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ON SOME PROPERTIES OF PURE MORPHISMS OF
COMMUTATIVE RINGS

BACHUKI MESABLISHVILI

ABSTRACT. We prove that pure morphisms of commutative rings are effective A-
descent morphisms where A is a (COMMUTATIVE RINGS)op-indexed category
given by (i) finitely generated modules, or (ii) flat modules, or (iii) finitely generated
flat modules, or (iv) finitely generated projective modules.

1. Introduction

Let E be a category with pullbacks, and let A : Eop �� CAT be an indexed category [PS].
If C is an internal category of E , then one defines an ordinary category AC of C-diagrams
in A, and the assignment C �→ AC induces a pseudo-functor

A(−) : cat(E)op �� CAT

of 2-categories (see [JT2]) where cat(E) denotes the 2-category of internal categories of E .
Let p : E �� B be a morphism in E . Then, p gives rise to an internal category Eq(p)

of E , namely the equivalence relation induced by p, and to a fully faithful (internal) functor

p : Eq(p) �� B,

where B is the discrete internal category on B. The category AEq(p) is called the category
of A-descent data relative to p, and denoted by DesA(p).

The pseudo-functor
A(−) : cat(E)op �� CAT

carries p into an ordinary functor

φp : AB �� DesA(p),

and one says that p is an effective A-descent morphism if φp is an equivalence of categories.
More details on Descent Theory can be found in [JT1, JT2].
We consider the case where E is the opposite of the category of commutative rings

with unit, and A is given by (i) finitely generated modules, or (ii) flat modules, or (iii)
finitely generated flat modules, or (iv) finitely generated projective modules.

The aim of the paper is to prove,
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1.1. Theorem. Let f : R �� S be a pure morphism of commutative rings with unit.
Then f is an effective A-descent morphism.

2. Preliminaries

Let E be a category with pullbacks and let

A, B : Eop �� CAT

be E-indexed categories. We say that A is an E-indexed full subcategory of B if there exists
an E-indexed functor F : A �� B such that the functor F (e) : Ae �� Be, e ∈ Ob(E),
is a fully faithful embedding.

The key role in proving the main result will be Corollary 2.7 of [JT1] that we now
state in its indexed version, and since the same sort of proof as given in [JT1] works, we
do not give a proof here.

2.1. Theorem. [Janelidze-Tholen] Let A, B : Eop �� CAT be E-indexed categories.
Suppose A is a E-indexed full subcategory of B. A morphism p : E �� B of E which
is an effective B-descent morphism is also an effective A-descent morphism if and only if
the following condition is satisfied: for each x ∈ BB, p∗(x) ∈ AE, where p∗ : AB �� AE

is the change-of-base functor, implies x ∈ AB.

Let R be a commutative ring with unit. A morphism f : M �� M ′ of R-modules is
called pure if

1L ⊗R f : L ⊗R M �� L ⊗R M ′

is a monomorphism for every R-module L.
For any R-module M , the abelian group HomAb(M, Q/Z) (where Q/Z denotes the

abelian group of rationals mod 1) is an R-module via the action (r.h)(m) = h(r.m)
(r ∈ R, m ∈ M , h ∈ HomAb(M, Q/Z)). So one can define a functor

CR : (R-mod) �� (R-mod)op

given by CR(M) = HomAb(M, Q/Z). CR is clearly an exact and faithful functor since
Q/Z is an injective cogenerator for the category of abelian groups (see, for example, [F]).

2.2. Proposition. [see [Me], [L]] A morphism f : M �� M ′ of R-modules is pure if
and only if CR(f) is a split epimorphism of R-modules.

A morphism f : R �� S of commutative rings with unit gives rise to two functors
(i) f ∗ : S-mod �� R-mod, where for any S-module L, f ∗(L) is the underlying abelian

group L with the R-action given by r.l = f(r).l (r ∈ R, l ∈ L);
(ii) f! : R-mod �� S-mod, where for any R-module M , f!(M) = S ⊗R M .
It is well known that the functor f! is left adjoint to the functor f ∗. Each component

ηM : M �� S ⊗R M of the unit η : 1 �� f ∗f! of the adjunction is given by ηM(m) =
1⊗R m.

We denote by CS
R the composite

CR ◦ f ∗ ◦ f! : (R-mod) �� (R-mod)op
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2.3. Proposition. The following statements are equivalent for a morphism f : R ��

S of commutative rings with unit:
(i) CR(f) is a split epimorphism of R-modules;
(ii) f is pure (i.e., f is pure as an R-module morphism);
(iii) The natural transformation

CR.η : CS
R

�� CR

splits; i.e., there exists a natural transformation

τ : CR
�� CS

R

such that (CR.η).τ ≈ 1.

Proof. (i) ⇔ (ii): It follows from the definition of pure morphisms and Proposition 2.2.
(i) ⇔ (iii): To say CR.η splits is to say HomR(−, CR(f)) (and hence, by the Yoneda

lemma, CR(f)) splits because we have the following commutative (up to an isomorphism)
diagram:

HomR(−, CR(S)) HomR(−, CR(R))
HomR(−,CR(R))

��

CS
R

HomR(−, CR(S))

≈

��

CS
R CR

CR.η �� CR

HomR(−, CR(R))

≈

��

where the vertical morphisms are the canonical isomorphisms.

Recall that an exact sequence in R-mod

0 �� M �� M ′ �� M ′′ �� 0

is called pure-exact iff the induced sequence

0 �� L ⊗R M �� L ⊗R M ′ �� L ⊗R M ′′ �� 0

is an exact sequence for every R-module L.
Using Proposition 2.2, we get

2.4. Proposition. [see [L]] The following properties are equivalent for an exact sequence

0 �� M �� M ′ �� M ′′ �� 0

(i) It is pure-exact;
(ii) The exact sequence in R-mod

0 �� CR(M
′′) �� CR(M

′) �� CR(M) �� 0

splits.

We close this section by recalling a result on flat modules (see, e.g., [S]).
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2.5. Proposition. The following properties of an R-module M are equivalent:
(i) M is a flat R-module;
(ii) Every exact sequence

0 �� M ′ �� M ′′ �� M �� 0

is pure-exact.

3. Proof of the main theorem

In the sequel we always assume that E is the opposite of the category of commutative
rings with unit.

We start by recalling from [Me] the following result:

3.1. Theorem. Let M : Eop �� CAT be the E-indexed category given by all modules.
A morphism in E is an effective M-descent morphism if and only if it is pure.

It is clear that A : Eop �� CAT as in the Main Theorem, is an E-indexed full
subcategory of M. Then, in order to prove the Main Theorem, by Theorem 2.1 and
Theorem 3.1, it is sufficient to prove the following

3.2. Theorem. Let f : R �� S be a pure morphism of commutative rings with unit,
and let M ∈ Ob(R-mod). Then

(i) If S⊗RM is a finitely generated S-module, then M is a finitely generated R-module.
(ii) If S ⊗R M is a flat S-module, then M is a flat R-module.
(iii) If S ⊗R M is a finitely generated flat S-module, then M is a finitely generated

flat R-module.
(iv) If S⊗RM is a finitely generated projective S-module, then M is a finitely generated

R-module.

3.3. Remark. The above theorem tells us that the properties of modules of being finitely
generated, flat, finitely generated flat, finitely generated projective descend along pure
morphisms of commutative rings.

Proof. (i) Suppose S ⊗R M is finitely generated over S. Then we can choose a finite
family of elements {si,k,mi,k}, where si,k ∈ S, mi,k ∈ M , such that the finite family
{∑ si,k ⊗R mi,k}i,k generates the S-module S ⊗R M . Let M ′ denote the R-submodule
of M generated by the finite family {mi,k}i,k. It is clear that the induced morphism
1S ⊗R i : S ⊗R M ′ �� S ⊗R M , where i : M ′ �� M is the canonical embedding, is an
epimorphism. But since f is pure by assumption, the functor

f! : R-mod �� S-mod

is faithful (see, for example, [B]); and since any faithful functor between arbitrary cate-
gories reflects epimorphisms (see [Mt]), i : M ′ �� M is an epimorphism, and hence an
isomorphism since i is a monomorphism. It means that M is finitely generated R-module.
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(ii) Suppose S ⊗R M is a flat S-module. According to Proposition 2.5, it suffices to
show that each exact sequence

0 �� M ′ u �� M ′′ v �� M �� 0 (1)

is pure-exact. By Proposition 2.4 this sequence is pure-exact iff the exact sequence in
R-mod

0 �� CR(M)
CR(v) �� CR(M

′′)
CR(u) �� CR(M

′) �� 0 (2)

splits. Since v : M ′′ �� M is an epimorphism, the sequence in R-mod

S ⊗R M ′′ 1S⊗Rv �� S ⊗R M �� 0 (3)

is exact. This sequence is also exact in S-mod since the functor

f ∗ : S-mod �� R-mod

is faithful, and hence reflects epimorphisms (see [Mt]).
Therefore, (3) is an exact sequence in S-mod, and so is the sequence

0 �� CS(S ⊗R M)
CS(1⊗Rv) �� CS(S ⊗R M ′′)

since the functor
CS : (S-mod) �� (S-mod)op

is exact.
CS(S ⊗R M) is an injective S-module since, by assumption, S ⊗R M is a flat S-

module (see, e.g., [F]). Hence the last sequence of S-modules splits. But it is clear that
f ∗ ◦ CS ◦ f! = CR. Hence the exact sequence in R-mod

0 �� CR(S ⊗R M)
CR(1⊗Rv) �� CR(S ⊗R M ′′)

also splits, i.e., there is an R-module morphism

h : CR(S ⊗R M ′′) �� CR(S ⊗R M)

such that h.CR(1⊗R v) = 1.
By naturality of τ (see Proposition 2.3.), one has the following commutative diagram

CR(S ⊗R M) CR(1⊗R v)
CR(1⊗Rv)

��

CR(M)

CR(S ⊗R M)

τM

��

CR(M) CR(M
′′)

CR(v) �� CR(M
′′)

CR(1⊗R v)

τM′′

��
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Let us show that CR(v) splits by the composition

CR(f ⊗R 1).h.τM ′′ : CR(M
′′) �� CR(M).

Indeed, we know that h.CR(1⊗R v) = 1, and, moreover, commutativity of the diagram
implies τM ′′ .CR(v) = CR(1⊗R v).τM . Then

CR(f ⊗R 1).h.τM ′′ .CR(v) = CR(f ⊗R 1).h.CR(1⊗R v).τM

= CR(f ⊗R 1).τM .

Since the composite of f ⊗R 1 with the canonical isomorphism M ∼= R ⊗R M is the
M -component µM of µ : 1 �� f ∗f!, Proposition 2.3 gives CR(f ⊗R 1).τM = 1. So

(CR(f ⊗R 1).h.τM ′′).CR(v) = 1.

It means that the sequence (2) splits, and, by Proposition 2.4, the sequence (1) is pure-
exact. Consequently, M is a flat R-module by Proposition 2.5.

(iii) It follows immediately from (i) and (ii).
(iv) If SR ⊗ M is finitely generated , then, in particular, it is finitely generated over

S , and since every projective module is flat, by (i) and (ii), M is finitely generated flat
module over R.

Since every finitely generated projective module is finitely presented, there exists an
exact sequence in S-mod

0 �� X �� Sn �� S ⊗R M �� 0 (4)

where X is a finitely generated S-module.
Moreover, since M is finitely generated over R, there exists an exact sequence in

R-mod
0 �� M ′ �� Rm �� M �� 0,

and since M is a flat R-module, by Proposition 2.5, this sequence is pure-exact. Therefore
the sequence in S-mod

0 �� S ⊗R M ′ �� S ⊗R Rm �� S ⊗R M �� 0 (5)

is exact.
Apply Schanuel’s lemma to (4) and (5); we get

X ⊕ (S ⊗R Rm) ≈ Sn ⊕ (S ⊗R M ′).

It follows that S ⊗R M ′ is finitely generated over S, and by (i), M ′ is finitely generated
over R. Therefore, M is finitely presented over R. But, as we have seen, M is a flat
R-module, and since every finitely presented flat module is projective (see, for example,
[F]), M is a finitely generated projective R-module.

This completes the proof.



186 BACHUKI MESABLISHVILI

Acknowledgements

This work was partially supported by INTAS-97-31961.

References

[B] F. Borceux, Handbook of Categorical Algebra, Vol. 1, Cambridge University Press,
1994.

[F] C. Faith, Algebra: Rings, Modules and Categories, Vol. 1, Springer-Verlag, 1973.

[JT1] G. Janelidze and W. Tholen, Facets of Descent, I, Appl. Categorical Structures, 2
(1994), 245–281.

[JT2] G. Janelidze and W. Tholen, Facets of Descent, II, Appl. Categorical Structures, 5
(1997), 229–248.

[L] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Math. Vol. 109,
Springer-Verlag, 1999.

[Me] B. Mesablishvili, Pure Morphisms of Commutative Rings Are Effective Descent
Morphisms for Modules – A New Proof, Theory and Applications of Categories, 7
(2000), 38–42.

[Mt] B. Mitchell, Theory of Categories, Academic Press, 1965.
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