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MODULES

J.R.B. COCKETT, J. KOSLOWSKI, R.A.G. SEELY, AND R.J. WOOD

ABSTRACT. This paper studies lax higher dimensional structure over bicategories. The
general notion of a module between two morphisms of bicategories is described. These
modules together with their (multi-)2-cells, which we call modulations, organize them-
selves into a multi-bicategory. The usual notion of a module can be recovered from this
general notion by simply choosing the domain bicategory to be the terminal or final
bicategory.

The composite of two such modules need not exist. However, when the domain bicat-
egory is small and the codomain bicategory is locally cocomplete then the composite
of any two modules does exist and has a simple construction using the local colimits.
These modules and their modulations then give rise to a bicategory.

Recall that neither transformations nor optransformations (respectively lax natural
transformations and oplax natural transformations) between morphisms of bicategories
give rise to a smooth 3-dimensional structure. However, there is a smooth 3-dimensional
structure for modules, and both transformations and optransformations give rise to as-
sociated modules. Furthermore, the modulations between two modules associated with
transformations can then be described directly as a new sort of modification between
the transformations. This provides a locally full and faithful homomorphism from trans-
formations and modifications into the bicategory of modules.

Finally, if each 1-cell component of a transformation is a left-adjoint then the right-
adjoints provide an optransformation. In the module bicategory the module associated
with this optransformation is right-adjoint to the module associated with the transfor-
mation. Therefore the inclusion of transformations whose 1-cells have left adjoints into
the (multi-)bicategory of modules provides a source of proarrow equipment.

1. Introduction

The purpose of this paper is to provide an accessible exposition of the general theory of
modules for bicategories. Various aspects of this theory are available in the literature,
particularly in the recent papers [KLSS02, CKS03]. However, an exposition of the the-
ory at the level of this paper is not available: both [KLSS02, CKS03] are more abstract
(although in completely different directions). The authors feel, therefore, that this expo-
sition is a useful addition to those expositions as the theory of modules is a substrate for
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a number of investigations which either touch upon or directly depend on this level of the
theory.

The basic theory of modules is well-known and in particular encompasses the notion of
(left R, right S) bimodule between rings (R and S). In fact, such bimodules may be viewed
as morphisms between two monoidal functors from the terminal monoidal category 1 to
the monoidal category of Abelian groups. Regarding monoidal categories as one-object
bicategories, these bimodules easily generalize to a notion of module between morphisms
of bicategories.

For morphisms of the form 1 �� M, where M is an arbitrary bicategory, the gen-
eralization is quite familiar as such morphisms correspond to monads in M. For exam-
ple, taking M = V-mat, the bicategory of sets and V-valued matrices for cocomplete
monoidal V , such monads are simply V-enriched categories and the modules between
them are V-enriched profunctors. Similarly, for M = spn(S), the bicategory of spans in
finitely complete S, such monads are category objects in S and the modules are internal
profunctors.

The modules which are the subject of this paper generalize this basic notion to modules
between morphisms of arbitrary bicategories. The case when the domain bicategory has
more than one object is less familiar. However, one special case which has been studied
extensively is that in which considers morphisms X �� M, where X is the locally discrete
bicategory on the chaotic category determined by a set X. Such morphisms are precisely
Bénabou’s polyads [B67] and Walters’ M-enriched categories [W81], [W82] with X as
their set of objects. Our notion of module, in the latter case, is precisely that of a module
between such enriched categories.

There is also a completely different motivation for studying modules: morphisms of
bicategories were introduced by Bénabou [B67] and are abundant, occurring surprisingly
frequently in their full generality. The notion of transformation between morphisms of
bicategories, however, is much more problematic. A natural choice is that which is often
called a lax natural transformation, but which, following [S80], we shall call simply a
transformation. This is not a canonical choice: there is a dual choice, namely, optransfor-
mations (often known as oplax natural transformations). At the next level there is a very
natural notion of modification for either of these choices. One would like all this structure
to fit together into a natural (weak) 3-dimensional structure. For fixed W and M one
can form a bicategory bicat(W ,M) of morphisms, transformations, and modifications;
however, it is well-known that right composition with a morphism F :M �� B does not
yield a bicategory morphism from bicat(W ,M) to bicat(W ,B) that could serve as a
reasonable generalization of the whiskering operation.

This means that the notion of transformation between morphisms of bicategories is
rather unsatisfactory. Modules, as described here, do not suffer from this particular prob-
lem: one obtains a smooth three dimensional structure which allows whiskering whenever
the composite is defined. The basic examples above suggest that the composition of these
general modules should be a quotient induced by the effect of the actions in the middle.
We describe this construction in section 2 below. However, notice that this composition



MODULES 377

requires that the codomain bicategory has local colimits, the size of these colimits being
determined by the size of the domain bicategory. Thus these modules, in general, cannot
be composed.

It may seem that one has simply traded one problem for another. Fortunately, this
is not the case. The requirement that local colimits exist in M is already a strong
requirement and it seems sensible to actually dispense with it altogether. Thus, we prefer
to view modules, and the obvious morphisms between these, as providing multi-categorical
structure, rather than bicategorical on the set of morphisms of bicategories from W to M.
The composition of two modules, when it exists, is completely determined by this multi-
structure. This has been made precise by Claudio Hermida’s notion of representability
[H00] (see also [B71]).

The question of when the composite of two modules exists, while not being a central
issue, is nonetheless of interest, and so the paper begins by describing which colimits must
be present for module composites to exist. Next we observe that both transformations and
optransformations, in the sense discussed above, give rise to modules and composition of
these transformations corresponds to module composition. In fact we show that modules
arising from transformations always have (right) composites defined while modules arising
from optransformations always have (left) composites defined. This is very similar to the
development at the end of [KLSS02].

This suggests that the view of transformations as special modules should be taken
seriously: that is, we should view this situation as a source of proarrow equipment in the
sense of [Wo82]. With this in mind it is reasonable, first, to consider the relation between
modifications and morphisms of modules, which we call modulations; it turns out that
a modification always gives rise to a modulation but that there are, in general, strictly
more modulations between two transformations.

Modulations as morphisms of transformations are of quite independent interest: they
were used, for example, in [LS02] to characterize the free Eilenberg-Moore completion of
a bicategory. We therefore provide an explicit description of them and prove that the
bicategory of transformations with modulations embeds locally fully-faithfully into the
bicategory of modules and provides the source for a proarrow equipment.

This paper is a direct outgrowth of the paper [CKS03] by the first three authors, and
indeed, much of the material here may be found developed in the poly-bicategory setting of
that paper with a brief discussion of the multi-bicategorical situation. The fourth author
noticed several simplifications which are incorporated here, but more importantly realised
that this material could be usefully presented in a manner directly useful for bicategorical
purposes. Although the present paper is self-contained, the reader interested in either the
multi-bicategorical or poly-bicategorical presentation of these ideas is referred to [CKS03].

After we finished this paper we were made aware of [KLSS02] which provides a setting
for modules more general than ours, but which remains within the context of bicategories.
In [KLSS02] arrows between bicategories are introduced that are more general than the
familiar “morphisms” of which we speak. In that paper an arrow, say A:V �� W is
viewed as a “category enriched from V to W”; a complete treatment of such categories
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is provided in [KLSS02]. In particular, “modules” between categories are studied, as are
also module morphisms. When the enriched categories of [KLSS02] are specialized to
morphisms of bicategories, the modules of [KLSS02] are the same as ours.

Modules are but a small part of [KLSS02], whereas here they are our entire focus,
so there is, as one would expect, a greater level of detail in this paper. In particular
we provide a more explicit description of the colimit needed for composition of modules,
making clear the universal property of module composition. It is not easy to extract
all our results about modules between morphisms from the more general counterparts in
[KLSS02]. The morphisms between modules, which we call “modulations”, regarded as a
generalization of the notion of a modification between lax transformations, recieve here
a precise diagrammatic description. These modulations clarify the source of the crucial
2-cells which appeared in [LS02] in the EM-completion of a 2-category and have been
useful in our ongoing work. We hope that the level of the exposition offered in the present
paper may be useful to others as well who work in this domain.

2. Modules

2.1. To set up notation we recall the ingredients of a bicategory W . There is firstly a
set |W| of objects and typically these will be denoted by W,X, Y, · · ·. For each ordered
pair of objects there is a category W(W,X) and arrows within these tend to get denoted
by ω: w �� x: W �� X. To the vertical structure provided by these categories is added
horizontal structure (composition and identity cells) in the form of functors W(W,X) ×
W(X,Y ) �� W(W,Y ) and 1 �� W(W,W ).

2.2. Definition. For morphisms of bicategories F,G:W �� M, a module M : F � �� G
from F to G consists of a family of functors MW,X :W(W,X) �� M(FW,GX) together

with left and right actions (both denoted M̃) as below

W(W ′, X) M(FW ′, GX)
MW ′,X

��

W(W ′,W ) ×W(W,X)

W(W ′, X)
��

W(W ′,W ) ×W(W,X) M(FW ′, FW ) ×M(FW,GX)
FW ′,W×MW,X �� M(FW ′, FW ) ×M(FW,GX)

M(FW ′, GX)
��

M̃
��

W(W,X ′) M(FW,GX ′)
MW,X′

��

W(W,X) ×W(X,X ′)

W(W,X ′)
��

W(W,X) ×W(X,X ′) M(FW,GX) ×M(GX,GX ′)
MW,X×GX,X′

�� M(FW,GX) ×M(GX,GX ′)

M(FW,GX ′)
��

M̃
��
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where the unlabelled arrows are composition functors, satisfying the five familiar unit,
associativity, and mutual associativity requirements.

For modules M,N : F � �� G:W �� M, a modulation t: M �� N from M to N is
a family of natural transformations tW,X : MW,X

�� NW,X :W(W,X) �� M(FW,GX)
which are equivariant in the sense that

• •
N

��

•

•��

• •
F×M

�� •

•��

• •
F×N

��F×t
��

Ñ ��

=

• •
N

��

•

•��

• •
F×M

�� •

•��• •
M

��

M̃ ��

t
�� • •

N

��

•

•��

• •
M×G

�� •

•��

• •
N×G

��t×G
��

Ñ ��

=

• •
N

��

•

•��

• •
M×G

�� •

•��• •
M

��

M̃ ��

t
��

The data defining a module amounts to naturally assigning the following data to any

pair of arrows W x �� X
y �� Y in W .

FX GY
My

��

FW

FX

Fx

��

FW GX
Mx �� GX

GY

Gy

��

M(yx)

��
��

���
��

��
M̃ ��

M̃��

An example of a module is the “identity” module M = F = G, where F̃ is part of the lax
structure of a morphism of bicategories. This module will in fact be the identity for the
“horizontal composition” we are about to define.

The equivariance conditions above for a modulation can be expressed by saying that,

for all composable 1-cells W x �� X
y �� Y in W , the diagrams

M(yx) N(yx)
t(yx)

��

MyFx

M(yx)

M̃

��

MyFx NyFx
tyFx �� NyFx

N(yx)

Ñ

��

and

M(yx) N(yx)
t(yx)

��

GyMx

M(yx)

M̃

��

GyMx GyNx
Gytx �� GyNx

N(yx)

Ñ

��

of 2-cells in M commute. Here and elsewhere, we find it convenient to drop some of the
subscripts when they can be inferred from the context. Thus in the first square directly
above, ty is the y-component of tX,Y . Occasionally, we find it convenient to speak of
‘equivariance in F ’ and ‘equivariance in G’ to distinguish the two conditions above.

For modules M,N,P : F � �� G:W �� M and modulations M t �� N u �� P we define

M u·t �� P by (u · t)W,X = uW,X · tW,X , as natural transformations, and it is then clear
from the diagrams above that u · t is a modulation from M to P .
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2.3. The horizontal compositions for modules and modulations are, however, more
involved. We start by considering the problem of horizontally composing two modules.
To this end it is convenient to define a new notion of multi-modulation: for simplicity we
make the details explicit in the binary case. With W and M fixed for the discussion and
modules M : F � �� G:W �� M, N : G � �� H:W �� M, and P : F � �� H:W �� M, we
define a bimodulation b: N,M �� P as a family of natural transformations

W(W,Y ) M(FW,HY )
PW,Y

��

W(W,X) ×W(X,Y )

W(W,Y )
��

W(W,X) ×W(X,Y ) M(FW,GX) ×M(GX,HY )
MW,X×NX,Y �� M(FW,GX) ×M(GX,HY )

M(FW,HY )
��

bW,X,Y

��

which are equivariant in F , G, and H. It is convenient to denote the (x, y) compo-
nent of bW,X,Y by b(y, x). Equivariance in F is as above for modulations, but adapted

to disambiguate 3-fold composites. Thus we require, for all W
x �� X

y �� Y
z �� Z in

W , commutativity of the left hexagon below, where as usual α denotes an associativity
constraint isomorphism.

Nz(MyFx) P (z(yx))Nz(MyFx) P (z(yx))

(NzMy)Fx

Nz(MyFx)

α ��

(NzMy)Fx P ((zy)x)(NzMy)Fx P ((zy)x)P ((zy)x)

P (z(yx))
Pα��

(NzMy)Fx

P (zy)Fx
b(z,y)Fx �������

P (zy)Fx

P ((zy)x)

P̃
�����

��

Nz(MyFx)

NzM(yx)
NzM̃ �����

��

NzM(yx)

P (z(yx))

b(z,yx)

�������

Nz(GyMx) P (z(yx))Nz(GyMx) P (z(yx))

(NzGy)Mx

Nz(GyMx)

α ��

(NzGy)Mx P ((zy)x)(NzGy)Mx P ((zy)x)P ((zy)x)

P (z(yx))
Pα��

(NzGy)Mx

N(zy)Mx
ÑMx

�������

N(zy)Mx

P ((zy)x)

b(zy,x)
�����

��

Nz(GyMx)

NzM(yx)
NzM̃ �����

��

NzM(yx)

P (z(yx))

b(z,yx)

�������

Hz(NyMx) P (z(yx))Hz(NyMx) P (z(yx))

(HzNy)Mx

Hz(NyMx)

α ��

(HzNy)Mx P ((zy)x)(HzNy)Mx P ((zy)x)P ((zy)x)

P (z(yx))
Pα��

(HzNy)Mx

N(zy)Mx
ÑMx

�������

N(zy)Mx

P ((zy)x)

b(zy,x)
�����

��

Hz(NyMx)

HzP (yx)
Hzb(y,x) �����

��

HzP (yx)

P (z(yx))

P̃

�������

Similarly, equivariance in H is given by the right hexagon. However, equivariance in G,
given by the centre hexagon, is the most important condition to be clear about in the
description of composition of modules. Note that the obvious composite of a bimodulation
b: N,M �� P and a modulation t: P �� Q yields a bimodulation t · b: N,M �� Q.
We will construct, in the context above and given sufficient cocompleteness conditions,
a module NM so that bimodulations N,M �� P are in bijective correspondence with
modulations NM �� P . More precisely, for modules M and N as above, we will construct
a module NM : F � �� H and a bimodulation k: N,M �� NM with the property that, for
every bimodulation b: N,M �� P , there exists a unique modulation t: NM �� P , such
that the following diagram commutes:

N,M P
b ��N,M

NM

k

��

P

NM

		

t

��
��

��
��

��
��

�
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When such a composite NM exists, we say the pair N,M is representable [H00]. One of
the advantages of the multi- (or even poly-) bicategorical context is that although such
composites don’t always exist (the cocompleteness requirement is not trivial), one may
nonetheless deal with bi- (and more generally multi- or poly-) modulations, rather as
one might use bilinear maps even if tensors didn’t exist. This perspective is the focus of
[CKS03].

2.4. For modules M : F � �� G and N : G � �� H we define NM : F � �� H via functors
(NM)W,Z :W(W,Z) �� M(FW,HZ) in terms of local colimits in M. Thus it will
suffice to define (NM)(w) for w: W �� Z, a typical 1-cell in W . We shall assume until
Theorem 2.7 that the bicategory is locally (small) cocomplete. That is that it has (small)
local colimits and that all compositions with 1-cells preserve these colimits.

We define (NM)(w) as a quotient
∑

β NvMu �� (NM)(w), where the sum is over
all 2-cells of the form

W T
u �� T Z

v ��W Z

w




β��

The relations defining the quotient involve all commutative diagrams of the form

(zy)x

lx
λx

��������

lx

w

γ

���
��

��
��

��
�

z(yx)

zr
zρ �����

���

zr

w

δ

		����������

(zy)x

z(yx)

α ��

(for general 2-cells (λ, γ, ρ, δ) of the kind indicated). It will be convenient to abuse notation
slightly and refer to such a pentagon as (λ, γ, ρ, δ). Given w: W �� X, consider, for each
(λ, γ, ρ, δ), the following parallel 2-cells in M:

(NzGy)Mx N(zy)Mx
ÑMx ��������������

N(zy)Mx NlMx
NλMx ����������������

NlMx ∑
β

NvMu
ιγ

����������������
(NzGy)Mx

Nz(GyMx)

α
��

Nz(GyMx) NzM(yx)
NzM̃

�������������� NzM(yx) NzMr
NzMρ

���������������� NzMr

∑
β

NvMu
ιδ

����������������

where we write ιβ for the β-injection into the sum. These parallel pairs collectively define
a parallel pair out of the sum, over all (λ, γ, ρ, δ), of the (NzGy)Mx and NM(w) is
defined as their coequalizer in the category M(FW,HX):

∑
(λ, γ, ρ, δ)

(NzGy)Mx
∑

β

NvMu
��∑

(λ, γ, ρ, δ)

(NzGy)Mx
∑

β

NvMu��
∑

β

NvMu NM(w)��
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Functoriality of NM is straightforward. Let τ : w �� w′: W �� X be a 2-cell in W and
write β′ for a typical index of the ‘generators’ sum for NM(w′) and (λ′, γ′, ρ′, δ′) for a
typical index of the ‘relations’ sum for NM(w′). Then, for every β as above, τ · β is a
β′ and, for every (λ, γ, ρ, δ) as above, (λ, τ · γ, ρ, τ · δ) is a (λ′, γ′, ρ′, δ′). In the following
evident symbolic diagram

∑
(λ′, γ′, ρ′, δ′)

•
∑
β′

•��∑
(λ′, γ′, ρ′, δ′)

•
∑
β′

•��

∑
(λ, γ, ρ, δ)

•
∑

β

•��∑
(λ, γ, ρ, δ)

•
∑

β

•��
∑

(λ, γ, ρ, δ)

•

∑
(λ′, γ′, ρ′, δ′)

•
R

��

∑
β

•

∑
β′

•
Γ

��

Γ is defined by Γ · ιβ = ιτ ·β and R is defined by R · ι(λ,γ,ρ,δ) = ι(λ,τ ·γ,ρ,τ ·δ). The diagram
serially commutes and thus defines NM(τ): NM(w) �� NM(w′). Of course the colimits
that define the NM(w) need not be expressed in ‘coequalizer of sums’ format. For some
purposes it is more convenient to think directly in terms of the diagram that the given
coequalizer of sums encodes. In particular, those sums need not exist as long as the
required colimit does.

2.5. We have defined a family of functors (NM)W,X :W(W,X) �� M(FW,HX). To
complete the definition of NM as a module F � �� H we require also actions of F and H.
To this end we now assume that the colimits used to construct the NM(w) are preserved
by composition with 1-cells from either side. It suffices to describe the action of F on

NM . The action of H is similar, and can be described by duality. Thus given X ′ t �� X
w �� Z in W we now describe 2-cells ÑM : NM(w)Ft �� NM(wt). Since

∑
(λ, γ, ρ, δ)

((NzGy)Mx)Ft
∑

β

(NvMu)Ft
��∑

(λ, γ, ρ, δ)

((NzGy)Mx)Ft
∑

β

(NvMu)Ft��
∑

β

(NvMu)Ft NM(w)Ft��

is a coequalizer, consider the 2-cells

(NvMu)Ft
α �� Nv(MuFt)

NvM̃ �� NvM(ut)
ιβt·α−1

��
∑
β′

Nv′Mu′

for all β, where β′ is a typical index of the generators sum for NM(wt), and

((NzGy)Mx)Ft α �� (NzGy)(MxFt)
(NzGy)M̃ �� (NzGy)M(xt) ι ��

∑
(λ′, γ′, ρ′, δ′)

(Nz′Gy′)Mx′

for all (λ, γ, ρ, δ), where (λ′, γ′, ρ′, δ′) is a typical index for the relations sum for NM(wt)
and ι is the sum injection ι(λ,γt·α−1,ρt·α−1,δt·α−1). These give 2-cells

∑
β

(NvMu)Ft ��
∑
β′

Nv′Mu′
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and ∑
(λ, γ, ρ, δ)

((NzGy)Mx)Ft ��
∑

(λ′, γ′, ρ′, δ′)

(Nz′Gy′)Mx′

respectively, which serially commute with the parallel pairs of the coequalizer diagrams in
question. Thus they define a 2-cell NM(w)Ft �� NM(wt) that we call ÑM . It is clear
from the description above that this putative action of F on NM is built from that of F
on M , M̃ . The only ingredients other than M̃ are associativity constraints and canonical
colimit arrows so that it is straightforward to show that ÑM does indeed satisfy the
requirements to be an action. Of course the action of H on NM is given in terms of the
action of H on N .

2.6. We now describe the bimodulation k: N,M �� NM . For composable 1-cells W
x �� X

y �� Y in W , we define k(y, x): NyMx �� NM(yx) to be the 1yx-injection into the
colimit. Equivariance of k in F and in H now follows from inspection of the first and
third hexagons in 2.3, using the description of the ÑM . Equivariance of k in G follows
from inspection of the second hexagon in 2.3, using the description of functoriality of NM
to provide NM(α).

Recall that a bicategory M is said to be locally small-cocomplete if each category
M(A,B) has all small colimits and these are preserved by composition with all 1-cells
a: A′ �� A and with all 1-cells b: B �� B′.

2.7. Theorem. For W a small bicategory and M a locally small-cocomplete bicategory,
the constructions of 2.4, 2.5, and 2.6 satisfy the universal property of 2.3: For every
bimodulation

b: N,M �� P : F � �� H:W �� M

there exists a unique modulation

t: NM �� P : F � �� H:W �� M

such that t · k = b.

Proof. Given the b(v, u): NvMu �� P (vu), we must define, for each 1-cell w: W �� Z
in W a 2-cell tw: NM(w) �� Pw in M. To give such 2-cells is to give for each 2-cell

W T
u �� T Z

v ��W Z

w




β��
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in W , 2-cells tβ: NuMv �� Pw, compatible with the relations defined by the (λ, γ, ρ, δ).
These tβ we define as the composites:

NvMu Pw
tβ ��NvMu

P (vu)

b(v,u)

��

Pw

P (vu)

		

Pβ

��
��

��
��

��
��

�

The required compatibility for a relations index (λ, γ, ρ, δ) is precisely commutativity of
the outer figure below.

Nz(GyMx) P (z(yx))Nz(GyMx) P (z(yx))

(NzGy)Mx

Nz(GyMx)

α ��

(NzGy)Mx P ((zy)x)(NzGy)Mx P ((zy)x)P ((zy)x)

P (z(yx))
Pα��

(NzGy)Mx

N(zy)Mx
ÑMx

�������

N(zy)Mx

P ((zy)x)

b(zy,x)
�����

��

Nz(GyMx)

NzM(yx)
NzM̃ �����

��

NzM(yx)

P (z(yx))

b(z,yx)

�������

P ((zy)x)

P (lx)

P (λx)

�������

P (lx)

Pw

P (γ)

������������

P (z(yx))

P (zr)

P (zρ)
�����

��

P (zr)

Pw

P (δ)

�������������

P ((zy)x)

P (z(yx))
Pα��

N(zy)Mx

NlMx
NλMx

��������

NlMx

P (lx)

b(l,x)
�����

���

NzM(yx)

NzMr
NzMρ �����

��

NzMr

P (zr)

b(z,r)

�������

NlMx

Pw

tγ



NzMr

Pw

tδ

��

The regions involving curved arrows commute by definition, the diamonds commute by
naturality of b, the pentagon is P applied to the commutative (λ, γ, ρ, δ), and the hexagon
expresses equivariance of b in G. All aspects of the Theorem follow easily from this
observation.

Since composition of modules satisfies a universal property [H00] that evidently ex-
tends to ‘trimodulations’ — defined in the obvious way — it follows that composition
of modules is associative to within coherent isomorphism. Moreover for each homomor-
phism F :W �� M, the data for F also defines a module 1F : F � �� F and the 1F provide
identities to within coherent isomorphism. It is not difficult to check that:

2.8. Theorem. For W a small bicategory and M a locally small-cocomplete bicategory,
the homomorphisms W �� M, the modules between these, and the modulations between
these last, together with the composites discussed, constitute a bicategory. We denote this
bicategory by mod(W ,M).
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3. Optransformations and transformations

3.1. For morphisms F,G:W �� M we recall that a transformation u from F to G,
u: F �� G:W �� M, consists of a family of 1-cells uW : FW �� GW , indexed by the
objects of W , and a family of 2-cells

GW GX
Gx

��

FW

GW

uW

��

FW FX
Fx �� FX

GX

uX

��

ux ��

indexed by the 1-cells x: W �� X of W , which respect composition and identities. An
optransformation t from F to G, t: F �� G:W �� M, is defined similarly except that
the 2-cells are directed oppositely as in:

GW GX
Gx

��

FW

GW

tW

��

FW FX
Fx �� FX

GX

tX

��

tx��

Since we will be interested in those optransformations t for which each tW is a map, we
need the following, almost trivial, Lemma about mates.

3.2. Lemma. In any bicategory, if

• •
g

��

•

•

t1

��

• •
f ′

�� •

•

t2

��

• •
f

��φ
��

τ
��

=

• •
g

��

•

•

t1

��

• •
f ′

�� •

•

t2

��• •
g′

��

τ ′
��

γ
��

and t1 � t∗1, t2 � t∗2, and τ̂ is the mate of τ , τ̂ ′ the mate of τ ′ under these adjunctions,
then

• •
g

��

•

•

��

t∗1

• •
f ′

�� •

•

��

t∗2

• •
f

��φ
��

τ̂
��

=

• •
g

��

•

•

��

t∗1

• •
f ′

�� •

•

��

t∗2

• •
g′

��

τ̂ ′
��

γ
��
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Proof. It suffices, by the coherence theorem for bicategories, to prove the result for
2-categories. (In any event, only minor adjustments are needed to adapt this proof to
a bicategory.) Recall that, in any 2-category, the mate of a 2-cell under adjunctions
η1, ε1: t1 � t∗1 and η2, ε2: t2 � t∗2 is given by pasting the counit ε1 and the unit η2 as shown
on both sides of the equation below. Thus in this case the conclusion follows immediately
from associativity of pasting.

• •
g

��

•

•��

• •
f ′

�� •

•��

• •
f

��φ
��

τ
��

• •
1

��

•

•

		

t∗1

��
��

��
��

��
��

��
•

•

t1

��

ε1
��

• •1 ��•

•

t2

��

•

•

		

t∗2

��
��

��
��

��
��

��
η2

�� =

• •
g

��

•

•��

• •
f ′

�� •

•��• •
g′

��

τ ′
��

γ
��• •

1
��

•

•

		

t∗1

��
��

��
��

��
��

��
•

•

t1

��

ε1
��

• •1 ��•

•

t2

��

•

•

		

t∗2

��
��

��
��

��
��

��
η2

��

3.3. Proposition. If t: F �� G:W �� M is an optransformation for which each tW
is a map, with right adjoint t∗W , then these together with the mates t̂x: (Fx)(t∗W ) ��

(t∗X)(Gx) of the tx under the adjunctions tW � t∗W and tX � t∗X constitute a trans-
formation t̂: G �� F :W �� M.

Proof. At least the data makes sense. For the binary condition we must show that,

for all composable 1-cells W x �� X
y �� Y in W ,

FW FY
F (yx) ��

GW

FW

t∗W

��

GW GY
G(yx) �� GY

FY

t∗Y

��

t̂(yx)

��

FW

FX

Fx
������������

FX

FY

Fy

��										

F̃
��

=

FW FX
Fx

��

GW

FW

t∗W

��

GW GX
Gx �� GX

FX

t∗X

��

t̂x

��

FX FY
Fy

��

GX

FX

t∗X

��

GX GY
Gy �� GY

FY

t∗Y

��

t̂y

��
GW GY

G(yx)

��
G̃

��

This follows from the corresponding equation for t, using Lemma 3.2 and the fact that
the mate of a paste composite is the paste composite of mates. The nullary condition is
shown similarly.

3.4. Proposition. Optransformations t: F �� G:W �� M give rise to modules
T = t�: F

� �� G:W �� M; similarly transformations u: F �� G:W �� M give rise to
modules U = u�: F � �� G:W �� M.
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Proof. The constructions of T and U are given by the following pasting diagrams,

which display the data defining each module, given morphisms W x �� X
y �� Y in W .

FX GX
tX

��

FW

FX

Fx

��

FW GW
tW �� GW

GX

Gx

��
GX GY

Gy
��

GW

GX

Gx

��

GW GX
Gx �� GX

GY

Gy

��

G(yx)

��
��

���
��

��
tx ��

G̃ ��

G̃��

FX FY
Fy

��

FW

FX

Fx

��

FW FX
Fx �� FX

FY

Fy

��
FY GY

uY
��

FX

FY

Fy

��

FX GX
uX �� GX

GY

Gy

��

F (yx)

��
��

���
��

��
uy��

F̃ ��

F̃��

Explicitly, for an optransformation t: F �� G, TW,X :W(W,X) �� M(FW,GX) is given
by

W(W,X)
GW,X �� M(GW,GX)

M(tW,−) �� M(FW,GX)

Thus with reference to the optransformation displayed in 3.1, Tx is the down-then-right
composite Gx.tW (where we use ‘.’ to spare parentheses). For y: X �� Y in W

GyTx = Gy(Gx.tW )
α−1

�� (GyGx)tW
G̃tW �� G(yx)tW

defines T̃ : GyTx �� T (yx) and for w: V �� W in W ,

(Gx.tW )Fw α �� Gx(tW.Fw) Gx.tw �� Gx(Gw.tV ) α−1
�� (GxGw)tV G̃tV �� G(xw)tV

defines T̃ : TxFw �� T (xw). It is routine to show that T together with the T̃ defines a
module T : F � �� G.

For a transformation u: F �� G, define functors UW,X :W(W,X) �� M(FW,GX) by

W(W,X)
FW,X �� M(FW,FX)

M(−,uX) �� M(FW,GX)

So now referring to the transformation displayed in 3.1, Ux is the right-then-down com-
posite uX.Fx. For w: V �� W in W

UxFw = (uX.Fx)Fw α �� uX(FxFw) uXF̃ �� uX.F (xw)

defines Ũ : UxFw �� U(xw) and for y: X �� Y in W ,

Gy(uX.Fx) α−1
�� (Gy.uX)Fx

uy.Fx �� (uY.Fy)Fx α �� uY (FyFx) uY F̃ �� uY.F (yx)

defines Ũ : GyUx �� U(yx). Again, it is easy to show that U together with the Ũ defines
a module U : F � �� G.
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This is in fact a special case of more general (one-sided) actions of (op)transformations
on modules, as described in the next Proposition, where we replace the identity modules
above with arbitrary modules. Note that although in general modules need not compose
without any smallness constraints we can in fact always pre-compose with modules of the
form t� and we can always post-compose with modules of the form u�.

3.5. Proposition. For an optransformation t: F �� G and a module N : G � �� H,
there is a module N · t: F � �� H. For such t, the module t� is 1G · t. The module composite
Nt� exists and is equal to N · t. Dually, for a transformation u: F �� G and a module
M : K � �� F , there is a module u · M : K � �� G. For such u, the module u� is u · 1F . The
module composite u�M exists and is equal to u · M .

Proof. This is essentially the same as above; for W x �� X
y �� Y in W we have the

following.

FX GX
tX

��

FW

FX

Fx

��

FW GW
tW �� GW

GX

Gx

��
GX HY

Ny
��

GW

GX

Gx

��

GW HX
Nx �� HX

HY

Hy

��

N(yx)

��
��

���
��

��
tx ��

Ñ ��

Ñ��

KX FY
My

��

KW

KX

Kx

��

KW FX
Mx �� FX

FY

Fy

��
FY GY

uY
��

FX

FY

Fy

��

FX GX
uX �� GX

GY

Gy

��

M(yx)

��
��

���
��

��
uy��

M̃ ��

M̃��

So for example, (N ·t)W,X = W(W,X)
NW,X �� M(GW,HX)

M(tW,−) �� M(FW,HX), and
dually for u · M .

In view of these results, for an optransformation t with maps as 1-cell components one
would expect the modules t� induced by t and t̂� induced by its mate t̂ to be well-behaved,
in fact to be adjoint. But there is a problem concerning the composite t�t̂

� that ought to
be the domain of the counit: in general, this composite need not exist (i.e. the pair t�, t̂

�

need not be representable). (The other composite t̂�t� is defined, and is an example of the
composites in the previous Proposition.) This problem can be circumvented, when we
take seriously the idea of multi-bicategories (mentioned before). The notion of adjoints
may be expressed in the multi setting, if just one of the necessary composites exists, as
we see with t� and t̂�, according to the following definition.

3.6. Definition. (Adjointness in a multi-bicategory) 1-cells f : A �� B and g: B �� A
are called adjoint, f � g, if the composite gf is defined ( i.e. g, f is representable), if there
exists a 2-cell η: 1A

�� gf , the unit, and if there exists a multi-2-cell ε: f, g �� 1B, the
counit, subject to the “usual” (obvious) adjointness requirements.

Then in this context we do have the expected adjoint connection between the modules
induced by t and t̂:
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3.7. Proposition. Any optransformation t: F �� G with maps as 1-cell components
induces adjoint modules t� � t̂�.

Proof. The representability of t�, t̂
� follows by Proposition 3.5. The unit is induced by

the units of the adjunctions tX and t̂X. Similarly, the counit bimodulation immediately
results from the laxness of G and the counits of tX � t̂X. The rest is straightforward.

This, at least in the poly setting, is Theorem 5.8 of [CKS03]. Note that in that setting
even the modest representability condition used here is unnecessary.

4. Modulations

4.1. For fixed bicategories W and M we have already introduced (cf. Theorem 2.8) the
bicategory mod(W ,M) of homomorphisms, modules and modulations. In particular, it
contains 2-cells between modules induced by optransformations as well as 2-cells between
modules induced by transformations according to Proposition 3.4. This suggests that
the notion of modulation can be defined directly between transformations and between
optransformations, respectively. In some sense this definition will be more intuitive for
optransformations, as we will explain later, but it seems appropriate to give a detailed
description in what is generally regarded as the standard variance.

4.2. Definition. For transformations u, v: F �� G:W �� M, a modulation µ from
u to v consists of a family of 2-cells

µW : uW �� (vW )(F1W )

in M, indexed by the objects of W, such that for all x: W �� X in W,

FW FW
F1W ��FW

GW

uW

���
��

��
��

��
��

��
FW

GW

vW

��
GW GX

Gx
��

FW

GW
��

FW FX
Fx �� FX

GX

vX

��

FW FX

Fx

��

µW �� vx ��

��

=

GW GX
Gx

��

FW

GW

uW

��

FW FX
Fx �� FX

GX
��

FX FX
F1X ��FX

GX

uX

��

FX

GX

vX

����
��

��
��

��
��

�
FW FX

Fx

��

ux �� µX ��

��

where the unlabelled transformation on the left side is (Fx)(F1W ) F̃ �� F (x1W )
Fρ �� Fx

while that on the right side is (F1X)(Fx) F̃ �� F (1W x) Fλ �� Fx and where here we use ρ
and λ for unitary constraint isomorphisms.



390 J.R.B. COCKETT, J. KOSLOWSKI, R.A.G. SEELY, AND R.J. WOOD

Given transformations u, v, w: F �� G and modulations µ: u �� v and ν: v �� w we
define a composite ν · µ: u �� w by requiring that (ν · µ)W be the paste composite

FW FW
F1W ��FW

GW

uW

���
��

��
��

��
��

��
FW

GW

vW

��

FW FW
F1W ��FW

GW

vW

��

FW

GW

wW

����
��

��
��

��
��

�
FW FW

F1W

��

µW �� νW ��

��

where the arrow F1W .F1W
�� F1W is that constructed from F̃ and the constraint

1W .1W
∼= 1W . It is easy to see, by shuffling pastings, that ν · µ is again a modulation,

that composition is associative, and that composition is unitary for identities given by

FW

GW

uW

���
��

��
��

��
��

��
FW FW

F1W �� FW

GW

uW

����
��

��
��

��
��

�
FW FW

1FW

��F ◦��

ρ−1
��

Thus we have a category that will be denoted trans(W ,M)(F,G). Composition of trans-
formations is given by pasting which is coherently associative and unitary up to isomor-
phism via constraints inherited from M. To show that the trans(W ,M)(F,G) provide
the hom-categories for a bicategory trans(W ,M) we show that composition of transfor-
mations is functorial with respect to modulations. Consider:

F G

u
��

F G
v

�� G H

w
��

G H
x

��µ �� ν ��

The whisker composites νu and xµ respectively are provided by the following diagrams:

GW GW��

FW

GW

uW

��

FW FW
F1W �� FW

GW

uW

��

u1W ��

GW GW
G1W ��GW

HW

wW

��

GW

HW

xW

����
��

��
��

��
��

�

νW ��

FW FW
F1W ��FW

GW

uW

��

FW

GW

vW

����
��

��
��

��
��

�

GW

HW

xW

��

µW ��
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It is easy to verify that xµ so defined is a modulation, a little harder to show that νu
is so. What is needed to complete the verification that trans(W ,M) is a bicategory is
commutativity of

xu xvxµ
��

wu

xu

νu

��

wu wv
wµ �� wv

xv

νv

��

where the composites are to be understood in the sense of composition of modulations
introduced above. In other words we require equality as below.

FW FW

F1W

��

��

GW GW��

FW

GW

uW

��

FW FW
F1W �� FW

GW
��

u1W ��

FW FW
F1W ��FW

GW

uW

��

FW

GW

vW

����
��

��
��

��
��

�

µW ��

GW GW
G1W ��GW

HW

wW

��

GW

HW

xW

����
��

��
��

��
��

�

νW ��

= FW FW

F1W

��

��

FW FW
F1W ��FW

GW

uW

��

FW

GW

vW

����
��

��
��

��
��

�

µW ��

GW GW
G1W ��GW

HW

wW

��

GW

HW

xW

����
��

��
��

��
��

�

νW ��

FW FW
F1W �� FW

GW

vW

����
��

��
��

��
��

�

v1W ��

This follows from the modulation equation for µ.

4.3. Recall that a modification µ: u �� v between transformations v, u: F �� G is
a family of arrows µW : uW �� vW satisfying the single ‘cylinder’ equation. Given a
modification µ: u �� v the following pasting gives a modulation.

FW FW

F1W
��

FW FW

1FW

��
��

FW

GW

uW

��

FW

GW

vW

��

µW��

FW

GW
vW

��

� ��

The unlabelled transformations are the obvious ones. Write µ for the modulation above.

Observe that the identity modulation on u: F �� G is 1u and that if u
µ �� v ν �� w are

composable modifications then ν · µ = ν ·µ. It follows directly that bicat(W ,M) is a sub-
bicategory of trans(W ,M) consisting of the same objects, the same 1-cells, but a smaller
class of 2-cells. This generalizes the situation in [LS02]. For K a bicategory (usually a 2-
category), the bicategory bicat(1,K) is MndK as first introduced in [S72]. On the other
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hand trans(1,K) is EMK, the free completion of K with respect to Eilenberg-Moore
objects, which was introduced and studied in [LS02].

If F is a homomorphism then, for all G, each modulation u �� v: F �� G is of the
form µ for a unique modification µ: u �� v.

4.4. Definition. For optransformations s, t: F �� G:W �� M, a modulation µ from
s to t consists of a family of 2-cells

µW : sW �� (G1W )(tW )

in M, indexed by the objects of W, such that for all x: W �� X in W,

GW GW
G1W

��

FW

GW

tW

����
��

��
��

��
��

�
FW

GW

sW

��
GW GX

Gx
��

FW

GW
��

FW FX
Fx �� FX

GX

sX

��
GW GX

Gx

��

µW
��

sx
��

��

=

GW GX
Gx

��

FW

GW

tW

��

FW FX
Fx �� FX

GX
��

GX GX
G1X

��

FX

GX

tX

��

FX

GX

sX

���
��

��
��

��
��

��

GW GX

Gx

��

tx
��

µX
��

��

4.5. To better understand the definition of modulation between transformations it is
at first simplest to consider modulations between optransformations, as above, in a very
special case. Let W = 1 and M = mat. Then, as noted before, F and G are just ordinary
categories. We may as well write |F | for F applied to the unique object ∗ of 1 and similarly
|G| for the effect of G on ∗. So |F | is the set of objects of ‘F ’ and |G| is the set of objects
of ‘G’. Then write F : |F | �� |F | for F applied to the unique arrow of 1. It is the matrix
of hom-sets of ‘F ’ and similarly G: |G| �� |G| provides the arrows of ‘G’. Identities and

composition in ‘G’ are given, respectively by G◦: 1|G| �� G and G̃: GG �� G. To give
a functor s: F �� G is to give a function |s|: |F | �� |G|, essentially a map |F | �� |G|
in mat, and a 2-cell s: |s|F �� G|t| satisfying the two equations of an optransformation.
The single 2-cell encodes all the information of the effects-on-homs functions. Finally,
and this is the point, a natural transformation µ: s �� t is in the first instance a family
of arrows of ‘G’, indexed by the objects of |F |, and the single 2-cell µ: |s| �� G|t| that
appears in the definition of modulation in the case at hand encodes all its components.
The equation of Definition 4.4 expresses a family of equalities of composites, precisely all
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the commutative squares given by the familiar definition of natural transformation:

|G| |G|
G

��

|F |

|G|

|t|

����
��

��
��

��
��
|F |

|G|

|s|

��
|G| |G|

G
��

|F |

|G|
��

|F | |F |F �� |F |

|G|

|s|

��
|G| |G|

G

		

µ
��

s
��

��

=

|G| |G|
G

��

|F |

|G|

|t|

��

|F | |F |F �� |F |

|G|
��

|G| |G|
G

��

|F |

|G|

|t|

��

|F |

|G|

|s|

���
��

��
��

��
��

�

|G| |G|

G

		

t
��

µ
��

��

Notice that, for general W and M, if G is a homomorphism then, for all F , each
modulation s �� t: F �� G arises from a unique modification s �� t. However, this
observation, dual to that at the end of 4.3 is not germane to the case of morphisms
1 �� mat. For if a category G, regarded as a morphism G:1 �� mat, has G̃: GG �� G
an isomorphism then every arrow φ: x �� y in G has a unique factorization but for x �= y

we have both x
1x �� x

φ �� y and x
φ �� y

1y �� y.)
Morphisms, optransformations, and modulations, with composites defined similarly to

those of trans(W ,M), form a bicategory that we denote by optrans(W ,M).

4.6. The reason that we have used the term ‘modulation’ in three different contexts
is that they are unified in mod(W ,M). In proposition 3.4 we defined modules arising
from optransformations and modules arising from transformations. Let µ: s �� t: F ��

G:W �� M be a modulation between optransformations and suppose that T := t� is the
module constructed from t and S := s� from s as in 3.4. Define m: S �� T by

mW,X : SW,X
�� TW,X :W(W,X) �� M(FW,GX)

so that for x: W �� X in W , mW,Xx = mx: Gx.sW �� Gx.tW is the paste composite
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���
��

��
��

��
��
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FW
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��
��

��
��

��
��

�
GW
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G1W GX
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Gx

��
��

��
��

��
��

�

GW

GX

Gx

���
��

��
��

��
��

��
GW

GW

��

G1WµW
��

G̃
��

Similarly, for µ: u �� v: F �� G �� W �� M a modulation between transformations,
let U := u� be the module constructed from u, and V := v� from v, again as in 3.4; define
m: U �� V by

mW,X : UW,X
�� VW,X :W(W,X) �� M(FW,GX)
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so that for x: W �� X in W , mW,Xx = mx: uX.Fx �� vX.Fx is the paste composite
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FX

Fx

���
��

��
��

��
��

��

FX

FW
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��
��

��
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��
��

�
FX

FX
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FX

GX
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���
��

��
��

��
��

��
FX

FX

F1X

��

F̃
��

µX
��

4.7. Theorem. For W a small bicategory and M a locally small-cocomplete bicategory,
the assignments

µ: s �� t: F �� G �→ m: S �� T : F � �� G

and
µ: u �� v: F �� G �→ m: U �� V : F � �� G

of 4.6 define, respectively, homomorphisms of bicategories

optrans(W ,M) �� mod(W ,M)

and
trans(W ,M) �� mod(W ,M)

which are given by the identity on objects and are locally fully faithful.

Proof. This result is mainly a matter of following the definitions. The local full faithful-
ness is a direct consequence of the definitions of the induced structure in mod(W ,M).

Note that local full faithfulness allows us to treat optrans(W ,M) as a sub-bicategory
of mod(W ,M) with the same objects and the same 2-cells between the defining 1-cells.
In other words, when modulations are taken as the morphisms between them, optrans-
formations are just special modules. (Of course this interpretation is not possible if only
modifications are allowed as morphisms between optransformations.)

4.8. Remark. In [CKS03] we gave a characterization (Proposition 5.9) of the modules
induced by (op)transformations; in that setting, duality allowed a considerable simplifi-
cation, but in the present setting, the gain is less notable. In essence, given a module
whose basic structure is given by the basic data of a (op)transformation, one obtains the
coherence requirements ‘for free’. More precisely, suppose for a module M : F � �� G that
there is a family of maps (1-cells with right adjoints) tW : F (W ) �� G(W ) indexed by
0-cells W of W , with the property that for any 1-cell x: W �� X, M(x) = G(x).tW and
for any 2-cell α: x �� y, M(α) = G(α).tW . Then there is an optransformation t so that
M = t�. Conversely, it is clear that t� must satisfy these conditions so that this actually
characterizes modules which arise from transformations.
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4.9. Now consider the locally full sub-bicategory of optrans(W ,M) determined by
those optransformations t for which tW is a map in M, for all W in W . In light of the
discussion in 4.5 it is suggestive to denote this bicategory by fun(W ,M). Similarly, we
write cofun(W ,M) for the locally full sub-bicategory of trans(W ,M) determined by
those u for which all uW have left adjoints. With this terminology we can sharpen the
statement of Proposition 3.3

The following theorems assume that W is a small bicategory and M is a locally small-
cocomplete bicategory. This may be relaxed if we give these results in a “multi” version,
but the essential content may be more simply conveyed in the more familiar context.

4.10. Theorem. Each choice of adjunctions tW � t∗W in M determines an involutive
isomorphism of bicategories (−)∗: fun(W ,M)coop �� cofun(W ,M) (meaning that (−)∗

is a homomorphism with (−)∗∗ = 1).

4.11. Theorem. The composite fun(W ,M) �� trans(W ,M) �� mod(W ,M)
is proarrow equipment in the sense of Wo82, meaning that it is a locally fully faithful,
identity on objects homomorphism of bicategories for which each 1-cell in fun(W ,M) has
a right adjoint in mod(W ,M).

Proof. For an optransformation t it suffices to show that the transformation t̂ of
Proposition 3.3 is right adjoint to t in mod(W ,M).

Since the usual inclusion of functors as profunctors, the paradigm for proarrow equip-
ment, is a special case of Theorem 4.11 the result is not surprising but the formulation
immediately allows a host of new questions and well-motivated definitions. For example,
it is now clear what it means to say that a morphism of bicategories F :W �� M is
Cauchy complete, that a parallel pair of morphisms are Morita equivalent, and so on. For
further possibilities the reader is referred to [Wo82], [Wo85], and [RW].
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