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CANONICAL AND OP-CANONICAL LAX ALGEBRAS

GAVIN J. SEAL

Abstract. The definition of a category of (T,V)-algebras, where V is a unital com-
mutative quantale and T is a Set-monad, requires the existence of a certain lax extension
of T. In this article, we present a general construction of such an extension. This leads to
the formation of two categories of (T,V)-algebras: the category Alg(T,V) of canonical
(T,V)-algebras, and the category Alg(T′,V) of op-canonical (T,V)-algebras. The usual
topological-like examples of categories of (T,V)-algebras (preordered sets, topological,
metric and approach spaces) are obtained in this way, and the category of closure spaces
appears as a category of canonical (P,V)-algebras, where P is the powerset monad. This
unified presentation allows us to study how these categories are related, and it is shown
that under suitable hypotheses both Alg(T,V) and Alg(T′,V) embed coreflectively
into Alg(P,V).

1. Introduction

Following the description by Manes [11] of the category of compact Hausdorff spaces
as the Eilenberg-Moore category of the ultrafilter monad U, Barr [1] showed that by
weakening the axioms used to define a monad and its algebras, the resulting Eilenberg-
Moore category could be seen to be isomorphic to the category Top of topological spaces.
The category Met of premetric spaces benefitted from a similar treatment in Lawvere’s
fundamental paper [9], via the identity monad I this time. In recent years, Clementino,
Hofmann, and Tholen [2, 6, 5] extended these results and provided a unified setting that
presented each of these categories as a particular instance of the category Alg(T,V) of
so-called (T,V)-algebras, where T is a Set-monad and V a unital commutative quantale.
For example, if V is the two-element lattice 2, the category Alg(T,2) is isomorphic to
either the category Ord of preordered sets or to Top, by taking T to be the identity or
the ultrafilter monad, respectively. In the same way, if V is the extended real half-line
R+, then Alg(T,R+) is isomorphic to either Met or to the category App of approach
spaces depending on whether T = I or U.

Although the scope of this unified setting is striking, closure spaces do not seem to
appear as such (T,V)-algebras. This gap comes as a surprise, since all the mentioned
structures are intimately linked to certain “closure-like” operators. Also, the powerset
monad—which is a natural candidate for T—does not appear to provide any meaningful
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example. A similar situation seems to occur for the filter monad F, whose corresponding
(F,V)-algebras lack a certain monotonicity condition to describe topological spaces con-
veniently. Note however that by lifting the theory to a larger setting (see [13] and [8]), it
is possible to include the monotonicity condition in the definition of the algebras.

The original intent of the present work was to close the “closure space/powerset” gap
by showing that closure spaces could be described as (T,V)-algebras via the powerset
monad, modulo a slight modification in the axioms used to define (T,V)-algebras. In
the process, a crucial property of lax algebras appeared, namely that the monotonicity
condition is a consequence of the reflexivity and transitivity of the structure matrices.
This led to reconsider the case of the filter monad, and it resulted that Top could be
shown to be isomorphic to a category of (F,2)-algebras without the use of any additional
construction. By investigating further the algebras related to this monad, it also followed
that App could be described as a category of (F,R+)-algebras.

In fact, an important aspect of the theory was beginning to emerge. Indeed, before
considering the category Alg(T,V) itself, a certain extension of the monad T is required.
One approach to the existence of such an extension is discussed in [3], and unicity is
obtained for V = 2. With the weaker axioms introduced here however, it is possible
to put forth two other extensions of T by assuming similar conditions on T and V, but
with very different techniques. Because all the significant examples may be obtained
in this manner, the extensions described here are called the canonical and op-canonical
extensions of T, depending on whether the structures of the resulting (T,V)-algebras are
monotone increasing or decreasing in their first variable. For example, the category Clos
of closure spaces may be obtained as a (P,2)-algebra via the canonical extension of P, and
the category Top as a (F,2)-algebra via the op-canonical extension of F. Although all
the examples mentioned in this introduction are isomorphic to canonical (T,V)-algebras,
where T is one of I, U or P, they may also be described as either canonical or op-canonical
(T,V)-algebras, where T is one of F or P (in all cases, V is either 2 or R+). Moreover,
a new category appears: the category Clsn of closeness spaces whose objects are the
metric counterpart of closure spaces, in the same way that approach spaces are the metric
counterpart of topological spaces.

Thus, denoting by Alg(T,V) the category of canonical (T,V)-algebras, and by
Alg(T′,V) the category of op-canonical (T,V)-algebras, we obtain the following list of
isomorphisms:

Ord ∼= Alg(I,2) ∼= Alg(P′,2) Met ∼= Alg(I,R+) ∼= Alg(P′,R+)
Top ∼= Alg(U,2) ∼= Alg(F′,2) App ∼= Alg(U,R+) ∼= Alg(F′,R+)
Clos ∼= Alg(P,2) ∼= Alg(F,2) Clsn ∼= Alg(P,R+) ∼= Alg(F,R+)

From a general point of view, it is possible to determine a certain number of adjunctions
between these categories which result in either embeddings or isomorphisms. In particular,
the category of op-canonical (P,V)-algebras—which is isomorphic to Alg(I,V)—embeds
as a full coreflective subcategory into the category of op-canonical (T,V)-algebras, and
under a suitable hypothesis, the category of canonical (T,V)-algebras embeds as a full
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coreflective subcategory into the category of canonical (P,V)-algebras. For T = I or
U, the (T,V)-algebras are both canonical and op-canonical, so the mentioned results are
illustrated by the two horizontal lines in the following commutative diagram of coreflective
embeddings:

Ord

��

�� Top

��

�� Clos

��

Met �� App �� Clsn

where the vertical arrows are induced by the coreflective embedding E : 2 → R+, as
described in [5].

The general theory pertaining to these results is presented in Sections 2 to 4. Sections 5
and 6 contain the applications of the theory to the powerset and filter monads, although
these are also used throughout the previous sections to illustrate the different definitions
introduced therein.

2. Lax algebras

There are two major differences between the definition of lax algebras given in [5] or
[6], and the weaker one given here. First, it is sufficient for our purpose to work with
a lax extension T

M
of a Set-functor T : Set → Set rather than with a V-admissible

monad; indeed, the close interplay occurring between Set and Mat(V) allows us to use
the properties of the original monad, without reference to the op-laxness in Mat(V) of
either its unit or multiplication (see for example the proof of the monotonicity of a lax
algebra’s structure matrix in 2.6, or the proof of Proposition 2.7). Second, in order to
include closure spaces as models of lax algebras, the lax functor T

M
: Mat(V) → Mat(V)

must not extend the functor T : Set → Set strictly, nor commute with the involution ◦;
the replacement conditions are given in (1) below. For the sake of completeness and
in order to settle the notations, we begin by recalling the main definitions and results
pertaining to (T,V)-algebras.

2.1. Quantales. Throughout this article, V will denote a unital commutative quantale,
i.e. a complete lattice provided with an associative and commutative binary operation ⊗
which preserves suprema in each variable:

a ⊗
∨
i∈I

bi =
∨
i∈I

(a ⊗ bi),

and for which there is a neutral element k. The bottom and top elements of V are denoted
by ⊥ and � respectively.

For example, the two-element chain 2 = {⊥,�} with x ⊗ y being the infimum of x
and y, and k = � is a suitable candidate for V.
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The extended half-line R+ = [0,∞], considered for our purpose with the order opposite
to the natural order, with ⊗ being the addition (for which ∞ is an absorbing element)
and k the top element 0, is another candidate for V.

2.2. V-matrices. The objects of the category Mat(V) are sets, and the morphisms
r : X � Y are functions r : X × Y → V; these morphisms will often be referred to as V-
matrices, (or simply as matrices) since they may be viewed as matrices (r(x, y))x∈X,y∈Y .
Composition is given by

(sr)(x, z) =
∨
y∈Y

r(x, y) ⊗ s(y, z) ,

where r : X � Y and s : Y � Z. The identity 1X : X � X is defined by 1X(x, y) = k if
x = y and 1X(x, y) = ⊥ otherwise.

There is a partial order on the hom-sets of Mat(V) induced by the partial order on
V, and given by r ≤ r′ if and only if r(x, y) ≤ r′(x, y) for all x ∈ X, y ∈ Y ; this order
is compatible with composition. There is also an order-preserving involution sending a
morphism r : X � Y to its transpose r◦ : Y � X defined by r◦(y, x) = r(x, y). Note
that (1X)◦ = 1X and (sr)◦ = r◦s◦ by commutativity of ⊗.

Finally, there is a functor M : Set → Mat(V) which maps objects identically and
sends a map f : X → Y to the matrix f : X � Y given by

f(x, y) =

{
k if f(x) = y
⊥ otherwise.

Naturally, the functor M sends the identity map to the identity matrix. Since it will
always be possible to deduce from the context whether we are working with a Set-map
f : X → Y or its image f : X � Y , we will not use the notation Mf : X � Y . Thus,
by composing a map f : X → Y , a matrix s : Y � Z, and the transpose of a map
g : Y → Z, we get the convenient formula (g◦sf)(x, y) = s(f(x), g(y)). Notice also that
1X ≤ f ◦f and ff ◦ ≤ 1X , so for t : X � Z we have

t ≤ sf ⇐⇒ tf◦ ≤ s and gr ≤ t ⇐⇒ r ≤ g◦t .

These properties may be used to obtain the pointwise notation of the various conditions
presented further on (see [5] for details).

2.3. Monads. A Set-monad T is a triple (T, e,m), where T : Set → Set is a functor,
and the unit e : Id → T and multiplication m : TT → T of T are natural transformations
satisfying

m(Te) = 1 = m(eT ) and m(Tm) = m(mT ) .

The identity monad I is simply the triple (Id, 1, 1).
The powerset monad P = (P, e,m) is defined as follows. The powerset functor P

assigns to a set X the set PX of subsets of X, and sends a map f : X → Y to Pf :
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PX → PY defined by Pf(A) = {f(x) |x ∈ A}, where A ⊆ X. For x ∈ X and A ∈ PPX,
the maps eX and mX are given by

eX(x) = {x} and mX(A) =
⋃A .

The filter monad F = (F, e,m) is defined as follows. The filter functor F assigns to a
set X the set FX of filters on X, and sends a map f : X → Y to Ff : FX → FY defined
by A ∈ Ff(f) ⇐⇒ f−1(A) ∈ f, where f ∈ FX. The maps eX and mX are given by

A ∈ eX(x) ⇐⇒ x ∈ A and A ∈ mX(F) ⇐⇒ A� ∈ F ,

where A� = {f ∈ FX |A ∈ f}, x ∈ X and F ∈ FFX.
Finally, the ultrafilter monad U = (U, e,m) is defined similarly to the filter monad, by

replacing the filter functor F by the ultrafilter functor U which assigns to a set X the set
of ultrafilters on X.

2.4. Lax extensions of T . A lax extension of a Set-functor T is a map

T
M

: Mat(V) → Mat(V)

(r : X � Y ) → (T
M

r : TX � TY )

which preserves the partial order on the hom-sets and satisfies

(1) Tf ≤ T
M

f and (Tf)◦ ≤ T
M

f ◦ ,

(2) (T
M

s)(T
M

r) ≤ T
M

(sr)

for all f : X → Y , r : X � Y and s : Y � Z. A Set-monad T = (T, e,m) equipped with
a lax extension T

M
of T will be called a lax extension of (T, e,m), and will be denoted

slightly abusively by T = (T
M

, e,m). It should be stressed however that (T
M

, e,m) is not
a lax monad in the sense of [3]; in particular, e and m need not be op-lax in Mat(V) (see
however Proposition 3.5 below).

In the presence of a Set-map, (2) may become an equality and allow part of (1) to be
treated as such. Indeed, if f : X � Y and g : Y � Z come from Set-maps, then

T
M

(sf) = (T
M

s)(Tf) = (T
M

s)(T
M

f) and T
M

(g◦r) = (Tg)◦(T
M

r) = (T
M

g◦)(T
M

r) .

The first set of equalities follows from

T
M

(sf) ≤ T
M

(sf)(Tf)◦(Tf) ≤ T
M

(sf)(T
M

f ◦)(Tf)

≤ (T
M

(sff ◦))(Tf) ≤ (T
M

s)(Tf) ≤ (T
M

s)(T
M

f) ≤ T
M

(sf) ,

and the second is obtained similarly.
Notice that if T

M
: Mat(V) → Mat(V) is a lax extension of T , then T ′

M
: Mat(V) →

Mat(V) given by
T ′

M
r := (T

M
r◦)◦ ,

is also a lax extension of T . As we will show further on, these two extensions are not
necessarily equal.
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2.5. The induced preorder. A lax extension T
M

of a Set-functor T induces the
following preorder on the set TX:

x ≤ y ⇐⇒ k ≤ T
M

1X(y, x) ,

where x, y ∈ TX. Indeed, the condition (1) yields reflexivity, while (2) yields transitivity.
As a consequence, if x ≤ x′ and y′ ≤ y, then T

M
r(x, y) ≤ T

M
r(x′, y′), which means that T

M
r

preserves this preorder in the first variable and reverses it in the second. Similarly, T ′
M

r
reverses it in the first variable and preserves it in the second.

If f : X → Y is a Set-map, and x, y are elements of TX such that x ≤ y, then

T
M

1Y (Tf(y), T f(x)) = (Tf)◦(T
M

1Y )(Tf)(y, x) = T
M

(f ◦f)(y, x) ≥ 1X(y, x) ≥ k ,

so that Tf(x) ≤ Tf(y). This shows that Tf preserves the preorder on TX (and T may
be seen as a functor T : Set → Ord).

2.6. Lax algebras. For a Set-monad T = (T, e,m) equipped with a lax extension T
M

of T , the category Alg(T,V) of (T,V)-algebras, also called lax algebras, has as objects
pairs (X, r) with X a set and r : TX � X a structure matrix satisfying the reflexivity
and transitivity laws:

(3) 1X ≤ reX ,

(4) r(T
M

r) ≤ rmX .

A morphism f : (X, r) → (Y, s) is a Set-map f : X → Y satisfying:

(5) r ≤ f ◦s(Tf) ,

and composing as in Set.
A crucial property of the structure matrix of a lax algebra (X, r) is the preservation

of the preorder on TX (in the first variable):

x ≤ y =⇒ r(x, z) ≤ r(y, z) .

Indeed, reflexivity of r yields 1TX ≤ T
M

1X ≤ (T
M

r)(TeX), so that if x, y ∈ TX are such
that x ≤ y, we have

r(x, z) ≤ T
M

1X(y, x) ⊗ r(x, z) ≤ T
M

r(TeX(y), x) ⊗ r(x, z) ≤ r(y, z) ,

by transitivity of r. Moreover, if the previous monad T is replaced by the monad T′ =
(T ′

M
, e,m) (but the preorder on TX is still defined via T

M
), then a similar argument yields

that r reverses the preorder on TX:

x ≤ y =⇒ r(y, z) ≤ r(x, z) .

If k is the top element of V, then a morphism f : (X, r) → (Y, s) of (T,V)-algebras may
be defined by using T

M
in place of T . Indeed, in this case s(T

M
1Y )(x, z) =

∨
y≤x s(y, z) =

s(x, z), so that f ◦s(Tf) = f ◦s(T
M

1Y )(Tf) = f ◦s(T
M

f). The same argument holds in the
case where f : (X, r) → (Y, s) is a morphism of (T′,V)-algebras.
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2.7. Proposition. The category of (T,V)-algebras is topological. In fact, for a family
of (Yi, si)i∈I of (T,V)-algebras and (fi : X → Yi)i∈I of Set-maps, the initial structure r
on X can be described by r =

∧
i∈I f ◦

i si(Tfi), or

r(x, y) =
∧
i∈I

si(Tfi(x), fi(y))

in pointwise notation, where x ∈ TX and y ∈ X.

Proof. This result may be proved as in [5].

2.8. Examples of (T,V)-algebras. Since a (T,V)-algebra in the sense of [5] is a
(T,V)-algebra in the above sense, we have the following examples.

The category Alg(I,2) is the category Ord of preordered sets, and Alg(I,R+) is the
category Met of premetric spaces.

For the ultrafilter monad U = (U, e,m), we can define the lax extension

U
M

r(x, y) :=
∧
A∈x
B∈y

∨
x∈A
y∈B

r(x, y) ,

where r : X � Y , x ∈ UX and y ∈ UY . Then Alg(U,2) is isomorphic to the category
Top of topological spaces, and Alg(U,R+) to the category App of approach spaces.

2.9. Taut monads. A functor T : Set → Set is taut if it preserves inverse images, i.e.
for any map f : X → Y and subset B of Y , the pullback (Tf)−1(TB) is isomorphic to
T (f−1(B)). As a consequence, if ι : A → X is an injection, then Tι : TA → TX is one
too (this allows us to avoid certain technical difficulties related to injections of empty sets
into non-empty sets). In order to simplify notations, if A is a subset of X we will consider
TA as a subset of TX, and similarly (Tf)−1(TB) will be identified with T (f−1(B)). In
the same way, we will write Tf(TA) ⊆ T (f(A)) for any A ⊆ X. Finally, note that a taut
functor preserves finite intersections.

Let T = (T, e,m) be a Set-monad with taut T . If the unit e and multiplication m are
taut :

eX(y) ∈ TA ⇐⇒ y ∈ A and mX(X) ∈ TA ⇐⇒ X ∈ TTA

for any set X and A ⊆ X, then the monad T itself is said to be taut. Of course, e is
taut if and only if eX is injective for all X. Moreover, if T is taut, then so is e (see [12],
Proposition 2.3).

The identity, powerset, filter and ultrafilter monads are all taut, and the previous
identification convention yields natural results for their functors. Indeed, in the case of
the powerset functor, we have for A,B ∈ PX that A ∈ PB ⇐⇒ A ⊆ B. In the case of
the filter functor, we have for f ∈ FX that f ∈ FA ⇐⇒ A ∈ f, so with the notations of
2.3 we may write A� = FA.
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2.10. Remark. Since the Beck-Chevalley condition (BC) of [2] has several important
consequences in the theory of lax algebras, it is worth mentioning that if a functor satisfies
(BC), then it it is naturally taut.

2.11. Completely distributive lattices. Let V be a complete lattice, and a, b ∈ V.
Define a ≺ b whenever the following condition holds:

for any subset S ⊆ V with b ≤
∨

S, there exists s ∈ S satisfying a ≤ s .

The lattice V is completely distributive (see [14]) if for any b ∈ V, we have

b =
∨

{a ∈ V | a ≺ b} .

It follows immediately from its definition that the relation ≺ has the following properties:

i) a ≺ b implies a ≤ b;

ii) a ≤ a′ ≺ b′ ≤ b implies a ≺ b;

iii) a ≺ ∨
S implies there exists s ∈ S with a ≺ s.

For elements u and v of a completely distributive lattice, if a ≺ v for any a ∈ V
with a ≺ u, then we can conclude that u ≤ v by taking the join of all elements a ≺ u.
This argument will be used systematically in the following without necessarily explicit
mention.

Notice that the lattice 2 is completely distributive (in which case ≺ is ≤), and the
extended real half-line R+ is too (with ≺ being <).

3. Canonical constructions

3.1. Canonical extensions. For a V-matrix r : X � Y , define

ra[A] := {y ∈ Y | there exists x ∈ A with a ≤ r(x, y)}
and T

M
r(x, y) :=

∨
{a ∈ V | y ∈ T (ra[A]) for all A with TA � x} ,

where a ∈ V, A ⊆ X, x ∈ TX and y ∈ TY . Since the lax extension T ′
M

obtained from
T

M
(see 2.4) will be of importance in the rest of this article, we explicit the corresponding

definitions:

r◦a[B] := {x ∈ X | there exists y ∈ B with a ≤ r(x, y)}
and T ′

M
r(x, y) :=

∨
{a ∈ V | x ∈ T (r◦a[B]) for all B with TB � y} ,

where a ∈ V, B ⊆ Y , x ∈ TX and y ∈ TY . In case r is a 2-matrix, we will prefer to write
r[A] and r◦[A] in place of r�[A] and r◦�[A] respectively. It will be proved further on that
both T

M
and T ′

M
form lax extensions of T . The T

M
defined above is called the canonical

extension of T , and T ′
M

is the op-canonical extension of T . Lemma 3.3 shows that if V
is completely distributive, then the sets ra[A] used to define T

M
can be replaced by the

smaller sets ra[A] defined therein.
Remark that a ≤ b implies rb[A] ⊆ ra[A], and that A ⊆ B implies ra[A] ⊆ ra[B].
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3.2. The canonical induced preorder. In the case where T
M

is the canonical
extension of T , the preorder on TX described in 2.5 is given by

x ≤ y ⇐⇒ for any A ⊆ X, if y ∈ TA then x ∈ TA ,

where x, y ∈ TX. From now on, this will be the preorder used on TX. Note that it is
preserved by mX whenever m is taut.

This preorder yields the natural order induced by the functors considered in this article.
Indeed, if T is the powerset functor P and A,B are subsets of X, then A ≤ B ⇐⇒ A ⊆
B. If T is the filter functor F and x, y are filters on X, then x ≤ y ⇐⇒ x is finer than y,
since x ∈ TA may be interpreted as A ∈ x (see 2.9). Finally, if T is the identity functor I
or the ultrafilter functor U , then x ≤ y ⇐⇒ x = y.

3.3. Lemma. Let r : X � Y be a V-matrix, and suppose that V is completely
distributive. For a ∈ V, define

ra[A] := {y ∈ Y | there exists x ∈ A with a ≺ r(x, y)} .

Then for x ∈ TX and y ∈ TY , we have

T
M

r(x, y) =
∨

{a ∈ V | y ∈ T (ra[A]) for all A with TA � x} .

Proof. Define

S := {a ∈ V | y ∈ T (ra[A]) for all A with TA � x} and

S := {a ∈ V | y ∈ T (ra[A]) for all A with TA � x} .

Since ra[A] ⊆ ra[A], we naturally have
∨

S ≤ ∨
S.

Let b ∈ S and a ≺ b. This yields rb[A] ⊆ ra[A], so that if y ∈ T (rb[A]), then
y ∈ T (ra[A]). Therefore, a ≤ ∨

S and b ≤ ∨
S because V is completely distributive, and

we can conclude that
∨

S ≤ ∨
S.

3.4. Lemma. Let r : X � Y be a V-matrix, and suppose that V is completely
distributive. For any A ⊆ X and a ∈ V, we have

(T
M

r)a[TA] ⊆ T (ra[A]) ,

Proof. If y ∈ (T
M

r)a[TA], then there exists x ∈ TA with a ≺ T
M

r(x, y). Thus, there is
an element b ∈ V with a ≺ b such that for all B with TB � x, we have y ∈ T (rb[B]). In
particular, y ∈ T (rb[A]) ⊆ T (ra[A]), which yields the conclusion.
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3.5. Proposition. If T is a taut functor, then T
M

and T ′
M

defined in 3.1 are
lax extensions of T . Moreover, if T = (T, e,m) is a taut monad and V is completely
distributive, then e and m are both op-lax in Mat(V) with respect to T

M
, i.e. for any

V-matrix r : X � Y , we have

r ≤ e◦Y (T
M

r)eX and T 2
M

r ≤ m◦
Y (T

M
r)mX ,

and it follows that e and m are also op-lax with respect to T ′
M

.

Proof. Let us first prove that T
M

is a lax extension. If r, r′ : X � Y are two V-
matrices such that r ≤ r′, then we have ra[A] ⊆ r′a[A] for any A ⊆ X and a ∈ V, so that
T

M
r ≤ T

M
r′. Thus, T

M
preserves the partial order on the hom-sets.

(1) Consider a map f : X → Y . To show that Tf(x, y) ≤ T
M

f(x, y), it is sufficient
to consider the case y = Tf(x). Let A ⊆ X be such that TA � x, so Tf(x) ∈
Tf(TA) ⊆ T (f(A)) and y ∈ T (f(A)). Since f(A) ⊆ fa[A] for any a ≤ k, we have
k ≤ T

M
f(x, y) as required.

To verify that (Tf)◦ ≤ T
M

f ◦, suppose as before that Tf(x) = y. For any B ⊆ Y with
y ∈ TB, we have x ∈ (Tf)−1(TB) = T (f−1(B)). Remarking that f−1(B) ⊆ f ◦

a [B]
for all a ≤ k, we may conclude that k ≤ T

M
f ◦(y, x).

(2) Consider two V-matrices r : X � Y and s : Y � Z. Let a, b ∈ V be such that
y ∈ T (ra[A]) for all A with TA � x, and z ∈ T (sb[B]) for all B with TB � y. For
these A, we have z ∈ T (sb[ra[A]]). Moreover,

sb[ra[A]] = {z ∈ Z | there exist x ∈ A, y ∈ Y with a ≤ r(x, y) and b ≤ s(y, z)}
⊆ {z ∈ Z | there exists x ∈ A with a ⊗ b ≤ (sr)(x, z)} = (sr)a⊗b[A] .

Since ⊗ preserves suprema in each variable, we get (T
M

s)(T
M

r) ≤ T
M

(sr) by taking
the join of all a, b ∈ V chosen as above.

Therefore, T
M

is a lax extension of T . But it also follows that T ′
M

is a lax extension of T
(see the concluding remark of 2.4).

To check that e is op-lax, consider a V-matrix r : X � Y , x ∈ X, y ∈ Y and
a = r(x, y). Thus, y ∈ ra[A] for all A � x. If eX(x) ∈ TA, then x ∈ A by injectivity of
eX , so that y ∈ ra[A]. This implies that a ≤ T

M
r(eX(x), eY (y)), and we can conclude that

r ≤ e◦Y (T
M

r)eX as required. It also follows directly that r ≤ e◦Y (T ′
M

r)eX .

To check that m is op-lax, let X ∈ TTX, Y ∈ TTY and a ∈ V such that a ≺
T 2

M
r(X,Y). Thus, if TTA � X, then Y ∈ T ((T

M
r)a[TA]) ⊆ TT (ra[A]) by Lemma 3.4.

This implies that mY (Y) ∈ T (ra[A]) for all A with TTA � X, or equivalently for all A with
TA � mX(X) because m is taut. Lemma 3.3 then yields that a ≤ T

M
r(mX(X),mY (Y)),

so T 2
M

r ≤ m◦
Y (T

M
r)mX by complete distributivity of V. The corresponding inequality for

T ′
M

easily follows.
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3.6. Canonical and op-canonical (T,V)-algebras. Consider the canonical and
op-canonical extensions T

M
and T ′

M
of T . If T = (T

M
, e,m) and T′ = (T ′

M
, e,m), then

a (T,V)-algebra will be called a canonical (T,V)-algebra, and a (T′,V)-algebra will be
called an op-canonical (T,V)-algebra. Recall from 2.6 that the structure matrix of a
canonical (T,V)-algebra preserves the preorder on TX in its first variable, and the struc-
ture matrix of an op-canonical (T,V)-algebra reverses it.

Examples of canonical and op-canonical (T,V)-algebras will be studied for the pow-
erset and the filter monads in the last two sections. Notice that it may happen that a
lax algebra is at the same time a canonical and op-canonical (T,V)-algebra: this is the
case for the identity monad for which Id

M
= Id′

M
= Id, or the ultrafilter monad for which

U ′
M

r = U
M

r (see Lemma 6.2); these situations are particular cases of the next proposition.
Notice also that there exist (T,V)-algebras that are neither canonical nor op-canonical:
this is the case for example for the lax algebras corresponding to the extension of Id
considered in [5], Remark 3.2.

3.7. Proposition. Suppose that T∅ = ∅ and for x ∈ TX,

TB ∩ TA �= ∅ for all A with TA � x =⇒ x ∈ TB ,

where B ⊆ X. Then the canonical and op-canonical extensions of T are equal.

Proof. Consider a V-matrix r : X � Y , x ∈ TX, y ∈ TY , and a ∈ V. Suppose
that a is such that y ∈ T (ra[A]) for all A with TA � x. If moreover TB � y, then
y ∈ T (ra[A]∩B) because T preserves intersections, so that T∅ = ∅ implies ra[A]∩B �= ∅.
Thus, for all A and B with TA � x and TB � y, there exist x ∈ A and y ∈ B such that
a ≤ r(x, y), or A ∩ r◦a[B] �= ∅. We then have TA ∩ T (r◦a[B]) �= ∅ because T preserves
inclusions. Since this inequality holds for all A with TA � x, we have x ∈ T (r◦a[B]) by
hypothesis. But this is true for all B with TB � y, so that a ≤ T ′

M
r(x, y). Therefore,

we have T
M

r(x, y) ≤ T ′
M

r(x, y). The same argument applied to r◦ : Y � X shows that
T ′

M
r(x, y) ≤ T

M
r(x, y), and we are done.

3.8. Corollary. If T preserves finite coproducts, then the canonical and op-canonical
extensions of T are equal.

Proof. Let us verify the hypotheses of the proposition. Since T preserves finite
coproducts, we have T∅ = ∅. Suppose now that x ∈ TX and B ⊆ X satisfy TB ∩TA �= ∅
for all A with TA � x, and set B′ = X \B. If x /∈ TB, then x ∈ TX \ TB = TB′ because
T preserves finite coproducts. But then TB ∩ TB′ = ∅, a contradiction. The proposition
then yields the desired result.

To conclude this section, we exhibit an interesting property of the op-canonical (T,V)-
algebras, which does not seem to have a counterpart in the canonical case.

3.9. Proposition. Let r : TX � X be the structure matrix of an op-canonical
(T,V)-algebra, and A a subset of TX. Then for X ∈ TA and z ∈ X, we have∧

x∈A
r(x, z) ≤ r(mX(X), z) .
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Moreover, if all x ∈ A satisfy x ≤ mX(X), then
∧

x∈A r(x, z) = r(mX(X), z).

Proof. Let a ∈ V be such that a ≤ ∧
x∈A r(x, z). Thus, a ≤ r(x, z) for all x ∈ A,

which implies that x ∈ r◦a[{z}] for all x ∈ A, and TA ⊆ T (r◦a[{z}]). So X ∈ T (r◦a[{z}])
by hypothesis, and we can conclude that a ≤ T ′

M
r(X, eX(z)) ≤ r(mX(X), z) because eX is

injective and r transitive.
The last equality naturally follows because r is preorder-reversing in its first variable.

3.10. Remark. From now on, we will suppose that the lattice V is completely
distributive.

4. Isomorphisms and embeddings

4.1. Extension conditions. Let T be a Set-functor and A a collection of subsets of
X. The following condition will be called the extension condition for A:

(E) for every 2-matrix r : X � Y , and y ∈ TY such that y ∈ T (r[B]) for all B ∈ A,
there exists x ∈ ⋂

B∈A TB such that y ∈ T (r[A]) for all A ⊆ X with TA � x.

For example, I and P both satisfy the extension condition for any A = {B} with
B ⊆ X. Similarly, U and F satisfy (E) for any filter or filter base A (this is true for U
by the Extension Lemma, see for example [8], Corollary 2.3).

4.2. Restriction of a monad. Let T = (T, e,m) and S = (S, d, n) be Set-monads
such that T and S are both taut, and suppose that the preorder induced on the sets SX
make them into complete atomistic lattices. We say that T is a restriction of S to atoms,
if there is a natural transformation ι : T → S, such that ιX sends TX bijectively onto the
set of atoms of SX, d = ιe, and nι2 = ιm (with ι2 = (Sι)(ιT ) = (ιS)(Tι)). In particular,
ι is a morphism of monads, so that T is a submonad of S.

For x ∈ TX we have x ∈ TA ⇐⇒ ιX(x) ∈ SA so the preorder induced on the sets
TX is also an order. Remark also that T∅ = ∅ because S∅ contains a unique element.

For B ⊆ SX, define

AB := {x ∈ TX | there exists f ∈ B with ιX(x) ≤ f} .

A restriction T of S is convenient if there exists a natural transformation σ : TS → ST
satisfying ιT = σ(Tι), as well as the following two conditions:

X ∈ TB =⇒ σX(X) ∈ SAB and σX(X) ∈ STA =⇒ X ∈ TSA

for any X ∈ TSX, B ⊆ SX, and A ⊆ X. Since ASA = TA for any A ⊆ X, these
conditions imply in particular that X ∈ TSA ⇐⇒ σX(X) ∈ STA, so n(ιS) = n(Sι)σ
whenever S is taut.

For example, the identity monad I is a restriction of P to singletons, and the ultra-
filter monad U is a restriction of F to ultrafilters. Moreover, both these restrictions are
convenient; this is immediate in the identity case since we may set σ = 1; the ultrafilter
case will be considered in Proposition 6.3.
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4.3. Lemma. Let T be a taut monad satisfying the extension condition for all sets
A = {TB ⊆ TX | y ∈ TB}, where y ∈ TX. If r : TX � X is the structure matrix of a
canonical (T,V)-algebra, then for any x ∈ TX and z ∈ X we have

r(x, y) =
∧

TB�x

∨
z∈TB

r(z, z) .

Proof. Define s(x, z) :=
∧

TB�x

∨
z∈TB r(z, z), and observe that r(x, z) ≤ s(x, z) naturally

holds. Let a ∈ V be such that a ≺ s(x, z). Thus, for all B with TB � x, there exists
z ∈ TB with a ≤ r(z, z), or z ∈ ra[TB]. This implies that eX(z) ∈ T (ra[TB]) for all B
with TB � x. By the extension condition, there exists X ∈ TTX such that X ∈ TTB
for all B with TB � x, and eX(z) ∈ T (ra[B]) for all B with TB ⊇ X. This allows us to
conclude that a ≤ T

M
r(X, eX(z)) ≤ r(mX(X), z) by transitivity of r. Finally, mX(X) ≤ x

implies a ≤ r(x, z) because r is increasing in its first variable. Thus, s(x, z) ≤ r(x, z) as
required.

4.4. Lemma. Let T be a taut monad and r : TX � X the structure matrix of
a canonical (T,V)-algebra. Suppose that T preserves finite coproducts, and verifies the
extension condition for all sets {TB ⊆ TX | x ∈ TB}, where x ∈ TX. If z ∈ X, y ∈ TX
and A ⊆ TX are such that y ∈ TA for all A with TA ⊇ A, then

∧
x∈A

r(x, z) ≤ r(y, z).

Proof. Remark first that if B ⊆ X is such that TB ∩ TA �= ∅ for all A with TA ⊇ A,
then there exists x ∈ A with x ∈ TB (see the proof of Corollary 3.8). Thus, if TB � y,
then TB ∩ TA �= ∅ for all A with TA ⊇ A by hypothesis, so there exists x ∈ A with
x ∈ TB. The previous lemma then implies

∧
x∈A

r(x, z) =
∧
x∈A

∧
TB�x

∨
z∈TB

r(z, z) ≤
∧

TB�y

∨
z∈TB

r(z, z) = r(y, z) .

4.5. Proposition. Let T = (T, e,m) and S = (S, d, n) be taut monads such that T
is a convenient restriction of S to its atoms. Suppose furthermore that T preserves finite
coproducts and satisfies the extension condition for all sets

{B ⊆ TX | A ⊆ TB} and {TB ⊆ TX | x ∈ TB}

where A ⊆ TX and x ∈ TX. Then the category of op-canonical (S,V)-algebras is iso-
morphic to the category of op-canonical (T,V)-algebras.
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Proof. In this proof, elements x ∈ TX will be considered as elements of SX via ιX ,
and elements X ∈ TTX will be considered as elements of SSX via ιSX(TιX) = (SιX)ιTX .
The symbols x, y and X will be used to designate elements of TX and TTX respectively,
whereas f, g and F will denote elements of SX and SSX that are not necessarily atoms;
there will also be mention of elements X′ of TSX.

For a relation r : SX � X, let ř : TX � X be the restriction of r to elements of
TX. If (X, r) is an op-canonical (S,V)-algebra, then a routine verification shows that
S ′

M
r(X, y) = T ′

M
ř(X, y) and (X, ř) is naturally an op-canonical (T,V)-algebra.

Suppose that f : (X, r) → (Y, s) is a morphism of op-canonical (S,V)-algebras. Then
ř(x, y) ≤ s(Sf(x), f(y)), and Sf(x) = Tf(x) yields that f : (X, ř) → (Y, š) is a morphism
of Alg(T′,V). Thus, we can define a functor R : Alg(S′,V) → Alg(T′,V) commuting
with the underlying set functor, and sending (X, r) to (X, ř).

We now proceed to verify that there is a functor L : Alg(T′,V) → Alg(S′,V) com-
muting with the underlying set functor, and sending (X, r) to (X, r̂), where r̂ : SX � X
is defined by

r̂(f, y) =
∧
x≤f

r(x, y)

(with the symbols x designating atoms of SX). To prove that (X, r̂) is a (S′,V)-algebra, we
only need to verify the transitivity condition for r̂ (because dX(x) ∈ TX by hypothesis).
Let F ∈ SSX, g ∈ SX, z ∈ X, and denote by X′ an element of TSX with X′ ≤ F. Note
that for a ∈ V we have

r◦a[B] = Ar̂◦a[B] .

Let a ∈ V be such that a ≺ S ′
M

r̂(F, g), and X ∈ TTX with X ≤ σX(X′). Thus, for all
B with SB � g we have F ∈ S(r̂◦a[B]), so that X ∈ T (r◦a[B]). The extension condition
for the set {B ⊆ TX | g ∈ SB} yields an atom y ≤ g with X ∈ T (r◦a[B]) for all B
with TB � y, and we have a ≤ T ′

M
r(X, y). Thus, a ⊗ r̂(g, z) ≤ T ′

M
r(X, y) ⊗ r(y, z) ≤

r(mX(X), z), which allows us to conclude that (S ′
M

r̂)(F, g) ⊗ r̂(g, z) ≤ r(mX(X), z) for
all X ≤ σX(X′) and X′ ≤ F with X′ ∈ TSX. Writing A′ = {X′ ∈ TSX |X′ ≤ F} and
A = {X ∈ TTX | there exists X′ ∈ A′ with X ≤ σX(X′)}, we have for B ⊆ SX:

F ∈ SSB ⇐⇒ A′ ⊆ TSB ⇐⇒ σX(A′) ⊆ STB ⇐⇒ A ⊆ TTB ,

so nX(F) ∈ SB ⇐⇒ mX(A) ⊆ TB. Since r is also the structure matrix of a canonical
(T,V)-algebra by Corollary 3.8, we can apply Lemma 4.4 to get for any y ∈ TX with
y ≤ nX(F):

(S ′
M

r̂)(F, g) ⊗ r̂(g, z) ≤
∧

x∈mX(A)

r(x, z) ≤ r(y, z) .

This allows us to conclude that (S ′
M

r̂)(F, g) ⊗ r̂(g, z) ≤ r̂(mX(F), z), as required.

If f : (X, r) → (Y, s) is a morphism of Alg(T′,V), then r̂(f, y) ≤ ∧
x≤f s(Tf(x), f(y)).

Let y ≤ Sf(f). By the extension condition, there exists x ∈ TX with x ≤ f and Tf(x) = y.
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This yields that

∧
x≤f

s(Tf(x), f(y)) =
∧

y≤Sf(f)

s(y, f(y)) = ŝ(Sf(f), f(y)) ,

so f : (X, r̂) → (Y, ŝ) is a morphism of Alg(S′,V).

Thus, we have two functors R : Alg(S′,V) → Alg(T′,V) and L : Alg(T′,V) →
Alg(S′,V) commuting with the underlying set functors, and sending (X, r) to (X, ř), and
(X, s) to (X, ŝ) respectively. By noticing that σXdSX(f) ∈ TA{f} and f = nXdSX(f) =

nXσXdSX(f), Proposition 3.9 implies ˆ̌r(f, y) =
∧

x≤f r(x, y) = r(f, y). Moreover, we nat-

urally have ˇ̂r(x, y) = r(x, y), so the functors R and L define an isomorphism between
Alg(S′,V) and Alg(T′,V).

4.6. Corollary. The category Alg(P′,V) is isomorphic to Alg(I,V).

Proof. As mentioned previously, the monad I is a convenient restriction of P to its
atoms. Since it preserves finite coproducts, and also satisfies the extension condition for
the sets given in the proposition, the desired result follows. Note however that in this
simple case, the previous proof may be considerably simplified.

4.7. Corollary. The category Alg(P′,2) is isomorphic to Ord, and Alg(P′,R+) is
isomorphic to Met.

Proof. This is an immediate consequence of the previous corollary and the fact that
Alg(I,2) ∼= Ord and Alg(I,R+) ∼= Met (see for example [5]).

For the rest of this section, the morphisms of (P,V)-algebras will be denoted by
f : (X, c) → (Y, d), while those of (T,V)-algebras, will be denoted by f : (X, r) → (Y, s).
The unit e and multiplication m of the powerset monad P will be given by their explicit
formulation, whereas the monad T will be denoted T = (T, e,m).

4.8. Proposition. Let T = (T, e,m) be a taut monad satisfying the extension
condition for any A = {B} with B ⊆ X. The functors R : Alg(P,V) → Alg(T,V) and
L : Alg(T,V) → Alg(P,V) commuting with the underlying set functor, and defined on
objects by R(X, c) = (X, ĉ), L(X, r) = (X, ř), where

ĉ(x, y) :=
∧

TB�x

c(B, y) and

ř(A, y) :=
∨

y∈TA

r(y, y) ,

(with A ∈ PX, x ∈ TX, and y ∈ X) yield an adjunction L � R. Moreover, if T satisfies
the extension condition for all sets {TB ⊆ TX | y ∈ TB} with y ∈ TX, then ˆ̌r = r and L
is a full coreflective embedding.
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Proof. We first notice that ˇ̂c ≤ c and that r ≤ ˆ̌r for any matrices r : TX � X and
c : PX � X.

Suppose that r : TX � X is the structure matrix of a (T,V)-algebra. The reflex-
ivity of ř follows immediately from the definition: k ≤ r(eX(x), y) ≤ ř({x}, y). For the
transitivity, let A ∈ PPX, B ∈ PX, z ∈ X, and a, b ∈ V be two elements such that
a ≺ P

M
ř(A, B) and b ≺ ř(B, z). This last inequality yields an element y ∈ TB such that

b ≤ r(y, z). The first inequality implies that B ⊆ řa[A]. Furthermore,

řa[A] ⊆ {y ∈ X | there exist A ∈ A, x ∈ TA with a ≤ r(x, y)} ⊆ ra[T (
⋃A)] ,

and we may write y ∈ T (ra[T (
⋃A)]). By the extension condition, there exists X ∈

TT (
⋃A) such that y ∈ T (ra[B]) for all B with TB � X. This implies that a ≤ T

M
r(X, y),

and by using that b ≤ r(y, z), we get a ⊗ b ≤ r(mX(X), z) by transitivity of r. Moreover,
X ∈ TT (

⋃A) implies mX(X) ∈ T (
⋃A), so that r(mX(X), z) ≤ ř(

⋃A, z). Since a ⊗ b ≤
ř(

⋃A, z) for all elements a, b ∈ V with a ≺ P
M

ř(A, B) and b ≺ ř(B, z), we may conclude
that P

M
ř(A, B) ⊗ ř(B, z) ≤ ř(

⋃A, z) as required. Consider now a morphism of (T,V)-
algebras f : (X, r) → (Y, s). The map f : (X, ř) → (Y, š) is a morphism of (P,V)-algebras,
since

ř(A, y) ≤
∨

x∈T (f−1f(A))

r(x, y) ≤
∨

x∈(Tf)−1(T (f(A)))

s(Tf(x), f(y)) ≤ š(Pf(A), f(y)) .

Suppose now that c : PX � X is the structure matrix of a (P,V)-algebra. The
reflexivity of ĉ follows from the monotonicity of c and the injectivity of eX ; indeed, k ≤
c({x}, y) = ĉ(eX(x), y). To prove the transitivity of ĉ, let X ∈ TTX, y ∈ TX, z ∈ X,
and a ∈ V such that a ≺ T

M
ĉ(X, y). This last condition implies that y ∈ T (ĉa[TA]) for

all A with TTA � X. Furthermore, ĉa[TA] ⊆ ca[{A}], so that by setting B = ca[{A}],
we naturally have y ∈ TB and B ⊆ ca[A] for all A ⊇ {A}. This implies that a ≤
P

M
c({A}, B), so that T

M
ĉ(X, y) ⊗ ĉ(y, z) ≤ c(A, z) for all A with TTA � X. Since m is

taut, we have ĉ(mX(X), z) =
∧

TTA�X c(A, z), and the transitivity of ĉ follows. Consider

now a morphism of (P,V)-algebras f : (X, c) → (Y, d). The map f : (X, ĉ) → (Y, d̂) is a
morphism of (T,V)-algebras, since

ĉ(x, y) ≤
∧

TA�x

d(Pf(A), f(y)) ≤
∧

TB�Tf(x)

d(B, f(y)) = d̂(Tf(x), f(y)) ,

by using the monotonicity of d and the fact that x ∈ T (f−1(B)) ⇐⇒ Tf(x) ∈ TB.
The last statement follows directly from Lemma 4.3.

4.9. Corollary. Let T = (T, e,m) be a taut monad satisfying the extension condition
for all sets {B} with B ⊆ X, and {TB ⊆ TX | y ∈ TB} with y ∈ TX. If for all A ⊆ X,
there exists xA ∈ TA with xA ∈ TB ⇐⇒ A ⊆ B, then Alg(T,V) is isomorphic to
Alg(P,V).
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Proof. With the notations of the previous proposition, it suffices to prove that ˇ̂c = c
for any structure matrix c : PX � X. The definition of xA implies that x ≤ xA for all
x ∈ TA, so by monotonicity of ĉ and c,

ˇ̂c(A, y) =
∨

x∈TA

∧
TB�x

c(B, y) =
∧

TB�xA

c(B, y) = c(A, y) ,

and we are done.

4.10. Proposition. The category of op-canonical (P,V)-algebras embeds as a full
coreflective subcategory into the category of op-canonical (T,V)-algebras. More precisely,
the functors R : Alg(T′,V) → Alg(P′,V) and E : Alg(P′,V) → Alg(T′,V) commuting
with the underlying set functor, and defined on objects by R(X, r) = (X, r̂), E(X, c) =
(X, č), where

r̂(A, y) :=
∧
x∈A

r(eX(x), y) and

č(x, y) :=
∨

TB�x

c(B, y) ,

(with A ∈ PX, x ∈ TX, and y ∈ X) yield an adjunction E � R such that ˆ̌c = c.

Proof. Proposition 3.9 implies that ˇ̂r ≤ r(x, y) and that ˆ̌c = c for any (T′,V)-algebra
structure matrix r : TX � X and (P′,V)-algebra structure matrix c : PX � X.

Corollary 4.9 states that Alg(P′,V) is isomorphic to Alg(I,V) via the adjunction de-
scribed in Proposition 4.5, so it is sufficient to prove that the matrix r̂(x, y) = r(eX(x), y)
is a structure of Alg(I,V). In this case, reflexivity is immediate, and transitivity follows
from

r(eX(x), y) ⊗ r(eX(y), z) ≤ T ′
M

r(eTX(eX(x)), eX(y)) ⊗ r(eX(y), z) ≤ r(eX(x), z) .

If f : (X, r) → (Y, s) is a morphism of (T′,V)-algebras, we naturally have r(eX(x), y) ≤
s(Tf(eX(x)), f(y)), and since Tf(eX(x)) = eY (f(x)), f is a morphism of the correspond-
ing (P′,V)-algebras.

Let c : PX � X be the structure matrix of a (P′,V)-algebra. The reflexivity of č
follows from the fact that c is order-reversing and eX injective. To prove the transitivity,
let X ∈ TTX, y ∈ TX, z ∈ X, and a, b ∈ V two elements such that a ≺ T ′

M
č(X, y) and

b ≺ č(y, z). First note that by setting AB := c◦a[B], we naturally have a ≤ P ′
M

c(AB, B).
Furthermore, there exists B with TB � y and b ≤ c(B, z), so that X ∈ T (č◦a[B]). Since

č◦a[B] ⊆ {x ∈ TX | there exist y ∈ B,A ⊆ X with TA � x and a ≤ c(A, y)} ⊆ T (
⋃AB) ,

we have mX(X) ∈ T (
⋃AB). Therefore,

T ′
M

č(X, y) ⊗ č(y, z) ≤ P ′
M

c(AB, B) ⊗ c(B, z) ≤ c(
⋃AB, z) ≤ č(mX(X), z)
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by transitivity of c. Consider now a morphism of (P′,V)-algebras f : (X, c) → (Y, d).
Then

č(x, y) ≤
∨

TA�x

d(Pf(A), f(y)) ≤
∨

TB�Tf(x)

d(B, f(y)) = ď(Tf(x), f(y))

since {Pf(A) ∈ PY |TA � x} ⊆ {B ∈ PY |TB � Tf(x)}.

5. The powerset monad and associated lax algebras

In this section, we give an alternate description of the categories of canonical and op-
canonical (P,V)-algebras; in particular, we show that Alg(P,2) is isomorphic to the
category of closure spaces. The following result gives another description of the powerset’s
canonical extension; of course, a similar formula may be obtained for its op-canonical
extension (although it is of less interest here since the op-canonical algebras may be
obtained via the identity monad by Corollary 4.6). This canonical extension also appears
in [3], Example 6.3 as a lax functor H : Mat(2) → Mat(2), and as its lax extension to
Mat(R+).

5.1. Proposition. The canonical extension of P is given by

P
M

r(A,B) =
∧
y∈B

∨
x∈A

r(x, y) ,

where A ∈ PX and B ∈ PY .

Proof. Denote by T
M

the canonical extension of P defined in 3.1. Let A,B ∈ PX
and a ∈ V such that a ≺ P

M
r(A,B). Thus, for every y ∈ B there exists x ∈ A with

a ≤ r(x, y), so B ⊆ ra[A] or equivalently B ∈ P (ra[A]). Furthermore, if PC contains
A, then we necessarily have A ⊆ C, so that B ∈ P (ra[C]) and we can conclude that
a ≤ T

M
r(A,B).

Suppose now that a ∈ V is such that a ≺ T
M

r(A,B). This implies in particular that
B ∈ P (ra[A]), i.e. for each y ∈ B, there exists x ∈ A with a ≤ r(x, y), and we may
conclude that a ≤ P

M
r(A,B).

Let us recall the definition of a closure space.

5.2. Closure spaces. Let X be a set. An operator c : PX → PX is a closure operator
if it is extensive, monotone and idempotent :

(C1) A ⊆ c(A);

(C2) B ⊆ A =⇒ c(B) ⊆ c(A);

(C3) c(c(A)) ⊆ c(A);

where A,B ∈ PX. A couple (X, c) is called a closure space. Closure spaces form the
objects of the category Clos, whose morphisms f : (X, c) → (Y, d) are the Set-maps
f : X → Y satisfying f(c(A)) ⊆ d(f(A)) for all A ∈ PX.



CANONICAL AND OP-CANONICAL LAX ALGEBRAS 239

5.3. Proposition. The category Alg(P,2) is isomorphic to Clos. In fact, a canonical
(P,2)-algebra (X, r) and a closure space (X, c) determine each other via

x ∈ c(A) ⇐⇒ r(A, x) = � .

Proof. This is a particular case of Proposition 5.6 which is proved further on.

This result motivates the introduction of closeness operators, which might be seen as
the metric counterpart of closure operators, since the former measure the distance between
points and sets, rather than simply ascribing a true or false value to every such couple.
As mentioned in the Introduction, closeness spaces are related to approach spaces in the
same way that closure spaces are related to topological spaces.

5.4. Closeness spaces. The objects of the category Clsn(V) are couples (X, c), where
X is a set and c : PX × X → V is a closeness operator, i.e. a map satisfying:

(C ′
1) x ∈ A =⇒ k ≤ c(A, x);

(C ′
2) B ⊆ A =⇒ c(B, x) ≤ c(A, x);

(C ′
3) a ⊗ c(A(a), x) ≤ c(A, x);

where x ∈ X, A ∈ PX, a ∈ V and A(a) = {x ∈ X | a ≤ c(A, x)}. The couple (X, c) is
called a closeness space. A morphism of closeness spaces f : (X, c) → (Y, d) is a Set-
map f : X → Y satisfying c(A, y) ≤ d(Pf(A), f(y)). If V = 2, then we naturally have
Clsn(2) = Clos. Moreover, if V = R+, we simply write Clsn instead of Clsn(V).

5.5. Remark. As in the context of approach spaces (see [10]), we observe that the
conditions (C ′

1)–(C ′
3) are equivalent to (C ′

1), (C ′
2) and

(C ′′
3 )

∧
y∈B c(A, y) ⊗ c(B, x) ≤ c(A, x) for all A,B ⊆ X and x ∈ X.

Indeed, on one hand (C ′′
3 ) implies (C ′

3) by setting B = A(a). On the other hand, (C ′
2)

and (C ′
3) imply (C ′′

3 ) by setting a =
∨{b ∈ V |B ⊆ A(b)}. Notice also that the set A(a)

corresponds to the set ca[{A}] in the notations of 3.1.

5.6. Proposition. The category Clsn(V) is isomorphic to Alg(P,V) via the following
correspondence: a relation r : PX ×X → V determines a closeness operator on X if and
only if the associated matrix r : PX � X is the structure of a canonical (P,V)-algebra.

Proof. Suppose first that (X, r) is a canonical (P,V)-algebra. Since r is order-
preserving in the first variable, reflexivity of r yields k ≤ r({x}, x) ≤ r(A, x) whenever
x ∈ A. It also follows that B ⊆ A implies r(A, x) ≤ r(B, x). To prove (C ′

3), set A = {A}.
Then

∧
y∈A(a)

∨
B∈A r(B, y) ⊗ r(A(a), z) =

∧
y∈A(a) r(A, y) ⊗ r(A(a), z) ≥ a ⊗ r(A(a), z). By

transitivity, a ⊗ r(A(a), z) ≤ r(A, z) as required.
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Suppose now that (X, c) is a closeness space. It is clear that k ≤ c({x}, x). If B ∈ PX
and A ∈ PPX, then

∨
A∈A c(A, y) ≤ c(

⋃A, y). Setting a =
∧

y∈B c(
⋃A, y), we observe

that B ⊆ (
⋃A)(a), so

∧
y∈B

∨
A∈A

c(A, y) ⊗ c(B, z) ≤ a ⊗ c((
⋃A)(a), z) ≤ c(

⋃A, z) ,

and we are done.

The conclusion follows by noticing that the conditions for morphisms are equivalent.

6. The filter monad and associated lax algebras

As in the powerset case, the filter functor’s canonical and op-canonical extensions may be
described without the use of the sets ra[A] of Section 3. In this case however, we give the
formula for the op-canonical extension.

6.1. Proposition. The op-canonical extension of F is given by

F ′
M

r(f, g) =
∧
B∈g

∨
A∈f

∧
x∈A

∨
y∈B

r(x, y) ,

where f ∈ FX and g ∈ FY .

Proof. Denote by T ′
M

the op-canonical extension of F . Let f, g ∈ FX and a ∈ V be
such that a ≺ F ′

M
r(f, g). Thus, for every B ∈ g there exists A ∈ f satisfying A ⊆ r◦a[B].

As a consequence, for every B ∈ g, we have f ∈ F (r◦a[B]) and a ≤ T ′
M

r(f, g). It follows
that F ′

M
r(f, g) ≤ T ′

M
r(f, g).

Suppose now that a ∈ V is such that a ≺ T ′
M

r(A,B). This implies that for every
B ∈ g, we have r◦a[B] ∈ f. Therefore, for every B ∈ g there exists A ∈ f, namely
A = r◦a[B], such that for every x ∈ A, there exists y ∈ B satisfying a ≤ r(x, y). Thus, we
may conclude that a ≤ F ′

M
r(f, g).

6.2. Lemma. The lax extension U
M

of the ultrafilter functor given in 2.8, is equal
to both the canonical and op-canonical extensions of U . Moreover, U

M
is equal to the

restriction of F ′
M

to ultrafilters, i.e. for all x, y ∈ UX we have U
M

r(x, y) = F ′
M

r(x, y).

Proof. Corollary 3.8 yields that the canonical and op-canonical extensions of U are
equal. The fact that the expression given in 2.8 describes these extensions may be seen as
in the previous proposition. Again, the last claim may be proved with arguments similar
to those in the proof of Proposition 3.7.
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6.3. Proposition. The category of op-canonical (F,V)-algebras is isomorphic to the
category of canonical (U,V)-algebras.

Proof. In order to apply Proposition 4.5, we only need to verify that U is a convenient
restriction of F. Define σX : UFX → FUX by σX(X) = {AB | B ∈ X} for X ∈ UFX,
and consider a map f : X → Y . In order to verify that σ is a natural transformation,
it is useful to first show that A(Ff)−1(B) = (Uf)−1(AB). On one hand, if x ∈ A(Ff)−1(B),
then there exists f ∈ (Ff)−1(B) such that x ≤ f, so Uf(x) = Ff(x) ≤ Ff(f) ∈ B and
A(Ff)−1(B) ⊆ (Uf)−1(AB). On the other hand, if x ∈ (Uf)−1(AB), then there exists g ∈ B
with Ff(x) ≤ g. By definition of Ff , we have f−1(A) ∈ x for all A ∈ g. Thus, the
sets f−1(A) for A ∈ g form a filter f ∈ (Ff)−1(B) satisfying x ≤ f, and (Uf)−1(AB) ⊆
A(Ff)−1(B).

Let AB ∈ σY (UFf)(X), where B ∈ UFf(X). This means that (Ff)−1(B) ∈ X, so
A(Ff)−1(B) ∈ σ(X). By the previous point, we have AB ∈ (FUf)σX(X), and (FUf)σX(X)
is finer than σY (UFf)(X).

We now show that Uf(AB) = AFf(B). On one hand, if y ∈ Uf(AB), there exist
a filter f ∈ B and an ultrafilter x ≤ f such that Uf(x) = y, so y ∈ AFf(B) because
Uf(x) = Ff(x) ≤ Ff(f). On the other hand, if y ∈ AFf(B), there exists f ∈ B with
y ≤ Ff(f). By the Extension Lemma, there exists an ultrafilter x ≤ f with Uf(x) = y,
and we have y ∈ Uf(AB).

A basis for the filter (FUf)σX(X) is given by the sets Uf(AB) = AFf(B) with B ∈ X.
But then Ff(B) ∈ UFf(X), so naturally AFf(B) ∈ σY (UFf)(X), and σY (UFf)(X) is
finer than (FUf)σX(X). Therefore, we may conclude that σ is a natural transformation.

The other conditions that σ must verify follow immediately from its definition.

6.4. Corollary. The category Alg(F′,2) is isomorphic to Top, and Alg(F′,R+) is
isomorphic to App.

Proof. The first assertion follows from the fact that Alg(U,2) is isomorphic to Top
(see [1]). The second from the fact that Alg(U,R+) is isomorphic to App (see [2]).

6.5. Corollary. The category Ord embeds as a full coreflective subcategory into Top,
and Met embeds as a full coreflective subcategory into App. Similarly, Top embeds as a
full coreflective subcategory into Clos, and App embeds as a full coreflective subcategory
into Clsn.

Proof. Since Ord ∼= Alg(P′,2) and Met ∼= Alg(P′,R+), the first assertion is a
consequence of Proposition 4.10. Moreover, the isomorphisms Top ∼= Alg(U,2) and
App ∼= Alg(U,R+) yield the second assertion via Proposition 4.8. Notice that the
adjunction used in this last proposition is the one used in the original proofs of the
isomorphisms Top ∼= Alg(U,2) and App ∼= Alg(U,R+), where Top was described in
terms of (additive) closure operators, and App in terms of (additive) closeness operators.
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6.6. Proposition. The category of canonical (F,V)-algebras is isomorphic to the
category of canonical (P,V)-algebras.

Proof. This follows from Corollary 4.9: each set A ⊆ X gives rise to the filter
xA := {B ⊆ X |A ⊆ B}, which satisfies the required hypothesis.

6.7. Corollary. The category Alg(F,2) is isomorphic to Clos, and Alg(F,R+) is
isomorphic to Clsn.

Proof. Again, this is immediate, since Alg(P,2) ∼= Clos and Alg(P,R+) ∼= Clsn by
Corollary 4.7.
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Aurelio Carboni, Università dell Insubria: aurelio.carboni@uninsubria.it
Valeria de Paiva, Xerox Palo Alto Research Center: paiva@parc.xerox.com
Ezra Getzler, Northwestern University: getzler(at)math(dot)northwestern(dot)edu
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk
G. Max Kelly, University of Sydney: maxk@maths.usyd.edu.au
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, University of Western Sydney: s.lack@uws.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@acsu.buffalo.edu
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