieck’s general definition of topos was crystallized by Giraud in 1963 [36].

Intermediate in generality between a topos of general spaces and a topos of sheaves
on a particular classical space is the idea of a topos of sheaves on a generalized space;
most famous is the fact that sheaves on a particular kind of space, over which the implicit
function theorem does not hold, are not entirely determined by their restriction to subre-
gions. The fact that the implicit function theorem does not hold in algebraic geometry was
turned into a virtue by Grothendieck’s brilliant construction of the étale topos of an alge-
braic space, based on a particular site which is not a poset though still quite special. Even
older is the idea of a generalized space equipped not only with a poset of open regions,
but also with an action by homeomorphisms of a group. This category leads to a sub-2-
category of toposes which very effectively unites the whole development which started
with the Hurewicz-Hopf discovery of the effect of the fundamental group of a space on its
homology [79], by providing a universe in which the space, its covering spaces, and the
fundamental group itself are on the same footing and are connected by maps, and in which
the cohomology of the space and of the group are strictly instances of the same construc-
tion, namely that of the derived category of the abelianization of a topos. (The actions of
a group on sets constitute the objects of the simplest kind of Boolean topos.) Results of
Joyal and Tierney [58] and of Joyal and Moerdijk [57] extend these ideas to give a localic
groupoid presentation of the general topos, somewhat as the general space could classi-
cally be presented as a quotient of a zero-dimensional space; as Mac Lane and Moerdijk
point out in their useful summary of the field [82], this extended presentation has not yet
been analyzed in detail nor much applied. Johnstone [54] in proving some powerful rep-
resentation theorems concerning these extensions of the notion of generalized space, in
effect showed that the philosophical account common in the 1970’s of toposes (based on
parameterized variation and internal logic) is too restrictive, which led me in this paper to
base my account on the dialectical relations between cohesion and variation and between
the logic internal to a topos and internal to the category of toposes.

6 Some recent developments

Although the 25th anniversary of ‘elementary’ topos theory (along with the 50th anniver-
sary of category theory itself) was celebrated in Halifax in 1995, and although the fun-
damentals would seem to be well-established in the many papers and books previously
mentioned, new qualitative advances are ongoing. An example is the work of Funk, and
of Bunge-Funk and Bunge-Carboni [33], [12], [11].
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Following up on a 1966 Oberwolfach talk where I had proposed a theory of distri-
butions (not only in but) on presheaf toposes, in 1983 at Aarhus I posed several questions
concerning distributions on S-toposes. The base for the definition and questions is a pair
of analogies with known theories (commutative algebra and measure theory) for variable
quantities, coupled with the fact that there are many important examples of variable S-
valued ‘quantities’ where the domains of variation are S-toposes. The intensively variable
quantities are taken to be the sheaves on the topos, i.e. simply the objects in the cate-
gory. (Of course, the term topos means ‘place’ or ‘situation’, but Grothendieck treats the
general situation by dealing instead with the category of S-valued quantities which vary
continuously over it, as an affine K -scheme is described by dealing with the K -algebra of
functions on it. Perhaps to avoid confusion one should have used a distinct notion, E for
the situation and C(E) for the category of sheaves on E, but notational practice has used
the same symbol for both, even though functorially they are opposite in the same way
that X and C(X) are opposed in classical topology. In classical topology there is no strict
analogue, for real or complex continuous functions C (X), of the spatially-forward opera-
tion right adjoint to the homomorphism f* which pulls back continuous functions along a
general continuous map f.) These set-valued quantities can be added via S-parameterized
colimits in the topos, and they can be multiplied via finite limits of sheaves. A point is just
a continuous map to the given S-topos from S itself (which is of course the terminal object
in the 2-category of S-toposes); the inverse image part of (or evaluation at) the point is a
functor which preserves both the ‘addition’ and the ‘multiplication’.

Thus we follow the lead of analysis and define a distribution or extensively variable
quantity on an S-topos to be a continuous linear functional, or generalized point, i.e. a
functor to S which preserves S-colimits, but not necessarily the finite limits. For example,
given a small category C in S, the left actions of C on objects of S is an S-topos of
functions whose corresponding category of distributions or integration processes is just
the S-cocomplete category of right actions of C on objects of S (by a special case of
a theorem of Kan [60], [35].) It is easy to see that in that special example, where no
Grothendieck coverings intervene, the answer to the following question is affirmative. Is
there, for any given S-topos E another one M (E) whose points are just the distributions on
E ? This geometrical idea of the space of all measures on a given space can be described in
terms of the commutative algebra analogy as the symmetric algebra, that is, for a suitable
S-cocomplete category is it always possible to adjoin finite products (and more generally
fibered products) in a free way compatible with distributivity to obtain a category which
is the (category of sheaves on) an S-topos? That formulation relativizes and strengthens
the idea of M (E), so that like all 2-adjoints M is unique up to equivalence if it exists.

The question of existence seemed serious, since it is known that there is in general
no corresponding space F(E) of intensive quantities: while there is an easily-described
[104] topos F(1) = S(X) over S which is the ‘polynomial algebra’ or ‘affine line’ in that
the S-morphisms to it from any S-topos E precisely classify all the sheaves on (objects in)
E, function-spaces exist in Top/S only for ‘locally compact’ exponents E (i.e. only [55]
for retracts of coherent toposes). In 1995 Bunge showed that M (E) exists as an S-Topos
for every S-Topos E, a more elegant proof being given by Bunge and Carboni in [11].
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What examples of distributions can we expect to find? For any locally connected
S-topos A there is by definition a left adjoint to the left adjoint to the structural map to
S; this further left adjoint or ‘set of connected components’ functor is then automatically
a distribution on A which perhaps should be thought of as the counting measure since it
is invariant under all automorphisms of A (and even under all essential endomaps of A).
Now, as with any doctrine of extensive quantity, distributions can be pushed forward along
any continuous map between toposes, here just by composing the integration process with
the inverse image part of the map. Funk’s remarkable results include the fact that any dis-
tribution on any E is the push forward along some map, from some locally-connected A,
of the components counting measure on A. Among all such locally-connected A over E
which so represent a given distribution on E, there is a unique one closest to E; that one’s
relation to E turns out, according to work of Bunge and Funk, to be topos-theoretically
the same as that of a complete spread over E, the notion discovered by Fox [28] in his
topological investigation of ramified coverings. Still other relations with classical topol-
ogy continue to be discovered, for example Plewe’s description of a large class of descent
maps as triquotients in the sense of Michael [93], [85], also reported at the Halifax cele-
bration.

7 From and to continuum physics

What was the impetus which demanded the simplification and generalization of Gro-
thendieck’s concept of topos, if indeed the applications to logic and set theory were not
decisive? Tierney had wanted sheaf theory to be axiomatized for efficient use in algebraic
topology. My own motivation came from my earlier study of physics. The foundation
of the continuum physics of general materials, in the spirit of Truesdell, Noll, and oth-
ers, involves powerful and clear physical ideas which unfortunately have been submerged
under a mathematical apparatus including not only Cauchy sequences and countably ad-
ditive measures, but also ad hoc choices of charts for manifolds and of inverse limits of
Sobolev Hilbert spaces, to get at the simple nuclear spaces of intensively and extensively
variable quantities. But, as Fichera [25] lamented, all this apparatus gives often a very un-
certain fit to the phenomena. This apparatus may well be helpful in the solution of certain
problems, but can the problems themselves and the needed axioms be stated in a direct
and clear manner? And might this not lead to a simpler, equally rigorous account? These
were the questions to which I began to apply the topos method in my 1967 Chicago lec-
tures [73], [74]. It was clear that work on the notion of topos itself would be needed to
achieve the goal. I had spent 1961-62 with the Berkeley logicians, believing that listening
to experts on foundations might be a road to clarifying foundational questions. (Perhaps
my first teacher Truesdell had a similar conviction 20 years earlier when he spent a year
[15] with the Princeton logicians.) Though my belief became tempered, I learned about
constructions such as Cohen forcing which also seemed in need of simplification if large
numbers of people were to understand them well enough to advance further. Thus the the-
ory (as I had proposed in 1969 in Rome, and reported at the 1970 ICM) was first applied
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by Tierney [101] and Bunge [9] to questions such as the independence of the continuum
hypothesis and Souslin’s conjecture.

Indeed the key role of the power set (and the relative unimportance for the math-
ematics of space and quantity of the replacement schema) had emerged clearly from a
study of Scott’s many reformulations of mid-century set theory. But the key discovery
reported in the Rome lecture (after having been worked out at Eckmann’s Forschungsin-
stitut in Zurich) was that, not only does a power set functor P unambiguously exist in
a vast number of mathematically-arising categories, but that any Grothendieck topology,
i.e. any reasonable notion of preferred ‘covering’ permitting a restriction to ‘sheaf’ ob-
jects satisfying additional disjunctive or ‘existential’ conditions, is expressible as a single
map in such a category, indeed as an endomap of the truth-object P1 which subjectively
can be considered as a modal operator of the kind ‘it is locally the case that...’ .

That observation, together with the previous adjoint axiomatization of function
spaces, made it clear that by working at the topos level nearly all constructions and asser-
tions require only a finitary essentially algebraic equational language for formalization,
the infinitary higher-order languages with alternations of external Fregean quantifiers be-
ing unnecessary, not only for the axioms of the general theory of a topos, but also for
particularizing many very special kinds of topos, such as those arising in combinatorics
and differential geometry.

The negation-of-negation operator in Heyting logic was easily seen to satisfy the
Lawvere-Tierney axiom and is thus a particular example of a Grothendieck topology
available in any topos; it is not only central to the constructions which ‘force’ indepen-
dence results in set theory and which extract the minimal dense part [52] of a space in
topology that consists of the substantial subbodies [89], [74] in continuum physics (all
those just being for the case of a topos with a poset site), but it permits a very succinct
formulation of the condition that a topos satisfy the Hilbert Nullstellensatz, expressing an
important role of zero-dimensional Galois theory within algebraic geometry as a whole.
Namely, the sheaves for the double negation, which in a sense form the Boolean part of
an arbitrary topos, constitute, in the case of a topos generated by all the algebraic spaces
defined over a given ground field, the classifying topos for algebraic extension fields of
the base (this subtopos is perhaps a more tractable entity than the algebraic closure which
only exists as a non-canonically rigidified condensation of it). The Nullstellensatz con-
cerns those few toposes in which all non-empty objects have zero-dimensional figures,
i.e. points whose domains are dialectical companions of such Boolean sheaves [75].

Some of the geometric aspects of the 1967 program, such as the role of map-spaces
of infinitesimal objects, were worked out under the name of Synthetic Differential Ge-
ometry by Wraith [104], Kock [64], Reyes [87], Bunge & Gago [10], Dubuc [22], Yetter
[105], Penon [92], Bruno [7], Moerdijk [87] and others. Several books treating the sim-
plified topos theory (Mac Lane & Moerdijk being the most recent and readable text), to-
gether with the three excellent books on Synthetic Differential Geometry [64], [87], [68]
provide a solid basis on which further treatment of functional analysis and the needed
development of continuum physics can be based.



728 F. WILLIAM LAWVERE

References

[1] M. Artin, A. Grothendieck, J.-L. Verdier, Théorie des Topos, SGA 4, Second Edi-
tion, Springer Lecture Notes in Math. 269 and 270, 1972.

[2] M. Barr, Non-abelian full embedding: outline. Actes, Congrés International, 1
(1970) 309-312.

[3] M. Barr, Toposes without points, J. Pure Appl. Algebra 5 (1974) 265-280.

[4] J. Bénabou, On a formal language for topos theory, unpublished lecture, University
of Montreal, April 1973.

[5] G. Birkhoff, Subdirect Unions in Universal Algebra, Bull. Amer. Math. Soc. 50
(1944) 764-768.

[6] O. Bruno, Logical opens of exponential objects, Cahiers Topologie Géom. Diffé-
rentielle Catégoriques 26 (1985) 311-323,

[7] O. Bruno, Vector fields on function spaces in well-adapted models of synthetic
differential geometry, J. Pure Appl. Algebra 45 (1987) 1-14.

[8] R. Brown, Function Spaces and Product Topologies, Quart. J. Math. Oxford (2) 15
(1964) 238-250.

[9] M. Bunge, Topos theory and Souslin’s hypothesis, J. Pure Appl. Algebra 4 (1974)
159-187.

[10] M. Bunge and F. Gago, Synthetic aspects of C°°-mappings, II: Mather’s theorem
for infinitesimally represented germs, J. Pure Appl. Algebra 55 (1988) 213-250.

[11] M. Bunge and A. Carboni, The symmetric topos, J. Pure Appl. Algebra, 105 (1995)
233-249.

[12] M. Bunge and J. Funk, Spreads and the symmetric topos, J. Pure Appl. Algebra
113 (1996) 1-38.

[13] H. Cartan and J.-P. Serre, Un théoreme de finitude concernant les variétés analy-
tiques compactes, C. R. Acad. Sci. Paris 237 (1953) 128-130.

[14] P. Cartier, Groupes algébriques et groupes formels, Collog. Théorie des groupes
algébriques, Bruxelles, Librairie Universitaire, Louvain, Gauthier-Villars, Paris
(1962) 87-111.

[15] A. Church, Introduction to mathematical logic (notes by Truesdell) Princeton,
1956.

[16] B. Day, On the relationship of Spanier’s quasitopological spaces to k-spaces,
M.Sc. thesis, University of Sydney, 1968.



COMMENTS ON THE DEVELOPMENT OF TOPOS THEORY 729

[17] P. Deligne, Limites inductives locales, Théorie des Topos et Cohomologie Etale
des Schémas, Tome 2, SGA 4, Second Edition, Springer Lecture Notes in Math.
270 (1972) 62-82.

[18] R. Diaconescu, Change of base for toposes with generators, J. Pure Appl. Algebra
6 (1975) 191-218.

[19] R. Diaconescu, Axiom of choice and complementation, Proc. Amer. Math. Soc. 51
(1975) 176-178.

[20] A. Douady, Le théoreme des images directes de Grauert (d’aprés Kiehl-Verdier),
Astérisque 16 (1974) 49-62.

[21] L. van den Dries, A generalization of the Tarski-Seidenberg theorem and some
nondefinability results, Bull. Amer. Math. Soc. 15 (1986) 189-193.

[22] E.J. Dubuc, C*°-schemes, Amer. J. Math. 102 (1981) 683-690.

[23] S. Eilenberg and S. Mac Lane, General Theory of Natural Equivalences, Trans.
Amer. Math. Soc. 58 (1945) 231-294

[24] L. Fantappie, I funzionali analitici, A#ti Accad. Naz. Lincei Mem. (11) 3 (1930)
453-683.

[25] G. Fichera, I difficili rapporti fra I’ Analisi funzionale e la Fisica matematica, Ren-
diconti (9) Accademia Nazionale dei Lincei, Roma (1990) 161-170.

[26] G. Fichera, Vito Volterra and the birth of functional analysis, Development of Math-
ematics 1900—1950 (ed. Jean-Paul Pier) Birkh#user Basel, 1994, 171-183.

[27] R. Fox, On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945) 429—
432,

[28] R. Fox, Covering spaces with singularities, Algebraic Geometry and Topology: a
Symposium in Honor of S. Lefschetz, Princeton University Press (1957) 243-257.

[29] P. Freyd, Abelian Categories, 1963.
[30] P. Freyd, A. Scedrov, Categories, Allegories, North Holland, Amsterdam, 1990.
[31] P. Freyd, Aspects of topoi, Bull. Austral. Math. Soc. 7 (1972), 1-76.

[32] A. Frolicher, A. Kriegl, Linear Spaces and Differentiation Theory, Wiley-Inter-
science, 1988.

[33] J. Funk, The display locale of a cosheaf, Cahiers Topologie Géom. Différentielle
Catégoriques 36 (1995) 53-93.

[34] P. Gabriel, Des catégories abéliennes. Bull. Soc. Math. France 90 (1962) 323-448.



730 F. WILLIAM LAWVERE

[35] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Ergebnisse
der Math. 35, Springer-Verlag Berlin, 1967.

[36] J. Giraud, Analysis situs, Séminaire Bourbaki, Années 1962/63—1963/64, 189-199.
Société Mathématique de France, 1995.

[37] R. Godement, Topologie Algébrique et Théorie des Faisceaux, Hermann, Paris,
1958.

[38] H. Grauert, Ein Theorem der analytischen Garbentheorie und die Modulrdume
komplexer Strukturen, Publ. Math. IHES, Bures-sur-Yvette, 1960.

[39] J. Gray, Fragments of the history of sheaf theory, in Applications of Sheaves (eds.
M.P. Fourman et al.) Springer Lecture Notes in Math. 753, Springer-Verlag, Berlin
(1979) 1-79.

[40] A. Grothendieck, Sur certains espaces des fonctions holomorphes, J. Reine Angew.
Math. 192 (1953) 35-64 and 77-95.

[41] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Memoirs
of the AMS 16, 1955.

[42] A. Grothendieck, Sur quelques points d’algebre homologique, Tohoku Math. J. 9
(1957) 119-221.

[43] A. Grothendieck, Techniques des constructions en géométrie analytique, Séminaire
Henri Cartan, 1960-61 11, 1-28.

[44] A. Grothendieck, Séminaire de géométrie algébrique, 1~7, Publ. Math. THES
1960-69.

[45] A. Grothendieck, Revétements Etales et Groupe Fondamental (‘SGA 1°), Springer
Lecture Notes in Math. 224, Springer-Verlag, Berlin, 1971.

[46] A. Grothendieck, Algebraic groups, Buffalo Lecture Notes F. Gaeta, 1973.
[47] A. Grothendieck, List of classes of structures, 1973 (now in J. Duskin’s file.)

[48] M. Hakim, Topos Annelés et Schémas Relatifs, Ergebnisse der Mathematik 64
Springer-Verlag, Berlin, 1972.

[49] A. Hirschowitz, C. Houzel, Un spectre pour les algebres bornologiques compleétes,
C. R. Acad. Sci. Paris 274 (1972) 401-404.

[50] C. Houzel, Espaces analytiques relatifs et théoréme de finitude, Math. Ann. 205
(1973) 13-54.

[51] C. Houzel, (Historical Introduction) in M. Kashiwara, P. Schapira, Sheaves on
Manifolds, Springer-Verlag, 1990.



COMMENTS ON THE DEVELOPMENT OF TOPOS THEORY 731

[52] J.Isbell, Atomless parts of spaces, Math. Scand. 31 (1972) 5-32.
[53] P. Johnstone, Topos Theory, Academic Press, New York, 1977.

[54] P. Johnstone, How general is a generalized space, Dowker Memorial Volume, Lon-
don Math. Soc. Lecture Note Ser. 93 (1985) 77-111.

[55] P. Johnstone and A. Joyal, Continuous categories and exponentiable toposes, J.
Pure Appl. Algebra 25 (1982) 255-296.

[56] A.Joyal (with A. Boileau) La logique des topos, J. Symbolic Logic 46 (1981) 6-16.

[57] A.Joyal and I. Moerdijk, Toposes are cohomologically equivalent to spaces, Amer.
J. Math. 112 (1990) 87-96.

[58] A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck, Mem.
Amer. Math. Soc. 309, 1984.

[59] M. Kashiwara, P. Schapira, Sheaves on Manifolds, Springer-Verlag 1990.
[60] D. Kan, Adjoint Functors, Trans. Amer. Math. Soc. 87 (1958) 294-329.
[61] J. Kelley, General Topology, Van Nostrand, Princeton, 1955.

[62] M. Kelly, A survey of totality, Cahiers Topologie Géom. Différentielle Catégo-
rigues 27 (1986) 109-132.

[63] M. Kelly, Basic Concepts of Enriched Category Theory, London Math. Soc. Lec-
ture Note Ser. 64, Cambridge University Press, 1982,

[64] A. Kock, Synthetic Differential Geometry, London Math. Soc. Lecture Note Ser.
51, Cambridge University Press, 1981.

[65] A. Kriegl, L. D. Nel, A convenient setting for holomorphy, Cahiers Topologie
Géom. Différentielle Catégorigues 26 (1985) 273-309.

[66] A. Kriegl, L. D. Nel, Convenient vector spaces of smooth functions, Math. Nachr.
147 (1990) 39-45.

[67]1 A. Kriegl, P. Michor, Aspects of the theory of infinite-dimensional manifolds, Dif-
ferential Geometry and Appl. 1 (1991) 159-176.

[68] R. Lavendhomme, Basic concepts of Synthetic Differential Geometry, Kluwer,
1996. :

[69] F. W. Lawvere, Functorial Semantics of Algebraic Theories, Proc. Nat. Acad. Sci.
U.S.A. 50 (1963) 869-872.

[70] E. W. Lawvere, An elementary theory of the category of sets, Proc. Nat. Acad. Sci.
U.S.A. 52 (1964) 1506~-1511.



732 F. WILLIAM LAWVERE

[71] E. W. Lawvere, Adjointness in Foundations, Dialectica 23 (1969) 281-296.

[72] E. W. Lawvere, Quantifiers and Sheaves, Proc. Intern. Congress on Math., Gau-
thier-Villars, Nice (1971) 329-334.,

[73] F. W. Lawvere, Categorical Dynamics, (1967 Chicago Lectures) Topos-Theoretic
Methods in Geometry, Aarhus 1979. (See also Historical Remarks in [64] 288—
294.)

[74] F. W. Lawvere, Introduction to Categories in Continuum Physics, Springer Lecture
Notes in Math. 1174, 1986.

[75] F. W. Lawvere, Categories of Space and of Quantity, The Space of Mathematics.
Philosophical, Epistemological and Historical Explorations. De Gruyter, Berlin
(1992) 14-30.

[76] J. Leray, Sur la forme des espaces topologiques et sur les points fixes des
représentations, J. Math. Pures Appl. 9 (1945) 95-248.

[77] A. Macintyre, K. McKenna, and L. van den Dries, Elimination of quantifiers in
algebraic structures, Adv. in Math. 47 (1983) 74-87

[78] S. Mac Lane, Duality for groups, Bull. Amer. Math. Soc. 56 (1950) 485-516.

[79] S. Mac Lane, The origins of the cohomology of groups, Enseign. Math. 24 (1978)
1-29.

[80] S. Mac Lane, Concepts and categories in perspective, in A Century of Mathematics
in America (Part I), American Mathematics Society, Providence, RI (1988) 323-
366.

[81] S. Mac Lane, I. Moerdijk, Sheaves in Geometry and Logic, Springer-Verlag, New
York Inc. 1992.

[82] S. Mac Lane, I. Moerdijk, Topos theory, Handbook of Algebra 1, (ed. M.
Hazewinkel) Elsevier, Amsterdam (1996) 501-528.

[83] M. Makkai, G.E. Reyes, First-Order Categorical Logic, Springer Lecture Notes in
Math. 611, Springer-Verlag, Berlin, 1977.

[84] C. Mikkelsen, Lattice theoretic and logical aspects of elementary topoi, Various
Publications Series, 25 Matematisk Institut, Aarhus 1976.

[85] E. Michael, Inductively perfect maps and triquotient maps, Proc. Amer. Math. Soc.
82 (1981) 115-119.

[86] W. Mitchell, Boolean topoi and the theory of sets, J. Pure Appl. Algebra 2 (1972)
261-274.



COMMENTS ON THE DEVELOPMENT OF TOPOS THEORY 733

[87] I. Moerdijk, G.E. Reyes, Models for Smooth Infinitesimal Analysis, Springer-
Verlag, New York, 1991,

[88] R. Narasimhan, Analysis on real and complex manifolds, 3rd edition North Hol-
land, Amsterdam, 1985.

[89] W. Noll, The geometry of contact, separation, and reformation of continuous bod-
ies, Arch. Rational Mech. Anal. 122 (1993) 197-212.

[90] G. Osius, Logical and set-theoretical tools in elementary topoi, Model Theory and
Topoi, Springer Lecture Notes in Math. 445 (1975) 297-346.

[91] R. Paré, Colimits in topoi, Bull. Amer. Math. Soc. 80 (1974) 556-561.

[92] J. Penon, Infinitésimaux et intuitionnisme, Cahiers Topologie Géom. Différentielle
Catégoriques 22 (1981) 67-72.

[93] T. Plewe, Localic triquotient maps are effective descent maps, Math. Proc. Cam-
bridge Phil. Soc. 122 (1997) no. 1, 17-43.

[94] A.Robinson, A theorem on algebraically closed fields, J. Symbolic Logic 14 (1949)
686-694.

[95] J. Sebastido e Silva, Sui fondamenti della teoria dei funzionali analitici, Portugal
Math. 12 (1953) 1-46.

[96] E. Spanier, Quasitopologies, Duke Math. J. 30 (1963) 1-14.

[97] N. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14
(1967) 133-152.

[98] R. Street, Notions of topos, Bull. Austral. Math. Soc. 23 (1981) 199-208.

[99] R. Street, R. Walters, Yoneda structures on 2-categories, J. Algebra 50 (1978) 350-
379.

[100] A. Tarski, Some topics on the borderline between algebra and logic, Proc. Int.
Congress of Mathematicians, Harvard University Press (1950) 718-719.

[101] M. Tierney, Sheaf theory and the continuum hypothesis, Toposes, Alg. Geom. and
Logic, Springer Lecture Notes in Math. 274, Springer-Verlag, Berlin (1972) 13-42.

[102] V. Volterra, Opere matematiche, Accad. Naz. dei Lincei, 1954-1962.

[103] G. Wraith, Categorical dynamics and the Lie algebra of a group object, (unpub-
lished) 1972,

[104] G. Wraith, Lectures on elementary topoi, Model theory and topoi, Springer Lecture
Notes in Math. 445 (1975) 114-206.



734 F. WILLIAM LAWVERE

[105] D. Yetter, On right adjoints to exponential functors, J. Pure Appl. Algebra 45, 1987,
287-304. Corrections: J. Pure Appl. Algebra 58 (1989) 103-105

[106] M. Zorn, Derivatives and Fréchet differentials, Bull. Amer. Math. Soc. 52 (1946)
133-137.

Department of Mathematics
CUNY at Buffalo

106 Diefendorf

Buffalo NY 14214

USA



REPRINTS IN THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles from the
body of important literature in Category Theory and closely related subjects which have never been
published in journal form, or which have been published in journals whose narrow circulation makes
access very difficult. Publication in ‘Reprints in Theory and Applications of Categories’ will permit
free and full dissemination of such documents over the Internet. Articles appearing have been critically
reviewed by the Editorial Board of Theory and Applications of Categories. Only articles of lasting
significance are considered for publication. Distribution is via the Internet tools WWwW/ftp.

SUBSCRIPTION INFORMATION. Individual subscribers receive (by e-mail) abstracts of articles as they are
published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For insti-
tutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

SELECTION OF REPRINTS. After obtaining written permission from any copyright holder, any three
TAC Editors may propose a work for TAC Reprints to the Managing Editor. The Managing Editor
may either accept the proposal or require that the Editors vote on it. If a 2/3 majority of those TAC
Editors responding within one month agrees, the work will be accepted for TAC Reprints. After a work
is accepted, the author or proposer must provide to TAC either a usable TeX source or a PDF document
acceptable to the Managing Editor that reproduces a typeset version. Up to five pages of corrections,
commentary and forward pointers may be appended by the author. When submitting commentary,
authors should read and follow the Format for submission of Theory and Applications of Categories at
http://www.tac.mta.ca/tac/.

EDITORIAL BOARD
Managing editor Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
TEXnical editor Michael Barr, McGill University: barr@math.mcgill.ca

Assistant TEX editor Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin_seal@fastmail.fm

Transmitting editors

Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
Richard Blute, Université d’ Ottawa: rblute@uottawa.ca

Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr

Ronald Brown, University of North Wales: ronnie.profbrown(at)btinternet.com
Valeria de Paiva: valeria.depaiva@gmail.com

Ezra Getzler, Northwestern University: getzler (at)northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk

Anders Kock, University of Aarhus: kock@imf .au.dk

Stephen Lack, Macquarie University: steve.lackOmq.edu.au

F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh: Tom.Leinster®@ed.ac.uk

Ieke Moerdijk, Radboud University Nijmegen: i.moerdijk@math.ru.nl

Susan Niefield, Union College: niefiels@union.edu

Robert Paré, Dalhousie University: pare@mathstat.dal.ca

Jiri Rosicky, Masaryk University: rosicky@math.muni.cz

Giuseppe Rosolini, Universita di Genova: rosolini@disi.unige.it

Alex Simpson, University of Edinburgh: Alex.Simpson@ed.ac.uk

James Stasheff, University of North Carolina: jds@math.upenn.edu

Ross Street, Macquarie University: street@math.mq.edu.au

Walter Tholen, York University: tholen@mathstat.yorku.ca

Myles Tierney, Rutgers University: tierney@math.rutgers.edu

Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it

R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca



