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OPERADS IN HIGHER-DIMENSIONAL CATEGORY THEORY

TOM LEINSTER

ABSTRACT. The purpose of this paper is to set up a theory of generalized operads
and multicategories and to use it as a language in which to propose a definition of
weak n-category. Included is a full explanation of why the proposed definition of n-
category is a reasonable one, and of what happens when n ≤ 2. Generalized operads
and multicategories play other parts in higher-dimensional algebra too, some of which
are outlined here: for instance, they can be used to simplify the opetopic approach to
n-categories expounded by Baez, Dolan and others, and are a natural language in which
to discuss enrichment of categorical structures.
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Introduction

This paper concerns various aspects of higher-dimensional category theory, and in partic-
ular n-categories and generalized operads.

We start with a look at bicategories (Section 1). Having reviewed the basics of the
classical definition, we define ‘unbiased bicategories’, in which n-fold composites of 1-cells
are specified for all natural n (rather than the usual nullary and binary presentation). We
go on to show that the theories of (classical) bicategories and of unbiased bicategories are
equivalent, in a strong sense.

The heart of this work is the theory of generalized operads and multicategories. More
exactly, given a monad T on a category E , satisfying simple conditions, there is a theory
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of T -operads and T -multicategories. (As explained in ‘Terminology’ below, a T -operad is
a special kind of T -multicategory.) In Section 2 we set up the basic concepts of the theory,
including the important definition of an algebra for a T -multicategory. In Section 3 we
cover an assortment of further operadic topics, some of which are used in later parts of the
paper, and some of which pertain to the applications mentioned in the first paragraph.

Section 4 is a definition of weak ω-category. (That is, it is a proposed definition; there
are many such proposals out there, and no attempt at a comparison is made.) As discussed
at more length under ‘Related Work’, it is a modification of Batanin’s definition [Bat].
Having given the definition formally, we take a long look at why it is a reasonable defini-
tion. We then explore weak n-categories (for finite n), and show that weak 2-categories
are exactly unbiased bicategories.

The four appendices take care of various details which would have been distracting
in the main text. Appendix A contains the proof that unbiased bicategories are essen-
tially the same as classical bicategories. Appendix B describes how to form the free
T -multicategory on a given T -graph. In Appendix C we discuss various facts about strict
ω-categories, including a proof that the category they form is monadic over an appropriate
category of graphs. Finally, Appendix D is a proof of the existence of an initial object in
a certain category, as required in Section 4.

Terminology. The terminology for ‘strength’ in higher-dimensional category the-
ory is rather in disarray. For example, when something works up to coherent isomor-
phism, it is variously described as ‘pseudo’, ‘weak’ and ‘strong’, or not given a qualifier
at all. In the context of maps between bicategories another word altogether is often
used (‘homomorphism’—see [Bén]). Not quite as severe a problem is the terminology for
n-categories themselves: the version where things hold up to coherent isomorphism or
equivalence is (almost) invariably called weak, and the version where everything holds up
to equality is always called strict, but ‘n-category’ on its own is sometimes used to mean
the weak one and sometimes the strict one. The tradition has been for ‘n-category’ to
mean ‘strict n-category’. However, Baez has argued (convincingly) that the terminology
should reflect the fact that the weak version is much more abundant in nature; so in his
work ‘n-category’ means ‘weak n-category’.

I have tried to bring some unity to the situation. When an entity is characterized by
things holding on the nose (i.e. up to equality), it will be called strict. When they hold
up to coherent isomorphism or equivalence it will be called weak. When they hold up to
a not-necessarily-invertible connecting map (which does not happen often here), it will be
called lax. The term ‘n-category’ will not (I hope) be used in isolation, but will always be
qualified by either ‘strict’ or ‘weak’, except in informal discussion where both possibilities
are intended. However, in deference to tradition, ‘2-category’ will always mean ‘strict
2-category’, and ‘bicategory’ will be used for the notion of weak 2-category proposed by
Bénabou in [Bén].

We will, of course, be talking about operads and multicategories. Again the termi-
nology has been a bit messy: topologists, who by and large do not seem to be aware of
Lambek’s (late 1960s) definition of multicategory, call multicategories ‘coloured operads’;
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whereas amongst category theorists, the notion of multicategory seems much more widely
known than that of operad. Basically, an operad is a one-object multicategory. This is
also the way the terminology will work when we are dealing with generalized operads and
multicategories, from Section 2 onwards: a T -operad will be a one-object T -multicategory,
in a sense made precise just after the definition (2.2.2) of T -multicategory. So a T -operad
is a special kind of T -multicategory. This means that in the title of this work, the
word ‘operads’ would more accurately be ‘multicategories’: but, of course, euphony is
paramount.

I have not been very conscientious about the distinction between small and large (sets
and classes), and hope that the reader will find the issue no more disturbing than usual.

0 is a member of the natural numbers, N.

Related work. This paper was originally my PhD thesis. In the time between it
being submitted for publication and it being accepted I wrote my book [Lei9], which
expounds at greater length on many of the topics to be found here. (In particular, it
should be understood that the comments following this paragraph were written before
the book was.) If the reader wants a more detailed discussion then [Lei9] is the place to
look; otherwise, I hope that this will serve as a useful medium-length account.

Much of what is here has appeared in preprints available electronically. The main
references are [Lei1] and Sections I and II of [Lei3], and to a lesser extent [Lei5]. In
many places I have added detail and rigour; indeed, much of the new writing is in the
appendices.

The first section, Bicategories, is also largely new writing. However, the results it
contains are unlikely to surprise anyone: they have certainly been in the air for a while,
even if they have not been written up in full detail before. See [Her2, 9.1], [Lei3, p. 8],
[Lei5, 4.4] and [Lei7, 4.3] for more or less explicit references to the idea. Closely related
issues have been considered in the study of 2-monads made by the (largely) Australian
school: see, for instance, [BKP], [Kel1] and [Pow]. The virtues of the main proof of
this section (which is actually in Appendix A) are its directness, and that it uses an
operad where a 2-monad might be used instead, which is more in the spirit of this work.
Similar methods to those used here also provide a way of answering more general questions
concerning possible ways of defining ‘bicategory’, as explained in [Lei8].

I first wrote up the material of Section 2 , Operads and multicategories, in [Lei1]
(and another account appears in [Lei3]). At that time the ideas were new to me, but
subsequently I discovered that the definition of T -multicategory had appeared in Burroni’s
1971 paper [Bur]. Very similar ideas were also being developed, again in ignorance of
Burroni, by Hermida: [Her2]. However, one important part of Section 2 which does not
seem to be anywhere else is 2.3, on algebras for a multicategory.

Burroni’s paper is in French, which I do not read well. This has had two effects: firstly,
that I have not used it as a source at all, and secondly, that I cannot accurately tell what
is in it and what is not. I have attempted to make correct attributions, but I may not
entirely have succeeded here.

Section 3, More on operads and multicategories, is a selection of further topics
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concerning multicategories. Subsections 3.1–3.4 all appear, more or less, in both [Lei1]
and [Lei3]. Other work related to 3.3 (Free Multicategories) is described in the paragraph
on Appendix B below. A shorter version of 3.5 is in [Lei1]. Subsection 3.6 (on fc-
multicategories) is covered in each of [Lei4], [Lei5] and [Lei6]. fc-multicategories are
another of those ideas that seem to have been in the air; they also seem to be in [Bur]
(p. 280), and appear in [Her1, 10.2]. Moreover, Burroni’s section IV.3 is entitled ‘T -
profunctors and T -natural transformations’ (in French), and these entities presumably
bear some resemblance to the profunctors and natural transformations discussed in 3.7.

Section 4 is A definition of weak ω-category, based on the definition given by
Batanin in [Bat] (and summarized by Street in [Str3]). I first wrote a version of this
section in [Lei3]. At the time I thought I was writing an account of Batanin’s definition,
reshaped and very much simplified but with the same end result mathematically. In fact,
in trying to understand the meaning of a difficult part of [Bat], I had made a guess which
turned out to be inaccurate (as Batanin informed me), but still provided a reasonable
definition of weak ω-category.

As far as originality and novelty go, the upshot for Section 4 is this. The section
contains two main ideas: globular operads and contractions. Globular operads were
proposed in [Bat], but in a rather complicated way; here, we are able to give a one-
line definition (‘operads for the free strict ω-category monad’). Contractions were the
concept in [Bat] of which I had made a creative and inaccurate interpretation, so our two
definitions of contraction differ; the definition given here seems more economical than
that in [Bat]. There is a comparison of the two strategies at the end of 4.5. Overall,
the present definition of weak ω-category is very economical conceptually, and short too:
given the basic language of general multicategories, it only takes a page or two (138–140).

Appendix A, Biased vs. unbiased bicategories, is commented on with Section 1
above.

Appendix B, The free multicategory construction, is almost exactly the same as
the appendix of [Lei5]. It is very like the free monoid construction in Appendix B of [BJT],
although I did not see this until after writing [Lei5]. This is a more subtle free monoid
construction than most: it does not require the tensor (with respect to which we are
taking monoids) either to be symmetric or to preserve sums on each side. In our context,
the latter condition translates to saying that the functor T preserves sums, where we are
trying to form free T -multicategories. This is often not the case: for instance, if T is the
free monoid functor on Set. There is a version of the free multicategory construction in
Burroni’s paper [Bur] (III.III), but he does insist that T preserves sums.

Most of Appendix C, Strict ω-categories, sets out results which are widely assumed
(e.g. [Her1, §10.1] or [Lei3, Ch. II]). However, I do not know of another place where the
main result, that strict ω-categories are monadic over globular sets and the induced monad
is cartesian and finitary, is actually proved. The material in the last subsection (C.3) is
not so widely known, but is a reworking of results in [Bat].

Appendix D proves the Existence of an initial operad-with-contraction. This is
new material, and fills a gap left in [Lei3] (II.5). Experts in these matters will probably
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be able to wave their hands and say with conviction that the initial object exists, on the
general principle of there being free models for finitary essentially algebraic theories.

Acknowledgements. This work was supported by a PhD grant from EPSRC, by a
Research Scholarship at Trinity College, Cambridge, and subsequently by the Laurence
Goddard Fellowship at St John’s College, Cambridge. The document was prepared in
LATEX, using Paul Taylor’s diagrams package for some of the diagrams. I am very grateful
to the many people who have helped me in this project, and would especially like to thank
Martin Hyland.

1. Bicategories

The main purpose of this section is to provide an alternative definition of bicategory in
which, instead of having a specified identity 1-cell on each object and a specified binary
composite of any pair of adjacent 1-cells, one has a specified composite of any string of n
1-cells

• �• � · · · �•

for each n ∈ N. We then prove that this definition is equivalent, in a strong sense, to the
classical definition. The details of the proof are relegated to Appendix A.

This alternative definition of bicategory—which we call an unbiased bicategory—is
very natural, and in many ways more natural than the classical definition. But this is
not why it appears in this work: the reason is that we will need it in Section 4, where we
show that for n = 2, our weak n-categories are just unbiased bicategories.

More information on the pedigree of these ideas is contained in the ‘Related Work’
part of the Introduction.

1.1. Review of classical material. Here we review the basic properties of bi-
categories and state our terminology. The original definition of bicategory was made in
Bénabou’s paper [Bén], along with the definition of lax functor (called ‘morphism’ there).
Other references for these definitions are [Lei2] and [Str2], which also include definitions
of transformation and modification; but we will not need these further concepts here.

We will typically denote 0-cells (or ‘objects’) of a bicategory B by A, B, . . . , 1-cells
by f , g, . . . and 2-cells by α, β, . . . , e.g.

A

f

g

α
�

��
B.
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The ‘vertical’ composite of 2-cells

·
α

β

�
�

�

�

�
·

is written β◦α or βα, and the ‘horizontal’ composite of 2-cells

· α
�

��
· α′�

��
·

is written α′ ∗ α. We will not need names for the associativity and unit isomorphisms;
when they are all identities, the bicategory is called a 2-category.

A lax functor (F, φ) : B � B′ (between bicategories B and B′) consists of a function
F0 : B0

� B′
0 on objects, a functor

FA,B : B(A,B) � B′(F0A,F0B)

for each pair A,B of objects of B, and ‘coherence’ 2-cells

φf,g : Fg◦Ff � F (g◦f), φA : 1FA � F1A

satisfying some axioms. If these 2-cells are all invertible then F is called a weak functor
(Bénabou: ‘homomorphism’). If they are identities (so that Fg◦Ff = F (g◦f) and F1 = 1)
then F is called a strict functor.

Lax functors can be composed, and this composition obeys strict associativity and
identity laws, so that we obtain a category Bicatlax. Moreover, the class of weak functors
is closed under composition, and the same goes for strict functors, and the identity functor
on a bicategory is strict; thus we have categories

Bicatstr ⊆Bicatwk ⊆Bicatlax,

all with the same objects. (A more categorical way of putting it is that there are faithful
functors

Bicatstr
� Bicatwk

� Bicatlax

which are the identity on objects, but I will continue to use the ⊆ notation for brevity.)
A monad in a bicategory B is a lax functor from the terminal bicategory 1 to B.

Explicitly, this consists of a 0-cell A, a 1-cell A
t� A, and 2-cells

A

1

t

t◦t

η

µ

�
�

�

�

�
A,
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such that the diagrams

t◦1
tη � t◦t �

ηt
1◦t

	
	
	
	
	

∼
� 
�

�
�
�
�

∼
t

µ

�

t◦(t◦t)
tµ � t◦t

�
�
�
�
�

∼

(t◦t)◦t

t◦t

µt

�

µ
� t

µ

�

commute.

There is a one-to-one correspondence between bicategories with precisely one 0-cell
and monoidal categories. Given such a bicategory, B, there is a monoidal category whose
objects are the 1-cells of B and whose morphisms are the 2-cells, and with p ⊗ q = p◦q
and α ⊗ β = α ∗ β, where p, q are 1-cells of B and α, β are 2-cells. Lax, weak and
strict functors between the bicategories then correspond to lax monoidal functors, (weak)
monoidal functors and strict monoidal functors.

We could equally well have chosen the opposite orientation, so that p ⊗ q = q◦p and
α ⊗ β = β ∗ α. However, we stick with our choice. The consequence is that ‘⊗ and ◦
go in the same direction’. (This accounts for the apparently odd reversal of R and R′ in
Example 3.6.1(b).)

1.2. Unbiased bicategories. The traditional definition of a bicategory is ‘biased’
towards binary and nullary compositions, in that only these are given explicit mention.
For instance, there is no specified ternary composite of 1-cells, (h, g, f) �−→hgf , only the
derived ones like h(gf) and ((h1)g)(f1). It is necessary to be biased in order to achieve a
finite axiomatization. However, it is useful in this work (and elsewhere) to have a notion
of ‘unbiased bicategory’, in which all arities are treated even-handedly. In this subsection
we define unbiased bicategory and unbiased weak functor, and in the next we compare
this approach to the classical one.

1.2.1. Definition. An unbiased bicategory B consists of

• a class B0, whose elements are called objects or 0-cells

• for each pair A,B of objects, a category B(A,B), whose objects are called 1-cells
and whose morphisms are called 2-cells
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• for each sequence A0, . . . , An of objects (n ≥ 0), a ‘composition’ functor

comp(A0, ... ,An) : B(An−1, An) × · · · × B(A0, A1) � B(A0, An),
(fn, . . . , f1) �−→ (fn◦ · · · ◦f1),
(αn, . . . , α1) �−→ (αn ∗ · · · ∗ α1),

where the fi’s are 1-cells and the αi’s are 2-cells

• for each double sequence ((f 1
1 , . . . , f

k1
1 ), . . . , (f 1

n, . . . , f
kn
n )) of 1-cells such that the

composite (fkn
n ◦ · · · ◦f 1

n◦ · · · ◦fk11 ◦ · · · ◦f 1
1 ) makes sense, an invertible 2-cell

γ
((f1

1 , ... ,f
k1
1 ), ... ,(f1

n, ... ,f
kn
n ))

:

((fkn
n ◦ · · · ◦f 1

n)◦ · · · ◦(fk11 ◦ · · · ◦f 1
1 ))

∼� (fkn
n ◦ · · · ◦f 1

n◦ · · · ◦fk11 ◦ · · · ◦f 1
1 )

• for each 1-cell f , an invertible 2-cell

ιf : f
∼� (f)

with the following properties:

• γ
((f1

1 , ... ,f
k1
1 ), ... ,(f1

n, ... ,f
kn
n ))

is natural in each of the f ji ’s, and ιf is natural in f

• associativity: for any triple sequence (((fp,q,r)
kq

p

r=1)
mp

q=1)
n
p=1 of 1-cells such that the

following composites make sense, the diagram

(((fn,mn,k
mn
n

◦···◦fn,mn,1)◦···◦(f
n,1,k1

n
◦···◦fn,1,1))◦···◦((f1,m1,k

m1
1

◦···◦f1,m1,1)◦···◦(f1,1,k1
1
◦···◦f1,1,1)))

�










(γDn∗···∗γD1
)

�������������

γD′

�
((fn,mn,k

mn
n

◦···◦fn,1,1)◦···◦(f
1,m1,k

m1
1

◦···◦f1,1,1)) ((fn,mn,k
mn
n

◦···◦fn,mn,1)◦···◦(f
1,1,k1

1
◦···◦f1,1,1))

�������������

γD

��










γD′′

(fn,mn,k
mn
n

◦···◦f1,1,1)

commutes, where the double sequences Dp, D,D
′, D′′ are

Dp = ((fp,1,1, . . . , fp,1,k1
p
), . . . , (fp,mp,1, . . . , fp,mp,k

mp
p

)),

D = ((f1,1,1, . . . , f1,m1,k
m1
1

), . . . , (fn,1,1, . . . , fn,mn,k
mn
n

)),

D′ = (((f1,1,k1
1
◦ · · · ◦f1,1,1), . . . , (f1,m1,k

m1
1

◦ · · · ◦f1,m1,1)), . . . ,

((fn,1,k1
n
◦ · · · ◦fn,1,1), . . . , (fn,mn,k

mn
n

◦ · · · ◦fn,mn,1))),

D′′ = ((f1,1,1, . . . , f1,1,k1
1
), . . . , (fn,mn,1, . . . , fn,mn,k

mn
n

))
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• identity: for any composable sequence (f1, . . . , fn) of 1-cells, the diagrams

(fn◦ · · · ◦f1)
(ιfn∗···∗ιf1 )� ((fn)◦ · · · ◦(f1))

	
	
	
	
	

1

�

(fn◦ · · · ◦f1)

γ((f1), ... ,(fn))

�

((fn◦ · · · ◦f1)) �
ι(fn◦···◦f1)

(fn◦ · · · ◦f1)


�
�
�
�
�

1

(fn◦ · · · ◦f1)

γ((f1, ... ,fn))

�

commute.

1.2.2. Remarks.

a. The associativity axiom is less fearsome than it might appear. It says that any two
ways of removing brackets are equivalent, just as the associativity axiom does for a
monad such as ‘free group’ on Set. If we allow different styles of brackets then it
says, for instance, that

{[(h◦g)◦(f ◦e)]◦[(d◦c)◦(b◦a)]}


�
�
�
�
�

(γ ∗ γ)
	
	
	
	
	

γ

�

{[h◦g◦f ◦e]◦[d◦c◦b◦a]} {(h◦g)◦(f ◦e)◦(d◦c)◦(b◦a)}
	
	
	
	
	

γ
� 
�

�
�
�
�

γ

{h◦g◦f ◦e◦d◦c◦b◦a}
commutes.

b. The coherence axioms for an unbiased bicategory are rather obvious, in contrast to
the situation for classical bicategories: they look just like the associativity and unit
axioms for a monoid.

c. An unbiased monoidal category may be defined as an unbiased bicategory with
precisely one object; we would then write ⊗ in place of both ◦ and ∗.

d. If we drop the condition that γ and ι are invertible, then we obtain what might be
called a lax or relaxed bicategory. (Or perhaps ‘colax’ would be more appropriate.) A
one-object lax bicategory is then a relaxed monoidal category in the sense of [Lei5,
4.4]. In the other direction, let us define an unbiased 2-category as an unbiased
bicategory in which the components of γ and ι are all identities. (Clearly unbiased
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2-categories are in one-to-one correspondence with ordinary 2-categories.) So we
have three classes of structures:

{unbiased 2-categories}⊆{unbiased bicategories}⊆{lax bicategories}.

For the moment this is just a statement about classes (large sets), but soon we will
define maps between these structures and thus be able to compare the categories
they form.

e. We have given a very explicit definition of unbiased bicategory, but a more abstract
version is possible. There is a 2-category Cat-Gph, an object of which is a set B0

together with an indexed family

(B(B,B′))B,B′∈B0

of categories (a ‘Cat-graph’). An arrow F : B � C consists of a function F0 :
B0

� C0 and a functor

FB,B′ : B(B,B′) � C(F0B,F0B
′)

for each B,B′ ∈ B0. There is only a 2-cell

B
F

G

�

��
C

if F0 = G0, and in this case such a 2-cell α is a family of natural transformations
αB,B′ : FB,B′ � GB,B′ . Now, there is a 2-monad ‘free 2-category’ on Cat-Gph,
and a (small) unbiased bicategory is, in a suitable sense, a weak algebra for this
2-monad. The definition of relaxed monoidal category in [Lei5, 4.4] implicitly uses
this approach, but with lax algebras rather than weak algebras. For more on this
point of view, see [KS] and [Pow]. We also use this approach in Appendix A.

f. The notation (fn◦ · · · ◦f1) for the composite of a diagram

A0
f1� A1

f2� · · · fn� An

is sometimes inadequate in the case n = 0. When n = 0 the data to be composed is
just a single object A0, and we might prefer to write 1A0 rather than the standard
notation, ().
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1.2.3. Definition. Let B and B′ be unbiased bicategories. An unbiased lax functor
(F, φ) : B � B′ consists of

• a function F0 : B0
� B′

0 (usually just written F )

• for each A,B ∈ B0, a functor FA,B : B(A,B) � B′(F0A,F0B) (again, usually
just written F )

• for each composable sequence (f1, . . . , fn) of 1-cells, a 2-cell

φ(f1, ... ,fn) : (Ffn◦ · · · ◦Ff1) � F (fn◦ · · · ◦f1),

with the properties that

• φ(f1, ... ,fn) is natural in each fi

• for each double sequence ((f 1
1 , . . . , f

k1
1 ), . . . , (f 1

n, . . . , f
kn
n )) of 1-cells such that the

following composites make sense, the diagram

((Ffkn
n ◦ · · · ◦Ff 1

n)◦ · · · ◦(Ffk11 ◦ · · · ◦Ff 1
1 ))

γ′
((Ff1

1 , ... ,Ff
k1
1 ), ... ,(Ff1

n, ... ,Ff
kn
n ))� (Ffkn

n ◦ · · · ◦Ff 1
1 )

(F (fkn
n ◦ · · · ◦f 1

n)◦ · · · ◦F (fk11 ◦ · · · ◦f 1
1 ))

(φ(f1
n, ... ,f

kn
n ) ∗ · · · ∗ φ(f1

1 , ... ,f
k1
1 )

)

�

F ((fkn
n ◦ · · · ◦f 1

n)◦ · · · ◦(fk11 ◦ · · · ◦f 1
1 ))

φ
((f

k1
1

◦···◦f1
1 ), ... ,(fkn

n ◦···◦f1
n))

�

Fγ
((f1

1 , ... ,f
k1
1 ), ... ,(f1

n, ... ,f
kn
n ))

� F (fkn
n ◦ · · · ◦f 1

1 )

φ(f1
1 , ... ,f

kn
n )

�

commutes

• for each 1-cell f , the diagram

Ff
ι′Ff� (Ff)

Ff

����������
Fιf

� F (f)

φ(f)

�

commutes.
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An unbiased weak functor is an unbiased lax functor (F, φ) for which each φ(f1, ... ,fn) is
invertible. An unbiased strict functor is an unbiased lax functor (F, φ) for which each
φ(f1, ... ,fn) is the identity (so that F preserves composites and identities strictly).

We noted in Remark (b) that the coherence axioms for an unbiased bicategory were
rather obvious, having the shape of the axioms for a monoid or monad. Perhaps the
coherence axioms for an unbiased lax functor are a little less obvious; however, they are
the same shape as the axioms for a monad functor given in Street’s paper [Str1], and in
any case seem to be quite canonical in some vague sense.

Naturally, we would like to be able to compose lax functors. Given unbiased lax
functors

B (F,φ)� B′ (F ′,φ′)� B′′,

define the composite (G,ψ) by G0 = F ′
0◦F0, GA,B = F ′

FA,FB◦FA,B, and by taking ψ(f1, ... ,fn)

to be the composite of

(GFfn◦ · · · ◦GFf1)
φ′

(Ff1, ... ,Ffn)� G(Ffn◦ · · · ◦Ff1)
Gφ(f1, ... ,fn)� GF (fn◦ · · · ◦f1).

Also define the identity unbiased lax functor (G,ψ) on an unbiased bicategory B by
G0 = id, GA,B = id, and ψ(f1, ... ,fn) = id. It is straightforward to check that composition
is associative and that the identity functors live up to their name. We therefore obtain a
category UBicatlax of unbiased bicategories and unbiased lax functors. Evidently there
are subcategories

UBicatstr ⊆UBicatwk ⊆UBicatlax,

with the same objects and with arrows which are, respectively, unbiased strict functors
and unbiased weak functors.

In fact, the definitions of unbiased lax functor and of their composites and identities
work just as well for lax bicategories (1.2.2(d)). So there are 3× 3 = 9 possible categories
we might consider: for both the objects and the arrows, we choose one of ‘strict’, ‘weak’
or ‘lax’. With what I hope is obvious notation, the inclusions are as follows:

LBicatstr ⊆ LBicatwk ⊆ LBicatlax

∪| ∪| ∪|
UBicatstr ⊆ UBicatwk ⊆ UBicatlax

∪| ∪| ∪|
U2-Catstr ⊆ U2-Catwk ⊆U2-Catlax.

Of these nine, we might consider the three on the diagonal (bottom-left to top-right) to
be the most conceptually natural. We will not actually need to discuss anything except
for the middle row in the rest of this work. However, these remarks demonstrate the
cleanliness of the unbiased theory when compared to the biased (classical) theory. In
the latter, the top row is obscured—that is, there is no very satisfactory way to weaken
the classical definition of bicategory to get a lax version. Admittedly, one can drop the
condition that the classical associativity and unit maps are isomorphisms (as in [Borx1],
after Definition 7.7.1); but somehow this does not seem quite right.
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Another advertisement for the unbiased theory follows. To give it we need some
preliminary basic constructions. Firstly, for any bicategory B (biased or unbiased), there
is an opposite bicategory Bop, obtained by reversing the 1-cells only: thus to each 2-cell

A

f

g

α
�

��
B

in B there corresponds a 2-cell

A

f

g

α



� �
B

in Bop. Secondly, one may form the product A × B of any two (biased or unbiased)
bicategories in the obvious way (and this is the categorical product in each of the lax,
weak and strict contexts). Thirdly, there is a 2-category Cat of all (small) categories,
functors and natural transformations, and there is a corresponding unbiased 2-category
Cat.

Now, we would like to form a functor

Hom : Bop × B � Cat,
(A,B) �−→ B(A,B)

for each B (ignoring questions of size). In the biased case this is not possible without

making an arbitrary choice. For if A′ f� A and B
g� B′ in B then applying Hom

should give us a function
B(A,B) � B(A′, B′),

and this might reasonably be either p �−→ (g◦p)◦f or p �−→ g◦(p◦f). Although we could,
say, consistently choose the first option and thereby get a weak functor Hom, neither
choice is ‘canonical’. However, in the unbiased case one has a ternary composite (g◦p◦f),
giving a canonical weak functor

Hom : Bop × B � Cat.

1.3. Biased vs. unbiased. In this subsection we define a forgetful functor

V : UBicatlax
� Bicatlax,

which turns out to be full, faithful and surjective on objects. (Proofs are deferred to
Appendix A.) Thus the categories of biased and unbiased bicategories, with lax functors
as maps, are equivalent; and the same in fact goes for weak functors, although not strict
ones. So we will more or less be able to ignore the biased-unbiased distinction.
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The primary reason for setting out the theory of unbiased bicategories in this paper
is that in Section 4 we give a definition of weak n-category, and a weak 2-category is
exactly an unbiased bicategory. We therefore want to know that unbiased and classi-
cal bicategories are essentially the same, as a test of the reasonability of our proposed
definition.

This somewhat practical motivation provides an answer to a question which the reader
may have been asking: where are the unbiased transformations and modifications? Quite
simply, we don’t mention them because we don’t need them: the unbiased and classical
theories can be compared without going above the level of functors.

An equally important answer is that transformations and modifications between un-
biased bicategories are not defined because there seems to be no properly ‘unbiased’ way
to do it. Of course, we can ‘cheat’ by transporting the definitions from Bicatlax along the
functor

V : UBicatlax
� Bicatlax.

This immediately gives a coherence theorem: every unbiased bicategory is biequivalent
to an unbiased 2-category. More honest coherence results, of the form ‘every diagram
commutes’, appear in Appendix A.

Note also that the equivalence UBicatlax �Bicatlax is two levels better than we might
have expected: if B and B′ are two unbiased bicategories with V (B) = V (B′) ∈ Bicatlax,
then B and B′ are not just biequivalent in UBicatlax, or even just equivalent: they are
actually isomorphic. Put another way, we have a comparison which takes place at the
1-dimensional level, without having to resort to 2- or 3-dimensional structures.

To business: let us define the forgetful functor V . Given an unbiased bicategory B,
attempt to define a biased bicategory C = V (B) by:

• C0 = B0

• C(A,B) = B(A,B)

• composition

C(B,C) × C(A,B) � C(A,C)

in C is

comp(A,B,C) : B(B,C) × B(A,B) � B(A,C)

• the identity in C on an object A is (the image of)

comp(A) : 1 � B(A,A)

• the associativity isomorphism (h◦g)◦f � h◦(g◦f) is the composite of the 2-cells

((h◦g)◦f)
(1∗ιf )� ((h◦g)◦(f))

γ((f),(g,h))� (h◦g◦f)
γ−1
((f,g),(h))� ((h)◦(g◦f))

(ι−1
h ∗1)� (h◦(g◦f))
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• the left unit isomorphism 1◦f � f is the composite of the 2-cells

(()◦f)
(1∗ιf )� (()◦(f))

γ((f),())� (f)
ι−1
f� f,

and dually for the right unit.

Given an unbiased lax functor (F, φ) : B � B′, attempt to define a lax functor (G,ψ) =
V (F, φ) : V (B) � V (B′) by

G0 = F0, GA,B = FA,B, ψf,g = φ(f,g), ψA = φ().

Here the symbol φ() denotes φ(f1, ... ,fn) in the case n = 0, where

A = A0
f1� A1

f2� · · · fn� An.

In Appendix A we prove:

1.3.1. Theorem. With these definitions,

a. V (B) is a bicategory and V (F, φ) is a lax functor

b. V preserves composition and identities, so forms a functor

UBicatlax
� Bicatlax

c. V is full, faithful and surjective on objects.

If (F, φ) is a weak (respectively, strict) functor then V (F, φ) is one too, so V restricts
to give functors

Vwk : UBicatwk
� Bicatwk, Vstr : UBicatstr

� Bicatstr.

In the appendix we prove:

1.3.2. Corollary. The restricted functor Vwk : UBicatwk
� Bicatwk is also full,

faithful and surjective on objects.

Thus UBicatlax �Bicatlax and UBicatwk �Bicatwk.
Finally, what about the strict case—is Vstr an equivalence of categories? Certainly Vstr

is surjective on objects and faithful (since the same is true of V ), so the only question is
whether it is full. It is not. For let C be any bicategory, and construct from C an unbiased
bicategory L with V (L) = C, defining composition in L by associating to the left: e.g. the
composite (f4◦f3◦f2◦f1) in L is the composite ((f4◦f3)◦f2)◦f1 in C. (Appendix A shows that
this construction is possible.) Dually, define an unbiased bicategory R with V (R) = C
by associating to the right. If F : L � R is an unbiased strict functor with V (F ) = 1C
then F must be the identity (since the data for an unbiased strict functor is just a graph
map), and so L = R. But we can choose a bicategory C in which (h◦g)◦f = h◦(g◦f) for
some 1-cells f , g, h, so that L = R. Hence the identity on C does not lift to a strict
functor L � R, and therefore Vstr is not full.
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2. Operads and multicategories

In this section we introduce the language of operads and multicategories to be used in the
rest of the paper. The simplest kind of operad—a plain operad—consists of a sequence
C(0), C(1), . . . of sets together with an ‘identity’ element of C(1) and ‘composition’ func-
tions

C(n) × C(k1) × · · · × C(kn) � C(k1 + · · · + kn),

obeying associativity and identity laws. (In the original definition, [May1], the C(n)’s were
not just sets but spaces with symmetric group action. Our operads never have symmetric
group actions.) The simplest kind of multicategory—a plain multicategory—consists of a
collection C0 of objects, and arrows

a1, . . . , an
θ� a

(a1, . . . , an, a ∈ C0), together with composition functions and identity elements obeying
associativity and unit laws. (See [Lam, p. 103] for the details.) A plain operad is therefore
a one-object plain multicategory.

The general idea now is that there’s nothing special about sequences of objects: the
domain of an arrow might form another shape instead, such as a tree of objects or just a
single object (as in a normal category). Indeed, the objects do not even need to form a set.
Maybe a graph or a category would do just as well. Together, what these generalizations
amount to is the replacement of the free-monoid monad on Set with some other monad
on some other category.

This generalization is put into practice as follows. The graph structure of a plain
multicategory is a diagram

C1


�
�
�dom 	

	
	
cod
�

TC0 C0

in Set, where T is the free-monoid monad. Now, just as a (small) category can be
described as a diagram

D1


�
�
� 	

	
	�

D0 D0

in Set together with identity and composition functions

D0
� D1, D1 ×D0 D1

� D1

satisfying some axioms, so we may describe the multicategory structure on

TC0
� C1

� C0
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by manipulation of certain diagrams in Set. In general, we take a category E and a
monad T on E satisfying some simple conditions, and define ‘(E , T )-multicategory’. Thus
a category is a (Set, id)-multicategory.

Subsection 2.1 describes the simple conditions on E and T required in order that
everything that follows will work. Many examples are given. Subsection 2.2 explains
what (E , T )-multicategories are, and what (E , T )-operads are—namely, one-object (E , T )-
multicategories. Subsection 2.3 defines and explains algebras for multicategories, which
are a generalization of Set-valued functors on a category. If an operad is thought of as
a kind of algebraic theory (in which the elements of C(n) are n-ary operations) then an
algebra for an operad is a model of that theory.

2.1. Cartesian monads. In this subsection we introduce the conditions required of
a monad (T, η, µ) on a category E in order that we may (in 2.2) define the notions of
(E , T )-multicategory and (E , T )-operad. The conditions are that the category and the
monad are both cartesian, as defined now.

2.1.1. Definition. A category is called cartesian if it has all finite limits.

2.1.2. Definition. A monad (T, η, µ) on a category E is called cartesian if

a. η and µ are cartesian natural transformations, i.e. for any X
f� Y in E the

naturality squares

X
ηX � TX

Y

f

� ηY � TY

Tf

�

T 2X
µX � TX

T 2Y

T 2f

� µY � TY

Tf

�

are pullbacks, and

b. T preserves pullbacks.

We often write T to denote the whole monad (T, η, µ), as is customary.

It would perhaps be more consistent to call a category cartesian just if it has pullbacks,
and indeed this is all that is necessary in order to make the theory of general multicate-
gories work. However, all of our examples have a terminal object too (and therefore all
finite limits), and it is convenient to assume that this is always the case. For instance,
the definition of (E , T )-operad only makes sense when E has a terminal object.

2.1.3. Examples.

a. The identity monad on any category is clearly cartesian.
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b. Let E = Set and let T be the monoid monad, i.e. the monad arising from the
adjunction

Monoid
�

�� Set.

Certainly E is cartesian. It is easy to calculate that T , too, is cartesian ([Lei1,
1.4(ii)]), although the theory explained in Example (d) below renders this unneces-
sary.

c. A non-example. Let E = Set and let (T, η, µ) be the free commutative monoid
monad. This is not cartesian: e.g. the naturality square for µ at 2 � 1 is not a
pullback. See also Example 2.2.6(c) for some related thoughts.

d. Let E = Set. Any finitary algebraic theory gives a monad on E ; which are cartesian?
Without answering this question completely, we indicate a certain class of theories
which do give cartesian monads. An equation (made up of variables and finitary
operations) is said to be strongly regular if the same variables appear in the same
order, without repetition, on each side. Thus

(x.y).z = x.(y.z) and (x ↑ y) ↑ z = x ↑ (y.z),

but not
x+ (y + (−y)) = x, x.y = y.x or (x.x).y = x.(x.y),

qualify. A theory is called strongly regular if it can be presented by operations
and strongly regular equations. In Example (b), the only property of the theory
of monoids that we actually needed was its strong regularity: for in general, the
monad yielded by any strongly regular theory is cartesian.

This last result, and the notion of strong regularity, are due to Carboni and John-
stone. They show in [CJ] (Proposition 3.2 via Theorem 2.6) that a theory is strongly
regular if and only if η and µ are cartesian natural transformations and T preserves
wide pullbacks. A wide pullback is by definition a limit of shape

· · · · · · ·
�������������

�
�
�
�
�
�
�
�
��

	
	
	
	
	� 
�

�
�
�
�

· ,

where the top row is a set of any size (perhaps infinite). When the set is of size 2
this is an ordinary pullback, so the monad from a strongly regular theory is indeed
cartesian. (Examples (e), (f) and (g) can also be found in [CJ].)

e. Let E = Set, let E be a fixed set, and let + denote binary coproduct: then the
endofunctor — + E on E has a natural monad structure. This monad is carte-
sian, corresponding to the algebraic theory consisting only of one constant for each
member of E. In particular, if E = 1 then this is the theory of pointed sets.
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f. Let E = Set and let M be a monoid: then the endofunctor M × — on E has a
natural monad structure. This monad is cartesian, corresponding to an algebraic
theory consisting only of unary operations.

g. Let E = Set, and consider the finitary algebraic theory on E generated by one n-ary
operation for each n ∈ N and no equations. This theory is strongly regular, so the
induced monad (T, η, µ) on E is cartesian.

If X is any set then TX can be described inductively by

• if x ∈ X then x ∈ TX

• if t1, . . . , tn ∈ TX then 〈t1, . . . , tn〉 ∈ TX.

We can draw any element of TX as a tree with leaves labelled by elements of X:

• x ∈ X is drawn as
x•

• if t1, . . . , tn are drawn as T1, . . . , Tn then 〈t1, . . . , tn〉 is drawn as

T1 T2 · · · Tn
����

�
�
���

��

•
,

or if n = 0, as
◦
•
.

Thus the element 〈〈x1, x2, 〈〉〉, x3, 〈x4, x5〉〉 of TX is drawn as

◦
x1• x2• • x4• x5•
�
�
��
�
� �

�
��
�
�

• x3• •������
��

•

.

The unit X � TX is x �−→x•, and multiplication T 2X � TX takes a TX-
labelled tree (e.g.

◦
t1• •
�
�
��
�
�

• t2•�����
�
�

•

,
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with

t1 =

x2•
x1• •
�
�
��
�
�

•
and t2 =

◦
x3• • x4•
�
�
��
�
�

•
•

)

and gives an X-labelled tree by substituting at the leaves (here,

x2• ◦
x1• • ◦ x3• • x4•
�
�
��
�
� �

�
��
�
�

• • •�
�
��

�
�

• •�
�
��

�
�

•

).

h. On the category Cat of small categories and functors, there is the free strict mo-
noidal category monad. Both Cat and the monad are cartesian.

i. In Section 4 we will examine the free strict ω-category monad on the category of
globular sets. Both category and monad are cartesian.

j. A double category may be defined as a category object in Cat. More descriptively,
the graph structure consists of collections of

• 0-cells A

• horizontal 1-cells f

• vertical 1-cells p

• 2-cells α

and various source and target functions, as illustrated by the picture

A1

f1 � A2

⇓ α

A3

p1

�

f2

� A4

p2

�

.
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The category structure consists of identities and composition functions for 2-cells
and both kinds of 1-cell, obeying strict associativity, identity and interchange laws;
see [KS] for more details.

More generally, let us define n-cubical set for any n ∈ N; the intention is that a 2-
cubical set will be the underlying graph of a double category. Let H be the category

(1
σ�
τ
� 0), so that a functor H � Set is a directed graph, and define an n-

cubical set as a functor Hn � Set. Then, for instance, a functor X : H2 � Set
becomes a two-dimensional graph of the type just described, via

• X(0, 0) = {0-cells}
• X(1, 0) = {horizontal 1-cells}
• X(0, 1) = {vertical 1-cells}
• X(1, 1) = {2-cells},

and the map
(σ, 1) : (1, 1) � (0, 1)

in H2 induces the map

{2-cells} � {vertical 1-cells}
which sends α to p1 in the diagram above.

We may now define a (strict) n-tuple category to be an n-cubical set together with
various compositions and identities, as for double categories, all obeying strict laws.
The category of n-cubical sets has on it the free strict n-tuple category monad;
both category and monad are cartesian. Since we will not need to use cubical sets
or n-tuple categories, this construction is not made precise and no proof is offered
that the monad is cartesian.

2.2. Multicategories. We now describe what an (E , T )-multicategory is, where T is
a cartesian monad on a cartesian category E . As mentioned in the introduction to this
section, this is a generalization of the well-known description of a small category as a
monad object in the bicategory of spans.

We will use the phrase ‘(E , T ) is cartesian’ to mean that E is a cartesian category and
(T, η, µ) is a cartesian monad on E .

2.2.1. Construction.

Let (E , T ) be cartesian. We construct a bicategory Span(E , T ) from (E , T ), which
in the case T = id is the usual bicategory of spans in E . Hermida calls Span(E , T )
the ‘Kleisli bicategory of spans’ in [Her2]; the formal similarity between the definition of
Span(E , T ) and the usual construction of a Kleisli category is evident.
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0-cell: Object S of E .

1-cell R � S: Diagram

M


�
�
� 	

	
	�

TR S

in E .

2-cell M � M ′: Commutative diagram

M


�
�
� 	

	
	�

TR S

�	
	
	 �

�
��

M ′
�

in E .

1-cell composition: To define this we need to choose particular pullbacks in E , and in
everything that follows we assume this has been done. Take

M


�
�
�d 	

	
	
c
�

TR S

and

N


�
�
�q 	

	
	
p
�

TS Q

;

then their composite is given by the diagram

N◦M

��		
�
�
� 	

	
	�

TM N


�
�
�Td 	

	
	
Tc
� 
�

�
�q 	

	
	
p
�

T 2R TS Q


�
�
�µR

TR

where the right-angle mark in the top square indicates that the square is a pullback.
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1-cell identities: The identity on S is

S


�
�
�ηS 	

	
	
1
�

TS S .

2-cell identities and compositions: Identities and vertical composition are as in E .
Horizontal composition is defined in an obvious way.

Because the choice of pullbacks is arbitrary, 1-cell composition does not obey strict
associative and identity laws. That it obeys them up to invertible 2-cells is a consequence
of the fact that (T, η, µ) is cartesian.

2.2.2. Definition. Let (E , T ) be cartesian. Then an (E , T )-multicategory is a monad
in Span(E , T ).

An (E , T )-multicategory therefore consists of a diagram

TC0
�d

C1
c� C0

in E and maps

C0
ids� C1, C1◦C1

comp� C1

satisfying associative and identity laws. Think of C0 as ‘objects’, C1 as ‘arrows’, d as
‘domain’ and c as ‘codomain’. Such a multicategory will be called an (E , T )-multicategory
on C0, and a (E , T )-multicategory on the terminal object 1 will be called an (E , T )-operad.

(Plain multicategories are often called ‘coloured operads’ in the literature, where the
‘colours’ are the objects of the multicategory: thus an operad is a single-coloured operad.
A two-object plain multicategory would be called an ‘operad of two colours’, typically
black and white. Baez and Dolan, in [BD], use ‘operad’ or ‘typed operad’ for the same
kind of purpose as we use ‘multicategory’, and ‘untyped operad’ where we use ‘operad’.)

It is inherent that everything is small: when E = Set, for instance, the objects and
arrows form sets, not classes. For plain multicategories, at least, there seems to be no
practical difficulty in using large versions too.

In order to say what maps between (E , T )-multicategories are, we first introduce the
notion of an (E , T )-graph.

2.2.3. Definition. Let (E , T ) be cartesian. An (E , T )-graph (on an object C0) is a
diagram TC0

� C1
� C0 in E. A map of (E , T )-graphs

C1


�
�
� 	

	
	�

TC0 C0

�

C̃1


�
�
� 	

	
	�

TC̃0 C̃0
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is a pair (C0
f0� C̃0, C1

f1� C̃1) of maps in E such that

C1


�
�
� 	

	
	�

TC0 C0

C̃1

f1
�


�
�
� 	

	
	�

TC̃0

Tf0

�

C̃0

f0

�

commutes.

This definition uses two different notions of a map between objects of E : on the one
hand, genuine maps in E , and on the other, spans (i.e. 1-cells of Span(E , T )). A possible
approach to formalizing this situation is via the ‘equipments’ of [CKVW]. But this is
not our approach: as explained in 3.6 and 3.7, fc-multicategories are the structures that
capture exactly what we want.

Any (E , T )-multicategory has an underlying (E , T )-graph, enabling the following defi-
nition to be made.

2.2.4. Definition. A map of (E , T )-multicategories C � C̃ is a map f of their
underlying graphs such that the diagrams

C0

f0 � C̃0

C1

ids

� f1 � C̃1

ĩds

�

C1◦C1

f1 ∗ f1� C̃1◦C̃1

C1

comp

� f1 � C̃1

c̃omp

�

commute. (Here f1 ∗ f1 is the evident map induced by two copies of C1
f1� C1.)

With these definitions we obtain categories

(E , T )-Graph, (E , T )-Multicat,

and a forgetful functor from the second to the first. Wherever possible we drop the ‘E ’
and refer simply to T -multicategories, T -operads, T -Graph, etc.

It is also possible to define modules (profunctors) and natural transformations for
T -multicategories, which we eventually do in 3.7.1(c).
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2.2.5. Remarks.

a. Fix S ∈ E . Then we may consider the category of T -graphs on S, whose morphisms

f = (S
f0� S,C1

f1� C̃1) all have f0 = 1. This is just the slice category E
TS×S . It

is also the full sub-bicategory of Span(E , T ) whose only object is S, and is therefore
a monoidal category. The category of T -multicategories on S is then the category
Mon( E

TS×S ) of monoids in E
TS×S . In particular, E/T1 is a monoidal category, and a

monoid therein is a T -operad; this is a style of definition of plain operad sometimes
found in the literature.

b. A choice of pullbacks in E was made; changing that choice gives an isomorphic
category of (E , T )-multicategories.

c. If (E ′, T ′) is also cartesian then a cartesian monad functor from (E , T ) to (E ′, T ′)
induces a functor

(E , T )-Multicat � (E ′, T ′)-Multicat,

and the same is true of monad opfunctors. See 3.2 for an explanation.

2.2.6. Examples.

a. Let (E , T ) = (Set, id). Then Span(E , T ) is the usual ‘bicategory of spans’, and
a monad in Span(E , T ) is just a (small) category. Thus categories are (Set, id)-
multicategories. Functors are maps of such. More generally, if E is any cartesian
category then (E , id)-multicategories are internal categories in E , and similarly, id-
operads are monoids.

b. Let (E , T ) = (Set, free monoid). Specifying a T -graph

TC0
�d

C1
c� C0

is equivalent to specifying a set C0 (‘of objects’) together with a set C(a1, . . . , an; a)
for each n ≥ 0 and a1, . . . , an, a ∈ C0. An element θ ∈ C(a1, . . . , an; a) is illustrated
by

a1, . . . , an
θ� a

or

�
�
�
��

�
�
�
�� a

a1
a2

an

θ

or . . .


a2

�
�
�a1 ⇓ θ �

�
�
an

a

.
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When n = 0, the first version looks like

· θ� a,

the second has no legs on the left-hand (‘input’) side, and the third is drawn as

a
⇓θ .

In Span(E , T ), the identity 1-cell TC0
�ηC0 C0

1� C0 on C0 has

C0(a1, . . . , an; a) =

{
1 if n = 1 and a1 = a
∅ otherwise.

The composite 1-cell C1◦C1 in Span(E , T ) is

{((θ1, . . . , θn), θ) | dθ = (cθ1, . . . , cθn)},

i.e. is the set of diagrams

�
��

�
��θ1

�
��

�
��θ2

�
��

�
��θn

�
��

�
��θ

�������������

�������������












.

(1)

If C is a T -multicategory then we have a function ids assigning to each a ∈ C0 a mem-
ber of C(a; a), and a function comp composing diagrams like (1). These are required
to obey associative and identity laws. Thus a (Set, free monoid)-multicategory is
just a plain multicategory and a (Set, free monoid)-operad is a plain operad.

c. Suppose we want to realise symmetric operads as T -operads for some T . By a
symmetric operad I mean a plain operad C with an action of the nth symmetric
group Sn on C(n) for each n, satisfying certain axioms: in other words, an operad
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in the usual sense of topologists (e.g. [May2]), except that the C(n)’s are sets rather
than spaces or graded modules etc.

A first attempt might be to take the free commutative monoid monad T on Set.
But this is both misguided and doomed to failure: misguided because the maps

— · σ : C(n) � C(n)

coming from permutations σ ∈ Sn are only isomorphisms, not identities; and
doomed because T is not cartesian (2.1.3(c)).

A more promising approach is to take T to be the free symmetric strict monoidal
category monad on Cat, and to try to identify the symmetric operads as certain
special T -operads. I have not investigated how well this works, but this idea seems
to be related to the structures called ‘symmetric operads’ at the beginning of [BD]
and explored further in [Che1] and [Che2].

d. Let E = Set, and consider the monad — + 1 of 2.1.3(e). A (Set,— + 1)-graph is

a diagram C0 + 1 �d
C1

c� C0 of sets; this is like an ordinary (Set, id)-graph,
except that some arrows have domain 0—an extra element not in C0. (Thus 1 = {0}
here.) If we put

Y (a) = {y ∈ C1 | dy = 0 and cy = a}
for each a ∈ C0, then a multicategory structure on the graph provides a function

Y (a) � Y (a′)
y �−→ θ◦y �

�
�
�

•

•
• •

•

�
�
�
�
�
�
��������
��

���

�

0

θ◦yy

a

a′
θ

C0

for each θ ∈ C1 with d(θ) = a ∈ C0 and c(θ) = a′. It also provides a category struc-

ture on D0
�d

D1
c� D0, where D0 = C0 and D1 = {θ ∈ C1 | dθ ∈ C0}. Thus

a (Set,— + 1)-multicategory turns out to be a (small) category D together with a
functor Y : D � Set. Similarly, a (Set,— + E)-multicategory is a category D
together with an E-indexed family of functors D � Set.

To put it another way, an (E , T )-multicategory is a discrete opfibration. More
exactly, the category of (E , T )-multicategories is equivalent to the category whose
objects are discrete opfibrations between small categories and whose morphisms are
commutative squares.

e. Let M be a monoid and (E , T ) = (Set,M × —). Then a T -multicategory consists of
a category C together with a functor C � M , and in fact T -Multicat∼=Cat/M .
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f. Let (E , T ) = (Set, tree monad), as in 2.1.3(g). A T -multicategory consists of a set
C0 of objects, and hom-sets like

C




◦
a1• •
�
�
��
�
�

• a2•�����
�
�

•
a




(a1, a2, a ∈ C0), together with a unit element of each C(
a•
a
) and composition functions

like

C




◦
a1• •
�
�
��
�
�

• a2•�����
�
�

•
a




×



C




b2•
b1• •
�
�
��
�
�

•
a1


 × C




◦
b3• • b4•
�
�
��
�
�

•
•
a2







� C




b2• ◦
b1• • ◦ b3• • b4•
�
�
��
�
� �

�
��
�
�

• • •�
�
��

�
�

• •�
�
��

�
�

•
a




(b1, b2, b3, b4 ∈ C0). These are to satisfy associativity and identity laws.

When C0 = 1, so that we’re considering T -operads, the graph structure is comprised
of sets like

C




◦
• •
�
�
��
�
�

• •�����
�
�

•


 .

The T -multicategories are a simpler version of Soibelman’s pseudo-monoidal cate-
gories ([Soi]) or Borcherds’ relaxed multilinear categories ([Borh], [Sny1], [Sny2]);
they omit the aspect of maps between trees. See the end of 3.8 for comments on
the unsimplified version.
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g. When E = Cat and T is the free strict monoidal category monad, a T -operad is
what Soibelman calls a strict monoidal 2-operad ([Soi, 2.1]). Such a structure might
also be thought of as a plain operad enriched in Cat, in a sense not made precise
here but explained in detail in [Lei5] and outlined in 3.8 below.

h. Let (E , T ) = (globular sets, free strict ω-category), as in Example 2.1.3(i). A T -
operad is exactly a globular operad in the sense of Batanin: see Section 4.

i. Operads for (E , T ) = (n-cubical sets, free strict n-tuple category) can be understood
in much the same way as Batanin’s globular operads (again, see Section 4), with
cubical rather than globular shapes. For instance, a cell in the free strict n-tuple
category on the terminal n-cubical set can be represented as a cuboid whose edge-
lengths are natural numbers; a T -operad associates a set (‘of operations’) to each
such cuboid, and has composition functions according to ways of combining cuboids.
(I will not take this example any further.)

j. Let (E , T ) be cartesian, let X ∈ E , and let TX
h� X be a map. Then the T -graph

(TX �1
TX

h� X) can be given the structure of a T -multicategory in at most

one way, and this is possible if and only if TX
h� X is an algebra for the monad

T . (If it is possible then ids = η and comp = µ.) Maps between T -multicategories of
this form are, similarly, just T -algebra maps. So we have a full and faithful functor

M : ET � T -Multicat

turning algebras into multicategories.

2.3. Algebras. The motivating idea in the definition of a (plain) operad is that it is
some kind of algebraic theory, with the nth component C(n) of an operad C being the
set of n-ary operations. One therefore defines an algebra for an operad C to be a set X
together with a suitable family of functions

C(n) ×Xn � X,

one for each n ∈ N. More generally, a plain multicategory can be regarded as a many-
sorted theory, and in an algebra for a multicategory one has not just a single set X, but
one set X(a) for each object a of C. Thus if Set denotes the (large, plain) multicategory
whose objects are sets and in which a map

S1, . . . , Sn � S

is a function
S1 × · · · × Sn � S,

then an algebra for a plain multicategory C can be defined as a map C � Set of
multicategories.

In this subsection we generalize these ideas to arbitrary (E , T ). That is, we define a
category Alg(C) of algebras for any (E , T )-multicategory C.
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2.3.1. Construction.

Let (E , T ) be cartesian: then any (E , T )-multicategory C gives rise to a monad (TC ,

unit,mult) on E/C0. In what follows, I will write TC(X
p� C0) as X ′ p′� C0.

• Given (X
p� C0) ∈ E/C0, we define (X ′ p′� C0) to be the right-hand diagonal

of the diagram

·

��		
�
�
� 	

	
	�

TX C1

	
	
	Tp � 
�

�
�

d
	
	
	
c
�

TC0 C0

(recalling that the right-angle mark denotes a pullback square).

• If

X
f� Y

�
�p !"

"
q

C0

is a map in E/C0 then there is a unique map f ′ : X ′ � Y ′ making

X ′

��		
�
�
� 	

	
	�

...............................................

f ′

#TX C1 Y ′

��		
	
	
	Tp �

$$$$$$$$$$$$$$$$$

Tf

#

�
�
�

d

$$$$$$$$$$$$$$$$$

1

#

�
�
� 	

	
	�

TC0 TY C1$$$$$$$$$$$$$$$$$

1

#

	
	
	Tq � 
�

�
�

d
TC0

commute, and we define

TC(f) = f ′ :


X

′

C0

p′�


 �


Y ′

C0

q′�


 .
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• The unit at (X
p� C0) is given by

X

%�
�
�
�
�
�
�
�
�
�

ηX

	
	
	
p
�

C0

X ′

unitp..�

..........

��		
�
�
� 	

	
	�

TX C1

ids

�

	
	
	Tp � 
�

�
�

d
TC0.

• For multiplication, we have a commutative diagram

X ′′


�
�
� 	

	
	
	
	
	
	
	�

TX ′


�
�
� 	

	
	�

T 2X TC1 C1


�
�
�µX 	

	
	T 2p � 
�

�
�

Td
	
	
	Tc � 
�

�
�

d
TX T 2C0 TC0

and a pullback square
C1◦C1

��		
�
�
� 	

	
	�

TC1 C1

	
	
	Tc � 
�

�
�

d
TC0.

From these we deduce that there are maps

X ′′


�
�
� 	

	
	�

TX C1◦C1,
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and the multiplication at (X
p� S) is then given by

X ′′

%�
�
�
�
�
�
�
�
�
� 	

	
	�

C1◦C1

X ′

multp..�

..........

��		
�
�
� 	

	
	�

TX C1

comp

�

	
	
	Tp � 
�

�
�

d
TC0.

It is now straightforward, though tedious, to check that (TC , unit,mult) forms a monad
on E/C0.

2.3.2. Definition. Let (E , T ) be cartesian and let C be a T -multicategory. Then the
category Alg(C) of algebras for C is the category of algebras for the monad TC on E/C0.

We sometimes say C-algebra instead of ‘algebra for C’.

2.3.3. Examples.

a. When (E , T ) = (Set, id), so that an (E , T )-multicategory is an ordinary (small)
category C, we have Alg(C)� [C,Set].

b. When (E , T ) = (Set, free monoid), so that an (E , T )-multicategory is a plain mul-
ticategory, we already have an idea of what an algebra for C should be: a map
C � Set of multicategories (p. 101). That is, an algebra for C should consist of:

• for each a ∈ C0, a set X(a)

• for each a1, . . . , an
θ� a in C, a function X(a1) × · · · ×X(an) � X(a),

preserving identities and composition. This is the same as the definition of algebra

just given. To see this, let (X
p� C0) be an object of E/C0: then, writing X(a) =

p−1{a} for a ∈ C0, and similarly X ′(a) = (p′)−1{a}, we have

X ′(a) = {((x1, . . . , xn), θ) | xi ∈ X, θ ∈ C1, dθ = (px1, . . . , pxn), cθ = a}
= {X(a1) × · · · ×X(an) × C(a1, . . . , an; a) | a1, . . . , an ∈ C0}.

An algebra structure on (X
p� C0) therefore consists of a function

X(a1) × · · · ×X(an)
θ̄� X(a)
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for each
a1, . . . , an

θ� a

in C, with the assignation θ �−→ θ̄ subject to certain rules. These turn out to say
exactly that we have a multicategory map C � Set.

c. When (E , T ) = (Set,— + 1), a T -multicategory is an ordinary category D together

with a functor D
Y� Set. A (D,Y )-algebra is then a functor D

X� Set together
with a natural transformation

D

Y �
⇓
X

� Set .

In terms of fibrations, a T -multicategory is a discrete opfibration Y over a small
category D, and an algebra for Y consists of another discrete opfibration X over D
together with a map from Y to X (of opfibrations over D).

d. Let M be a monoid and let (E , T ) = (Set,M × —), so that a T -multicategory is a

category C together with a functor C
π� M . Then the category of algebras for

(C, π) is simply [C,Set], regardless of what π is.

e. Let (E , T ) be the tree monad on Set. For simplicity, let us just consider algebras
for T -operads C—thus the object-set C0 is 1. An algebra for C consists of a set X
together with a function X ′ � X satisfying some axioms. One can calculate that
an element of X ′ consists of an X-labelling of the leaves of a tree τ together with
a member of C(τ). An X-labelling of an n-leafed tree τ is just a member of Xn,
so one can view the algebra structure X ′ � X on X as: for each number n, each
n-leafed tree τ , and each element of C(τ), a function Xn � X. These functions
are required to be compatible with composition and identities in C.

f. For (E , T ) = (globular sets, free strict ω-category), we will consider in Section 4 a
certain operad L, the initial ‘operad-with-contraction’. A weak ω-category is then
defined to be an L-algebra.

g. The graph T1 �1
T1

!� 1 is terminal amongst all (E , T )-graphs. It carries a
unique multicategory structure, since a terminal object in a monoidal category
always carries a unique monoid structure. It then becomes the terminal (E , T )-
multicategory. The induced monad on E/1 is just (T, η, µ), and so an algebra for
the terminal multicategory is just a T -algebra.

This can aid recognition of when a theory of operads or multicategories fits into
our scheme. For instance, if we were to read Batanin’s paper and learn that, in
his terminology, an algebra for the terminal operad is a strict ω-category ([Bat, §7,
example 3]), then we might suspect that his operads were (E , T )-operads for the free
strict ω-category monad T on an appropriate category E—as indeed they are.
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h. If T is a monad on a category E , and h = (TX
h� X) is a T -algebra, then there

is a monad T/h on E/X whose functor part acts on objects by

Y

X

p� �−→

TY

TX

Tp�

X.

h�

Writing Alg for the category of algebras of a monad, we then have

Alg(T/h)∼=Alg(T )/h,

where the right-hand side is Alg(T ) sliced over h.

Now recall from Example 2.2.6(j) that when (E , T ) is cartesian, the algebra h defines
a T -multicategory

TX �1
TX

h� X.

Naturally enough, it turns out that the monad on E/X induced by this multicategory
is T/h: so the category of algebras for this multicategory is Alg(T )/h. (Example (g)
above is a special case.)

We have seen how to associate to each (E , T )-multicategory C a category Alg(C), and
we would expect some kind of functoriality. When (E , T ) = (Set, id), a functor C � C ′

induces a functor
Alg(C) = [C,Set] � [C ′,Set] = Alg(C ′),

and it is obvious that the same phenomenon holds for (E , T ) = (Set, free monoid) if we
view C-algebras as multicategory maps C � Set (2.3.3(b)).

In general, given a map f : C � C ′ of (E , T )-multicategories, we obtain a functor
Alg(C) � Alg(C ′) as follows. First of all, we have the functor

E/C0
�f

∗
0 E/C ′

0

defined by pullback along f0 : C0
� C ′

0. Then, as it turns out, there is a naturally-
arising natural transformation

E/C0
� f ∗

0 E/C ′
0

		
φ
�

E/C0

TC

�
�
f ∗

0

E/C ′
0,

TC′

�
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and this satisfies the axioms for a monad functor from TC′ to TC . (Monad functors are
defined in 3.2, and details of this construction are left to the reader.) Hence there is an
induced functor from the category of TC′-algebras to the category of TC-algebras—that
is, from Alg(C ′) to Alg(C).

Because these induced functors are defined by pullback, the map

Alg : ((E , T )-Multicat)op � CAT

inevitably preserves composition and identities only up to canonical isomorphism; in
other words, it is a weak functor or pseudo-functor. In fact, there is a notion of natural
transformation for T -multicategories, so that (E , T )-Multicat is a 2-category; and Alg
is then a weak functor between 2-categories. Transformations for T -multicategories are
discussed in Example 3.7.1(c), where we see that the natural structure formed by T -
multicategories is not a 2-category but something richer: an fc-multicategory.

3. More on operads and multicategories

This section is an assortment of further topics in the general theory of multicategories.
Some will be used in the discussion of weak n-categories in the final section. Others are
not used there, but answer naturally-arising questions or have applications outside this
paper. One of the subsections (3.8, Enrichment) is an introduction to a topic too large
to include in full.

The contents of the subsections are as follows.

3.1 Structured categories We look at T -structured categories, which are to T -
multicategories as strict monoidal categories are to plain multicategories.

3.2 Change of base Here we ask whether the passage from (E , T ) to (E , T )-Multicat
is functorial. It turns out that it is, in not one but three different ways. (The ‘base’
is (E , T ).)

3.3 Free multicategories This subsection concerns when and how the free T -
multicategory on a T -graph can be formed. Details are deferred to Appendix B.

The next two subsections each give an alternative (but equivalent) definition of algebra
for a T -multicategory.

3.4 Algebras via fibrations In ordinary category theory there is a correspondence
between Set-valued functors and discrete fibrations. We extend this to T -
multicategories, giving an alternative definition of an algebra.

3.5 Algebras via endomorphisms We give a second alternative definition of an alge-
bra, generalizing the definition of algebra for an operad often used by topologists.

The final subsections are on fc-multicategories: what they are, and two familiar cate-
gorical ideas for which they provide generalized contexts.
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3.6 fc-multicategories This really belongs as an example in the previous section, and
would be there but for its length. We examine T -multicategories in the case when
T is the free category monad on the category of directed graphs.

3.7 The bimodules construction We show how an fc-multicategory V gives rise to a
new fc-multicategory Bim(V ), by taking bimodules (= modules, = profunctors, =
distributors) in V .

3.8 Enrichment There is an interesting theory of enrichment for T -multicategories. Ap-
plied to the most basic case, categories, it provides a theory of categories enriched
in an fc-multicategory. All of this is explained properly in [Lei5]; here we sketch the
ideas.

None of these subsections is necessary in order to read the bulk of Section 4. The
last part of Section 4, on weak n-categories, does rely on the material of 3.2 (Change of
base). It also contains inessential references to 3.5 and 3.6. Appendix D, which supports
Section 4, uses free multicategories (3.3).

3.1. Structured categories. The observation from which this subsection takes off is
that any strict monoidal category has an underlying multicategory. (For the time being,
all monoidal categories and maps between them are strict, and ‘multicategory’ means
plain multicategory.) Explicitly, if (D,⊗) is a monoidal category, then the underlying
multicategory C has the same objects as D and has hom-sets defined by

C(a1, . . . , an; a) = D(a1 ⊗ · · · ⊗ an, a)

for objects a1, . . . , an, a. Composition and identities in C are easily defined.
There is a converse process: given any multicategory C, there is a ‘free’ monoidal cat-

egory D on it. An object (respectively, arrow) of D is a sequence of objects (respectively,
arrows) of C. Thus the objects of D are of the form (a1, . . . , an) (ai ∈ C0), and a typical
arrow

(a1, a2, a3, a4, a5) � (a′1, a
′
2, a

′
3)

is a sequence (θ1, θ2, θ3) of maps in C with domains and codomains as illustrated:

�
��

�
�� a′3

a4

a5

θ3

�
��

�
�� a′2θ2

�
��

�
�� a′1

a1

a2

a3

θ1

(2)
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The tensor in D is juxtaposition.
For example, the terminal multicategory 1 has one object and, for each n ∈ N, one

arrow of the form

n




�
�
�
��

�
�
�
�� ;

diagram (2) suggests that the ‘free’ monoidal category on the multicategory 1 is ∆, the
category of finite ordinals (including 0), with addition as ⊗.

The name ‘free’ is justified: that is, there is an adjunction

(monoidal categories)

(multicategories)

��
�

where the two functors are those described above, and (monoidal categories) denotes
the category of strict monoidal categories and strict monoidal functors. Moreover, this
adjunction is monadic.

(Note that the forgetful functor does not provide a full embedding of (monoidal cate-
gories) into (multicategories). For example, there is a multicategory map 1 � ∆ send-
ing the unique object of 1 to the object 1 of ∆, and this map does not preserve the monoi-
dal structure. IfD andD′ are strict monoidal categories then a map UD � UD′ of their
underlying multicategories is actually the same as a lax monoidal functor D � D′.)

Naturally, we would like to generalize from (E , T ) = (Set, free monoid) to any carte-
sian (E , T ). To do this, we need a notion of ‘(E , T )-structured category’ which in the
case (Set, free monoid) means monoidal category. A monoidal category is a category
object in Monoid, so it is reasonable to define a T -structured category to be an (ET , id)-
multicategory—that is, an internal category in the category ET of algebras for the monad
T on E . We write

T -Struc = (ET , id)-Multicat.

The fact that E is cartesian guarantees that ET is too.
(In this subsection, (D, S)-Multicat is treated as a mere (1-)category, for any cartesian

D and S.)
It is now possible to describe a monadic adjunction

T -Struc

T -Multicat

F
�
� U
�

generalizing that above. The effect of the functors U and F on objects is as outlined

now. Given a T -structured category D, with algebraic structure TD0
h0� D0 and
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TD1
h1� D1, the graph (TD0

� C1
� D0) of UD is given by

C1

��		
�
�
� 	

	
	�

TD0 D1

	
	
	h0 � 
�

�
� 	

	
	�

D0 D0.

Given a T -multicategory C, the category FC has graph

TC1


�
�
� 	

	
	
	
	
	
	
	�

T 2C0


�
�
�µC0

TC0 TC0

and the algebraic structures T 2C0
h0� TC0 and T 2C1

h1� TC1 are components of µ.

For an example of U in action, take a T -algebra (TX
h� X). The diagram

X �1
X

1� X

determines a (discrete) internal category in ET ; that is, a T -structured category, D(X, h).
Then U(D(X, h)) is a T -multicategory with graph isomorphic to

TX �1
TX

h� X.

So U(D(X, h)) is isomorphic to the T -multicategory M(X, h) of Example 2.2.6(j), and
we have a triangle of functors

ET D � T -Struc

	
	
	M � 
�

�
�

U
T -Multicat

which commutes up to natural isomorphism.
For an example of F , take E to be Set and T = ( )∗ to be the free monoid monad.

Take the terminal plain multicategory 1, which has graph

N �1
N

!� 1.
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Then F (1) is a strict monoidal category with graph

N �+
N∗ !∗� N.

In other words, the objects of F (1) are the natural numbers, and an arrow (m � n) in
F (1) is a sequence (m1, . . . ,mn) of natural numbers such that m1 + · · ·+mn = m. That
is, the objects are the finite ordinals and the arrows are the order-preserving functions.
So we find that F (1)∼= ∆, as claimed above.

As the reader may have noticed, a monoidal category does not have to be strict in
order to have an underlying plain multicategory: any monoidal category will do. If D is
the monoidal category then we can define a plain multicategory C with the same objects
as D and with

C(a1, . . . , an; a) = D(a1 ⊗ · · · ⊗ an, a).

In order for this to make sense, D must have n-fold tensor products for all n, not just for
n = 0 and n = 2. There are various attitudes we can take to this. One is to abandon the
usual definition of monoidal category, and work instead with unbiased monoidal categories,
as defined in Section 1. Another is to use the traditional definition, but to derive n-fold
tensors by, for instance, ‘associating to the left’ (as in Appendix A); but this is really just
a roundabout version of the first attitude.

A third is more sophisticated. Take an n-leafed tree τ in which all nodes have either 0
or 2 outgoing edges: in the language introduced on page 174, a ‘classical tree’. This gives
a method of tensoring together n objects in a classical monoidal category, which will be
written

(a1, . . . , an) �−→ τ(a1, . . . , an).

For instance, if n = 2 then τ might be the first tree illustrated in Example 2.2.6(f) (without
its labels), in which case

τ(a1, a2) = (a1 ⊗ I) ⊗ a2.

If τ and τ ′ are two n-leafed classical trees then there is a canonical isomorphism

ωτ,τ ′ : τ(a1, . . . , an)
∼� τ ′(a1, . . . , an).

Now, start with a monoidal category D, and define from it a plain multicategory C with
the same objects as D and in which a map a1, . . . , an � a is a family

(fτ : τ(a1, . . . , an) � a)

of maps in C indexed by n-leafed classical trees τ , such that fτ ′◦ωτ,τ ′ = fτ for all τ and
τ ′. Since all of the fτ ’s are determined by any single one of them, the multicategory C is
isomorphic to the one obtained by associating to the left; however, our new construction
does not have the element of arbitrary choice.

Choosing one version or another of this process, we can compose with the functor
F above to obtain a functor from (non-strict) monoidal categories to strict monoidal
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categories. Let D be a monoidal category and E the resulting strict monoidal category.
Then an object of E is a sequence of objects of D, and an arrow

(a1, . . . , am) � (b1, . . . , bn)

in E consists of a sequence of arrows

a1
1 ⊗ · · · ⊗ ak11

� b1,
. . . . . .

a1
n ⊗ · · · ⊗ akn

n
� bn

in D (with n-fold tensors interpreted in the chosen way), such that the sequence

a1
1, . . . , a

k1
1 , . . . , a

1
n, . . . , a

kn
n

is equal to a1, . . . , am. Tensor of both objects and arrows in E is by juxtaposition, and
composition comes from the composition in D. (This E is not to be confused with the
strict monoidal category st(D) defined in [JS, §1], which is monoidally equivalent to D.)

It does not seem straightforward to generalize the notion of (non-strict) monoidal
category to give a notion of weak T -structured category, so for now these observations
must be confined to the context of monoidal categories.

3.2. Change of base. So far we have only discussed (E , T )-multicategories for a fixed
(E , T ). In this subsection we look at what happens when (E , T ) varies: in other words,
at how the Multicat construction is functorial. We also examine functoriality of the
structured categories construction, Struc.

Throughout this subsection (E , T )-Multicat will be regarded as a (1-)category. Sub-
section 3.7 contains an outline of a more advanced treatment of this material, in which
(E , T )-Multicat is treated as an fc-multicategory—a categorical structure containing
much more information than a mere category.

First we need to ‘recall’ some definitions from Street’s paper [Str1].

Let T and T ′ be monads on respective categories E and E ′ (not necessarily cartesian). A

monad functor (E , T )
(Q,ψ)� (E ′, T ′) consists of a functor E Q� E ′ together with a natural

transformation

E T � E

��
ψ
�

E

Q

�

T ′
� E ′

Q

�



OPERADS IN HIGHER-DIMENSIONAL CATEGORY THEORY 113

making the diagrams

T ′2Q
T ′ψ� T ′QT

ψT � QT 2

T ′Q

µ′Q
�

ψ
� QT

Qµ
�

Q=========Q

T ′Q

η′Q
�

ψ
� QT

Qη
�

commute. If (E , T )
(R,χ)� (E ′, T ′) is another monad functor then a monad functor trans-

formation (Q,ψ) � (R,χ) is a natural transformation Q
α� R such that (αT )◦ψ =

χ◦(T ′α). There is consequently a 2-category Mnd whose 0-cells are pairs (E , T ), whose
1-cells are monad functors, and whose 2-cells are monad functor transformations.

(In fact, [Str1] concerns monads and monad functors etc. in an arbitrary 2-category
V . We are only interested in the case V = Cat.)

A crucial property of monad functors is that they induce maps between (Eilenberg-
Moore) categories of algebras: thus if (Q,ψ) is a monad functor as above then there is an
induced functor Q : ET � E ′T ′

.
Dually, there is a notion of a monad opfunctor, which is just like a monad functor ex-

cept that ψ travels in the opposite direction; similarly, monad opfunctor transformations.
This gives another 2-category, Mnd′. A monad opfunctor (E , T ) � (E ′, T ′) induces a
functor ET � E ′

T ′ between Kleisli categories.
We will also need a third 2-category, Mnd�. Again, an object is a category E equipped

with a monad T . A 1-cell from (E , T ) to (E ′, T ′) consists of a monad functor (Q,ψ) :
(E , T ) � (E ′, T ′), a monad opfunctor (P, φ) : (E ′, T ′) � (E , T ), and an adjunction
P �Q compatible with the two monads. (Explicitly, this compatibility means that if γ
and δ are the unit and counit of the adjunction then the diagrams

T ′ T ′γ� T ′QP

QPT ′

γT ′
�

Qφ
� QTP

ψP
�

PT ′Q
φQ� TPQ

PQT

Pψ
�

δT
� T

Tδ
�

commute.) A 2-cell in Mnd� consists of a monad functor transformation and a monad
opfunctor transformation obeying further compatibility laws. Composition and identities
in Mnd� are defined in the evident way.

(Incidentally, if we are given a monad opfunctor (P, φ) : (E ′, T ′) � (E , T ) and a
functor Q right adjoint to P , then Q naturally becomes a monad functor (Q,ψ) by taking
ψ to be the mate of φ. The two compatibility squares then commute, so we get a 1-cell
of Mnd�. This fact is used in the proof of Proposition 4.7.3(a).)

A monad functor (Q,ψ) will be called cartesian if Q preserves pullbacks; then cartesian
pairs (E , T ), cartesian monad functors, and all monad functor transformations form a
sub-2-category CartMnd of Mnd. A monad opfunctor (P, φ) will be called cartesian if
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P preserves pullbacks and φ is a cartesian natural transformation; then cartesian pairs
(E , T ), cartesian monad opfunctors, and all monad opfunctor transformations form a sub-
2-category CartMnd′ of Mnd′. Finally, we get a sub-2-category CartMnd� of Mnd�

by allowing only cartesian pairs (E , T ) as objects, 1-cells (P, φ,Q, ψ, γ, δ) in which (P, φ)
is a cartesian monad opfunctor and (Q,ψ) a cartesian monad functor, and all 2-cells.

These definitions are rather haphazard: natural transformations are apparently re-
quired to be cartesian (or not) at random. The only justification I can give is that they
seem to be necessary in order to make the constructions in the rest of this subsection
work. Pulling in the other direction, if we want the Struc example (diagram (3)) to work
then we cannot modify the definition of cartesian monad functor to include the condition
that the natural transformation part ψ is cartesian—for in that case, it isn’t.

We have now collected together the definitions we need, and are ready to see the three
different ways in which the Multicat construction is functorial. Only an outline of each
construction is presented; the details are easily filled in.

Firstly, let (E , T ) and (E ′, T ′) be cartesian and let (Q,ψ) : (E , T ) � (E ′, T ′) be a
cartesian monad functor. Then there is an induced functor

Q : (E , T )-Multicat � (E ′, T ′)-Multicat

defined by pullback. That is, if C is a T -multicategory then Q(C) is a T ′-multicategory
on QC0 whose underlying graph is given by

(QC)1

��		
�
�
� 	

	
	�

T ′QC0 QC1

	
	
	ψC0
� 
�

�
�

Qd
	
	
	
Qc
�

QTC0 QC0.

Dually, let (P, φ) : (E ′, T ′) � (E , T ) be a cartesian monad opfunctor. Then there is
an induced functor

P : (E ′, T ′)-Multicat � (E , T )-Multicat

defined by composition. That is, if C ′ is a T ′-multicategory then P (C ′) is a T -multicategory
on PC ′

0 whose underlying graph is given by

PC ′
1


�
�
�Pd 	

	
	
	
	
	
	
	

Pc

�

PT ′C ′
0


�
�
�φC′

0

TPC ′
0 PC ′

0.
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After filling in all the details we get two maps of 2-categories:

CartMnd � CAT, CartMnd′ � CAT.

The first is defined using pullbacks, so is only a weak functor (pseudo-functor); the sec-
ond is a strict functor. On 0-cells, both functors send (E , T ) to the (large) category
(E , T )-Multicat. At the ‘intersection’ of CartMnd and CartMnd′ is the 2-category
whose 1-cells are what might be called cartesian weak maps of monads: that is, carte-
sian monad functors—or equivalently opfunctors—whose natural transformation part is
an isomorphism. Our two functors agree, up to isomorphism, on these 1-cells.

For the third construction, take a 1-cell in CartMnd� as shown:

(E , T )

(E ′, T ′)

(P, φ)
�� (Q,ψ)
�

Let P and Q be the induced functors just described. Then there naturally arises an
adjunction

(E , T )-Multicat

(E ′, T ′)-Multicat.

P
�� Q
�

This construction gives a weak functor from CartMnd� to a suitable 2-category of cat-
egories and adjunctions.

As an application of this third construction, take any cartesian (E , T ). Then there is
a 1-cell

(ET , id)

(E , T )

(F, ν)
�� (U, ε)
�

(3)

in CartMnd�, in which F and U are the free and forgetful T -algebra functors, and ν
and ε are certain canonical natural transformations which the reader may easily identify.
Applying the construction gives exactly the adjunction

(E , T )-Struc

(E , T )-Multicat

��
�

of 3.1.
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Let us now look at change of base for structured categories. Let (E , T ) and (E ′, T ′) be
cartesian, and let

(Q,ψ) : (E , T ) � (E ′, T ′)

be a cartesian monad functor. This induces a pullback-preserving functorQ : ET � E ′T ′
.

In turn, this induces a functor from the internal categories in ET to those in E ′T ′
,

Q : (E , T )-Struc � (E ′, T ′)-Struc.

(The same induced functor results if instead of thinking in terms of internal categories,
we think of the monad functor or opfunctor

(Q, 1) : (ET , id) � (E ′T ′
, id) (4)

and use change of base for multicategories. This point of view will be useful later on.)
Note that this is compatible with the construction of a T -structured category from a

T -algebra (the functor D on page 110), in the sense that the square

ET Q � E ′T ′

T -Struc

D
�

∩

Q
� T ′-Struc

D
�

∩

commutes. Moreover, change of base for multicategories extends change of base for struc-
tured categories, in the sense that the square

T -Struc
Q � T ′-Struc

T -Multicat

U
�

Q
� T ′-Multicat

U
�

commutes up to canonical isomorphism. Here both U ’s are the functors denoted U in 3.1,
and (Q,ψ) is a cartesian monad functor (as above). To see that the square commutes,
take the monad functor (Q, 1) of (4) above, and consider the square of monad functors

(ET , id)
(Q, 1) � (E ′T ′

, id)

(E , T )

(U, ε)
�

(Q,ψ)
� (E ′, T ′).

(U, ε)
�

This square commutes, so by (weak) functoriality the previous square commutes up to
isomorphism.

One might expect a dual to all this, involving monad opfunctors and Kleisli categories.
I do not know what this might be.



OPERADS IN HIGHER-DIMENSIONAL CATEGORY THEORY 117

3.3. Free multicategories. Just as one can form the free category on a directed
graph, one can form the free (E , T )-multicategory on an (E , T )-graph, assuming that E
and T are suitably pleasant. In Appendix B we define what it means for (E , T ) to be
suitable (which is stronger than being cartesian), and prove the following result:

3.3.1. Theorem. Let (E , T ) be suitable. Then the forgetful functor

(E , T )-Multicat � E ′ = (E , T )-Graph

has a left adjoint, the adjunction is monadic, and if T ′ is the resulting monad on E ′ then
(E ′, T ′) is suitable.

When one takes the free category on an ordinary directed graph, the collection of
objects (vertices) is unchanged, and the corresponding fact for multicategories is expressed
in a variant of the theorem. If S is an object of E then we write (E , T )-MulticatS for the
subcategory of (E , T )-Multicat whose objects C have C0 = S, and whose morphisms f
have f0 = 1S; similarly, we write E ′

S for the category of (E , T )-graphs on S (see 2.2.5(a)).

3.3.2. Theorem. Let (E , T ) be suitable and let S ∈ E. Then the forgetful functor

(E , T )-MulticatS � E ′
S

has a left adjoint, the adjunction is monadic, and if T ′
S is the resulting monad on E ′

S then
(E ′
S, T

′
S) is suitable. Moreover, if E has filtered colimits and T preserves them, then the

same is true of E ′
S and T ′

S.

Most of the time we will only need the weaker conclusions that (E ′, T ′) and (E ′
S, T

′
S)

are cartesian (rather than suitable); the full recursive power of the two theorems is only
brought into play in a couple of passing comments (pages 123 and 136). A point not
mentioned elsewhere is that repeated application of Theorem 3.3.2 gives an instant def-
inition of a sequence of sets (Sn)n∈N looking very much like the n-dimensional opetopes
or multitopes. See [Lei3, Ch. IV] or [Lei1, 4.1] for this construction, and [BD], [HMP],
[Che1] and [Che2] for background.

Our two theorems so far are useless without some instances of suitable (E , T )’s:

3.3.3. Theorem. Let E be a category equivalent to a functor category [E,Set], where
E is small, and let T be a finitary cartesian monad on E. Then (E , T ) is suitable.

Almost all of the specific examples of E in this paper are of the form [E,Set], and all
of the monads T are finitary.

The proofs of all three theorems are confined to the appendix. To give the rough idea,
here is a description of the free plain multicategory construction. Let ( )∗ denote the free
monoid functor on Set, and let

X∗
0
� X1

� X0

be a ( )∗-graph. This, then, is a set X0 together with a set X(x1, . . . , xn;x) for each
x1, . . . , xn, x ∈ X0. The free plain multicategory F (X) on X has graph

X∗
0
� A � X0
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where A is defined recursively as follows:

• if x ∈ X0 then A(x;x) has an element Ix

• if θ ∈ X(x1, . . . , xn;x) and

α1 ∈ A(x1
1, . . . , x

k1
1 ;x1), . . . , αn ∈ A(x1

n, . . . , x
kn
n ;xn)

then A(x1
1, . . . , x

kn
n ;x) has an element θ〈α1, . . . , αn〉.

Here Ix and θ〈α1, . . . , αn〉 are ‘formal symbols’, and identities and composition in F (X)
are defined in ways suggested by these symbols.

What this means is that an arrow in F (X) is a tree of arrows in X. So for instance, if
θ1, θ2, θ3, θ4 are arrows in X with appropriately-matching domains and codomains, then

θ1〈θ2〈Ix, θ3〉, Iy, θ4〉
is an arrow in F (X). Similarly, if θ : x1, . . . , xn � x is any arrow in X then A has an
element

θ〈Ix1 , . . . , Ixn〉.
This provides the map X1

� A that determines the unit of the adjunction at X. It
also explains why we did not specify that any element of X was an element of A in the
recursive definition—this comes about automatically.

As a special case, if X is the terminal ( )∗-graph (that is, the terminal object of Set/N)
then F (X) is the operad tr of (unlabelled) trees, as described in A.1. For more on trees
see Example 2.1.3(g), where labels get attached to leaves rather than internal nodes.

3.4. Algebras via fibrations. It is well-known that for a small category C, the
functor category [C,Set] is equivalent to the category of discrete opfibrations over C. In
this subsection we extend the notion of discrete opfibration from categories to general
T -multicategories, and show that the category of discrete opfibrations over a given T -
multicategory is equivalent to its category of algebras.

By definition, a functor g : D � C between ordinary categories is a discrete opfi-

bration if and only if, for any object b of D and arrow g(b)
θ� a in C, there is a unique

arrow b
χ� b′ in D such that g(χ) = θ. Another way of saying this is that in the diagram

D1


�
�
�d 	

	
	
c
�

D0 D0

C1

g1
�


�
�
�d 	

	
	
c
�

C0

g0

�
C0

g0

�
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depicting g, the left-hand ‘square’ is a pullback.

Generalizing to all cartesian (E , T )’s, let us say that a mapD
g� C of T -multicategories

is a discrete opfibration if the square

TD0
� d

D1

TC0

Tg0

�
� d

C1

g1

�

is a pullback. We obtain, for any T -multicategory C, the category DOpfib(C) of discrete
opfibrations over C, in which an object is a discrete opfibration with codomain C and an

arrow from (D
g� C) to (D′ g′� C) is a T -multicategory map D

f� D′ such that
g′◦f = g. (This f is automatically a discrete opfibration too, by a standard lemma on
pasting of pullback squares.)

Notice, incidentally, that being a discrete opfibration is really a property of maps
between T -graphs rather than T -multicategories. In this sense, the notion of a discrete
opfibration between categories exists at a more primitive level than the full notion of
opfibration.

3.4.1. Theorem. Let (E , T ) be cartesian and let C be a T -multicategory. Then there
is an equivalence of categories

DOpfib(C)�Alg(C).

A more precise statement is that the forgetful functor from DOpfib(C) to E/C0

(sending g to g0) is monadic, and that the induced monad is isomorphic to TC .

Proof. Recall from 2.3.1 that a C-algebra is an algebra for the monad TC on E/C0.

The effect of TC on an object (X
p� C0) of E/C0 is given by the pullback diagram

X ′

��		
�
�
�φX 	

	
	
πX
�

TX C1

	
	
	Tp � 
�

�
�d 	

	
	
c
�

TC0 C0

and the formula TC(X
p� C0) = (X ′ cπX� C0). So a C-algebra consists of (X

p� C0)
together with a map h : X ′ � X satisfying axioms.
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Given a C-algebra (X
p� C0, h), then, we get a commutative diagram

X ′


�
�
�φX 	

	
	
h
�

TX X

C1

πX
�


�
�
�d 	

	
	
c
�

TC0

Tp

�
C0.

p

�

The top part of this diagram defines a T -graph D, and there is a map g : D � C
defined by g0 = p and g1 = πX . With some calculation we see that D is naturally a
T -multicategory and g a map of T -multicategories. (Composition in D is defined using
composition in C, and similarly identities. In the case (E , T ) = (Set, id), we are dealing
with the familiar Grothendieck opfibration.) Moreover, the left-hand half of the diagram
is a pullback, so we have constructed from the C-algebra a discrete opfibration over C.

We thus arrive at a functor from Alg(C) to DOpfib(C), which is easily checked to
be full, faithful and essentially surjective on objects.

Let us take a closer look at the T -multicategory D corresponding to a C-algebra

h = (X
p� C0, h). We could call D the multicategory of elements or the Grothendieck

opfibration of h; for reasons soon to be apparent, I will write D = C/h.
A natural question to ask is: given a multicategory C and an algebra h for C, what

are the algebras for C/h? To answer it we recall the process of slicing a monad by an
algebra, as in Example 2.3.3(h): for any monad S on a category D and any S-algebra k,
there is a monad S/k on D with the property that

Alg(S/k)∼=Alg(S)/k.

(Here and below, Alg means the category of algebras for either a monad or a multicate-
gory. So for instance, Alg(C) = Alg(TC).)

The following two results answer the question. Both proofs are easy.

3.4.2. Proposition. Let (E , T ) be cartesian, let C be a T -multicategory, and let h be
a C-algebra. Then there is an isomorphism of monads TC/h∼= TC/h.

3.4.3. Corollary. In the situation of the proposition, there is an isomorphism of
categories Alg(C/h)∼=Alg(C)/h.

The corollary generalizes the familiar fact that when C is a category and C/h is the
category of elements of a functor h : C � Set,

[C/h,Set]∼= [C,Set]/h.

In addition to the corollary, we have:
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3.4.4. Proposition. Let (E , T ) be cartesian, let C be a T -multicategory, and let h be
a C-algebra. Then there is an isomorphism of categories

DOpfib(C/h)∼=DOpfib(C)/h.

Proof. This follows from standard results on the pasting of pullback squares.

It is very nearly possible to deduce either one of 3.4.3 or 3.4.4 from the other. The
only obstacle is that both results assert the isomorphism of a pair of categories, whereas
Alg(D) and DOpfib(D) are only equivalent, for T -multicategories D.

As an example, let C be the terminal T -multicategory 1. We have T1
∼= T and so

Alg(1)∼=Alg(T ) (Example 2.3.3(g)). Given a T -algebra h, we therefore obtain a T -
multicategory 1/h; plausibly enough, this is the T -multicategory of Example 2.2.6(j),
with graph

TX �1
TX

h� X.

The results above tell us that T1/h
∼= T/h and Alg(1/h)∼=Alg(T )/h, as we also saw in

Example 2.3.3(h).
As another application, let us construct the slice multicategory C+ of a T -multicategory

C, which will have the property that

Alg(C+)�T -Multicat/C.

In detail, let (E , T ) be suitable, let E ′ = T -Graph, and let T ′ be the free T -multicategory
monad, as in 3.3. Then C is an algebra for the terminal T ′-multicategory 1 (that is, a
T ′-algebra), so

Alg(1/C)∼=Alg(T ′)/C �T -Multicat/C.

We therefore define C+ = 1/C, and this has the required property. Notice that we have
moved up a level: whereas C was a T -multicategory, C+ is a T ′-multicategory.

The slice multicategory construction was first proposed by Baez and Dolan for their
definition [BD] of weak n-category, where it plays a central part. Their construction
takes place in a different and more specialized context than ours, but there is an evident
similarity between the two. See also [Che1] and [Che2] for an elucidation of Baez-Dolan
slicing, and [Lei3, IV.4] for further thoughts on our version.

3.5. Algebras via endomorphisms. The prototypical example of a plain operad
arises from substitution. That is, if X is a set then there is a plain operad End(X) with

(End(X))(n) = Set(Xn, X),

with the identity element of (End(X))(1) provided by the identity function on X, and
with composition in the operad defined by

θ◦(θ1, . . . , θn) = θ◦(θ1 × · · · × θn).
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For any plain operad C and set X, there is a one-to-one correspondence between C-
algebra structures on X and operad maps C � End(X). Indeed, this is often used to
define what an algebra for an operad is: for instance, in many accounts of the classical
theory of operads, and in Batanin’s account [Bat] of his globular operads. (In the classical
case a symmetric group action is usually involved too, but we ignore this elaboration.)
In this short subsection we show that for a large class of cartesian (E , T ), this alternative
definition of algebra is also possible.

As motivation, let’s consider what the appropriate definition of End is for plain mul-
ticategories. An algebra for a plain multicategory C consists of a family (X(a))a∈C0 of
sets together with a function

C(a1, . . . , an; a) ×X(a1) × · · · ×X(an) � X(a)

for each a1, . . . , an, a ∈ C0, satisfying certain axioms. In other words, a C-algebra consists
of an object X � C0 of Set/C0 together with a function

C(a1, . . . , an; a) � Set(X(a1) × · · · ×X(an), X(a))

for each a1, . . . , an, a, again satisfying axioms. With some work we see that given any

object X
p� C0 of Set/C0, there is a plain multicategory End(X) with object-set C0,

with hom-sets

(End(X))(a1, . . . , an; a) = Set(X(a1) × · · · ×X(an), X(a)), (5)

and with composition and identities given by substitution and identities of functions; we
also see that a C-algebra structure on X is exactly a multicategory map C � End(X)
which is the identity on objects.

Analysing this further, let T be the free monoid functor and, givenX
p� C0, consider

the following two T -graphs on C0:

TX × C0


��
pr1 	

	
	
	
	

pr2

�

TX


��
Tp

TC0 C0

TC0 ×X


�
�
�
�
�

pr1

		
pr2�

X

		
p
�

TC0 C0.

Call these graphs G1(X) and G2(X) respectively. In G1(X), the set of arrows (that
is, elements of TX × C0) with domain (a1, . . . , an) and codomain a is X(a1) × · · · ×
X(an); in G2(X), the set of arrows with this domain and codomain is X(a). Let [ , ]
denote exponential in the category Set/(TC0 × C0) of T -graphs on C0. Then in the T -
graph [G1(X), G2(X)], the set of arrows with the aforementioned domain and codomain
is the right-hand side of (5). Hence [G1(X), G2(X)] is the underlying T -graph of the
endomorphism multicategory End(X) described above.
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It is now easy to move to the general case. Let (E , T ) be cartesian, and suppose
that each slice E/Z of E is cartesian closed. (This happens if E � [E,Set] for some small

category E, as in almost all of our examples.) Let S ∈ E and let X
p� S be an object of

E/S. Define T -graphs G1(X) and G2(X) on S by the same diagrams as above, replacing
C0 by S throughout, and define a T -graph

End(X) = [G1(X), G2(X)],

where [ , ] is exponential in the category E/(TS × S) of T -graphs on S. Then End(X)
carries a natural T -multicategory structure, as may be verified. Moreover, if C is any
T -multicategory with C0 = S then T -algebra structures on X correspond one-to-one with

those T -multicategory maps C
h� End(X) which are the identity on objects (that is,

h0 = 1, in the terminology of 2.2.4). Put another way, an algebra for C is an object X
over C0 together with a map C � End(X) of multicategories on C0.

To discuss maps between C-algebras (for a fixed T -multicategory C) we define

Hom(X,Y ) = [G1(X), G2(Y )]

for T -graphs X and Y on S = C0. Since both G1 and G2 are functors, so too is Hom.
If (X, h) and (Y, k) are C-algebras, then an algebra map (X, h) � (Y, k) is exactly a

map X
f� Y in E/C0 such that the diagram

C
h � Hom(X,X)

Hom(Y, Y )

k

�

Hom(f, 1)
� Hom(X,Y )

Hom(1, f)

�

commutes. Put formally, we have just given an alternative definition of the category of
algebras for a T -multicategory C, and this alternative category is isomorphic to the official
category Alg(C).

3.6. fc-multicategories. In this subsection we take a close look at T -multicategories
in the case where T is the free category monad, fc, on the category of directed graphs,
(Set, id)-Graph. This case is interesting for a variety of reasons. First of all, it arises
naturally as soon as one thinks about categories and the fact that Cat is monadic over
(Set, id)-Graph. It is therefore the first step in an infinite hierarchy: that is, if we define

(E (0), T (0)) = (Set, id),

E (n+1) = T (n)-Graph,

T (n+1) = free T (n)-multicategory
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then a T (1)-multicategory is an fc-multicategory. (The validity of these definitions is
guaranteed by Theorems 3.3.1 and 3.3.3; in particular, they say that the monad fc is
cartesian.) We will only consider this first step here; more can be found in [Lei5, 3.4].

Secondly, fc-multicategories encompass many familiar ‘two-dimensional’ categorical
structures, including bicategories, double categories, monoidal categories and plain mul-
ticategories. They also include structures we will call weak double categories, in which
composition of horizontal 1-cells only obeys associativity and unit laws up to coherent
isomorphism, and include structures resembling the 2-opetopic sets of Baez and Dolan.

Thirdly, there are a couple of well-known categorical ideas for which fc-multicategories
provide a more general context than is traditional: the bimodules construction (usually
performed on bicategories), and the enrichment of categories (usually done in monoidal
categories, or occasionally bicategories). These subjects are treated in, respectively, 3.7
and 3.8.

Let us begin by finding out what an fc-multicategory is in explicit terms. An fc-graph
V is a diagram

V1 = (V11
�� V10)


�
�
�
�
� 	

	
	
	
	�

fc(V0) = (V ∗
01

�� V00) V0 = (V01
�� V00),

where V1 and V0 are directed graphs, the Vij are sets, V ∗
01 is the set of paths in V0,

the horizontal arrows are set maps, and the diagonal arrows are maps of directed graphs.
Think of elements of V00 as objects or 0-cells, elements of V01 as horizontal 1-cells, elements
of V10 as vertical 1-cells, and elements of V11 as 2-cells, as in the picture

x0

m1 � x1

m2 � · · · mn � xn

⇓ θ

x

f
�

m
� x′

f ′
�

(6)

(n ≥ 0, xi, x, x
′ ∈ V00, mi,m ∈ V01, f, f

′ ∈ V10, θ ∈ V11). An fc-multicategory structure
on the fc-graph V firstly makes

(V00
� V10

� V00),

the objects and vertical 1-cells, into a category. It also gives a composition function for
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2-cells,

•
m1

1� · · · mk1
1� •

m1
2� · · · mk2

2 � • · · · •
m1
n� · · · mkn

n� •
⇓ θ1 ⇓ θ2 · · · ⇓ θn

•
f0 �

m1

� •
�

m2

� •
� · · · •

�

mn

� •
fn�

⇓ θ
•

f �

m
� •

f ′
�

(7)

�−→

•
m1

1� · · · mkn
n � •

⇓ θ◦(θ1, θ2, . . . θn)

•

f ◦f0

�

m
� •

f ′◦fn
�

(n ≥ 0, ki ≥ 0, with •’s representing objects), and an identity function

x
m� x′ �−→

x
m� x′

⇓ 1m

x

1x
�

m
� x′.

1x′
�

The composition and identities obey associativity and identity laws, which ensure that
any 2-cell diagram with a rectangular boundary has a well-defined composite.

The pictures in the nullary case are worth a short comment. When n = 0, the 2-cell
of diagram (6) is drawn as

x0 ========= x0

⇓ θ

x

f
�

m
� x′,

f ′
�

and the diagram of pasted-together 2-cells in the domain of (7) is drawn as

w0 ===w0

=

x0

f0
�

=== x0

f0
�

⇓ θ

x

f
�

m
� x′.

f ′
�

The composite of this last diagram will be written as θ◦f0.
As such, fc-multicategories are not familiar, but various degenerate cases are. These

are explained in the following examples, and summarized in Figure 3a.
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Not ‘representable’ ‘Representable’ ‘Uniformly
representable’

No degeneracy fc-multicategory Weak double Double category
category

All vertical 1-cells Vertically discrete Bicategory 2-category
are identities fc-multicategory

Only one object and Plain multicategory Monoidal category Strict monoidal
one vertical 1-cell category

Figure 3a: Some of the possible degeneracies of an fc-multicategory. The left-hand column
refers to degeneracies in the category formed by the objects and vertical 1-cells. The top
row refers to whether the fc-multicategory structure arises from a composition rule for
horizontal 1-cells. See Examples 3.6.1.

3.6.1. Examples.

a. Any double category gives an fc-multicategory, in which a 2-cell as in (6) is a 2-cell

x0

mn◦ · · · ◦m1� xn

⇓
x

f
�

m
� x′

f ′
�

in the double category.

b. In fact, (a) works even when the double category is ‘horizontally weak’. A typical
example of such a structure—a weak double category—has rings (not necessarily
commutative) as its 0-cells, bimodules as its horizontal 1-cells, ring homomorphisms
as its vertical 1-cells, and ‘homomorphisms of bimodules with respect to the vertical
changes of base’ as 2-cells. In other words, a 2-cell looks like

R
M � R′

⇓ θ
S

f
�

N
� S ′,

f ′
�

where R, R′, S, S ′ are rings, M is an (R′, R)-bimodule (i.e. simultaneously a left R′-
module and a right R-module) and N similarly, f and f ′ are ring homomorphisms,
and θ : M � N is an abelian group homomorphism such that

θ(r′ ·m · r) = f ′(r′) · θ(m) · f(r).

Composition of horizontal 1-cells is tensor, composition of vertical 1-cells is the
usual composition of ring homomorphisms, and composition of 2-cells is defined in
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an evident way. The essential point is that although the 0-cells and vertical 1-cells
form a category, the same cannot be said of the horizontal structure: tensor only
obeys the associative and unit laws up to coherent isomorphism.

I will not write down the full definition of weak double category, since it is just an
easy extension of the definition of a bicategory. It is most convenient to extend the
definition of unbiased bicategory, since in order to have a 1-cell ‘mn◦ · · · ◦m1’, as in
the diagram of (a), we need n-fold composition.

Another example has small categories as 0-cells, profunctors (bimodules) as horizon-
tal 1-cells, functors as vertical 1-cells, and ‘morphisms of profunctors with respect
to the vertical functors’ as 2-cells. We will explore both of these examples further
in 3.7.

c. Suppose that all vertical 1-cells are identities, that is, V10 = V00 and

(V00
� V10

� V00) = (V00
�1

V00
1� V00).

The category formed by the objects and vertical 1-cells is discrete, so we may call the
fc-multicategory V vertically discrete. In this case, an alternative way of drawing
the underlying fc-graph of V is as

V11


�
�
� 	

	
	�

V ∗
01 V01
����������






V00

�
V00.
�

Thus a vertically discrete fc-multicategory consists of some objects x, x′, . . ., some
1-cells m,m′, . . ., and some 2-cells looking like

x2 . . .

x1

m2&
xn−1

�
�m1 ' ⇓ θ �

�
mn
(

x0
m

� xn,

together with a composition function

�
�
�
��� )

)
))���

�*

$$$# +++,

�
x0

x1 xn−1

xnm

m1 mn

m1
1

mk1
1 m1

n

mkn
n

⇓ θ⇒θ1 ⇐θn �−→

���
�* �

x0 xnm
m1

1
mkn
n

⇓ θ◦(θ1, . . . , θn)
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and an identity function

�x x′m �−→
��x x′

m

m

⇓ 1m

obeying the inevitable associativity and identity laws. A vertically discrete fc-graph
bears a strong resemblance to a 2-opetopic set in the sense of [BD], or a 2-truncated
multitopic set in the sense of [HMP]; see also [Che1], [Che2] and [Lei3, Ch. IV].

d. Any bicategory gives rise to a vertically discrete fc-multicategory, in which a 2-cell
as at (6) is a 2-cell

x0

mn◦ · · · ◦m1

m

�

��
xn

in the bicategory (with x0 = x and xn = x′). This is a special case of (b).

e. Any monoidal category M gives an fc-multicategory in which there is one object
and one vertical 1-cell, and a 2-cell

• m1 • m2 • · · · • mn •
⇓

•
1

m
•
1 (8)

is a morphism mn ⊗ · · · ⊗m1
� m in M . This, in turn, is a special case of (d).

f. Similarly, any plain multicategory M gives an fc-multicategory: there is one object,
one vertical 1-cell, and a 2-cell (8) is a map

m1, . . . ,mn
� m

in M . In fact, a plain multicategory is exactly an fc-multicategory in which the
category formed by the objects and vertical 1-cells is 1, the terminal category.

g. Let (E , T ) be cartesian, and define an fc-multicategory V as follows. The objects
are the objects of E , and the horizontal 1-cells are the same as the 1-cells of the
bicategory Span(E , T ) defined in 2.2.1. A vertical 1-cell is a morphism in E , and a
2-cell

X0

M1 � X1

M2 � · · · Mn � Xn

⇓
X

f
�

M
� X ′

f ′
�
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is a function θ making

Mn◦ · · · ◦M1

�
 ����

TX0 Xn

M

θ
�

�
 ����

TX

Tf

�
X ′

f ′

�

commute, where Mn◦ · · · ◦M1 is the composite in Span(E , T ). Composition and
identities in V are defined in the obvious way. (This is actually not just an fc-
multicategory, but a weak double category. Strictly speaking, E should be small;
but having given an elementary description of what an fc-multicategory is, I will
feel free to ignore this restriction.)

Given any fc-multicategory, we obtain a vertically discrete fc-multicategory sim-
ply by discarding all non-identity vertical 1-cells. Applying this process to V
gives the same vertically discrete fc-multicategory as arises from the bicategory
Span(E , T ) by the method of (d). For this reason we also write Span(E , T ) for
the fc-multicategory V . In the next subsection we will see that it is useful—and
perhaps more natural—to regard Span(E , T ) as an fc-multicategory rather than a
bicategory.

So far all of our examples of fc-multicategories have been degenerate in some way:
either weak double categories or vertically discrete. The next subsection provides some
non-degenerate examples.

3.7. The bimodules construction. Bimodules have traditionally been discussed in
the context of bicategories. Thus given a bicategory B, one constructs a new bicategory
Bim(B) whose 1-cells are bimodules in B (see [CKW] or [Kos]). The drawback is that
this is only possible when B has certain properties concerning the existence and behaviour
of local reflexive coequalizers.

Here we extend the Bim construction from bicategories to fc-multicategories, which
allows us to drop the technical assumptions. In other words, we will construct an honest
functor

Bim : fc-Multicat � fc-Multicat.

This provides lots of new examples of fc-multicategories.

I would like to be able to, but at present cannot, place the Bim construction in a more
abstract setting: as it stands it is somewhat ad hoc. Possibly there is some connection
with the contractions of Section 4.

Let V be an fc-multicategory. The fc-multicategory Bim(V ) is defined as follows.
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0-cells A 0-cell of Bim(V ) is a multicategory map 1 � V . That is, it is a 0-cell x of

V together with a horizontal 1-cell x
t� x and 2-cells

x
t � x

t � x

⇓ µ

x

1
�

t
� x

1
�

x ========= x

⇓ η

x

1
�

t
� x

1
�

satisfying the usual axioms for a monad, µ◦(µ, 1t) = µ◦(1t, µ) and µ◦(η, 1t) = 1t =
µ◦(1t, η).

Horizontal 1-cells A horizontal 1-cell (x, t, η, µ) � (x′, t′, η′, µ′) consists of a horizon-

tal 1-cell x
m� x′ in V together with 2-cells

x
t � x

m � x′

⇓ θ

x

1
�

m
� x′

1
�

x
m � x′

t′ � x′

⇓ θ′

x

1
�

m
� x′

1
�

satisfying the usual module axioms θ◦(η, 1m) = 1m, θ◦(µ, 1m) = θ◦(1t, θ), and dually
for θ′, and the ‘commuting actions’ axiom θ′◦(θ, 1t′) = θ◦(1t, θ′).

Vertical 1-cells A vertical 1-cell
(x, t, η, µ)

(x̂, t̂, η̂, µ̂)
�

in Bim(V ) is a vertical 1-cell
x

x̂

f�

in V together with a 2-cell

x
t � x

⇓ ω

x̂

f
�

t̂
� x̂

f
�

such that ω◦µ = µ̂◦(ω, ω) and ω◦η = η̂◦f . (The notation on the right-hand side of
the second equation is explained on page 125.)
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2-cells A 2-cell

t0
m1 � t1

m2 � · · · mn � tn

⇓
t

f
�

m
� t′

f ′
�

in Bim(V ), where t stands for (x, t, η, µ), m for (m, θ, θ′), f for (f, ω), and so on,
consists of a 2-cell

x0

m1 � x1

m2 � · · · mn � xn

⇓ α

x

f
�

m
� x′

f ′
�

in V , satisfying the ‘external equivariance’ axioms

α◦(θ1, 1m2 , . . . , 1mn) = θ◦(ω, α)

α◦(1m1 , . . . , 1mn−1 , θ
′
n) = θ′◦(α, ω′)

and the ‘internal equivariance’ axioms

α◦(1m1 , . . . , 1mi−2
, θ′i−1, 1mi

, 1mi+1
, . . . , 1mn) =

α◦(1m1 , . . . , 1mi−2
, 1mi−1

, θi, 1mi+1
, . . . , 1mn)

for 2 ≤ i ≤ n.

Composition and identities For both 2-cells and vertical 1-cells in Bim(V ), compo-
sition is defined directly from the composition in V , and similarly identities.

We have now defined an fc-multicategory Bim(V ) for each fc-multicategory V , and
it is clear how to do the same thing for maps of fc-multicategories, so that we have a
functor

Bim : fc-Multicat � fc-Multicat.

We could go further and treat fc-Multicat as a 2-category (cf. the remarks at the end
of Section 2). Further still, it is really more natural to regard fc-Multicat as a (large)
fc-multicategory itself, as we shall see very shortly. Such extensions are left to the con-
sideration of the reader.
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3.7.1. Examples.

a. Let B be a bicategory satisfying the conditions on local reflexive coequalizers men-
tioned in the first paragraph of this subsection, so that it is possible to construct a
bicategory Bim(B) in the traditional way. Let V be the fc-multicategory coming
from B. Then a 0-cell of Bim(V ) is a monad in B, a horizontal 1-cell t � t′ is a
(t′, t)-bimodule, and a 2-cell of the form

t0
m1 � t1

m2 � · · · mn � tn

⇓
t0

1
�

m
� tn

1
�

is a map

mn ⊗tn−1 · · · ⊗t1 m1
� m

of (tn, t0)-bimodules, i.e. a 2-cell in Bim(B). So if we discard the non-identity 1-cells
of Bim(V ) to get a vertically discrete fc-multicategory, then this is precisely the
fc-multicategory associated with the bicategory Bim(B).

b. Let V be the fc-multicategory Span(Set, id), as defined in 3.6.1(g). Then Bim(V )
has

objects: small categories

vertical 1-cells: functors

horizontal 1-cells: profunctors (that is, a horizontal 1-cell C � C ′ is a functor
Cop × C ′ � Set)

2-cells: a 2-cell

C0

M1 � C1

M2 � · · · Mn � Cn

⇓
C

F
�

M
� C ′

F ′
�

(9)

is a family of functions

Mn(an−1, an) × · · · ×M1(a0, a1) � M(Fa0, F
′an),

one for each a0 ∈ C0, . . . , an ∈ Cn, natural in the ai’s.
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The 2-cells can be described another way. Firstly, there is a profunctor M ′ :
C0

� Cn defined by M ′(a0, an) = M(Fa0, F
′an). Secondly, we can tensor to-

gether (compose) the profunctors Mi to obtain the profunctor Mn ⊗ · · · ⊗ M1 :
C0

� Cn. A 2-cell as shown above is then a morphism Mn ⊗ · · · ⊗M1
� M ′

of profunctors, in the usual sense.

In particular, our fc-multicategory (which could reasonably be called Cat) incorpo-
rates natural transformations. For let D and C be categories and F, F ′ : D � C
functors; write ID and IC for the identity profunctors on D and C, i.e. ID = HomD

and IC = HomC . Then by a simple Yoneda argument, a 2-cell

D
ID � D

⇓
C

F
�

IC
� C

F ′
�

(10)

in Bim(Span(Set, id)) is just a natural transformation F � F ′.

c. More generally, consider Bim(Span(E , T )) for any cartesian (E , T ). As we would ex-
pect, an object is a T -multicategory and a vertical 1-cell is a map of T -multicategories.
A horizontal 1-cell C � C ′ is a profunctor or (bi)module between T -multicategories:
that is, a span

TC0
� M � C ′

0

together with maps (‘actions’) M◦C1
� M and C ′

1◦M � M obeying the usual
rules for a bimodule. Here and in what follows, ‘◦’ indicates composition of 1-cells
in the bicategory Span(E , T ). A 2-cell as pictured in (9) is a map θ in E making
the diagram

Mn◦ · · · ◦M1

�
 ����

TC0 Cn

M

θ
�

�
 ����

TC

TF

�
C ′

F ′

�

commute and satisfying compatibility axioms for the actions by the Ci’s, C and C ′.

This provides a family of examples of fc-multicategories which are not degenerate
in any of the ways described in 3.6.1. In other words, Bim(Span(E , T )) does not
usually form a weak double category. For recall that in order to form the tensor of
ordinary profunctors (as in the previous example), one needs to use a certain coend,
which is effectively a reflexive coequalizer in the category of sets. Similarly, in order
to form a tensor of profunctors in the (E , T ) setting we need E to possess certain
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reflexive coequalizers, and in order for tensor to obey (weak) associative and unit
laws we need T to preserve such coequalizers. In general E and T will not have
these properties.

(A rather self-referential example is provided by T = fc, which does not preserve
all reflexive coequalizers. This is all at a pragmatic level; I have not actually got a
proven counterexample to the claim that for all cartesian (E , T ), the fc-multicategory
Bim(Span(E , T )) comes from a weak double category.)

So, for a fixed (E , T ), the natural structure formed by T -multicategories is an fc-
multicategory. As for ordinary categories, this incorporates a sensible notion of
natural transformation. Formally, if C is a T -multicategory then let IC denote the
profunctor C � C consisting of the span

TC0
�d

C1
c� C0

with left and right C-actions defined by composition in C. Let D and C be T -
multicategories and F, F ′ : D � C maps of T -multicategories: then a transfor-
mation F � F ′ is a 2-cell in Bim(Span(E , T )) as shown in diagram (10). An
elementary definition of transformation is given in [Lei5, 1.1.1]. For plain multicat-
egories, a transformation α : F � F ′ consists of an arrow αd : Fd � F ′d for
each d ∈ D0, such that

αd◦(Fg) = F ′g◦(αd1 , . . . , αdn)

for all arrows g : d1, . . . , dn � d in D.

d. For a less taxing example, let V be the fc-multicategory coming from the monoidal
category (Ab,⊗,Z) (as in 3.6.1(e)). Then Bim(V ) has

objects: rings

vertical 1-cells: ring homomorphisms

horizontal 1-cells R � R′: (R′, R)-bimodules

2-cells: A 2-cell

R0

M1 � R1

M2 � · · · Mn � Rn

⇓ θ

R

f
�

M
� R′

f ′
�

is a functionMn×· · ·×M1
θ� M which preserves addition in each coordinate

(is ‘multi-additive’), and satisfies

θ(rn ·mn,mn−1, . . .) = f ′(rn) · θ(mn,mn−1, . . .)

θ(mn · rn−1,mn−1, . . .) = θ(mn, rn−1 ·mn−1, . . .)
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etc.

This, then, is the fc-multicategory arising from the weak double category of 3.6.1(b).
As in the last example, it is only a weak double category because certain reflexive
coequalizers exist and behave well in the monoidal category (Ab,⊗,Z).

e. The previous example can be repeated with the monoidal category (Set,×, 1), with
obviously analogous results.

f. Let W be a 2-category. We construct from W an fc-multicategory V , different from
the vertically discrete fc-multicategory of 3.6.1(d). The objects of V are the objects
of W , the vertical and horizontal 1-cells of V are both just the 1-cells of W , and a
2-cell

x0

g1 � x1

g2 � · · · gn � xn

⇓
x

f
�

g
� x′

f ′
�

in V is a 2-cell

x0

g◦f

f ′◦gn◦ · · · ◦g1

�

��
xn

in W . Composition and identities are defined by pasting of 2-cells in W . (Effectively
we are associating a (strict) double category to W , and obtaining from that an fc-
multicategory as in 3.6.1(a).)

Now consider the fc-multicategory Bim(V ). The category formed by the objects
and vertical 1-cells is the category of monads and monad functors in W , in the
sense of 3.2 and [Str1]. A horizontal 1-cell is what might be called a (bi)module be-
tween monads. (For an application of such modules to ‘hard-nosed mathematics’—
homotopy theory, in fact—see [May1, 9.4].) The description of a general 2-cell is
omitted.

Dually, we can reverse direction of the 2-cells in V to obtain another fc-multicategory
V ′ from W , and then the objects and vertical 1-cells of Bim(V ′) form the category
of monads and monad opfunctors in W .

Example (c) points the way towards a truly uncompromising, but logically superior,
approach to writing up the general theory of multicategories. This approach would start
with an elementary definition of (possibly large) fc-multicategory, which would look like
the description at the beginning of 3.6. It would continue with the definition of the fc-
multicategory Span(E , T ), for any cartesian (E , T ), and a definition of the bimodules
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construction. By applying the latter to the former it would arrive at the fc-multicategory
(E , T )-Multicat. A (E , T )-multicategory would be, by definition, an object of this fc-
multicategory, and similarly maps, modules, etc. So in this approach, it would not be
necessary to treat Span(E , T ) as a bicategory at all.

The ‘change of base’ discussed in 3.2 can also be explained using the bimodules con-
struction. Given cartesian (E , T ) and (E ′, T ′), a cartesian monad functor from (E , T ) to
(E ′, T ′) gives rise to a map

Span(E , T ) � Span(E ′, T ′)

of fc-multicategories. (This is a direct and explicit construction, of which no further
explanation is offered.) The same is true for a cartesian monad opfunctor, using a different
construction. Applying Bim then gives an fc-multicategory map

(E , T )-Multicat � (E ′, T ′)-Multicat.

So a cartesian monad (op)functor tells us not just how to turn a T -multicategory into
a T ′-multicategory, and a functor between T -multicategories into a functor between T ′-
multicategories (as in 3.2), but also works on profunctors, transformations, and the general
2-cells described in Example (c).

3.8. Enrichment. There is a quite surprising theory of enrichment for general multi-
categories. In this subsection I will give a short outline of the shape of the theory, referring
the reader to [Lei5] for a more full account.

The main surprise is what one enriches in. Given a category E and a monad T on E ,
which are ‘suitable’ in the sense of 3.3, define

E ′ = (E , T )-Graph,

T ′ = free (E , T )-multicategory.

Fix a T ′-multicategory V (which makes sense as (E , T ) is suitable). Then we will talk
about ‘T -multicategories enriched in V ’. In other words, we enrich T -multicategories in
T ′-multicategories. This means that we can take, for instance, the hierarchy (E (n), T (n))
of monads defined at the beginning of 3.6, and consider T (n)-multicategories enriched in
T (n+1)-multicategories; thus a structure of one type gets enriched in a structure of a more
complicated type.

(In general there appears to be no such thing as the ‘underlying’ T -multicategory of a
V -enriched T -multicategory, in contrast with the familiar situation for categories enriched
in a monoidal category.)

The definition itself is very simple. Given an object C0 of E , we can form I(C0) (with
I for indiscrete), the unique T -multicategory with graph

TC0
�pr1 TC0 × C0

pr2� C0.
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Then I(C0) is a T ′-algebra, say h : T ′(I(C0)) � I(C0). By Example 2.2.6(j), we get
from this MI(C0), the unique T ′-multicategory with graph

T ′(I(C0)) �
1

T ′(I(C0))
h� I(C0).

For a T ′-multicategory V , a V -enriched T -multicategory is an object C0 of E together with
a mapMI(C0) � V of T ′-multicategories. Maps between V -enriched T -multicategories
are also defined in a simple way (see [Lei5]), thus giving a category.

The simplest case is (E , T ) = (Set, id). Then E ′ is the category of directed graphs,
T ′ = fc, and we have a theory of categories enriched in an fc-multicategory. This extends
the usual theory of categories enriched in a monoidal category, as well as the less popular
theory of categories enriched in a bicategory ([BCSW], [CKW], [Wal]) and the evident
but hardly-written-up theory of categories enriched in a plain multicategory. Categories
enriched in an fc-multicategory are examined in each of [Lei4], [Lei5] and [Lei6].

The theory of bimodules interacts with the theory of enrichment in an fc-multicategory
in the following way. Write V -Cat for the category of categories enriched in an fc-
multicategory V . We then have some facts:

a. given a map V1
� V2 of fc-multicategories, there is an induced functor V1-Cat

� V2-Cat

b. there is a forgetful map Bim(V ) � V , for any V

c. the forgetful map Bim(MI(C0)) � MI(C0) is an isomorphism for any set C0

(which takes a little thought)

d. by (c), a V -enriched category (MI(C0)
γ� V ) gives rise to a Bim(V )-enriched

category

MI(C0)
∼� Bim(MI(C0))

Bim(γ)� Bim(V )

e. the same goes for maps, so there is a functor

V -Cat � Bim(V )-Cat.

(As it happens, this functor is right adjoint to the functor induced by the forgetful map
of (b).)

For instance, a category C enriched in the monoidal category Ab gives rise to a
category enriched in the fc-multicategory Bim(Ab) of 3.7.1(d). In concrete terms, this
works because the abelian group C(a, a) is naturally a ring, and the abelian group C(a, b)
is naturally a left C(b, b)-module and a right C(a, a)-module, for any a, b ∈ C0. Further
explanation is in [Lei5] and [Lei4].

This piece of theory again illustrates the advantages of working with fc-multicategories
instead of bicategories. Let B be a bicategory satisfying the usual conditions on local
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reflexive coequalizers, so that there is a bicategory Bim(B). Then, just as above, any B-
enriched category gives rise to a Bim(B)-enriched category. However, this construction is
not functorial: a map between B-enriched categories does not give rise to a map between
the associated Bim(B)-enriched categories. Essentially, the problem is that the definition
of a map between C-enriched categories (for a bicategory C, which in this case is Bim(B))
is too restrictive; and in turn, this restrictive definition is forced because bicategories do
not have any vertical 1-cells. Once again, the reader is referred elsewhere for elucidation
of cryptic remarks: see [Lei5] or [Lei6].

The second-most simple case of enrichment for general multicategories is when E = Set
and T is the free monoid monad. This has an interesting application, concerning the
structures called ‘pseudo-monoidal categories’ by Soibelman and ‘relaxed multicatego-
ries’ by Borcherds. (See [Soi] and [Borh], and [Sny1] and [Sny2] for further explanation.
Borcherds actually used relaxed multilinear categories, where the hom-sets are not just
sets but vector spaces.) In [Lei5, Ch. 4] it is shown that, for a certain naturally-arising
T ′-multicategory V , relaxed multicategories are exactly plain multicategories enriched in
V .

4. A definition of weak ω-category

In this section we present a definition of weak ω-category, a variation on that given by
Batanin in [Bat]. We start (4.1) by giving the definition in purely formal terms, which can
be done very quickly. However, it is the explanation of why it is a reasonable definition
that occupies most of the section (4.2–4.6).

It turns out that there are (at least) two natural ways to use our definition of weak
ω-category to give a definition of weak n-category. We show that these two definitions
are equivalent in a strong sense (4.7). Moreover, we show (4.8) that weak 2-categories are
the same as unbiased bicategories.

In order to make the definition of weak ω-category we need to rely on certain technical
results, which are confined to Appendices C and D.

Our definition of weak ω-category is very close to Batanin’s, although not the same.
Both definitions involve two main ideas: operads and contractions. The operads he uses
are the same as the (E , T )-operads here (for the particular choice of (E , T ) that we will
make), and part of the purpose of this section is to explain in elementary language and
pictures what these (E , T )-operads are, so that the knowledgeable reader may understand
that the two kinds of operad are the same. (More precisely, our (E , T )-operads are what
Batanin calls ‘ω-operads in Span’.) However, Batanin’s notion of contraction is different
from the one here. The difference between the two definitions is explained further at the
end of 4.5.

4.1. Formal account. Let G be the category whose objects are the natural numbers
0, 1, . . ., and whose arrows are generated by

σn, τn : n � n− 1
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for each n ≥ 1, subject to equations

σn−1◦σn = σn−1◦τn, τn−1◦σn = τn−1◦τn

(n ≥ 2). A functor X : G � Set is called a globular set ; I will write s instead of X(σn),
and t instead of X(τn).

Any (small) strict ω-category has an underlying globular set X, in which X(n) is the
set of n-cells and s and t are the source and target maps. Moreover, a strict ω-functor
induces a map of underlying globular sets, so there is a forgetful functor from the category
ω-Cat (of strict ω-categories and strict ω-functors) to the category [G,Set] of globular
sets. In Appendix C we put this into exact terms and establish:

4.1.1. Proposition. The forgetful functor ω-Cat � [G,Set] has a left adjoint, and
the induced monad (T, η, µ) on [G,Set] is cartesian.

This proposition means that it makes sense to talk about T -operads. Let C be a T -

operad. The underlying T -graph of C is a diagram (C
d� T1) in [G,Set]; if ν ∈ (T1)(n),

write

C(ν) = {θ ∈ C(n) | d(θ) = ν}.
For n ≥ 2 and π ∈ (T1)(n), define

Pπ(C) = {(θ0, θ1) ∈ C(s(π)) × C(t(π)) | s(θ0) = s(θ1) and t(θ0) = t(θ1)},

and for π ∈ (T1)(1), define

Pπ(C) = C(s(π)) × C(t(π)).

A contraction κ on C is a family of functions

(κπ : Pπ(C) � C(π))n≥1,π∈(T1)(n),

satisfying

s(κπ(θ0, θ1)) = θ0, t(κπ(θ0, θ1)) = θ1

for every n ≥ 1, π ∈ (T1)(n) and (θ0, θ1) ∈ Pπ(C).
An operad-with-contraction is a pair (C, κ) in which C is a T -operad and κ is a con-

traction on C. Let OWC be the category whose objects are operads-with-contraction,
and in which a map (C, κ) � (C ′, κ′) is a map F : C � C ′ of T -operads such that
for all n ≥ 1, π ∈ (T1)(n) and (θ0, θ1) ∈ Pπ(C),

F (κπ(θ0, θ1)) = κ′π(F (θ0), F (θ1)).

(It is easy to verify that the right-hand side makes sense, i.e. that (F (θ0), F (θ1)) ∈ Pπ(C
′).)

In Appendix D we prove the following:
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4.1.2. Proposition. OWC has an initial object.

Write (L, λ) for the initial object. This determines the T -operad L up to isomorphism;
and since the algebras construction is functorial, the category Alg(L) is determined up
to isomorphism.

4.1.3. Definition. A weak ω-category is an L-algebra.

It is not meant to be obvious why this is a reasonable definition of weak ω-category,
and the next few subsections are devoted to an explanation.

4.2. Pasting diagrams. Before understanding weak ω-categories, we must first un-
derstand strict ones, and in particular we need to know about the free strict ω-category
monad on the category of globular sets. In Appendix C we prove the existence and rel-
evant properties of this monad, and that the category of strict ω-categories is monadic
over the category of globular sets. Here we give pictorial descriptions.

First let us contemplate the globular set T (1), where

1 = (· · · �� 1 �� · · · �� 1)

is the terminal globular set. The free strict ω-category functor takes a globular set X
and creates formally all possible composites in it, to make TX. Thus a typical element
of (T1)(2) looks like

•

�

�

�

-.
/0

• �• �
��

• , (11)

where each k-cell drawn represents the unique member of 1(k). Note that because
of identities (which we think of throughout as nullary composites), this diagram might
be thought of as representing an element of (T1)(n) for any given n ≥ 2. Let us call
an element of (T1)(n) (or the picture representing it) an n-pasting diagram, and define
pd = T1. (The sets pd(m) and pd(n) are considered disjoint, when m = n.) This 2-
pasting diagram (11) has a source and a target, both of which are the 1-pasting diagram

• �• �• �• .

Since all cells in 1 have the same source and target—are ‘endomorphisms’—it is inevitable
that the same should be true in T1 = pd.

It is not hard to give a concrete description of the globular set pd. Write ( )∗ for the
free monoid functor on Set: then pd(0) = 1 and pd(n+1) = pd(n)∗. In other words, an
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(n+ 1)-pasting diagram is a sequence of n-pasting diagrams. For example, the 2-pasting
diagram depicted in (11) is the sequence

( • �• �• �• , • , • �• )

of 1-pasting diagrams, so if pd(0) = {•} then (11) is the double sequence

((•, •, •), (), (•)) ∈ pd(2).

The source and target maps s, t : pd(n+1) � pd(n) are equal, and we will write both
as ∂ (‘boundary’); ∂ is defined inductively by

(pd(n+ 1)
∂� pd(n)) = (pd(n)

∂� pd(n− 1))∗.

The correctness of this description of T1 follows from the results of Appendix C.

Having described pd as a globular set, we next turn to its strict ω-category structure:
in other words, how pasting diagrams may be composed.

Typical binary compositions are illustrated by

• �
�

�

�
�
• �• �

��
•

⊗1

• �• �• �
�

�

�
�
•

= • �
�

�

�
�
• �•

�

�

�

-.
/0

and

• �
�� 1�

� � • ⊗0 • �
�

�

�
�
• = • �

�� 1�
� � • �

�

�

�
�
• .

These compositions are possible because the sources/targets match appropriately: e.g. in
the first calculation, where we are gluing along 1-cells (indicated by ⊗1), the 1-dimensional
parts of the two arguments are the same. A typical nullary composition—identity—is

• �• �• �• �−→ • �• �• �•
∈ pd(1) ∈ pd(2).
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It is helpful to ponder not just binary and nullary composition in pd, but composition
indexed by arbitrary shapes, in the sense now explained. We may think of the first binary
composition above as indexed by

• �
�

�

�
�
• ∈ pd(2),

because we were composing one 2-cell with another by joining along their bounding 1-cells.
The composition can be represented as

• ��

�
�
�
• �• �

��
•

• �• �• ��

�
�
�
•

• ��

�
�
�
• • �

��
•

�

�

�
(12)

In general, the ways of composing pasting diagrams are indexed by pasting diagrams
themselves. For instance,

• ��

�
�
�
• �

��
• �•

• �• �•

• �• ��

�
�
�
•

• �• �• �•

• �
��

•
�

�

�

-.
/0

•

• �
��

•
�

�

� � �
(13)

represents the composition


• �• �•
⊗1

• �
��

•
�

�

�

-.
/0

•


 ⊗0 • �• ��

�
�
�
•⊗0 • �• �• �•
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= • �
��

•
�

�

�

-.
/0

• �• ��

�
�
�
• �• �• �•

We have now described the strict ω-category pd = T1. More generally, what does
TX look like for an arbitrary globular set X? A globular set is a diagram

· · · s�
t
� X(n+ 1)

s�
t
� X(n)

s�
t
� · · · s�

t
� X(0)

of sets, in which s and t obey the ‘globularity’ relations given in 4.1; elements of X(k) are
called k-cells of X. An element of (TX)(n) is an n-pasting diagram labelled by elements
of X: for example, a typical element of (TX)(2) is a diagram

A
•

f

f ′

f ′′

f ′′′

α

α′

α′′

�

�

�

-.
/0B

• g �
C

•

h

h′

β �
�� D

• .

where A, . . . , D ∈ X(0), f, . . . , h′ ∈ X(1), α, . . . , β ∈ X(2), and s(α) = f , t(α) = f ′,
etc.

To state this more precisely, we first associate to each pasting diagram π a globular
set π̂—the globular set ‘looking like π’. For instance, if π is the 2-pasting diagram (11)
then

|π̂(k)| =




4 if k = 0
7 if k = 1
4 if k = 2
0 if k ≥ 3

since (the picture of) π has 4 0-cells, 7 1-cells, and so on. We construct π̂, for π ∈ pd(n),
recursively on n. If π is the unique element of pd(0) then define

π̂ = (· · · �� ∅ �� ∅ �� 1).

If n ≥ 0 and π ∈ pd(n + 1) then π = (π1, . . . , πr) for some π1, . . . , πr ∈ pd(n), and
define

π̂ = (· · · ��
∐r

i=1 π̂i(1) ��
∐r

i=1 π̂i(0) �� {0, 1, . . . , r}). (14)

The source and target maps in all but the bottom dimension are the evident disjoint
unions; in the bottom dimension, they are defined by

s(x) = i− 1, t(x) = i, for x ∈ π̂i(0).
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Having defined for each pasting diagram π its ‘representation’ π̂, we can formalize our
guess as to what an element of (TX)(n) is. A ‘labelling of π by elements of X’ is a map
π̂ � X, so we are guessing that

(TX)(n)∼=
∐

π∈pd(n)

[G,Set](π̂, X).

This is indeed the case, as is shown in C.3. (Note that by taking X = 1 we recover the
fact that (T1)(n)∼=pd(n).)

With a little more effort we could define the source and target inclusions s, t : ∂̂π � π̂,
to give a concrete description of the source and target maps in TX, and hence of the func-
tor T . With an appreciable amount of effort, we could do the same thing for the monad
structure on T ; but we do not, as the constructions involved for multiplication are rather
complex and not especially illuminating.

There is an alternative way to represent elements of (T1)(n), used by Batanin in his
paper [Bat]: as trees. (These trees differ slightly from those which occur elsewhere in this
paper, and serve a different conceptual purpose.) For example, we translate the pasting
diagram

•

�

�

�

-.
/0

• �• �
��

•

into the tree • • • •
•
)
)
)�
�
�

• •
�
�
��
�
�

•
.

The thinking here is that the pasting diagram is 3 1-cells long, so we start the tree as• • •
�
�
��
�
�

•
; then the first column is 3 2-cells high, the second 0, and the third 1, so the tree

becomes • • • •
•
)
)
)�
�
�

• •
�
�
��
�
�

•
;

finally, there are no 3-cells so the tree stops there.

Formally, let us define an n-stage tree (n ∈ N) to be a diagram

τ(n) � τ(n− 1) � · · · � τ(1) � τ(0) = 1
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in the category ∆ of all finite ordinals, and write Bt(n) for the set of all n-stage trees
(with Bt for ‘Batanin trees’). The element of Bt(2) just drawn corresponds to a certain
diagram 4 � 3 � 1 in ∆, for example; note that if τ is an n-stage tree with τ(n) = 0
then the height of the picture of τ will be less than n. The source/target ∂τ of an n-stage
tree τ is the (n−1)-stage tree obtained by removing all the nodes at height n, or formally,
truncating

τ(n) � τ(n− 1) � · · · � τ(1) � τ(0)

to

τ(n− 1) � · · · � τ(1) � τ(0).

We thus have a diagram

· · · � Bt(n+ 1)
∂� Bt(n) � · · · ∂� Bt(0) (15)

in Set, and so a globular set Bt whose source and target maps are equal. This is
isomorphic to T1, by the following result.

4.2.1. Proposition. The diagram (15) in Set is isomorphic to

· · · � pd(n+ 1)
∂� pd(n) � · · · ∂� pd(0).

Proof. pd(0) and Bt(0) are both 1-element sets, hence isomorphic in a unique way.
Suppose inductively that n ≥ 0 and that we have constructed a commuting diagram

pd(n)
∂� pd(n− 1)

∂ � · · · ∂ � pd(0)

Bt(n)

α

� ∂� Bt(n− 1)

α

� ∂ � · · · ∂� Bt(0).

α

�

If π ∈ pd(n+ 1) then π = (π1, . . . , πr) for some r ∈ N and πi ∈ pd(n); then define α(π)
to be

r∑
i=1

(α(πi))(n) � · · · �
r∑
i=1

(α(πi))(0) � 1.

It is easy to check that the map α : pd(n+ 1) � Bt(n+ 1) thus defined is a bijection
and commutes with the ∂’s.

Composition and identities in the strict ω-category Bt (∼= T1) can also be expressed
in the pictorial language of trees, in a simple and compelling way; for that the reader is
referred to [Bat] or [Lei3, Ch. II].
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4.3. Globular operads and algebras. Let T be the free strict ω-category monad
on the category [G,Set] of globular sets. This subsection is an attempt at an elementary
explanation of T -operads and their algebras.

A collection is a T -graph on 1: that is, it is a globular set C together with a map
C � pd. Put another way, a collection consists of a set C(π) for each n-pasting diagram

π, together with a pair of functions C(π)
s�

t
� C(∂π) (when n ≥ 1), satisfying the usual

globularity equations ss = st and ts = tt.

A T -operad is a collection C
d� pd together with identities and compositions sat-

isfying suitable axioms. The elements of C(π) are to be thought of as the operations of
shape or arity π: in other words, as the functions

[G,Set](π̂, X) � X(n) (16)

which exist as part of the structure of a C-algebra X. (Recall that [G,Set](π̂, X) is the
set of ‘labellings of π by elements of X’.)

The identities consist of an element of C(ιn) for each n, where ιn ∈ pd(n) is the
n-pasting diagram looking like a single n-cell: formally, ι0 is the unique element of pd(0)
and

ιn+1 = (ιn) ∈ (pd(n))∗ = pd(n+ 1).

Composition is a map C◦C � C over pd, where the collection C◦C
d̃� pd is the

left-hand diagonal of the diagram

C◦C

��		
�
�
� 	

	
	�

T (C) C


�
�
�T (d) 	

	
	T (!) � 
�

�
�

d
T (pd) pd


�
�
�µ1

pd

.
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A typical element of (C◦C)(2) is depicted in the following diagram:

• ��

�
�
�
• �

��
•

•
�

�

�

-.
/0

• �• �
��

•

• �• �• ��

�
�
�
•

• �
��

• �
��

•

• �
��

•
�

� �
�

π1 =

π2 =

π3 =

π =

θ1

θ2 θ3

θ

(17)

This diagram is meant to indicate that θ1 ∈ C(π1), θ2 ∈ C(π2), θ3 ∈ C(π3), θ ∈ C(π),
and that θ1, θ2, θ3 match suitably on their sources and targets (e.g. t(θ1) = s(θ2)). The

left-hand half of the diagram is an element of the fibre over π in the map T (C)
T (!)� pd;

the right-hand half is an element of C(π) (which is the fibre over π in the map C
d� pd);

hence the whole diagram is an element of (C◦C)(2). The map C◦C
d̃� pd sends this

element to the 2-pasting diagram

π◦(π1, π2, π3) = •
�

�

�

-.
/0

• �•
�

�

�

-.
/0

• �
��

• �
��

•

(which is the composite of π with π1, π2, π3 in the ω-category pd; cf. diagram (13)). So,
composition sends the data assembled in (17) to an element of C(π◦(π1, π2, π3)), which
may be drawn as

•
�

�

�

-.
/0

• �•
�

�

�

-.
/0

• �
��

• �
��

• • �
��

•
�

π◦(π1, π2, π3) =

θ◦(θ1, θ2, θ3)

.

(The ‘linear’ notation π◦(π1, π2, π3) and θ◦(θ1, θ2, θ3) should not be taken too seriously.
There is evidently no natural order in which to put the πi’s and θi’s; the notation is just
being used temporarily for convenience.)
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The composition and identities in a T -operad C are required to commute with the
source and target maps and, of course, to obey associativity and identity laws. For
example, if we have a diagram

·
�����

θ11

�· θ12 � ·






θ13

& 2
2
2
2
2

θ1

.·
· θ � ·






θ2

&

·
of the same kind as (17), then

θ◦(θ1◦(θ11, θ12, θ13), θ2) = (θ◦(θ1, θ2))◦(θ11, θ12, θ13, 1).

We have now seen that an operad consists of a set C(π) for each pasting diagram π,
with source and target functions, and compositions between the C(π)’s according to the
pasting-together of pasting diagrams. We have already argued (equation (16)) that an
algebra for C ‘ought’ to consist of a globular set X together with a function

θ : [G,Set](π̂, X) � X(n)

for each θ ∈ C(π) (π ∈ pd(n), n ∈ N), obeying suitable axioms. So for instance, suppose
that

π = •

�

�

�

-.
/0

• �• ,

that θ ∈ C(π), and that

A
•

p

p′

p′′

p′′′

α

α′

α′′

�

�

�

-.
/0B

• q �
C
•
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is a diagram of cells in X; then θ assigns to this picture a 2-cell in X.
This is indeed what the general theory says a C-algebra is. For an algebra structure

on X is a map TCX
h� X obeying suitable laws, where TC(X) is the pullback

TCX

��		
�
�
� 	

	
	�

TX C

	
	
	T (!) � 
�

�
�

d
pd

,

and this means that

(TCX)(n) =
∐

π∈pd(n)

C(π) × [G,Set](π̂, X).

Hence h consists of a function

C(π) × [G,Set](π̂, X) � X(n)

for each number n and n-pasting diagram π. Writing h(θ,—) as θ, we see that this is just
the description above.

We have now discussed what operads and their algebras look like, and it is time to
come to the main point of the section.

4.4. Contractions. We start with an informal description of what a weak ω-category
‘should’ be, centred around the idea of contraction, and then see how this is expressed by
the formal definition of contraction.

The graph structure of an ω-category consists of 0-cells
A
• , 1-cells

A
• f �

B
• ,

2-cells
A
•

f

g

α �
�� B

• , . . . . There are then various ways of composing these cells; just

how many ways and how they interact depends on whether we are dealing with strict or
weak ω-categories, or something in between. In a strict ω-category, there will be precisely
one way of composing a diagram like

A
•

f

f ′

f ′′

α

α′
�

�

�

�
�B
• g �

C
•

h

h′

γ �
�� D

• (18)
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to obtain a 2-cell: that is, any two different ways of doing it (such as ‘compose α′ with α,
and γ with g, then the two of these together’) give exactly the same resulting 2-cell. In a
weak ω-category there will be many ways, but the resulting 2-cells will all be equivalent
in a suitably weak sense.

Our method of describing what ways of composing are available in a weak ω-category
depends on one simple principle, the contraction principle. Take, for example, the dia-
gram (18) above. Suppose we have already constructed two ways of composing a generic
diagram

• p �• q �• r �•

of 1-cells, namely (rq)p and r(qp). Then the contraction principle says that there is a

way of composing diagram (18) to get a 2-cell of the form
A
•

(hg)f

h′(gf ′′)

�
�� D

• . As another

example of the principle, this time in one higher dimension, take a diagram

A
•

f

f ′

f ′′

α α′
α′′

β

x y

�
�

�

� �

(
'

� �

B
• g �

C
•

h

h′

γ γ′z� �
�

� 

D
• . (19)

Suppose we have constructed two ways of composing a generic diagram of the shape
of (18) to a 2-cell, each of which invokes the same way of composing the 1-cells

• �• �• �•

along the top and bottom. Say, for instance, that the first way of composing (18) results

in a 2-cell
A
•

(hg)f

h′(gf ′′)

δ �
�� D

• and the second way in a 2-cell
A
•

(hg)f

h′(gf ′′)

δ′ �
�� D

• . Then the

contraction principle says that there is a way of composing (19) to get a 3-cell of the form

A
•

(hg)f

h′(gf ′′)

δ δ′� �
�

� 

D
• .
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In general, the contraction principle can be stated as follows. Suppose we are given an
n-dimensional diagram and two ways of composing the (n − 1)-dimensional diagram at
its source/target, such that these two ways match on the (n− 2)-dimensional source and
target. Then there’s a way of composing the n-dimensional diagram, inducing the first
way on its source and the second way on its target. (In our first example, we implicitly
used the fact that the two ways of composing

• p �• q �• r �• ,

(rq)p and r(qp), do the same thing to the bounding 0-cells: nothing at all.) The ways of
composing in a weak ω-category are to be generated by this principle, and this principle
alone.

How does this idea of contraction compare to the definition given in 4.1? The structure
encoding ‘ways of composing’ is, of course, a T -operad C. For π ∈ pd(n) (n ≥ 2), we
defined

Pπ(C) = {(θ0, θ1) ∈ C(∂π)2 | s(θ0) = s(θ1) and t(θ0) = t(θ1)},
and for π ∈ pd(1),

Pπ(C) = C(∂π)2.

Thus an element of Pπ(C) can be thought of as a way θ0 of composing the (n − 1)-
dimensional source of an n-dimensional diagram of shape π, together with a way θ1 of
composing its target, such that these two ways match on the (n− 2)-dimensional part. A
contraction κ on C was defined as a function

κπ : Pπ(C) � C(π)

for each π, such that

s(κπ(θ0, θ1)) = θ0, t(κπ(θ0, θ1)) = θ1.

In other words, it extends θ0 and θ1 to a way κπ(θ0, θ1) of composing a whole π-shaped
diagram. This is exactly the effect of the informal contraction principle.

Notice, incidentally, that if κ is a contraction on a T -operad C then the functions κπ
are not required to be compatible with the operad structure on C in any way. So the
natural entity on which to define a contraction is not in fact a T -operad but a collection
(i.e. a T -graph on 1).

An important feature of the contraction idea is what happens with degenerate pasting
diagrams. There is not only a 2-pasting diagram σ shaped like diagram (18), but also a
(degenerate) 3-pasting diagram π shaped like it too: thus ∂π = σ. Now, suppose that
θ0, θ1 ∈ C(σ) with s(θ0) = s(θ1) and t(θ0) = t(θ1). Then there is an element θ = κπ(θ0, θ1)
of C(π) with s(θ) = θ0 and t(θ) = θ1. This means that θ assigns to the data in (18) a
3-cell

A
• δ0 δ1� �

�
� 


D
• ,
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in which δ0 and δ1 are respectively the results of applying θ0 and θ1 to (18). This is the
kind of argument we would use to prove that any two composites of a given diagram are,
in a suitable sense, equivalent.

4.5. The definition. A weak ω-category is defined to be an L-algebra, where (L, λ)
is the initial operad-with-contraction. We have seen what an operad-with-contraction is,
and what an algebra for one is; now we have just to see why the initial one gives us what
we want.

Another way of saying that (L, λ) is initial in OWC is that (L, λ) is the operad-with-
contraction freely generated by the empty collection (∅ � pd). That is, we start with
the empty collection and freely add in just enough to make it into a T -operad L with a
contraction λ on it.

So, for a start there is an identity element 1 ∈ L(•), where • ∈ pd(0). Next, take the
1-pasting diagram

πn = ( • �• � · · · �• )

of length n. The contraction gives us an element ψn = λπn(1, 1) of L(πn). Thus in an
L-algebra, ψn provides a way of composing a diagram

A0

• f1 �
A1

• f2 � · · · fn �
An
•

to give a 1-cell
A0

•
ψn(f1, . . . , fn)�

An
• ; let us write

(fn◦ · · · ◦f1) = ψn(f1, . . . , fn)

(n ≥ 1), and 1 = ψ0(). Next, the operad structure on L gives us 1-dimensional elements
of L such as

ψ3◦(ψ3, ψ0, ψ2) ∈ L(π5),

which is interpreted in an L-algebra as the function

• f1 �• f2 �• f3 �• f4 �• f5 �•

�−→ •
((f5◦f4)◦1◦(f3◦f2◦f1))�• .

This analysis might lead us to suspect that L(πn) is the set tr(n) of n-leafed trees (de-
scribed in 3.3 and A.1), which in fact it is.

Moving now to the 2-dimensional level, if π is the 2-pasting diagram shaped like
diagram (18) then any pair (θ0, θ1) of elements of L(π3) gives rise to an element θ =
λπ(θ0, θ1) of L(π). (Since L(•) has only one element, there is no need to worry about
θ0 and θ1 matching at the 0-dimensional level.) Generally, the 2-dimensional part of L
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contains elements obtained by contraction from the 1-dimensional parts, together with
all the elements obtained by pasting them together (using the operad structure of L). To
take a reasonably manageable example, let

π = • �
�

�

�
�
• , π′ = • �

��
• �

��
• ,

π′′ = • �
�

�

�
�
• �

�

�

�
�
• .

Then:

• L(π) has an element ψ = λπ(1, 1) (where 1 ∈ L(π1))

• L(π′) has an element ψ′ = λπ′(ψ2, ψ2)

• L(π′′) has an element λπ′′(ψ2, ψ2) (‘compose all four cells at once’)

• L(π′′) also has an element which might reasonably be denoted ψ◦(ψ′, ψ′) (‘first com-
pose horizontally, then compose vertically’)

• L(π′′) has a third element ψ′◦(ψ, ψ) (‘first compose vertically, then compose hori-
zontally’).

These elements ψ◦(ψ′, ψ′) and ψ′◦(ψ, ψ) of L(π) are familiar from the interchange law in
the definition of 2-category. Of course, the three elements of L(π) we have mentioned are
not its only elements; there are infinitely many, since tr(2) is an infinite set.

This concludes our explanation of why weak ω-categories can reasonably be defined
as objects of Alg(L).

Notice, however, that weak ω-functors are not defined as morphisms in Alg(L). On
the contrary, a morphism in Alg(L) preserves the L-algebra structure strictly, so should
be thought of as a strict map of weak ω-categories.

Here is a sketch of how ‘weak ω-functor’ might be defined. This is only speculation,
and no proper definition is attempted here. As in the definition of weak ω-category, the
idea is to take a theory of strict things and a notion of contraction to create a theory of
weak things.

So, there is a T -multicategory Map such that a Map-algebra is a pair (X,Y ) of
strict ω-categories together with a strict ω-functor X � Y . (The objects-object Map0

of Map is the coproduct 1 + 1 of two copies of the terminal globular set.) There is
also a notion of what a contraction on a map of T -multicategories is. Hence there is a
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category of T -multicategories with contraction over Map, in which an object consists of a
T -multicategory D, a map d : D � Map of T -multicategories, and a contraction δ on

d. This category has an initial object (M
m� Map, ν), and a weak ω-functor is defined

as an M -algebra.
The notion of a contraction on a map of T -multicategories has the property that

for T -operads C, a contraction on the unique map from C to the terminal T -operad is
precisely a contraction on C in the sense of the rest of this section. This means that the
two inclusions 1 �� Map induce another pair of maps L �� M , and hence a pair of
functors Alg(M) �� Alg(L). These are the functors assigning to a weak ω-functor its
domain and codomain.

Batanin’s paper [Bat] contains a definition (§8) of weak ω-functor, which unfortu-
nately I have not been able to understand. However, I think I can explain how Batanin’s
definition of weak ω-category differs from the present one, as follows.

Let C be a T -operad. Firstly, a system of compositions on C consists of a chosen
element θπ of C(π) for each pasting diagram π that represents a binary composition: for
instance, π might be one of

• �• �• , • �
��

• �
��

• , • ��

�
�
�
• .

These chosen elements are required to be consistent with one another: e.g. if π1 and π2

are the first and second of these three diagrams, then

s(θπ2) = θπ1 = t(θπ2).

Secondly, a contraction κ on C is a family (κπ) of functions of a certain kind, exactly as
in our definition, except that now π only ranges over those n-pasting diagrams satisfying
π̂(n) = ∅. The latter condition means that π is ‘degenerate’, as discussed earlier in the
section.

Now consider the full subcategory Q of T -Operad whose objects are those T -operads
on which there exists both a system of compositions and a contraction. Batanin constructs
a certain weakly initial object K of Q, and defines a weak ω-category to be a K-algebra.

‘Weakly initial’ means that there is at least one map from K to any other object of
Q. So K is not determined by its weak initiality, and this means that if we want to know
what a Batanin weak ω-category is then we actually need the details of the construction
of K in [Bat]. It might be the case that if we take the category Q′ of T -operads equipped
with a system of compositions and a contraction, then K (together with its system of
compositions and contraction) is initial in Q′, and of course this would determine K. A
remark in [Bat] (just before Definition 8.6) suggests that this is true.

The idea behind the Batanin definition appears to be that the theory of weak ω-
categories—that is, the operad K for which they are algebras—is generated by two things:
operations and equations. The operations are binary compositions of various dimensions,
and these are provided by the system of compositions. The ‘equations’ should really be
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called ‘equivalences’, and are provided by the contraction: compare the use of degenerate
pasting diagrams at the end of 4.4 above. In our approach these two ingredients are
merged into one: the more comprehensive notion of contraction.

I do not know if the present definition of weak ω-category is in any sense equivalent
to Batanin’s. I would certainly imagine so, but there is little chance of providing a
comparison before weak ω-functors are understood.

4.6. Examples. At this point it would be nice to give a fully worked-out non-trivial
example of a weak ω-category. Unfortunately I do not yet have one for which all the details
have been settled. However, the following remarks may provide partial satisfaction.

Recall from 2.3 that a map between T -operads induces a map in the opposite direction
between their categories of algebras, and that an algebra for the terminal T -operad is just
a T -algebra. Hence the unique T -operad map L � 1 induces a functor

(strict ω-categories) = Alg(1) � Alg(L) = (weak ω-categories).

That is, ‘every strict ω-category is a weak ω-category’. Incidentally, the terminal T -
operad 1 carries a unique contraction, and is then the terminal operad-with-contraction:
so algebras for the terminal operad-with-contraction are strict ω-categories, and algebras
for the initial operad-with-contraction are weak ω-categories.

More generally, for any operad-with-contraction (C, κ) there is a unique contraction-
preserving operad map L � C, and this induces a functor

Alg(C) � Alg(L).

This provides a means of finding examples of weak ω-categories. For instance, suppose we
wanted to define a weak ω-category Πω(S) for every topological space S, its ‘fundamental
ω-groupoid’. It is clear what the globular set Πω(S) should be, and our strategy might
then be to find a T -operad C such that

• Πω(S) is naturally a C-algebra for every space S, and

• there is a contraction on C.

Any way of doing this will give the globular set Πω(S) the structure of a weak ω-category.
(The rough idea is that C(π) is the set of continuous maps from the closed n-ball to the
contractible space which looks like the usual picture of π (for π ∈ pd(n)), subject to
conditions on boundary-preservation. Something like this is done in [Bat, §9].)

In the next subsection, weak n-categories will be defined as weak ω-categories of a
special kind. We will subsequently show that weak 2-categories are essentially the same as
bicategories. Thus any bicategory provides a (degenerate) example of a weak ω-category.

4.7. Weak n-categories. Our definition of weak ω-category suggests not just one,
but two plausible definitions of weak n-category. In this subsection we present both of
these definitions and show that the two different categories of weak n-categories (with
strict n-functors as morphisms) are equivalent.
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Let us say that a globular set X is n-dimensional (for n ∈ N) if for all m ≥ n,

s = t : X(m+ 1) � X(m)

and this map is an isomorphism.

4.7.1. Definition. A weak n-category is a weak ω-category whose underlying globular
set is n-dimensional.

This formalizes the idea that an n-category is an ω-category in which the only cells of
dimension greater than n are identities. Let us write Wk-n-Cat for the full subcategory
of Alg(L) whose objects are weak n-categories.

The alternative approach does not use the definition of weak ω-category directly, but
instead imitates it. Write G = [G,Set] for the category of globular sets. Let Gn be the full
subcategory of G with objects 0, . . . , n, let Gn = [Gn,Set], call objects of Gn n-globular
sets, and let Tn be the free strict n-category monad on Gn. Theorem C.1.1 tells us that
Tn is a cartesian monad on Gn, so we can discuss Tn-operads.

Let C be a Tn-operad. If 1 ≤ k ≤ n and π ∈ pd(k), we may define the set Pπ(C) just
as in 4.1. A precontraction on C is a family of functions

(κπ : Pπ(C) � C(π))1≤k≤n,π∈pd(k)

satisfying the same equations as in 4.1. If C has the property that for all π ∈ pd(n) and
θ0, θ1 ∈ pd(π),

s(θ0) = s(θ1) and t(θ0) = t(θ1) =⇒ θ0 = θ1

then any precontraction on C is called a contraction. (There is then no choice about
what the contraction does in the top dimension.) We therefore obtain a category OWCn,
in which an object is a Tn-operad equipped with a contraction and a map is a map of
operads preserving contractions, defined analogously to OWC in 4.1.

Later we will show that OWCn has an initial object (Ln, λn). The alternative defini-
tion of weak n-category is as an Ln-algebra. As in the case of ω-categories, the morphisms
in Alg(Ln) should be interpreted as strict maps.

The aim of the rest of this subsection is to show that these two definitions are equiv-
alent, in the following strong sense. (‘Strong’, because we do not have to resort to weak
n-functors in order to be able to compare the objects of the two categories.)

4.7.2. Theorem. There is an equivalence of categories

Wk-n-Cat�Alg(Ln).

The proof is in two parts: first we express the initial object (Ln, λn) of OWCn in
terms of (L, λ), and then we are in a position to compare algebras for Ln and for L.

So, the inclusions Gn−1
⊂ � Gn and Gk

⊂ � G induce ‘restriction’ functors

Rn
n−1 : Gn � Gn−1, Rω

k : G � Gk,
for any n ≥ 1 and k ≥ 0. We then have:



OPERADS IN HIGHER-DIMENSIONAL CATEGORY THEORY 157

4.7.3. Proposition.

a. For any n ≥ 1, the functor Rn
n−1 has a right adjoint Snn−1, and there is an induced

adjunction

OWPn

OWPn−1

Rn
n−1

�
� Snn−1

�

(abusing notation by reusing the symbols Rn
n−1 and Snn−1)

b. This adjunction restricts to an equivalence of categories

OWCn

OWPn−1

Rn
n−1

�
� Snn−1

�

c. For any k ≥ 0, the functor Rω
k has a right adjoint Sωk , and there is an induced

adjunction

OWC

OWPk.

Rω
k
�
� Sωk
�

Proof.

a. That Rn
n−1 : Gn � Gn−1 has a right adjoint is immediate: it is the right Kan

extension of the inclusion Gn−1
⊂ � Gn. However, it will be useful to have the

following explicit description of Snn−1: if X ∈ Gn−1 then

(Snn−1X)(k) = X(k) for 0 ≤ k ≤ n− 1,
(Snn−1X)(n) = {(x0, x1) ∈ (X(n− 1))2 | s(x0) = s(x1), t(x0) = t(x1)}.

(When n = 1 the second line does not make sense, and we instead define (S1
0X)(1)

as X(0) × X(0); essentially we are ‘taking X(−1) = 1’.) The source and target
maps are the obvious ones.

As is shown in Appendix C, Rn
n−1 is naturally a monad opfunctor (Gn, Tn) �

(Gn−1, Tn−1), whose natural transformation part

Rn
n−1◦Tn � Tn−1◦Rn

n−1
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is an isomorphism. Under the adjunction Rn
n−1 �Snn−1, the mate of this isomorphism

is a natural transformation

Tn◦Snn−1
� Snn−1◦Tn−1,

and this gives Snn−1 the structure of a monad functor (Gn−1, Tn−1) � (Gn, Tn).
Further checks reveal that the conditions of 3.2 are satisfied, so that there is an
induced adjunction between categories of multicategories; moreover, Rn

n−1 and Snn−1

each preserve terminal objects, so this restricts to an adjunction

Tn-Operad

Tn−1-Operad.

Rn
n−1

�
� Snn−1

�
(20)

Rn
n−1 has the obvious restriction effect on Tn-operads; in the other direction, if D

is a Tn−1-operad, 0 ≤ k ≤ n and π ∈ pd(k), then

(Snn−1D)(π) =

{
D(π) for 0 ≤ k ≤ n− 1
Pπ(D) for k = n.

Next we bring in precontractions. Any precontraction on a Tn-operad C evidently
gives rise to a precontraction on Rn

n−1C; conversely, any precontraction on a Tn−1-
operad D extends uniquely to a precontraction on Snn−1D. The precontractions
produced by these two constructions are preserved by the unit and counit maps of
the adjunction (20), so we obtain an adjunction

OWPn

OWPn−1

Rn
n−1

�
� Snn−1

�

as required.

b. Any adjunction F �G : D � C restricts to an equivalence between C′ and D′,
where C′ is the full subcategory of C whose objects are those at which the unit
of the adjunction is an isomorphism, and similarly D′ with the counit. In the
present case we have Rn

n−1◦S
n
n−1 = 1, and the counit of the adjunction is the identity

transformation. On the other hand, let (C, κ) be a Tn-operad with precontraction
and consider the unit map

(C, κ) � Snn−1R
n
n−1(C, κ).

This is the identity in dimensions less than n, and in dimension n it consists of the
maps

(s, t) : C(π) � Pπ(C)
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G

Gn

Rω
n

�

� Sωn

�

Gn−1

Rn
n−1

�
� Snn−1

�

OWC

OWPn

�

�

�

� ⊃ OWCn

1�
�
�
�
�

�
�
�
�
�

�
3

OWPn−1

�
��

L

Rω
nL
↓

Ln = Snn−1R
ω
n−1L

3�
�
�
�
�3

Rω
n−1L
↓

Figure 4b: Relating L and Ln

(π ∈ pd(n)). This is always surjective as C carries a precontraction, and is injective
precisely when C satisfies the condition for precontractions on it to be called con-
tractions. So the unit at (C, κ) is an isomorphism if and only if (C, κ) is an object
of OWCn.

c. The proof is just like that of part (a). Again it will be useful to have an explicit
description of the right adjoint Sωk of Rω

k : it is given by

(SωkX)(m) ={
X(m) for 0 ≤ m ≤ k
{(x0, x1) ∈ (X(k))2 | s(x0) = s(x1), t(x0) = t(x1)} for m ≥ k + 1.

The source and target maps in dimensions ≤ k are as in X; from dimension k + 1
to dimension k they are first and second projection; and in dimensions above k+ 1,
they are identities.

From this we deduce the following corollary, which shows incidentally that OWCn

does have an initial object. The overall strategy is depicted in Figure 4b.

4.7.4. Corollary. Snn−1R
ω
n−1(L, λ) is an initial object of OWCn.

Proof. The functor Rω
n−1 : OWC � OWPn−1 constructed in part (c) of the

proposition has a right adjoint, so Rω
n−1(L, λ) is initial in OWPn−1. The functor Snn−1 :

OWPn−1
� OWCn constructed in part (b) is an equivalence, so Snn−1(R

ω
n−1(L, λ)) is

initial in OWCn.
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We write (Ln, λn) for the initial object of OWCn: that is,

(Ln, λn) = Snn−1R
ω
n−1(L, λ).

Before moving to the second half of the proof of Theorem 4.7.2, let us recall some
notation. Fix n ∈ N. To any m-pasting diagram π there is associated the globular set π̂,
and we may turn π̂ into an n-globular set by restriction (truncation). If m ≤ n then this
only amounts to ignoring some ∅’s, since π̂(k) = ∅ for k > m. In Appendix C we show
that if X is a globular set and m ≤ n then

(TnX)(m) =
∐

π∈pd(m)

Gn(π̂, X).

Given a Tn-operad C, a C-algebra structure on X consists of a map

hπ : C(π) × Gn(π̂, X) � X(m)

for each m ≤ n and π ∈ pd(m), subject to various axioms. For θ ∈ C(π), we write

θ = hπ(θ,—) : Gn(π̂, X) � X(m).

Now, any weak n-category is isomorphic to a ‘strictly’ n-dimensional weak ω-category:
that is, to one whose underlying globular set is of the form

· · · 1�
1
� X(n)

1�
1
� X(n)

s�
t
� · · · s�

t
� X(0). (21)

So to prove Theorem 4.7.2 it is enough to prove that the category of strictly n-dimensional
weak ω-categories is equivalent to Alg(Ln); indeed, we will prove that these two categories
are isomorphic.

Let X be an n-globular set. An L-algebra structure on the globular set (21) consists
precisely of an (Rω

nL)-algebra structure on X together with a dotted arrow

L(σ) × Gn(∂̂σ,X) ..............� X(n)

L(∂σ) × Gn(∂̂σ,X)

s× 1

�

t× 1

�

h∂σ
� X(n)

1

�

1

�

making the diagram commute serially, for each σ ∈ pd(n+1). To see this, note first that

a map ∂̂σ � X is the same as a map from σ̂ to the globular set (21), so an algebra
structure on (21) yields such a dotted arrow for each σ. Conversely, given such arrows,
all the L-algebra structure in higher dimensions is uniquely determined, and the algebra
axioms are automatically satisfied. There is at most one way of choosing the dotted
arrows, and such a way exists if and only if
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for all σ ∈ pd(n+ 1) and θ ∈ L(σ),

sθ = tθ : Gn(∂̂σ,X) � X(n).

Since L admits a contraction, and for each π ∈ pd(n) there exists σ ∈ pd(n + 1) with
∂σ = π, this condition is equivalent to:

for all π ∈ pd(n) and (θ0, θ1) ∈ Pπ(L),

θ0 = θ1 : Gn(π̂, X) � X(n). (22)

So a strictly n-dimensional weak ω-category consists precisely of an (Rω
nL)-algebra X

satisfying condition (22).
Working from the other end, let

C = Rω
nL ∈ Tn-Operad,

and let u be the unit map C � Snn−1R
n
n−1C coming from the adjunction Rn

n−1 �Snn−1.
By the description of this adjunction in the proofs of Proposition 4.7.3(a) and (b), uπ(θ0) =
uπ(θ1) whenever π ∈ pd(n) and (θ0, θ1) ∈ Pπ(L); since C admits a precontraction, u is
(surjective and therefore) the universal map out of C with this property. It follows that
an algebra for Snn−1R

n
n−1C is exactly an algebra X for C satisfying the condition (22).

(The details of this step are omitted; the idea is perhaps most naturally expressed in
terms of endomorphism operads (3.5).) So we have

(strictly n-dimensional weak ω-categories)
∼= ((Rω

nL)-algebras X satisfying (22))
∼= Alg(Snn−1R

n
n−1C)

= Alg(Snn−1R
ω
n−1L)

∼= Alg(Ln).

We have only discussed the objects of these categories, and not their morphisms; but
everything works as it should since in each case the morphisms are the maps strictly
preserving all the structure. This proves Theorem 4.7.2.

4.8. Weak 2-categories. A polite person proposing a definition of weak n-category
should explain what happens when n = 2. With our definition, the category Wk-2-Cat of
weak 2-categories turns out to be equivalent to UBicatstr, the category of small unbiased
bicategories and unbiased strict functors. This is the main result of this subsection.

Note that because the morphisms in Wk-2-Cat are strict maps (as noted on page 153),
we obtain an equivalence with UBicatstr, not UBicatwk or UBicatlax; and unlike the
weak and lax versions, UBicatstr is not equivalent to the corresponding category of clas-
sical bicategories (at least, the obvious functor is not an equivalence). So we cannot
conclude that Wk-2-Cat is equivalent to Bicatstr. Nevertheless, the results of Section 1
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mean that it is fair to regard classical bicategories as ‘essentially the same as’ unbiased bi-
categories, and therefore, by the results below, ‘essentially the same as’ weak 2-categories.
If the definition of weak functor between n-categories were in place, we would expect there
to be a genuine equivalence between Bicatwk and the category of weak 2-categories and
weak 2-functors.

Before embarking on the analysis of n = 2, let us check that things are as they should
be for n = 0 and n = 1. In all cases, we will analyse Alg(Ln) rather than the equivalent
category Wk-n-Cat, where (Ln, λn) is the initial Tn-operad with contraction.

4.8.1. Theorem. Wk-0-Cat�Set.

Proof. T0 is the identity monad on the category G0 of sets, so a T0-operad is a monoid.
Any T0-operad carries a unique contraction (vacuously), so OWC0 is the category of
monoids; the initial object of OWC0 is the monoid 1. An algebra for the terminal T0-
operad is just a T0-algebra (see 2.3.3(g)), so

Alg(L0)∼=GT0
0

∼=Set.

4.8.2. Theorem. Wk-1-Cat�Cat.

Proof. T1 is the free category monad fc on the category G1 of directed graphs, so a
T1-operad is an fc-operad (see 3.6). A T1-operad C admits at most one contraction, and
does admit one if and only if the function

(s, t) : C(π) � C(•) × C(•)

is a bijection for each 1-pasting diagram π (where • ∈ pd(0)). It follows that the terminal
T1-operad is the initial object, L1, of OWC1. Hence Alg(L1)∼=GT1

1
∼=Cat.

The full proof that Wk-2-Cat�UBicatstr involves rather more detailed manipulation
than the reader would probably like to see. To keep the presentation light, I will use the
coherence results of Appendix A for unbiased bicategories in the inexact form ‘all diagrams
commute’. In the same spirit, I will use the following formulations of the notions of functor
and natural transformation:

• A functor F : A1 × · · · × An
� A consists of

– a function F0 : obA1 × · · · × obAn
� obA

– a function assigning to each array of maps

a0
1

α1
1� · · · α

k1
1� ak11 in A1,

. . . . . .

a0
n

α1
n� · · · αkn

n� akn
n in An

(23)
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a map

F0(a
0
1, . . . , a

0
n) � F0(a

k1
1 , . . . , a

kn
n )

in A,

obeying ‘all reasonable coherence axioms’.

• A natural transformation

A1 × · · · × An

F

F ′

φ
�

��
A

consists of a function assigning to each array of maps (23) a map

F0(a
0
1, . . . , a

0
n) � F ′

0(a
k1
1 , . . . , a

kn
n ),

in such a way that ‘all reasonable coherence axioms’ hold.

In all parts of the proof where such sweeping language is used, the diligent reader should
not find it difficult to fill in the details.

It will also be useful to have some notation for m-pasting diagrams when m ≤ 2.
The unique 0-pasting diagram will be denoted •. We have pd(1)∼= (pd(0))∗ ∼= N, and the
element of pd(1) corresponding to n ∈ N will be denoted πn; so πn is usually drawn as

• � · · · �•

(n arrows). Similarly, pd(2)∼= (pd(1))∗ ∼= N∗, and we write πk1,...,kn for the 2-pasting
diagram corresponding to (k1, . . . , kn) ∈ N∗, which is usually drawn as a diagram

•

�

�

... -.
/0

• · · · · · · •

�

�

... -.
/0

•

with n columns and ki 2-cells in the ith column.

4.8.3. Theorem. Wk-2-Cat�UBicatstr.
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Proof. First we identify the initial object (L2, λ2) of OWC2; and since OWC2 �OWP1,
this means examining OWP1. A precontraction on a T1-operad C consists of a function

κπn : C(•) × C(•) � C(πn)

for each n ∈ N, such that

s(κπn(θ0, θ1)) = θ0, t(κπn(θ0, θ1)) = θ1

for all θ0, θ1. A T1-operad C with C(•) = 1 is merely a plain operad—call it C̃—and

a precontraction on C consists of a distinguished element of C̃(n) for each n ∈ N. The
operad tr described in 3.3 and A.1, together with the element νn = (•, . . . , •) of tr(n)
for each n, therefore defines a T1-operad with precontraction. Using the fact that tr is
the free plain operad on the terminal (free monoid)-graph, it is easy to see that this is the
initial object of OWP1. By Proposition 4.7.3, (L2, λ2) is S2

1 applied to this initial object:
that is,

L2(•) = 1,

L2(πn) = tr(n),

L2(πk1,...,kn) = tr(n) × tr(n)

(n, ki ∈ N). In dimension 1, the T2-operad structure is as in the plain operad tr. Given
that the source and target functions

L2(πk1,...,kn)
�� L2(πn)

are first and second projection, the T2-operad structure in dimension 2 is uniquely deter-
mined.

This fully describes L2. An algebra for L2 is, therefore:

• a 2-globular set X(2)
�� X(1)

�� X(0)

• for each n ∈ N and τ ∈ tr(n), a function

τ : G2(π̂n, X) � X(1)

• for each n, k1, . . . , kn ∈ N and τ, τ ′ ∈ tr(n), a function

(τ, τ ′) : G2(π̂k1,...,kn , X) � X(2)

satisfying axioms concerning the source and target of (τ, τ ′) in terms of τ and τ ′, together
with the axioms for an algebra (which we regard as ‘all reasonable coherence axioms’).

Rephrasing this a little, an algebra for L2 consists of
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• a set B0 (which is the X(0) of the previous paragraph)

• for each A,B ∈ B0, a directed graph

B(A,B) = (B(A,B)1

�� B(A,B)0)

• for each τ ∈ tr(n) and A0, . . . , An ∈ B0, a function

B(A0, A1)0 × · · · × B(An−1, An)0

τ� B(A0, An)0

• for each τ, τ ′ ∈ tr(n), each A0, . . . , An ∈ B0, and each array of arrows

f 0
1

α1
1� · · · α

k1
1� fk11 in B(A0, A1),

. . . . . .

f 0
n

α1
n� · · · αkn

n� fkn
n in B(An−1, An),

an arrow
τ(f 0

1 , . . . , f
0
n) � τ ′(fk11 , . . . , fkn

n )

in B(A0, An),

satisfying ‘all reasonable coherence axioms’. These axioms imply that if τ = • ∈ tr(1)
then the function

τ : B(A0, A1)0
� B(A0, A1)0

is the identity. Now taking n = 1 and τ = τ ′ = • in the fourth item, we have a function
which assigns to each string of arrows

f 0 α1
� · · · αk

� fk

in B(A,B) an arrow •(f 0) � •(fk), that is, f 0 � fk. This gives the directed graph
B(A,B) the structure of a category. By the preliminary comments on functors and natural
transformations (page 162), an L2-algebra therefore consists of

• a set B0

• for each A,B ∈ B0, a category B(A,B)

• for each τ ∈ tr(n) and A0, . . . , An ∈ B0, a functor

τ : B(A0, A1) × · · · × B(An−1, An) � B(A0, An)

• for each τ, τ ′ ∈ tr(n) and A0, . . . , An ∈ B0, a natural transformation

(τ, τ ′) : τ � τ ′

satisfying ‘all reasonable coherence axioms’. Writing τ as compτ and (τ, τ ′) as ωτ,τ ′ , we see
that this is just the description of a (small) unbiased bicategory given by Theorem A.1.3
and the comments thereafter.
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We have proved that in the cases n = 0, 1, 2, the category Wk-n-Cat is equivalent to,
respectively, Set, Cat and UBicatstr. In fact, we have proved that Alg(L0) is isomorphic
to Set, and similarly Alg(L1) to Cat. The analogous property for n = 2 does not quite
hold, because an unbiased bicategory is defined to be a structure on a ‘graph of directed
graphs’ (that is, a set B0 together with a directed graph B(A,B) for each A,B ∈ B0)
whereas an L2-algebra is a structure on a 2-globular set, and the category G2 of 2-globular
sets is merely equivalent to the category of graphs of directed graphs. However, the proof
reveals that this difference is the only obstacle to the equivalence Alg(L2)�UBicatstr

becoming an isomorphism.
This concludes the material on weak ω- and n-categories, and indeed the main body

of this paper. From the explanation of the formal definition of weak ω-category, and the
analysis of the case n = 2, I hope that the reader is persuaded that the proposed definition
is a reasonable one. Nonetheless, we have clearly only touched the beginning of a theory
of weak higher-dimensional categories.

A. Biased vs. unbiased bicategories

In this appendix we prove the following results from Section 1, concerning the forgetful
functor V : UBicatlax

� Bicatlax:

Theorem 1.3.1 With the definitions given in 1.3,

a. V (B) is a bicategory and V (F, φ) is a lax functor

b. V preserves composition and identities, so forms a functor

UBicatlax
� Bicatlax

c. V is full, faithful and surjective on objects.

Corollary 1.3.2 The restricted functor Vwk : UBicatwk
� Bicatwk is also full, faithful

and surjective on objects.

It is possible to do the proofs in a thoroughly explicit way, as a very long sequence of
calculations. At the other extreme, it is possible to state and prove a very general result, as
follows. In the classical definition of bicategory, there is one nullary and one (horizontal)
binary composition operation. In the unbiased definition, there is one n-ary operation for
each n ∈ N. Given a sequence (Ωn)n∈N of sets, there is a notion of ‘bicategory’ in which
there is one n-ary operation for each member of Ωn, and corresponding notions of lax and
weak functors. So the classical case has Ωn = 1 for n = 0, 2 and Ωn = ∅ otherwise, and
the unbiased case has Ωn = 1 for all n. As long as Ω0 = ∅ and Ωn = ∅ for some n ≥ 2, this
gives a category of ‘bicategories’ and lax functors which is equivalent to Bicatlax. This is
the method employed for monoidal categories in [Lei8].

To keep things short, we shun both extremes and follow a third way. The strategy is to
start by proving some coherence results for unbiased bicategories and functors, of the form
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‘every diagram commutes’, and to recall similar coherence results for classical bicategories
and functors. (All of this so far would be necessary even in the abstract approach outlined
above.) We can then use these results as an aid to calculation when proving that V is
well-defined and an equivalence; indeed, they are so powerful that detailed calculations
can almost entirely be avoided.

Incidentally, the proofs of the coherence results for the unbiased theory are all abso-
lutely straightforward. Just a little care is needed to keep track of the subscripts, but the
proofs call for none of the ingenuity required in proving coherence for classical bicategories
(see e.g. [JS, 1.1]).

The issue of large vs. small structures is not addressed here; it is left as a matter of
conscience to the reader.

A.1. Coherence.

Preliminaries. To state our results we need some new language.
First recall the 2-category Cat-Gph from page 82 (Remark (e)). There is some extra

structure on Cat-Gph: if B, B′ are Cat-graphs with B0 = B′
0 = S, say, then there is a

Cat-graph B ⊗ B′ defined by

(B ⊗ B′)0 = S, (B ⊗ B′)(s1, s2) =
∐
s∈S

B(s1, s) × B′(s, s2).

There is also an object IS of Cat-Gph defined by

(IS)0 = S,

(IS)(s1, s2) =

{
1 if s1 = s2

∅ otherwise.

This defines a monoidal category structure on CatS×S for each set S.

Furthermore, if B F� C and B′ F ′
� C′ are maps in Cat-Gph with B = B′ = S, say,

C0 = C′
0, and F0 = F ′

0, then there is a map F ⊗ F ′ : B ⊗ B′ � C ⊗ C′ in Cat-Gph
defined by

(F ⊗ F ′)0 = F0 = F ′
0,

(F ⊗ F ′)s1,s2(p, p
′) = (Fs1,s(p), F

′
s,s2

(p′))

for s1, s2, s ∈ S, p ∈ B(s1, s) and p′ ∈ B′(s, s2). In particular, if B is a Cat-graph then
there is a Cat-graph B⊗n for each n ∈ N, and if F : B � C is a map of Cat-graphs
then there is a map F⊗n : B⊗n � C⊗n. (So, for instance, the free 2-category functor on
Cat-Gph is given by B �−→ ∐

n∈N
B⊗n.)

I will not attempt to describe exactly what structure is formed by Cat-Gph together
with these tensor operations, although we will implicitly use some of its fairly obvious
properties (such as functoriality of tensor). If we were discussing monoidal categories
rather than bicategories, then the place of Cat-Gph would be taken by the monoidal
category (Cat,×,1).



168 TOM LEINSTER

The definitions of unbiased bicategory and unbiased lax/weak functor can now be
recast as follows. An unbiased bicategory consists of a Cat-graph B together with a
functor compn : B⊗n � B for each n ∈ N and natural isomorphisms

B⊗(k1+···+kn) � B⊗n

	
	
	
	
	

compk1+···+kn
�

↙ γk1,...,kn

B

compn

�

B⊗1

∼

comp1

ι
�

��
B

(where the horizontal arrow in the first diagram is compk1 ⊗ · · · ⊗ compkn
) satisfying

associativity and identity axioms. An unbiased lax functor (F, φ) : B � B′ consists of
a map F : B � B′ of Cat-graphs together with a natural transformation

B⊗n F⊗n
� B′⊗n


��
φn

B

compn

�

F
� B′

compn

�

for each n, satisfying axioms. (So unbiased bicategories are weak algebras, and unbiased
lax functors are lax maps of weak algebras, for the free 2-category 2-monad on Cat-Gph.)

We will also need the language of trees. By definition, tr is the free (non-symmetric)
operad (of sets) on the terminal object of SetN, as explained more fully in 3.3. Explicitly,
we can define for each n ∈ N a set tr(n) of n-leafed trees by the following recursive clauses:

• tr(1) has an element • (a formal symbol)

• if n ∈ N and τ1 ∈ tr(k1), . . . , τn ∈ tr(kn), then tr(k1 + · · · + kn) has an element
(τ1, . . . , τn).

(See Example 2.1.3(g) for why the word ‘tree’ is used.) We call • the unit tree, and define
for each τ ∈ tr(n) and τ1 ∈ tr(k1), . . . , τn ∈ tr(kn) a composite tree τ ◦(τ1, . . . , τn) as
follows.

• If τ = • then τ ◦(τ1) = τ1

• Suppose τ = (σ1, . . . , σr) with σi ∈ tr(ni) and n1 + · · ·+nr = n: then we may write
the sequence τ1, . . . , τn as τ 1

1 , . . . , τ
n1
1 , . . . , τ 1

r , . . . , τ
nr
r and define

τ ◦(τ1, . . . , τn) = (σ1◦(τ 1
1 , . . . , τ

n1
1 ), . . . , σr◦(τ 1

r , . . . , τ
nr
r )).

Composition and unit obey associativity and unit laws: in other words, tr forms a non-
symmetric operad. Note also that if νn is the n-leafed tree (•, . . . , •) then (τ1, . . . , τn) =
νn◦(τ1, . . . , τn).
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Coherence for unbiased bicategories. Fix an unbiased bicategory B. Define for
each n ∈ N and τ ∈ tr(n) a functor compτ : B⊗n � B, as follows:

• comp• is the identity on B

• if τ1 ∈ tr(k1), . . . , τn ∈ tr(kn) then comp(τ1, ... ,τn) is the composite

B⊗(k1+···+kn)
compτ1 ⊗ · · · ⊗ compτn� B⊗n compn� B.

(More accurately, comp• is not the identity but the canonical isomorphism B⊗1 � B.
I will ignore such distinctions.)

A.1.1. Proposition.

a. If τ ∈ tr(n), τ1 ∈ tr(k1), . . . , τn ∈ tr(kn) then

compτ◦(τ1, ... ,τn) = compτ ◦(compτ1 ⊗ · · · ⊗ compτn)

b. comp• = id

c. compνn
= compn.

Proof. Part (a) is a straightforward induction on the structure of τ . Part (b) is just
the definition of comp•. Part (c) is also straightforward.

Next define for each tree τ ∈ tr(n) a natural isomorphism ωτ : compτ � compn, by

• ω• = ι : id � comp1

• if τ1 ∈ tr(k1), . . . , τn ∈ tr(kn) then ω(τ1, ... ,τn) is the composite

comp(τ1, ... ,τn) = compn◦(compτ1 ⊗ · · · ⊗ compτn)
1∗(ωτ1⊗···⊗ωτn )� compn◦(compk1 ⊗ · · · ⊗ compkn

)
γk1,...,kn� compk1+···+kn

.

The ωτ ’s fit together coherently, as expressed by the following result.
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A.1.2. Proposition.

a. If τ ∈ tr(n), τ1 ∈ tr(k1), . . . , τn ∈ tr(kn) then

compτ◦(τ1, ... ,τn) == compτ ◦(compτ1 ⊗ · · · ⊗ compτn)

compn◦(compk1 ⊗ · · · ⊗ compkn
)

ωτ ∗ (ωτ1 ⊗ · · · ⊗ ωτn)

�

compk1+···+kn

ωτ◦(τ1, ... ,τn)

�
============ compk1+···+kn

γk1,...,kn

�

commutes

b. The diagram

comp• ======= id

comp1

ω•

�
===== comp1

ι

�

commutes

c. ωνn = 1, ωνn◦(νk1
, ... ,νkn ) = γk1,...,kn, and ω• = ι.

Proof. As in the previous proof, (a) is by induction on τ , (b) is immediate, and (c) is
straightforward.

Everything so far works for lax bicategories, but the next part does not. For each
τ, τ ′ ∈ tr(n), define a natural isomorphism

ωτ,τ ′ = (compτ
ωτ� compn

ω−1
τ ′� compτ ′).

The ωτ,τ ′ ’s also fit together coherently:

A.1.3. Theorem.

a. If τ, τ ′ ∈ tr(n), τ1, τ
′
1 ∈ tr(k1), . . . , τn, τ

′
n ∈ tr(kn) then

compτ◦(τ1, ... ,τn) ===== compτ ◦(compτ1 ⊗ · · · ⊗ compτn)

compτ ′◦(τ ′1, ... ,τ ′n)

ωτ◦(τ1, ... ,τn),τ ′◦(τ ′
1

, ... ,τ ′n)

�
===== compτ ′◦(compτ ′1 ⊗ · · · ⊗ compτ ′n)

ωτ,τ ′∗(ωτ1,τ ′
1
⊗···⊗ωτn,τ ′n)

�
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commutes

b. ωτ ′,τ ′′◦ωτ,τ ′ = ωτ,τ ′′ and ωτ,τ = 1

c. ωνn◦(νk1
, ... ,νkn ),νk1+···+kn

= γk1,...,kn and ω•,ν1 = ι

Proof. (b) is immediate, and (a) and (c) follow from Proposition A.1.2.

The theorem says that for any pair of n-leafed trees τ and τ ′, there is precisely one map
compτ � compτ ′ which can be built up from γ and ι. In short, there is a single canonical
isomorphism between compτ and compτ ′ : ‘coherence for an unbiased bicategory’.

This is a little different from the usual formulation of bicategorical coherence, in that
we have not directly discussed graph maps B⊗n � B⊗m (or transformations between
them) built up from the bicategory operations, except in the case m = 1. This is a feature
of the tree-based (operadic) approach; it seems cleaner and, in any case, what we have
done is enough for our present purpose.

Coherence for unbiased lax functors. Fix an unbiased lax functor (F, φ) :
B � B′. I will use the same notation γ, ι, comp and ω in both B and B′; confusion
should not arise.

Define for each n ∈ N and τ ∈ tr(n) a natural transformation

φτ : compτ ◦F
⊗n � F ◦compτ

by

• φ• is the identity (or again, more precisely, the canonical isomorphism)

• if τ1 ∈ tr(k1), . . . , τn ∈ tr(kn) then φ(τ1, ... ,τn) is the composite

comp(τ1, ... ,τn)◦F
⊗(k1+···+kn)

= compn◦((compτ1◦F
⊗k1) ⊗ · · · ⊗ (compτn◦F⊗kn))

1∗(φτ1⊗···⊗φτn )� compn◦((F ◦compτ1) ⊗ · · · ⊗ (F ◦compτn))

= compn◦F
⊗n◦(compτ1 ⊗ · · · ⊗ compτn)

φn∗1� F ◦compn◦(compτ1 ⊗ · · · ⊗ compτn)

= F ◦comp(τ1, ... ,τn).

Once again we have a coherence result.

A.1.4. Proposition.
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a. If τ ∈ tr(n), τ1 ∈ tr(k1), . . . , τn ∈ tr(kn) then

compτ◦(τ1, ... ,τn)◦F
⊗(k1+···+kn) == compτ ◦((compτ1◦F

⊗k1) ⊗ · · · ⊗ (compτn◦F⊗kn))

compτ ◦F
⊗n◦(compτ1 ⊗ · · · ⊗ compτn)

1 ∗ (φτ1 ⊗ · · · ⊗ φτn)

�

F ◦compτ◦(τ1, ... ,τn)

φτ◦(τ1, ... ,τn)

�
============= F ◦compτ ◦(compτ1 ⊗ · · · ⊗ compτn)

φτ ∗ 1

�

commutes

b. The diagram

comp•◦F
⊗1 ====== F

F ◦comp•

φ•

�
======= F

1

�

commutes

c. φνn = φn.

Proof. (a) is by induction on τ ; (b) and (c) are immediate.

At this point, we have for each τ ∈ tr(n) a canonical map

φτ : compτ ◦F
⊗n � F ◦compτ

built up from φn’s only. Next we bring in the coherence isomorphisms ω of B and B′.

A.1.5. Proposition. If τ, τ ′ ∈ tr(n) then

compτ ◦F
⊗n φτ� F ◦compτ

compτ ′◦F
⊗n

ωτ,τ ′ ∗ 1

� φτ ′� F ◦compτ ′

1 ∗ ωτ,τ ′
�

(24)

commutes.

Proof. It is enough to prove this when τ ′ = νn, in which case ωτ,τ ′ = ωτ . The proof is
then another easy induction on τ .
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For τ, τ ′ ∈ tr(n), define

φτ,τ ′ : compτ ◦F
⊗n � F ◦compτ ′

as the diagonal of (24). We then have:

A.1.6. Theorem.

a. If τ, τ ′, σ, σ′ ∈ tr(n) then the diagrams

compτ ◦F
⊗n φτ,τ ′� F ◦compτ ′

	
	
	
	
	

φτ,σ′
�

F ◦compσ′

1 ∗ ωτ ′,σ′

�

compτ ◦F
⊗n ωτ,σ ∗ 1

� compσ◦F
⊗n

	
	
	
	
	

φτ,σ′
�

F ◦compσ′

φσ,σ′

�

commute

b. If τ, τ ′ ∈ tr(n), τ1, τ
′
1 ∈ tr(k1), . . . , τn, τ

′
n ∈ tr(kn), then

compτ◦(τ1, ... ,τn)◦F
⊗(k1+···+kn) == compτ ◦((compτ1◦F

⊗k1) ⊗ · · · ⊗ (compτn◦F⊗kn))

compτ ◦F
⊗n◦(compτ ′1 ⊗ · · · ⊗ compτ ′n)

1∗(φτ1,τ ′
1
⊗···⊗φτn,τ ′n )

�

F ◦compτ ′◦(τ ′1, ... ,τ ′n)

φτ◦(τ1, ... ,τn),τ ′◦(τ ′
1

, ... ,τ ′n)

�
============ F ◦compτ ′◦(compτ ′1 ⊗ · · · ⊗ compτ ′n)

φτ,τ ′∗1

�

commutes

c. φ•,• : comp•◦F
⊗1 � F ◦comp• is the identity

d. φνn,νn = φn.

Proof. These all follow from the last two propositions.
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This theorem is ‘coherence for an unbiased lax functor’ (F, φ): there is precisely one
map

compτ ◦F
⊗n � F ◦compτ ′

built up from φ and the coherence cells γ and ι of B and B′.
A warning is due here. We have shown that, for instance, any two maps

((Ff4◦Ff3)◦1◦(Ff2◦Ff1))
�� F (f4◦(f3◦f2◦f1))

built up from coherence cells are equal. The form of the codomain is important, being F
applied to a composite of 1-cells in B. In contrast, a counterexample in the introduction
to [Lew] shows that there can be two distinct maps

F1
�� F1◦F1

built up from coherence cells. (The counterexample is stated in the context of classical
bicategories—in fact, monoidal categories—but translates easily to the unbiased context.)

Summary. We have articulated the following coherence principles for the unbiased
theory:

(UB) In an unbiased bicategory B, there is a unique natural isomorphism

compτ � compτ ′

built up from γ and ι, for any pair τ, τ ′ of trees with the same number of leaves

(UF) For an unbiased lax functor (F, φ) : B � B′, there is a unique natural transfor-
mation

compτ ◦F
⊗n � F ◦compτ ′

built up from φ, γ and ι, for any pair τ , τ ′ of n-leafed trees.

We will also need to use similar coherence principles for classical bicategories. To state
them, we define the set ctr(k) of k-leafed classical trees for each k ∈ N by exactly the same
recursive clauses as we used in the definition of tr (page 168), but only allowing n ∈ {0, 2}
instead of n ∈ N in the second clause. As in the unbiased case, we can define for each
classical bicategory C, each n ∈ N and each τ ∈ ctr(n), a functor compτ : C⊗n � C.
We then have the following coherence principles for the classical theory:

(CB) In a classical bicategory C, there is a unique natural isomorphism

compτ � compτ ′

built up from the associativity and unit isomorphisms, for any pair τ, τ ′ of classical
trees with the same number of leaves
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(CF) For a classical lax functor (G,ψ) : C � C′, there is a unique natural transforma-
tion

compτ ◦G
⊗n � G◦compτ ′

built up from ψ and the associativity and unit isomorphisms, for any pair τ , τ ′ of
n-leafed classical trees.

Principle (CB) follows from the classical coherence theorem for bicategories, in the form
‘every diagram commutes’. (CF) comes from Lewis’s paper [Lew].

A.2. The proof. We can now prove that UBicatlax �Bicatlax and UBicatwk �Bicatwk

with almost no real work.
Recall from 1.3 that we attempted to construct a functor

V : UBicatlax
� Bicatlax;

that is, we specified all the necessary data for V but did not check any of the axioms.
Here we must check these axioms, and must prove that V is full, faithful and surjective
on objects. The easiest way to deduce the latter from our results so far is to construct a
pseudo-inverse L to V , with V ◦L = 1.

Explicitly, take a (classical) bicategory C, and write its composition and identity as
Cat-graph maps

IC0

ids� C �comp C ⊗ C.
Attempt to define an unbiased bicategory B = L(C) by setting B equal to C as a Cat-
graph, putting

comp0 = ids, comp1 = 1B,

compn+1 = (B⊗(n+1) ∼= C⊗n ⊗ C compn⊗1C� C ⊗ C comp� C = B)

(n ≥ 1), and taking γ and ι to be the canonical isomorphisms (which exist by coherence
principle (CB)). (So this choice of a pseudo-inverse is an arbitrary one; we have decided
to ‘associate to the left’.) Given a classical lax functor (G,ψ) : C � C′, attempt to
define an unbiased lax functor

(F, φ) = L(G,ψ) : L(C) � L(C′)

by setting F = G and taking φf1,...,fn to be the canonical map

(Ffn◦ · · · ◦Ff1) � F (fn◦ · · · ◦f1),

which makes sense by coherence principle (CF).
So far we have attempted to construct functors

UBicatlax

V��
L

Bicatlax,
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and we will show that V L = 1 and LV ∼= 1. For the latter we attempt to construct
unbiased weak functors

B
(ΘB,θB)��
(ΞB,ξB)

LV (B)

for each unbiased bicategory B. This is done by taking ΘB and ΞB each to be the identity
on B (in Cat-Gph), and by taking θB and ξB to be the canonical isomorphisms (which
exist by coherence principle (UB)).

Theorem 1.3.1 now follows from:

A.2.1. Proposition. With the definitions above, V and L are both functors, V L = 1,

and 1
(Θ,θ)��
(Ξ,ξ)

LV are mutually inverse natural transformations.

Proof. Essentially we have to check that our data satisfies a large collection of axioms,
but our coherence results cover almost all of these checks automatically. Here is the list
of the things to be checked and which coherence result each one can be inferred from.

• V is a functor UBicatlax
� Bicatlax. This means:

– V (B) is a bicategory for any B: (UB)

– V (F, φ) is a lax morphism for any (F, φ): (UF)

– V preserves identities: (UB)

– V preserves composition: really we should deduce this from ‘coherence for a
composable pair of unbiased lax morphisms’ (which we did not prove), but a
direct check is easy.

• L is a functor Bicatlax
� UBicatlax. This means:

– L(C) is an unbiased bicategory for any C: (CB)

– L(G,ψ) is an unbiased lax functor for any (G,ψ): (CF)

– L preserves identities: (CB)

– L preserves composition: as for V above.

• V L = 1. This means:

– V L(C) = C for any C: by construction, V L(C) and C are the same in all
respects except perhaps their associativity and unit isomorphisms; and these
too are equal by (CB)

– V L(G,ψ) = (G,ψ) for any (G,ψ): (CF).
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• 1
(Θ,θ)��
(Ξ,ξ)

LV are natural transformations. This means:

– B
(ΘB,θB)��
(ΞB,ξB)

LV (B) are unbiased lax functors for any B: (UB)

– (ΘB, θB) and (ΞB, ξB) are natural in B: (UF).

• (ΘB, θB)◦(ΞB, ξB) = 1 and (ΞB, ξB)◦(ΘB, θB) = 1 for any B: (UB).

Evidently L sends weak functors to unbiased weak functors, and so restricts to a
functor Lwk : Bicatwk

� UBicatwk. Moreover, both (ΘB, θB) and (ΞB, ξB) are unbiased
weak functors, for any unbiased bicategory B. Hence:

A.2.2. Corollary. The functors

UBicatwk

Vwk��
Lwk

Bicatwk

satisfy VwkLwk = 1 and LwkVwk
∼= 1.

Corollary 1.3.2 follows immediately.

B. The free multicategory construction

In this appendix we define ‘suitability’ and sketch proofs of Theorems 3.3.1, 3.3.2 and
3.3.3. First we need some terminology.

Let E be a category with pullbacks, I a small category, D : I � E a functor for
which a colimit exists, and (D(I) � Z)I∈I a colimit cone. We say that the colimit
is stable under pullback if for any map Z ′ � Z in E , the cone (D′(I) � Z ′)I∈I is a
colimit cone; here D′ and the new cone are obtained by pullback, so that

D′ � D

Z ′
�

� Z
�

is a pullback square in the functor category [I, E ].

The morphisms kI in a colimit cone (D(I)
kI� Z)I∈I will be called the coprojections

of the colimit, and in particular we say that the colimit of D ‘has monic coprojections’ to
mean that each kI is monic.

A category will be said to have disjoint finite coproducts if it has finite coproducts,
these coproducts have monic coprojections, and for any pair A,B of objects, the square

0 � B

A
�

� A+B
�
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is a pullback.
Let ω be the natural numbers with their usual ordering. A nested sequence in a

category E is a functor ω � E in which the image of every morphism of ω is monic. In
other words, it is a diagram

A0 > > A1 > > · · ·
in E , where as usual > > indicates a monic. Note that a functor which preserves
pullbacks also preserves monics, so it makes sense for such a functor to ‘preserve colimits
of nested sequences’. Similarly, it makes sense to say that colimits of nested sequences
commute with pullbacks, where ‘commute’ is used in the same sense as when we say that
filtered colimits commute with finite limits in Set.

A category E is suitable if it satisfies

C1 E is cartesian

C2 E has disjoint finite coproducts which are stable under pullback

C3 E has colimits of nested sequences; these commute with pullbacks and have monic
coprojections.

A monad (T, η, µ) is suitable if it satisfies

M1 (T, η, µ) is cartesian

M2 T preserves colimits of nested sequences.

We say that (E , T ) is suitable when (T, η, µ) is a suitable monad on a suitable category E .
We now sketch a proof of the main theorem, 3.3.1, on the formation of free multicat-

egories, which for convenience is re-stated here.

Theorem 3.3.1 Let (E , T ) be suitable. Then the forgetful functor

(E , T )-Multicat
U� E ′ = (E , T )-Graph

has a left adjoint, the adjunction is monadic, and if T ′ is the resulting monad on E ′ then
(E ′, T ′) is suitable.

Proof (sketch). We proceed in four steps:

a. construct a functor F : E ′ � (E , T )-Multicat

b. construct an adjunction between F and U

c. check that (E ′, T ′) is suitable

d. check that the adjunction is monadic.

Each step goes roughly as follows.
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a. Construct a functor F : E ′ � (E , T )-Multicat

Let X be a T -graph. Define for each n a graph TX0
�dn

An
cn� X0, by

• A0 = X0, d0 = ηX0 and c0 = 1

• An+1 = X0+X1◦An, where X1◦An is the 1-cell composite in (E , T )-Span, with
the obvious choices of dn+1 and cn+1.

Define for each n a map An
in� An+1, by

• i0 : X0
� X0 +X1◦X0 is first coprojection

• in+1 = 1X0 + (1X1 ∗ in).

Then the in’s are monic, and by taking A to be the colimit of

A0 >
i0
> A1 >

i1
> · · ·

we obtain a graph TX0
� A � X0. This graph naturally has the structure

of a multicategory: the identities map X0
� A is just the colimit coprojection

A0 > > A, and composition comes from maps Am◦An � Am+n which piece to-
gether to give a map A◦A � A. The composition construction needs many of the
suitability axioms.

We have now described what effect F is to have on objects, and extension to mor-
phisms is straightforward.

(The colimit of the nested sequence of An’s appears, in light disguise, as the recursive
description of the free plain multicategory monad in 3.3: An is the set of formal
expressions which can be obtained from the first clause and up to n applications of
the second clause.)

b. Construct an adjunction between F and U
We do this by constructing unit and counit transformations and verifying the tri-
angle identities. Both transformations are the identity on the object of objects, so
we only need to define them on the object of arrows. For the unit η′, if X ∈ E ′ then
η′X : X1

� A is the composite

X1
∼� X1◦X0 >

copr2> X0 +X1◦X0 = A1 > > A.

For the counit ε′, let C ∈ (E , T )-Multicat. Write A and An for the objects used
in the construction of the free multicategory on U(C), as if X = U(C) in part (a).
Define for each n a map ε′C,n : An � C1 by

• ε′C,0 = (A0
=� C0

ids� C1)
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• ε′C,n+1 = (C0 +C1◦An
1+1∗ε′C,n� C0 +C1◦C1

q� C1), where q is ids on the first
summand and comp on the second,

and then there is a unique ε′C : A � C1 such that

ε′C,n = (An > > A
ε′C� C1)

for all n.

c. Check that (E ′, T ′) is suitable
This is quite routine.

d. Check that the adjunction is monadic
We apply the Monadicity Theorem by checking that U creates coequalizers for U -
absolute coequalizer pairs. This can be done quite separately from the rest of the
proof, and again is quite routine.

We can now easily prove the fixed-object version, Theorem 3.3.2. Recall that E ′
S is the

category of T -graphs on S (that is, E/(TS×S)) and (E , T )-MulticatS is the category of
T -multicategories on S.

Theorem 3.3.2 Let (E , T ) be suitable and let S ∈ E. Then the forgetful functor

(E , T )-MulticatS � E ′
S

has a left adjoint, the adjunction is monadic, and if T ′
S is the resulting monad on E ′

S then
(E ′
S, T

′
S) is suitable. Moreover, if E has filtered colimits and T preserves them, then the

same is true of E ′
S and T ′

S.

Proof. It is evident from the proof of 3.3.1 that the adjunction (F,U, η′, µ′) constructed
there restricts to the subcategories E ′

S and (E , T )-MulticatS, so we only have to check
that (E ′

S, T
′
S) is suitable and the restricted adjunction is monadic. This is again quite

routine, and involves many of the same calculations. (The most substantial difference
between the two cases is that coproducts in E ′ and E ′

S are calculated differently, i.e. the
inclusion E ′

S
⊂ � E ′ does not preserve them.) ‘Moreover’ is straightforward.

Finally, we have to prove Theorem 3.3.3: that any functor category [E,Set], and any
finitary cartesian monad on it, is suitable. Since the category ω is filtered, the monad
part is immediate. For the category part it is enough to see that Set is suitable, and this
follows straight away from standard results.

C. Strict ω-categories

In this appendix we prove:
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C.0.3. Theorem. The forgetful functor ω-Cat � Gω has a left adjoint, the adjunc-
tion is monadic, and the induced monad on Gω is cartesian and finitary.

Here ω-Cat is the category of strict ω-categories and Gω is the category of globular
sets. We need to know that the left adjoint exists and that the induced monad T is
cartesian in order to be able to talk about T -operads (as we do in Section 4), we need
monadicity in order to understand the definition of weak ω-category (Section 4 again),
and we need to know that T is finitary in Appendix D.

In C.1 we recall the basics of strict ω-categories and strict n-categories, and outline
the strategy for proving Theorem C.0.3. Subsection C.2 is devoted to the proof itself. In
subsection C.3 we show that T acts on globular sets X by the formula

(TX)(n)∼=
∐

π∈pd(n)

[G,Set](π̂, X),

as asserted in Section 4 (page 144).

C.1. Outline. Let V be a category with finite products. Then there is a category
V-Cat of V-enriched categories and V-enriched functors, which also has finite products.
Moreover, if F : V � W is a functor which preserves finite products then there is an
induced functor F∗ : V-Cat � W-Cat, which also preserves finite products. Here, as
everywhere in this appendix, the monoidal structure on the categories we are enriching
in is always the cartesian product, and our enriched categories will always have just a set
of objects—nothing larger.

These observations allow us to make the following definitions. For n ∈ N, define the
category n-Cat of strict n-categories and strict n-functors by

0-Cat = Set,

(n+ 1)-Cat = (n-Cat)-Cat.

Also define functors Sn : (n+ 1)-Cat � n-Cat, by taking S0 : Cat � Set to be the
objects functor and Sn+1 = (Sn)∗.

We thus have a diagram

· · · � (n+ 1)-Cat
Sn� n-Cat

Sn−1� · · · S0� 0-Cat = Set

in CAT, and the category ω-Cat of strict ω-categories and strict ω-functors is defined
as the limit of this diagram. (CAT is the category of all categories, possibly large.)

Now let Gω be the category denoted G in 4.1, and let Gω = [Gω,Set] (the category of
globular sets). For n ∈ N, let Gn be the full subcategory of Gω with objects 0, . . . , n, let
Gn = [Gn,Set], and call objects of Gn n-globular sets. The inclusions Gn

⊂ � Gn+1 give
rise to a diagram

· · · � Gn+1
Rn� Gn Rn−1� · · · R0� G0

∼=Set
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in CAT, of which Gω is the limit.
The next step is to see that there is a forgetful functor

Un : n-Cat � Gn
for each n, expressing the idea that an n-globular set is the underlying graph structure of
an n-category.

Formally, we first define for each category V the category V-Gph, in which an ob-
ject is a set X0 together with an indexed family (X(x, x′))x,x′∈X0 of objects of V , and
a map f : X � Y consists of a function f0 : X0

� Y0 together with a map fx,x′ :
X(x, x′) � Y (f0x, f0x

′) in V for each x, x′ ∈ X0. Objects of V-Gph will be called
V-graphs (not to be confused with the T -graphs defined in 2.2). Observe that:

• if V has finite products then so does V-Gph, and the evident forgetful functor
V-Cat � V-Gph preserves finite products

• if V and W have finite products and V � W is a functor preserving them, then
the evident functor V-Gph � W-Gph also preserves them

• in the situation of the previous item, the diagram

V-Cat � W-Cat

V-Gph
�

� W-Gph
�

commutes, which means that there is an unambiguous functor V-Cat � W-Gph
induced by the functor V � W .

To apply this to the current situation, note that Gn+1 �Gn-Gph; then take U0 :
Set � Set to be the identity and define Un+1 : (n+1)-Cat � Gn+1 to be the functor

(n-Cat)-Cat � Gn-Gph

induced by Un : n-Cat � Gn. (All the conditions on finite products go through.) These
Un’s commute with the restriction functors Rn and Sn, so we obtain a forgetful functor
Uω : ω-Cat � Gω:

ω-Cat · · · � (n+ 1)-Cat
Sn� n-Cat

Sn−1 � · · · S0� 0-Cat

Gω

Uω

�
· · · � Gn+1

Un+1

�

Rn

� Gn

Un

�

Rn−1

� · · ·
R0

� G0.

U0

�

Having constructed Uω, we have given a precise meaning to Theorem C.0.3. (‘Finitary’
means ‘preserves filtered colimits’.) In order to prove the Theorem, it is enough to prove:
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C.1.1. Theorem. Let n ∈ N. Then

a. the forgetful functor Un : n-Cat � Gn has a left adjoint Fn, the adjunction is
monadic, and the induced monad Tn on Gn is cartesian and finitary

b. Rn is a weak map of monads (Gn+1, Tn+1) � (Gn, Tn), and Sn is the map GTn+1

n+1
� GTn

n

induced by Rn.

By a weak map of monads I mean a monad functor (or equivalently, opfunctor) whose
natural transformation part is an isomorphism: thus there is an isomorphism between
Tn◦Rn and Rn◦Tn+1 which respects unit and multiplication. Because it is a monad functor,
there is an induced functor GTn+1

n+1
� GTn

n , and therefore (n+ 1)-Cat � n-Cat.

Theorem C.0.3 follows almost immediately from Theorem C.1.1. The only sticking
point is that the squares

(n+ 1)-Cat
Sn� n-Cat

Gn+1

Fn+1

�

Rn

� Gn

Fn

�

(25)

do not a priori commute strictly, only up to (canonical) isomorphism. Since Gω and ω-Cat
are strict (not 2-categorical) limits, this means that the functors Fn do not necessarily
induce a functor Fω : Gω � ω-Cat. But we can, in fact, choose the left adjoints Fn
so that each canonical isomorphism inside (25) is the identity, and the situation is then
rescued. The key is that the functors Sn have the following (easily proved) isomorphism-

lifting property: if C ∈ (n + 1)-Cat and j : Sn(C)
∼� D is an isomorphism in n-Cat,

then there is an isomorphism i : C
∼� C ′ in (n + 1)-Cat with SnC

′ = D and Sni = j.
This allows us to choose left adjoints F0, F1, . . . successively so that everything is strictly
commutative, which is just what we need.

C.2. The proof. In this subsection we prove Theorem C.1.1. The core of the argument
is contained in the following result:

C.2.1. Proposition. Let A be a small category and A = [A,Set]. Let (T, η, µ) be a
monad on A such that T preserves all coproducts. Then

a. the forgetful functor AT -Cat � A-Gph is monadic and preserves all coproducts

b. if (T, η, µ) is cartesian then so is the induced monad (T̃ , η̃, µ̃) on A-Gph

c. if T is finitary then so is T̃ .
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C.2.2. Remarks. The ‘forgetful functor’ in the first part is induced by the forgetful
functor AT � A, where AT is the category of T -algebras. Since A has all limits and a
monadic functor creates limits, AT has all limits—and in particular pullbacks, so that it
makes sense to discuss AT -Cat.

Parts (b) and (c) make sense even if A-Gph does not have all pullbacks or all filtered
colimits. But in fact, A-Gph has all limits and colimits. This follows from the observation
that A-Gph� [Ã,Set], where Ã is the category obtained from A by adjoining a new object

0 and a pair of morphisms A
σA�
τA

� 0 for each A ∈ A, with σA◦f = σA′ and τA◦f = τA′ for

any morphism f : A′ � A in A.
It is not necessary to insist that A is of the form [A,Set] in order to make the proof

work. We could get by on the assumption that A has finite limits and all (small) colimits,
and that these interact in suitable ways: e.g. that × distributes over coproduct. But we
do not need such a precise result, and by working in [A,Set] we can manipulate limits
and colimits as if we were in Set.

Before proving the Proposition, let us apply it to prove part (a) of Theorem C.1.1.
The proof is by induction on n, adding in the hypothesis that the functor Tn preserves
all (small) coproducts. When n = 0, the forgetful functor U0 is an isomorphism, and
its inverse F0 is a left adjoint; thus the induced monad T0 on G0 is the identity. For
the inductive step we just take A = Gn and T = Tn in Proposition C.2.1, noting that
under the equivalences AT -Cat� (n + 1)-Cat and A-Gph�Gn+1, the forgetful functor
AT -Cat � A-Gph becomes Un+1 : (n+ 1)-Cat � Gn+1.

Proof of Proposition C.2.1. The strategy is to construct two monads P and
Q on A-Gph and a distributive law Q◦P � P ◦Q (in the sense of [Str1, §6]). This

gives the functor T̃ = Q◦P the structure of a monad on A-Gph. We then show that
(A-Gph)T̃ ∼=AT -Cat, and that the diagram

(A-Gph)T̃ ∼= AT -Cat

		� 
��

A-Gph

(in which the two arrows are the forgetful functors) commutes. Part (a) follows, and by

our construction of T̃ , (b) and (c) are easy consequences. The idea behind this strategy
is that to form the free AT -category on an A-graph X, one first forms the free T -algebra
on each ‘hom-object’ X(x, x′), then one forms the free AT -category on the resulting AT -
graph.

So, the functor T : A � A induces a functor P : A-Gph � A-Gph: explicitly,
(PX)0 = X0 and (PX)(x, x′) = T (X(x, x′)) for x, x′ ∈ X0. Similarly, the unit and
multiplication of T give P the structure of a monad on A-Gph.

A second monad Q on A-Gph is given by the forgetful functor

A-Cat � A-Gph
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and its left adjoint. Explicitly, if X ∈ A-Gph then (QX)0 = X0 and

(QX)(x, x′) =
∐

x=x0,...,xr=x′
X(x0, x1) × · · · ×X(xr−1, xr),

where the coproduct is over all r ∈ N and x0, . . . , xr ∈ X0 such that x0 = x and xr = x′.
Everything works in the familiar way—that is, as for the free category monad on G1—
because A is a functor category [A,Set].

A distributive law λ : PQ � QP is given as follows. If X ∈ A-Gph then

(PQX)0 = X0,

(PQX)(x, x′) = T ((QX)(x, x′))
∼=

∐
x=x0,...,xr=x′

T{X(x0, x1) × · · · ×X(xr−1, xr)}

(since T preserves coproducts), and

(QPX)0 = X0,

(QPX)(x, x′) =
∐

x=x0,...,xr=x′
T (X(x0, x1)) × · · · × T (X(xr−1, xr)),

for x, x′ ∈ X0. So there is a map

(PQX)(x, x′) � (QPX)(x, x′)

defined by projections, giving a map

λX : PQX � QPX

of A-graphs which is the identity on objects. The axioms for a distributive law then hold.
P , Q and λ together define a monad (T̃ , η̃, µ̃) on A-Gph, where T̃ = Q◦P (again,

see [Str1, §6]). A T̃ -algebra is an A-graph X equipped with a P -algebra structure h and
a Q-algebra structure k such that

PQX
Pk � PX

QPX

λX
�

QX

Qh
�

k
� X

h

�

commutes. In other words, it is an A-graph X together with a T -algebra structure hx,x′
on X(x, x′) for each x, x′ ∈ X0, and an A-category structure

X(x0, x1) × · · · ×X(xr−1, xr)
kx0,...,xr� X(x0, xr)
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(xi ∈ X0) on X, such that for all x0, . . . , xr ∈ X0,

T{X(x0, x1) × · · · ×X(xr−1, xr)}
T (kx0,...,xr)� T (X(x0, xr))

T (X(x0, x1)) × · · · × T (X(xr−1, xr))

(T (pr1), . . . , T (prr))
�

X(x0, x1) × · · · ×X(xr−1, xr)

hx0,x1 × · · · × hxr−1,xr

�

kx0,...,xr

� X(x0, xr)

hx0,xr

�

commutes. But the left-hand column of this diagram is the product in AT of the T -
algebras X(x0, x1), . . . , X(xr−1, xr) (recalling the way in which a monadic functor creates

limits): so a T̃ -algebra is exactly a category enriched in AT , and (A-Gph)T̃ ∼=AT -Cat.
It is easy to see that the diagram of forgetful functors in the first paragraph of the

proof commutes, so the forgetful functor AT -Cat � A-Gph is monadic. Moreover, P
preserves coproducts since T does, and Q evidently preserves coproducts, so the functor
T̃ = Q◦P does too. This completes the proof of (a).

For (b) and (c), note that P is cartesian (respectively, finitary) if T is, and that Q
is cartesian and finitary in any case. It only remains to prove that if the monad T is
cartesian then the natural transformation λ : PQ � QP is also cartesian, and this is
straightforward.

The proof of Theorem C.1.1(a) is now done. For part (b) we use the following result:

C.2.3. Proposition. Let J : A′ � A be a functor between small categories, let
(T ′, η′, µ′) be a monad on A′ = [A′,Set] such that T ′ preserves all coproducts, and similarly
(T, η, µ) on A = [A,Set]. If J∗ is a weak map of monads

(A, T ) � (A′, T ′), (26)

then the induced functor J∗-Gph : A-Gph � A′-Gph also becomes a weak map of
monads

(A-Gph, T̃ ) � (A′-Gph, T̃ ′), (27)

where T̃ and T̃ ′ are as in Proposition C.2.1. Moreover, the diagram

AT -Cat � A′T ′
-Cat

(A-Gph)T̃

∼= �
� (A′-Gph)T̃

′

∼=�

commutes, where the map along the top is induced by the monad map (26) and the map
along the bottom by the monad map (27).
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Proof. Consider the diagram

A-Gph
J∗-Gph� A′-Gph

A-Gph

P
� J∗-Gph� A′-Gph

P ′
�

A-Gph

Q
� J∗-Gph� A′-Gph,

Q′
�

where P and Q are as in the proof of Proposition C.2.1, and similarly P ′ and Q′. Applying
( )-Gph to the isomorphism T ′◦J∗ ∼= J∗◦T gives an isomorphism ‘inside’ the upper square,
making J∗-Gph into a weak map of monads

(A-Gph, P ) � (A′-Gph, P ′).

There is also a natural isomorphism inside the lower square, expressing the fact that the
free enriched category construction is natural in a suitable sense, and this gives a weak
map of monads

(A-Gph, Q) � (A′-Gph, Q′).

(The checks involved here use the fact that J∗ : A′ � A is induced by J : A � A′;
again, this is an unnecessarily strong hypothesis, but serves our purpose.) Gluing together
these two weak maps of monads gives a third weak map of monads,

(A-Gph, T̃ ) � (A′-Gph, T̃ ′),

as required. One can easily check that the diagram in the last sentence of the Proposition
commutes.

Theorem C.1.1(b) can now be proved by induction on n.
For the base step, take the monads T0 on G0 = [G0,Set]∼=Set and T1 on G1 =

[G1,Set], and the inclusion J : G0
� G1. Then T0 is the identity monad, T1 is the free

category monad, and R0 = J∗ : G1
� G0 assigns to a directed graph its set of objects.

Hence R0 is naturally a weak map of monads. (With the usual description of T1, R0 is

in fact a strict map of monads, i.e. the isomorphism T0◦R0
∼� R0◦T1 is the identity.)

Moreover, the map GT1
1

� GT0
0 induced by this monad map is the objects functor S0,

once one has identified GT1
1 with 1-Cat and GT0

0 with 0-Cat.
For the inductive step, let n ≥ 1 and apply Proposition C.2.3 with A = Gn, A′ = Gn−1,

the inclusion J : Gn−1
� Gn, the monad T = Tn on A = Gn, and the monad T ′ = Tn−1

on A′ = Gn−1. Then J∗ = Rn−1, which by inductive hypothesis is a weak map of monads.
This makes J∗-Gph into a weak map of monads

(A-Gph, T̃ ) � (A′-Gph, T̃ ′),



188 TOM LEINSTER

and using the equivalences Gn-Gph�Gn+1, Gn−1-Gph�Gn, this says that Rn is a weak
map of monads

(Gn+1, Tn+1) � (Gn, Tn).
By the last part of Proposition C.2.3, the functor from GTn+1

n+1 (� (n + 1)-Cat) to GTn
n

(�n-Cat) induced by this map of monads is indeed Sn.

C.3. Representation by pasting diagrams. We finish this appendix by showing
that if T = Tω is the free strict ω-category monad on Gω, and X a globular set, then

(TX)(n)∼=
∐

π∈pd(n)

Gω(π̂, X)

for all n ∈ N. Really this is just the beginning of a longer story which is not told here.
Having given concrete descriptions of the globular set pd and the globular sets π̂, we
could, as hinted on page 144, go on to specify further data which would determine the
whole monad structure (T, η, µ). Such data would, for instance, encode the process of
composition in the strict ω-category pd, i.e. the gluing together of pasting diagrams.

By analogy, the Carboni-Johnstone paper [CJ] discusses how a family (π̂)π∈P of sets
gives rise to a cartesian endofunctor T =

∐
π∈P Set(π̂,—) on Set, and contains the result

that any cartesian endofunctor on Set arises in this way. (To be precise, the condition is
that T preserves wide pullbacks, not just ordinary pullbacks.) The paper also goes some
of the way towards saying what, in terms of the representing family (π̂)π∈P , a cartesian
monad structure on such an endofunctor would be.

What I envisage is that this theory extends from Set to functor categories [A,Set].
This would mean that the free strict ω-category monad, purely on the grounds of being
cartesian, is familially representable in a suitable sense, and the theory should tell us
what the representing family is—namely, (π̂)π∈pd(n) for each n, together with the extra
data alluded to above. This extended theory seems to work perfectly well, but the details
become so formidable that an ad hoc approach seems more sensible here.

Before proving our result we need some notation. If X is a globular set then denote
by X [n] the n-globular set obtained by truncating X: in other words, the image of X
under the limit-projection Gω � Gn. If Y is an (n + 1)-globular set and y, y′ ∈ Y (0)
then there is an n-globular set Y (y, y′) given by

(Y (y, y′))(k) = {z ∈ Y (k + 1) | sk(z) = y, tk(z) = y′}.
The same definition can be made when Y is an (ω-)globular set, in which case Y (y, y′) is
also an (ω-)globular set.

Next, let Pn+1 : Gn+1
� Gn+1 be the functor given by

(Pn+1Y )(0) = Y (0), (Pn+1Y )(y, y′) = Tn(Y (y, y′))

(y, y′ ∈ Y (0)), and let Qn+1 : Gn+1
� Gn+1 be the functor given by

(Qn+1Y )(0) = Y (0),

(Qn+1Y )(y, y′) =
∐

y=y0,...,yr=y′
Y (y0, y1) × · · · × Y (yr−1, yr).



OPERADS IN HIGHER-DIMENSIONAL CATEGORY THEORY 189

The arguments of the previous subsection established that Tn+1
∼=Qn+1◦Pn+1.

The proof of the present result is by induction on n. First of all, if X is a globular set
then

(TωX)(0) = (TωX)[0](0) = (T0X
[0])(0) = X(0)∼=

∐
π∈pd(0)

Gω(π̂, X),

the second equality coming from the definition of Tω as the limit of the Tn’s. Now suppose
that the theorem holds for some n ≥ 0. We have

(TωX)(n+ 1)

= (TωX)[n+1](n+ 1)

= (Tn+1X
[n+1])(n+ 1)

∼= (Qn+1Pn+1X
[n+1])(n+ 1)

∼=
∐

x,x′∈X(0)

((Qn+1Pn+1X
[n+1])(x, x′))(n)

∼=
∐

x0,...,xr∈X(0)

(Tn(X
[n+1](x0, x1)))(n) × · · · × (Tn(X

[n+1](xr−1, xr)))(n)

=
∐

x0,...,xr∈X(0)

(Tω(X(x0, x1)))(n) × · · · × (Tω(X(xr−1, xr)))(n)

∼=
∐

x0,...,xr∈X(0),

π1,...,πr∈pd(n)

Gω(π̂1, X(x0, x1)) × · · · × Gω(π̂r, X(xr−1, xr))

∼=
∐

π1,...,πr∈pd(n)

Gω( ̂(π1, . . . , πr), X)

∼=
∐

π∈pd(n+1)

Gω(π̂, X)

where in the penultimate isomorphism we use the construction of ̂(π1, . . . , πr) from
π̂1, . . . , π̂r (equation (14)). This completes the induction.

D. Existence of initial operad-with-contraction

Here we prove that the category OWC of operads-with-contraction has an initial object,
as required in 4.1.

D.1. The strategy. The explanation in 4.5 suggests a way of constructing the initial
operad-with-contraction explicitly: ascend through the dimensions, at each stage freely
adding in elements got by contraction and then freely adding in elements got by operadic
composition. However, we do not take this route here, instead relying on the following
result from Kelly’s paper [Kel2]:
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D.1.1. Theorem. Let

D � C

B
�

P
� A

Q
�

be a (strict) pullback diagram in CAT. If A is locally finitely presentable and each of P
and Q is finitary and monadic, then the functor D � A is also monadic.

All we need to take from this is:

D.1.2. Corollary. In the situation of Theorem D.1.1, D has an initial object.

Proof. By definition, a locally finitely presentable category is cocomplete, so A has an
initial object. The functor D � A has a left adjoint (being monadic), which applied
to the initial object of A gives an initial object of D.

We apply this corollary as follows. Let T be the free strict ω-category monad on the
category E = [G,Set], as in Section 4. Write Coll for the category E/pd of collections
(i.e. T -graphs on 1: see 4.3). Write Oper for the category of T -operads; then there is a
forgetful functor Oper � Coll. As observed on page 151, the definition of a contraction
on a T -operad is really a definition of a contraction on a collection, which means that we
have a category CWC of collections-with-contraction and a (strict) pullback diagram

OWC � Oper

CWC
�

� Coll
�

in CAT.
All we need to do now is check that the hypotheses of Theorem D.1.1 hold in this

situation, and that is the content of the next subsection.

D.2. The proof.

Hypothesis on Coll. We have first to check that Coll is locally finitely presentable.
Indeed, if Gr(pd) is the Grothendieck fibration (category of elements) of the functor
pd : G � Set, then

Coll∼= [G,Set]/pd� [Gr(pd),Set],

and any category of the form [A,Set] (with A small) is locally finitely presentable: see
[Borx2], Example 5.2.2(b).
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Hypotheses on U : CWC � Coll. We have to see that U is finitary and monadic.
It is straightforward to calculate that U creates filtered colimits; and since Coll possesses
all filtered colimits, U preserves them too. It is also easy to calculate that U creates
coequalizers for U -split coequalizer pairs. Hence we have only to show that U has a left
adjoint.

We construct a left adjoint F explicitly. Let C be a collection, and define a new
collection FC and a map αC : C � FC inductively as follows:

• if π ∈ pd(0) then (FC)(π) = C(π)

• if π ∈ pd(1) then (FC)(π) = C(π) + (C(∂π) × C(∂π))

• if n ≥ 2 and π ∈ pd(n) then

(FC)(π) = (28)

C(π) + {(ψ0, ψ1) ∈ (FC)(∂π)2 | s(ψ0) = s(ψ1) and t(ψ0) = t(ψ1)}

• αC,π : C(π) ⊂ � (FC)(π) is inclusion as the first component, for all π

• if n ≥ 1 and π ∈ pd(n) then the source map s : (FC)(π) � (FC)(∂π) is given
by

– the composite C(π)
s� C(∂π)

αC,∂π� (FC)(∂π), on the first summand

– first projection, on the second summand,

and the target map is defined similarly.

It is easy to check that the globularity relations in FC are satisfied, so that FC forms
a collection, and that αC : C � FC is a map of collections.

In the notation of 4.1, the set {. . .} in equation (28) is Pπ(FC), so

(FC)(π) = C(π) + Pπ(FC)

for any n ≥ 1 and π ∈ pd(n). Thus we can define a contraction κC on FC by taking κCπ
to be second inclusion Pπ(FC) ⊂ � (FC)(π).

We have now associated to each collection C a collection-with-contraction (FC, κC)
and a map αC : C � FC of collections. Another easy check shows that αC has the
appropriate universal property, so that U has a left adjoint.

Hypotheses on Oper � Coll. Again, we have to see that this functor is finitary
and monadic.

Monadicity will follow from Theorems 3.3.2 and 3.3.3 just as long as T is finitary,
which is true by Theorem C.0.3.

Let T ′
1 be the monad on Coll induced by Oper � Coll and its left adjoint. The fact

that T is finitary also implies that T ′
1 is finitary, by the ‘moreover’ part of Theorem 3.3.2.

So our monadic adjunction is finitary, as required.
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[JS] André Joyal, Ross Street, Braided tensor categories (1993). Advances in Mathematics 102, pp. 20–78.

[Kel1] G. M. Kelly, On clubs and doctrines (1974). In: Category Seminar, Springer LNM 420, pp. 181–256.



OPERADS IN HIGHER-DIMENSIONAL CATEGORY THEORY 193

[Kel2] G. M. Kelly, A unified treatment of transfinite constructions for free algebras, free monoids, colimits,
associated sheaves, and so on (1980). Bulletin of the Australian Mathematical Society, Vol. 22,
pp. 1–83.

[KS] G. M. Kelly, R. Street, Review of the elements of 2-categories (1974). In: Category Seminar, Springer
LNM 420, pp. 75–103.

[Kos] Jürgen Koslowski, Monads and interpolads in bicategories (1997). Theory and Applications of Categories,
Vol. 3, No. 8, pp. 182–212.

[Lam] Joachim Lambek, Deductive systems and categories II: standard constructions and closed categories
(1969). In: Category Theory, Homology Theory and their Applications I, ed. P. Hilton, Springer
LNM 86.

[Lei1] Tom Leinster, General operads and multicategories (1997). E-print math.CT/9810053.

[Lei2] Tom Leinster, Basic bicategories (1998). E-print math.CT/9810017.

[Lei3] Tom Leinster, Structures in higher-dimensional category theory (1998). E-print math.CT/0109021.

[Lei4] Tom Leinster, fc-multicategories (1999). E-print math.CT/9903004.

[Lei5] Tom Leinster, Generalized enrichment for categories and multicategories (1999). E-print math.CT/
9901139.

[Lei6] Tom Leinster, Generalized enrichment of categories (1999). E-print math.CT/0204279. Also Journal of
Pure and Applied Algebra 168 (2002), no. 2–3, 391–406.

[Lei7] Tom Leinster, Homotopy algebras for operads (2000). E-print math.QA/0002180.

[Lei8] Tom Leinster, What’s a monoidal category? (2000). Poster at CT2000, Como, Italy.

[Lei9] Tom Leinster, Higher Operads, Higher Categories (2003). E-print math.CT/0305049; also London Math-
ematical Society Lecture Note Series 298, Cambridge University Press, to appear.

[Lew] Geoffrey Lewis, Coherence for a closed functor (1972). In: Coherence in Categories, ed. Kelly, Laplaza,
Lewis, Mac Lane, Springer LNM 281.

[May1] J. P. May, The Geometry of Iterated Loop Spaces (1972). Springer LNM 271.

[May2] J. P. May, Definitions: operads, algebras and modules (1997). In: Operads: Proceedings of Renaissance
Conferences, ed. Loday, Stasheff, Voronov, Contemporary Mathematics 202, AMS.

[Pow] A. J. Power, A general coherence result (1989). Journal of Pure and Applied Algebra 57, no. 2, 165–173.

[Sny1] Craig T. Snydal, Equivalence of Borcherds G-vertex algebras and axiomatic vertex algebras (1999).
E-print math.QA/9904104.

[Sny2] Craig T. Snydal, Relaxed multi category structure of a global category of rings and modules (1999).
E-print math.QA/9912075.

[Soi] Y. Soibelman, Meromorphic tensor categories (1997). E-print q-alg/9709030.

[Str1] Ross Street, The formal theory of monads (1972). Journal of Pure and Applied Algebra 2, pp. 149–168.

[Str2] Ross Street, Categorical structures (1995). In: Handbook of Algebra, Vol. 1, ed. M. Hazewinkel, Elsevier
North-Holland.

[Str3] Ross Street, The role of Michael Batanin’s monoidal globular categories (1997). In: Higher Category
Theory (Evanston, IL, 1997), Contemporary Mathematics 230, AMS, 1998.



194 TOM LEINSTER

[Wal] R. F. C. Walters, Sheaves and Cauchy-complete categories (1981). Cahiers Top. Geom. Diff., Vol. XXII,
No. 3.

Department of Mathematics, University of Glasgow, Glasgow G12 8QW, United Kingdom
Email: t.leinster@maths.gla.ac.uk

This article may be accessed via WWW at http://www.tac.mta.ca/tac/ or by anony-
mous ftp at ftp://ftp.tac.mta.ca/pub/tac/html/volumes/12/3/12-03.{dvi,ps}



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.

Articles appearing in the journal have been carefully and critically refereed under the responsibility
of members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

The method of distribution of the journal is via the Internet tools WWW/ftp. The journal is archived
electronically and in printed paper format.

Subscription information. Individual subscribers receive (by e-mail) abstracts of articles as
they are published. Full text of published articles is available in .dvi, Postscript and PDF. Details will
be e-mailed to new subscribers. To subscribe, send e-mail to tac@mta.ca including a full name and
postal address. For institutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh,
rrosebrugh@mta.ca.

Information for authors. The typesetting language of the journal is TEX, and LATEX is the
preferred flavour. TEX source of articles for publication should be submitted by e-mail directly to an
appropriate Editor. They are listed below. Please obtain detailed information on submission format and
style files from the journal’s WWW server at http://www.tac.mta.ca/tac/. You may also write to
tac@mta.ca to receive details by e-mail.

Editorial board.

John Baez, University of California, Riverside: baez@math.ucr.edu
Michael Barr, McGill University: barr@barrs.org, Associate Managing Editor
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Aurelio Carboni, Università dell Insubria: aurelio.carboni@uninsubria.it
Valeria de Paiva, Palo Alto Research Center: paiva@parc.xerox.com
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk
G. Max Kelly, University of Sydney: maxk@maths.usyd.edu.au
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, University of Western Sydney: s.lack@uws.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
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