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EQUIVALENCE OF 2D-MULTITOPIC CATEGORY AND
ANA-BICATEGORY

Dedicated to Prof. V. S. Borkar for creating interest in mathematics

PARAM JYOTHI REDDY R

Abstract. In this paper equivalence of the concepts of ana-bicategory and the 2D-
multitopic category is proved. The equivalence is FOLDS equivalence of the FOLDS-
Specifications of the two concepts. Two constructions for transforming one form of
category to another are given and it is shown that we get a structure equivalent to the
original one when we compose the two constructions.

1. Introduction

In category theory there is an emergence of higher dimensional categories. There are two
distinct flavors of higher dimensional categories:

1. Pure algebraic: In these the composition of cells is defined by a composition func-
tion and the composition functions are constrained by huge coherence conditions.
Examples include bicategory, tricategory, 2-category etc.

2. Virtual: In these the composition of cells is defined by the universal property of
certain special cells called “universals”. Examples are multitopic category, opetopic
category etc.

Even for the case n = 3 the pure algebraic version becomes intractable with lots of
isomorphisms and coherence diagrams. Thr geometric nature of the coherence conditions
suggests a deep underlying truth which when revealed would generate them automatically.
The virtual version does not have the same problem and in a certain sense is “scalable”.
Another point to be remembered is that the virtual version defines the composition “up
to isomorphism” in a true categorical spirit. In view of these advantages it is tempting to
propose the virtual definitions for categories. The first step towards accepting the virtual
definitions of categories is to show that for the case of n = 1, 2, the virtual definition
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reduces to the ordinary definitions of category and bicategory respectively. In this thesis,
multitopic category is considered as the basic virtual definition for higher dimensional
categories and it is shown that this reduces to concept of bicategory for n = 2. Let
the multitopic category for the case n = 2, which is the case being dealt here, be called
2D-multitopic category.

In parallel there is another point to be made about category theory. Though it is
emphasized in category theory that concepts should be defined “up to isomorphism”, this
does not go beyond structures internal to the category like limits, colimits etc. For exam-
ple, while defining functor we do not say that it takes certain values up to isomorphism.
In [Makkai (1996)], Makkai has proposed a version of category theory in which external
concepts like functors and natural transformations are also defined up to isomorphism.
The functor there called anafunctor is defined up to isomorphism. This was extended to
define bicategory as ana-bicategory. Another concept introduced in the same paper was
saturation, which more or less means that anafunctor can take any one of the isomorphic
copies of an object as its value.

In light of what has been said, I feel that the “correct” “algebraic” concept of bicat-
egory is ana-bicategory, and it is actually found to be the case that the 2D-multitopic
category is equivalent to an ana-bicategory with saturation. This should not be sur-
prising because the horizontal composition internal to 2D-multitopic category is defined
by the universal property hence defined up to isomorphism. Once the equivalence of 2D-
multitopic category and ana-bicategory is shown, from the fact that bicategory is a special
case of ana-bicategory, it follows that the definition of 2D-multitopic category reduces to
bicategory.

In section 2, the formal definitions that will be used in this paper are listed. In section
3, the construction of ana-bicategory from 2D-multitopic category is described. In section
4, the construction of 2D-multitopic category from ana-bicategory is described. In section
5, the equivalence of these two definitions is shown.

2. Preliminaries

In this section the mathematical definitions that are required for subsequent sections are
given.

2.1. Ana-bicategory: The concept of ana versions of categorical definitions were intro-
duced in [Makkai (1996)]. First the concept of anafunctor and natural anatransformation
have to be given.

Anafunctor: An anafunctor F between categories C and D is given by the following
data and conditions:

Datum-1. A class |F |, with two maps σ : |F | −→ O(C) (source) and τ : |F | −→ O(D)
(target). For X ∈ O(C) we denote |F |(X) = {s ∈ |F | : σ(s) = X}, and for
s ∈ |F |(X) we denote τ(s) by Fs(X). |F | is called class of specifications.
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Datum-2. For each X,Y ∈ O(C), s ∈ |F |(X), t ∈ |F |(Y ) and f : X −→ Y , an arrow
Fs,t(f) : Fs(X) −→ Ft(Y ) in D is given.

Condition-1. For every X ∈ O(C), |F |(X) is non-empty.

Condition-2. For all X ∈ O(C) and s ∈ |F |(X), Fs,s(IdX) = IdFs(X).

Condition-3. For all X,Y, Z ∈ O(C), s ∈ |F |(X), t ∈ |F |(Y ), u ∈ |F |(Z), f : X −→ Y
and g : Y −→ Z, we have Fs,u(f · g) = Fs,t(f) · Ft,u(g).

Saturated anafunctor: Given an anafunctor F , F is said to be saturated if Fs(X) = A
and i : A ∼= B in D then there is an unique t ∈ |F |(X) such that Ft(X) = B and
Fs,t(IdX) = i.

Saturation is an external condition on anafunctor, but usually anafunctors that arise
naturally have this saturation property, for example product anafunctor.

Natural anatransformation: A natural anatransformation φ between anafunctors F
and G is given by the following datum and condition:

Datum-1. A family 〈φX,s,t : Fs(X) −→ Gt(X)〉X∈O(C),s∈|F |(X),t∈|G|(X).

Condition-1. For every f : X −→ Y in C(X,Y ), and for every s ∈ |F |(X), t ∈ |G|(X),
u ∈ |F |(Y ), v ∈ |G|(Y ), the following diagram commutes

Fs(X)
Fs,u(f)

//

φX,s,t

��

Fu(Y )

φY,u,v

��

Gt(X)
Gt,v(f)

// Gv(Y )

Natural anaisomorphism: Natural anaisomorphism is a natural anatransformation in
which each member of the family 〈φX,s,t : Fs(X) −→ Gt(X)〉X∈O(C),s∈|F |(X),t∈|G|(X) is an
isomorphism.

Ana-bicategory: An ana-bicategory A consists of the following data and conditions:

Datum-1. Collection O(A) of objects (0-cells).

Datum-2. For any pair of objects A,B ∈ O(A), a category A(A,B) (1-cells as its objects
and 2-cells as its arrows).

Datum-3. For any object A ∈ O(A), an identity anaobject in A(A,A), determined by
anafunctor

1A : 1 −→ A(A,A)

The elements of class |1−| are called 0-specifications.
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Datum-4. For any three objects A,B,C ∈ O(A), composition anafunctor

◦A,B,C : A(A,B) ×A(B,C) −→ A(A,C)

The elements of class | ◦−,−,− | are called 2-specifications.

Datum-5. Associativity natural anaisomorphism

αA,B,C,D : ((−) ◦ (−)) ◦ (−)
∼= +3(−) ◦ ((−) ◦ (−))

where ((−)◦(−))◦(−) = (◦A,B,C , IdA(C,D))·◦A,C,D and (−)◦((−)◦(−)) = (IdA(A,B), ◦B,C,D)·
◦A,B,D. Thus,

αA,B,C,D,s,t,u,v : (f ◦s g) ◦t h −→ f ◦v (g ◦u h)

Datum-6. Left identity natural anaisomorphism

λA,B : (−) ◦ 1B

∼= +3IdA(A,B)

where IdA(A,B) is an identity functor and (−) ◦ 1B = (IdA(A,B), ! · 1B) · ◦A,B,B :
A(A,B) −→ A(A,B). Thus,

λA,B,s,p : f ◦s 1B,p −→ f

Datum-7. Right identity natural anaisomorphism

ρA,B : 1A ◦ (−)
∼= +3IdA(A,B)

where IdA(A,B) is identity functor and 1A◦(−) = (!·1A, IdA(A,B))·◦A,A,B : A(A,B) −→
A(A,B). Thus,

ρA,B,s,p : 1A,p ◦s f −→ f

Condition-1. For any five objects A,B,C,D,E ∈ O(A), and four 1-cells f ∈ O(A(A,B)),
g ∈ O(A(B,C)), h ∈ O(A(C,D)), i ∈ O(A(D,E)), the coherence pentagon (since
there are too many specifications to be considered we use numbers to represent them
rather than letters.):

((f ◦1 g) ◦2 h) ◦3 i
α1,2,4,5◦3,6Idi

+3

α2,3,10,12

��

(f ◦5 (g ◦4 h)) ◦6 i
α5,6,7,8

+3 f ◦8 ((g ◦4 h) ◦7 i)

Idf◦8,9α4,7,10,11

��

(f ◦1 g) ◦12 (h ◦10 i) α1,12,11,9

+3 f ◦9 (g ◦11 (h ◦10 i))
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Condition-2. For any two objects A,B ∈ O(A), and two 1-cells f ∈ O(A(A,B)), g ∈
O(A(B,C)), the coherence triangle:

(f ◦s 1B,p) ◦t g
λs,p◦t,wIdg

%-TTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTT

αs,t,u,v

��

f ◦w g

f ◦v (1B,p ◦u g)

Idf◦v,wρu,p

19jjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjj

Saturated ana-bicategory: Ana-bicategory is said to be saturated if the anafunctors
1A and ◦A,B,C are:

2.2. Lemma. Given a saturated anafunctor F : C −→ D, an anafunctor G : C −→ D and
natural anaisomorphism φ : F −→ G, then

(∀X ∈ O(C))(∀t ∈ |G|(X))(∃!s ∈ |F |(X))(φX,s,t = IdGt(X))

Proof. Fix X ∈ O(C) and t ∈ |G|(X) and select any s′ ∈ |F |(X). Since φX,s′,t : Fs′(X) ∼=
Gt(X), ∃!s ∈ |F |(X) such that Fs(X) = Gt(X) and Fs′, s(IdX) = φX,s′,t. From naturality
of φ,

Fs′(X)
Fs′,s(IdX)

//

φX,s′,t
∼=

��

Fs(X)

φX,s,t

��

Gt(X)
Gt,t(IdX)

// Gt(X)

φX,s,t = IdGt(X)

2.3. 2D-multitopic category: The concept of multitopic category was introduced in
[Hermida, Makkai and Power (2000)], [Hermida, Makkai and Power (2001)] and
[Hermida, Makkai and Power (2002)]. Since here only a 2 dimensional case is considered,
the definition of multitopic category is simplified by removing the amalgamation mecha-
nism that was built into its definition. First multicategory is defined and then based on
it the definition of 2D-multitopic category is given.

Multicategory: Multicategory M consists of the following data and conditions:

Datum-1. A collection O(M) of objects and O(M)∗ of tuples (strings) of objects.

Datum-2. A collection A(M) of arrows with domain in O(M)∗ and codomain in O(M).
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Datum-3. A natural number indexed, partially defined composition ·− of arrows in
A(M). Composition of α, β ∈ A(M) is defined if and only if the codomain of
α fits into domain of β. Formally, if the domain and codomain of α are f̄α and
gα and the domain and codomain of β are f̄β and gβ such that gα = f̄β(i), then
composite α ·i β is defined; it is an arrow in A(M) with domain f̄β[f̄α/(i, i+1)] and
codomain gβ. (From here on s[t/(i, j)] is the string formed by replacing ith to j−1th

substring of s by t. From here on for convenience the subscript for composition is
removed. But it should be kept in mind that composition is placed.)

Condition-1. Composition is associative i.e. α ·i+j (β ·i γ) = (α ·j β) ·i γ

Condition-2. Composition is commutative i.e. α ·i (β ·j γ) = β ·j+|f̄α|−1 (α ·i γ) where
i < j.

Condition-3. For any f ∈ O(M), there is an identity in A(M) with domain the string 〈f〉
and codomain f denoted as Idf such that, for any appropriate α, Idf ·α = α = α·Idf .

2D-multitopic category: A 2D-multitopic category consists of the following data and
conditions:

Datum-1. A collection Cell0(M) of 0-cells.

Datum-2. A collection Cell1(M) of 1-cells with domain and codomain in Cell0(M). We
denote by Cell1(M)∗ a collection of all composable strings of 1-cells from Cell1(M).
≤ denotes substring relation on Cell1(M)∗ and ε ∈ Cell1(M)∗ denotes empty string.
Cell1(M) is referred to as (1-) pasting diagrams, also abbreviated as PD.

Datum-3. A collection Cell2(M) of 2-cells with domain in Cell1(M)∗ and codomain in
Cell1(M), such that their initial and terminal 0-cells match.

Condition-1. The collections Cell1(M), Cell1(M)∗ and Cell2(M) form a multicategory
with composition ·.

Condition-2. For every f̄ ∈ Cell1(M)∗, there exists a 2-cell say α ∈ Cell2(M), with
domain f̄ , such that for every β ∈ Cell2(M) with domain containing the string f̄ ,
there is a unique γ ∈ Cell2(M), for which α ·γ = β. Such an α is called an universal
2-cell (or simply universal).

2.4. Lemma. If s, u are two universals in a multitopic category M such that dom(s) ≤
dom(u), then there is an universal t such that u = s · t.
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Proof. Existence of t satisfying u = s · t follows since s is an universal. Let α, be such
that dom(t) ≤ dom(α). We need to show the existence and uniqueness of β such that
α = t · β.

Since dom(u) = dom(s · t) ≤ dom(s ·α), there exists an unique β such that s ·α = u ·β.
Hence,

s · α = u · β
=⇒ s · α = s · t · β
=⇒ α = t · β

2.5. FOLDS Equivalence: FOLDS stands for First Order Logic with Dependent Sorts.
Here just a short overview is given. Details are in [Makkai (1995)] and [Makkai (1998)].

A FOLDS theory (L, Σ) consists of a signature L and set of axioms Σ. The FOLDS
signature L is a one way category, where one way category is a category in which identity
morphisms are the only morphisms with the same domain and codomain objects. The
objects in this category are sorts. Each sort is dependent on all the sorts that are below
it (an arrow to it). The axioms in Σ are first order sentences with a restriction. The
restriction is that the equality is disallowed and all the statements are about the existence
of certain elements in sorts. For example instead of saying g ◦ f = h, we would say
∃τ ∈ T (X,Y, Z; f, g, h).T . The advantage is that all axioms turn out to be asserting
existence of certain elements that represent the truth of axiom.

Now FOLDS structure S is a functor from L to any category, that satisfies the axioms
in Σ. Given two L structures S and T , a homomorphism p is a natural transformation
from S to T .

Two FOLDS structures S and T with the same signature are said to be equivalent if
there is a span

S Q
p

oo q
//T

where p, q are natural transformations and are fiberwise surjective. This is denoted as
S 'L T .

p : S −→ T is fiberwise surjective if the following diagram is a weak pullback, for all
objects K in L.

S(K)
pK //

πK,S

��

T (K)

πK,T

��

S(K̇) p
K̇

// T (K̇)

K̇ is the context of sort K. Intuitively context is the sorts on which the sort K
depends. πK,T is the projection of context values from the sort K.

Up to this point the equivalence of two structures with the same signature is con-
sidered. To compare two structures with different signatures something more is needed
[Makkai (2001)].
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Suppose we have two theories T1 = (L1, Σ1) and T2 = (L2, Σ2). To say that T1 and T2

are equivalent we need two constructions, one taking any T1-model S1 to a T2-model S∗
1

and another taking any T2-model S2 to T1-model S#
2 . T1 and T2 are equivalent whenever

S1 'L1 S∗#
1 and S2 'L2 S#∗

2 for all S1 and S2.
The constructions (−)∗ and (−)#, given in later sections are canonical; in particular,

they do not use the axiom of choice. Moreover, the data for the equivalences S1 'L1 S∗#
1

and S2 'L2 S#∗
2 are also canonically constructed from S1 respectively S2. In fact, the

combined constructions add up to an equivalence of the two concepts: ana-bicategory and
2D-multitopic category, in the sense of [Makkai (2001), Section 6].

3. 2D-multitopic category to ana-bicategory

In this section, the construction of an ana-bicategory from a 2D-multitopic category is

given. This construction will be denoted as M � (−)∗
//M∗ , where M is the given 2D-

multitopic category. For simplicity, in this chapter M∗ will be denoted by A. The
construction first involves extraction of ana-bicategory data from a 2D-multitopic category
and proving the axioms of ana-bicategory.

3.1. Objects: O(A) = Cell0(M).

3.2. Category A(A,B): For A,B ∈ O(A), category A(A,B)

Data:

1. Objects: O(A(A,B)) = {f : f is 1 cell of the form A
f

//B ∈ Cell1(M)}.

2. Arrows: A(A,B)[f, g] = {β : β is 2 cell of the form A

f
&&

g
88

�� ��
�� β B ∈ Cell2(M)}.

3. Identity: Idf = A

f
&&

f

88
�� ��
��Idf B ∈ Cell2(M)

4. Composition: Composition of arrows is defined as a composition of 2-cells in M
restricted to A(A,B).

Axioms:

1. Associativity: Follows from associativity in multicategory M.

2. Existence of identity: Follows from existence of identity in M.

3. Left and right identity laws: Idf · δ = δ · Idg = δ (Identity law in multicategory),
where δ : f =⇒ g.
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3.3. Identity: Identity anaobject for A in A(A,A), anafunctor

1A : 1 −→ A(A,A)

Data:

1. 0-Specifications: |1A|(1) = {p : p ∈ Cell2(M) is an universal from empty pd A}.

2. Anafunctor on objects 1A,p(1) = codom(p) where p ∈ |1A|(1). Since 1 is the only
object in 1, we denote 1A,p(1) by 1A,p.

3. Anafunctor on arrows 1A,p,q(Id1) = δ, where p, q ∈ |1A|(1), and δ ∈ A(A,A)[1A,p, 1A,q]
such that p · δ = q. Since Id1 is only arrow in 1, we denote 1A,p,q(Id1) by 1A,p,q.

Axioms:

1. Well defined: 1A,p,q ∈ A(A,A)[1A,p, 1A,q], where p, q ∈ |1A|(1) is well defined since
by universality of p there is an unique 1A,p,q such that p · 1A,p,q = q.

2. Inhabitedness: |1A|(1) is nonempty because of the existence of universals from every
PD, in particular from PD A.

3. Identity: 1A,p,p(Id1) = Id1A,p
, since p · Id1A,p

= p, where p ∈ |1A|(1).

4. Composition: Need to show 1A,p,q · 1A,q,r = 1A,p,r, where p, q, r ∈ |1A|(1). We have
p · 1A,p,q = q and q · 1A,q,r = r, p · 1A,p,r = r from definition.

p · (1A,p,q · 1A,q,r) = (p · 1A,p,q) · 1A,q,r

= q · 1A,q,r

= r
= p · 1A,p,r

Since universals are left cancellable, we have 1A,p,q · 1A,q,r = 1A,p,r.

3.4. Horizontal composition: Composition anafunctor,

◦A,B,C : A(A,B) ×A(B,C) −→ A(A,C)

Since A,B,C will be clear from the context, ◦A,B,C,− and ◦A,B,C,−,− will be referred to
as ◦− and ◦−,− respectively. Furthermore, ◦−(f, g) and ◦−,−(β, γ) will be denoted in the
infix form as f ◦− g and β ◦−,− γ respectively.

Data:

1. 2-Specifications: |◦A,B,C |(f, g) = {s : s ∈ Cell2(M) is an universal from A
f

//B
g

//C }.

2. Anafunctor on objects: f ◦s g = codom(s) where s ∈ | ◦A,B,C |(f, g).

3. Anafunctor on arrows: β ◦s,t γ = δ, where s ∈ | ◦A,B,C |(f1, g1), t ∈ | ◦A,B,C

|(f2, g2), (f1, g1), (f2, g2) ∈ A(A,B) × A(B,C), (β, γ) : (f1, g1) =⇒ (f2, g2), and
δ ∈ A(A,C)[f1 ◦s g1, f2 ◦t g2] such that β · (γ · t) = s · δ.
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Axioms:

1. Well defined: β ◦s,t γ ∈ A(A,C)[f1 ◦s g1, f2 ◦t g2], where s ∈ | ◦A,B,C |(f1, g1), t ∈
| ◦A,B,C |(f2, g2), β ∈ A(A,B)[f1, f2] and γ ∈ A(B,C)[g1, g2] is well defined since by
universality of s, there is an unique β ◦s,t γ such that β · (γ · t) = s · β ◦s,t γ.

2. Inhabitedness: | ◦A,B,C |(f, g) is non empty because of the existence of universals

from every PD, in particular from PD A
f

//B
g

//C

3. Identity: Idf ◦s,s Idg = Idf◦sg, since Idf · (Idg · s) = Idf · s = s = s · Idf◦sg.

4. Composition: Need to show (β1 ◦s,t γ1) · (β2 ◦t,u γ2) = (β1 · β2) ◦s,u (γ1 · γ2), where
s ∈ | ◦A,B,C |(f1, g1), t ∈ | ◦A,B,C |(f2, g2), u ∈ | ◦A,B,C |(f3, g3), βi ∈ A(A,B)[fi, fi+1]
and γi ∈ A(B,C)[gi, gi+1]. We have β1 ·(γ1 ·t) = s ·β1◦s,t γ1, β2 ·(γ2 ·u) = t ·β2◦t,u γ2,
(β1 · β2) · ((γ1 · γ2) · u) = s · (β1 · β2) ◦s,u (γ1 · γ2).

s · ((β1 ◦s,t γ1) · (β2 ◦t,u γ2)) = (s · (β1 ◦s,t γ1)) · (β2 ◦t,u γ2)
= (β1 · (γ1 · t)) · (β2 ◦t,u γ2)
= β1 · ((γ1 · t) · (β2 ◦t,u γ2))
= β1 · (γ1 · (t · (β2 ◦t,u γ2)))
= β1 · (γ1 · (β2 · (γ2 · u)))
= β1 · (β2 · (γ1 · (γ2 · u)))
= β1 · (β2 · ((γ1 · γ2) · u))
= (β1 · β2) · ((γ1 · γ2) · u)
= s · (β1 · β2) ◦s,u (γ1 · γ2)

Since universals are left cancellable, we have (β1 ◦s,t γ1) · (β2 ◦t,u γ2) = (β1 · β2) ◦s,u

(γ1 · γ2).

3.5. Associativity isomorphisms: Natural anaisomorphism

αA,B,C,D : ((−) ◦ (−)) ◦ (−)
∼= +3(−) ◦ ((−) ◦ (−))

where ((−)◦(−))◦(−) = (◦A,B,C , IdA(C,D))·◦A,C,D and (−)◦((−)◦(−)) = (IdA(A,B), ◦B,C,D)·
◦A,B,D. Since A,B,C,D will be clear from the context αA,B,C,D will be denoted by α.

Data: Define αs,t,u,v = δ, where s ∈ |◦A,B,C |(f, g), t ∈ |◦A,C,D |(f◦sg, h), u ∈ |◦B,C,D |(g, h),
v ∈ |◦A,B,D |(f, g ◦u h) and δ ∈ A(A,D)[(f ◦s g)◦t h, f ◦v (g ◦u h)] such that (s · t) · δ = u ·v.

Axioms:

1. Well defined: αs,t,u,v ∈ A(A,D)[(f ◦s g) ◦t h, f ◦v (g ◦u h)], where s ∈ | ◦A,B,C |(f, g),
t ∈ |◦A,C,D |(f ◦s g, h), u ∈ |◦B,C,D |(g, h), v ∈ |◦A,B,D |(f, g ◦u h) is well defined, since
s · t is a composite of universals and hence is a universal. So, there is an unique
αs,t,u,v such that (s · t) · αs,t,u,v = u · v.



EQUIVALENCE OF 2D-MULTITOPIC CATEGORY AND ANA-BICATEGORY 629

2. Isomorphism: αs,t,u,v is invertible. Its inverse φs,t,u,v is such that s·t = (u·v)·φs,t,v,u).
φs,t,u,v is well defined, since u · v is a composite of universals, so there is an unique
φs,t,u,v such that (u · v) · φs,t,u,v = s · t.

Need to show αs,t,u,v · φs,t,u,v = Id(f◦sg)◦th and φs,t,u,v · αs,t,u,v = Idf◦v(g◦uh). We use
universality of s · t and u · v and following calculations.

(s · t) · (αs,t,u,v · φs,t,u,v) = ((s · t) · αs,t,u,v) · φs,t,u,v

= (u · v) · φs,t,u,v

= (s · t)
= (s · t) · Id(f◦sg)◦th

(u · v) · (φs,t,u,v · αs,t,u,v) = ((u · v) · φs,t,u,v) · αs,t,u,v

= (s · t) · αs,t,u,v

= (u · v)
= (u · v) · Idf◦v(g◦uh)

3. Naturality: Need to show that following diagram commutes.

(f1 ◦s1 g1) ◦t1 h1

αs1,t1,u1,v1 +3

(β◦s1,s2γ)◦t1,t2δ

��

f1 ◦v1 (g1 ◦u1 h1)

β◦v1,v2 (γ◦u1,u2δ)

��

(f2 ◦s2 g2) ◦t2 h2 αs2,t2,u2,v2

+3 f2 ◦v2 (g2 ◦u2 h2)

From universality of s1 · t1, it is sufficient to show (s1 · t1) · (αs1,t1,u1,v1 ·β ◦v1,v2 (γ ◦u1,u2

δ)) = (s1 · t1) · ((β ◦s1,s2 γ) ◦t1,t2 δ · αs2,t2,u2,v2).

(s1 · t1) · (αs1,t1,u1,v1 · β ◦v1,v2 (γ ◦u1,u2 δ)) = ((s1 · t1) · αs1,t1,u1,v1) · β ◦v1,v2 (γ ◦u1,u2 δ)
= (u1 · v1) · β ◦v1,v2 (γ ◦u1,u2 δ)
= u1 · (v1 · β ◦v1,v2 (γ ◦u1,u2 δ))
= u1 · (β · (γ ◦u1,u2 δ · v2))
= β · (u1 · (γ ◦u1,u2 δ · v2))
= β · ((u1 · γ ◦u1,u2 δ) · v2)
= β · ((γ · (δ · u2)) · v2)
= β · (γ · ((δ · u2) · v2))
= β · (γ · (δ · (u2 · v2)))
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(s1 · t1) · ((β ◦s1,s2 γ) ◦t1,t2 δ · αs2,t2,u2,v2) = ((s1 · t1) · (β ◦s1,s2 γ) ◦t1,t2 δ) · αs2,t2,u2,v2

= (s1 · (t1 · (β ◦s1,s2 γ) ◦t1,t2 δ)) · αs2,t2,u2,v2

= (s1 · (β ◦s1,s2 γ · (δ · t2))) · αs2,t2,u2,v2

= ((s1 · β ◦s1,s2 γ) · (δ · t2)) · αs2,t2,u2,v2

= ((β · (γ · s2)) · (δ · t2)) · αs2,t2,u2,v2

= (β · ((γ · s2) · (δ · t2))) · αs2,t2,u2,v2

= (β · (δ · ((γ · s2) · t2))) · αs2,t2,u2,v2

= (β · (δ · (γ · (s2 · t2)))) · αs2,t2,u2,v2

= (β · (γ · (δ · (s2 · t2)))) · αs2,t2,u2,v2

= β · ((γ · (δ · (s2 · t2))) · αs2,t2,u2,v2)
= β · (γ · ((δ · (s2 · t2)) · αs2,t2,u2,v2))
= β · (γ · (δ · ((s2 · t2) · αs2,t2,u2,v2)))
= β · (γ · (δ · (u2 · v2)))

3.6. Left identity isomorphisms. Natural anaisomorphism

λA,B : (−) ◦ 1B

∼= +3IdA(A,B)

where IdA(A,B) is an identity functor and (−)◦1B = (IdA(A,B), ! ·1B) · ◦A,B,B : A(A,B) −→
A(A,B). Since A,B will be clear from the context λA,B will be denoted by λ.

Data: Define λs,p = δ, where s ∈ | ◦A,B,B |(f, 1B,p), p ∈ |1B|(1), and δ ∈ A(A,B)[f ◦s

1B,p, f ] such that (p · s) · δ = Idf .

Axioms:

1. Well defined: λs,p ∈ A(A,B)[f ◦s 1B,p, f ] where s ∈ | ◦A,B,B |(f, 1B,p), p ∈ |1B|(1) is
well defined, since s · p is a composite of universals and hence is an universal. So,
there is an unique λs,p such that (p · s) · λs,p = Idf .

2. Isomorphism: λs,p is invertible. Its inverse is p · s. One side (p · s) · λs,p = Idf was
verified above. Now,

(p · s) · λs,p = Idf

=⇒ ((p · s) · λs,p) · (p · s) = Idf · (p · s)
=⇒ (p · s) · (λs,p · (p · s)) = (p · s)
=⇒ (p · s) · (λs,p · (p · s)) = (p · s) · Idf

=⇒ λs,p · (p · s) = Idf

3. Naturality: Need to show that the following diagram commutes.

f ◦s 1B,p

λs,p
+3

β◦s,t1B,p,q

��

f

β

��
f ◦t 1B,q

λt,q

+3 g
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From universality of p·s, it is sufficient to show (p·s)·(λs,p·β) = (p·s)·(β◦s,t1B,p,q·λt,q).

(p · s) · (λs,p · β) = ((p · s) · λs,p) · β
= Idf · β
= β

(p · s) · (β ◦s,t 1B,p,q · λt,q) = ((p · s) · β ◦s,t 1B,p,q) · λt,q

= (p · (s · β ◦s,t 1B,p,q)) · λt,q

= (p · (β · (1B,p,q · t))) · λt,q

= (β · (p · (1B,p,q · t))) · λt,q

= (β · ((p · 1B,p,q) · t)) · λt,q

= (β · (q · t)) · λt,q

= β · ((q · t) · λt,q)
= β · Idf

= β

3.7. Right identity isomorphisms: Natural anaisomorphism

ρA,B : 1A ◦ (−)
∼= +3IdA(A,B)

where IdA(A,B) is an identity functor and 1A ◦ (−) = (! ·1A, IdA(A,B)) · ◦A,A,B : A(A,B) −→
A(A,B). Since A,B will be clear from the context ρA,B will be denoted by ρ.

Data: Define ρs,p = δ, where s ∈ |◦A,A,B |(1A,p, f), p ∈ |1A|(1), and δ ∈ A(A,B)[1A,p◦sf, f ]
such that (p · s) · δ = Idf .

Axioms:

1. Well defined: ρs,p ∈ A(A,B)[1A,p ◦s f, f ] where s ∈ | ◦A,A,B |(1A,p, f), p ∈ |1A|(1) is
well defined, since s · p is a composite of universals and hence is an universal. So,
there is an unique ρs,p such that (p · s) · ρs,p = Idf .

2. Isomorphism: ρs,p is invertible. Its inverse is p · s. One side (p · s) · ρs,p = Idf was
verified above. Now,

(p · s) · ρs,p = Idf

=⇒ ((p · s) · ρs,p) · (p · s) = Idf · (p · s)
=⇒ (p · s) · (ρs,p · (p · s)) = (p · s)
=⇒ (p · s) · (ρs,p · (p · s)) = (p · s) · Idf

=⇒ ρs,p · (p · s) = Idf

3. Naturality: Need to show that the following diagram commutes.
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1A,p ◦s f
ρs,p

+3

1A,p,q◦s,tβ

��

f

β

��
1A,q ◦t f

ρt,q

+3 g

From the universality of p · s, it is sufficient to show (p · s) · (ρs,p · β) = (p · s) ·
(1A,p,q ◦s,t β · ρt,q).

(p · s) · (ρs,p · β) = ((p · s) · ρs,p) · β
= Idf · β
= β

(p · s) · (1A,p,q ◦s,t β · ρt,q) = ((p · s) · 1A,p,q ◦s,t β) · ρt,q

= (p · (s · 1A,p,q ◦s,t β)) · ρt,q

= (p · (1A,p,q · (β · t))) · ρt,q

= (p · (β · (1A,p,q · t))) · ρt,q

= (β · (p · (1A,p,q · t))) · ρt,q

= (β · ((p · 1A,p,q) · t)) · ρt,q

= (β · (q · t)) · ρt,q

= β · ((q · t) · ρt,q)
= β · Idf

= β

3.8. Coherence.

Pentagon Condition:

((f ◦1 g) ◦2 h) ◦3 i
α1,2,4,5◦3,6Idi

+3

α2,3,10,12

��

(f ◦5 (g ◦4 h)) ◦6 i
α5,6,7,8

+3 f ◦8 ((g ◦4 h) ◦7 i)

Idf◦8,9α4,7,10,11

��

(f ◦1 g) ◦12 (h ◦10 i) α1,12,11,9

+3 f ◦9 (g ◦11 (h ◦10 i))

Sufficient to show ((1 · 2) · 3) · (α1,2,4,5 ◦3,6 Idi · (α5,6,7,8 · Idf ◦8,9 α4,7,10,11)) = ((1 · 2) · 3)) ·
(α2,3,10,12 · α1,12,11,9).
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((1 · 2) · 3) · (α1,2,4,5 ◦3,6 Idi · (α5,6,7,8 · Idf ◦8,9 α4,7,10,11))
= (((1 · 2) · 3) · α1,2,4,5 ◦3,6 Idi) · (α5,6,7,8 · Idf ◦8,9 α4,7,10,11)
= ((1 · 2) · (3 · α1,2,4,5 ◦3,6 Idi)) · (α5,6,7,8 · Idf ◦8,9 α4,7,10,11)
= ((1 · 2) · (α1,2,4,5 · (Idi · 6))) · (α5,6,7,8 · Idf ◦8,9 α4,7,10,11)
= ((1 · 2) · (α1,2,4,5 · 6)) · (α5,6,7,8 · Idf ◦8,9 α4,7,10,11)
= (((1 · 2) · α1,2,4,5) · 6) · (α5,6,7,8 · Idf ◦8,9 α4,7,10,11)
= ((4 · 5) · 6) · (α5,6,7,8 · Idf ◦8,9 α4,7,10,11)
= (4 · (5 · 6)) · (α5,6,7,8 · Idf ◦8,9 α4,7,10,11)
= ((4 · (5 · 6)) · α5,6,7,8) · Idf ◦8,9 α4,7,10,11

= (4 · ((5 · 6) · α5,6,7,8)) · Idf ◦8,9 α4,7,10,11

= (4 · (7 · 8)) · Idf ◦8,9 α4,7,10,11

= ((4 · 7) · 8) · Idf ◦8,9 α4,7,10,11

= (4 · 7) · (8 · Idf ◦8,9 α4,7,10,11)
= (4 · 7) · (Idf · (α4,7,10,11 · 9))
= (4 · 7) · (α4,7,10,11 · 9)
= ((4 · 7) · α4,7,10,11) · 9
= (10 · 11) · 9

((1 · 2) · 3) · (α2,3,10,12 · α1,12,11,9)
= (1 · (2 · 3)) · (α2,3,10,12 · α1,12,11,9)
= ((1 · (2 · 3)) · α2,3,10,12) · α1,12,11,9

= (1 · ((2 · 3) · α2,3,10,12)) · α1,12,11,9

= (1 · (10 · 12)) · α1,12,11,9

= (10 · (1 · 12)) · α1,12,11,9

= 10 · ((1 · 12) · α1,12,11,9)
= 10 · (11 · 9)
= (10 · 11) · 9

Identity Triangle:

(f ◦s 1B,p) ◦t g
λs,p◦t,wIdg

%-TTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTT

αs,t,u,v

��

f ◦w g

f ◦v (1B,p ◦u g)

Idf◦v,wρu,p

19jjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjj
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It is sufficient to show (p · (s · t)) · (αs,t,u,v · Idf ◦v,w ρu,p) = (p · (s · t)) · λs,p ◦t,w Idg.

(p · (s · t)) · (αs,t,u,v · Idf ◦v,w ρu,p)
= ((p · (s · t)) · αs,t,u,v) · Idf ◦v,w ρu,p

= (p · ((s · t) · αs,t,u,v)) · Idf ◦v,w ρu,p

= (p · (u · v)) · Idf ◦v,w ρu,p

= ((p · u) · v) · Idf ◦v,w ρu,p

= (p · u) · (v · Idf ◦v,w ρu,p)
= (p · u) · (Idf · (ρu,p · w))
= (p · u) · (ρu,p · w)
= ((p · u) · ρu,p) · w
= Idg · w
= w

(p · (s · t)) · λs,p ◦t,w Idg

= ((p · s) · t) · λs,p ◦t,w Idg

= (p · s) · (t · λs,p ◦t,w Idg)
= (p · s) · (λs,p · (Idg · w))
= (p · s) · (λs,p · w)
= ((p · s) · λs,p) · w
= Idf · w
= w

3.9. Saturation: The ana-bicategory A constructed is saturated.
Consider p ∈ |1A|(1), 1A,p = f , and φ : f ∼= g, then p · φ is an universal. Hence, there

is a (unique) q ∈ |1A|(1), such that q = p · φ.
Similarly, consider s ∈ |◦A,B,C |(f, g), f ◦s g = h, and φ : h ∼= i, then s ·φ is an universal

2-cell. Hence, there is a (unique) t ∈ | ◦A,B,C |(f, g), such that t = s · φ.

3.10. Theorem. Construction (−)∗ transforms 2D-multitopic category to a saturated
ana-bicategory.

4. Ana-bicategory to 2D-multitopic category

In this section, the construction of a 2D-multitopic category from the ana-bicategory

is given. This construction will be denoted as A � (−)#
//A# , where A is the given ana-

bicategory. For simplicity, in this chapter A# will be denoted by M. This construction
is more complicated than (−)∗, the reason being while the construction (−)∗ involved a
process of truncation, (−)# involves building up of 2-cells and showing global condition
of universality. The construction is similar to the term-model construction in logic.
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4.1. Data Construction:

0-Cells:

Cell0(M) = O(A)

1-Cells:

Cell1(M) =
⋃

A,B∈O(A)

O(A(A,B))

2-Cells: 2-cells are defined as equivalence classes of ordered labelled typed trees. The
set of such trees is denoted as Υ and the equivalence relation as '⊂ Υ × Υ.

The ordering means that the children of any node has left to right ordering that can not
be permuted. The labels on the nodes are either 2-cells, 0-specifications or 2-specifications.
Labels on the edges are the 1-cells or 0-cells (if node below is 0-specification). The labels
on edges will not be shown except for the outermost ones since they can be recovered
from the node labels. The degree of each node is at most 2. We will assume that the
degree of the node with 0-specification to be 0 even though it has an edge coming in.

Each tree has a type. The set of types is Θ ⊂ Cell1(M)∗×Cell1(M), where Cell1(M)∗

is the set of composable strings of Cell1(M) (pasting diagrams). If τ is the type of the tree
T , then, define dom(T ) = π1(τ) and codom(T ) = π2(τ). · is the concatenation operation
on the strings in Cell1(M)∗.

Υ and the type of trees in Υ are recursively defined as follows:

1. If A ∈ O(A), p ∈ |1A|(1) and f = 1A,p, then

(f)

p

[A]

is a tree of type (A
ε ___ A, A

f
//A).

2. If f ∈ A(A,B), then

(f)

(f)

is a tree of type (A
f

//B, A
f

//B ).

3. If T1 is a tree of type (A
l1 //B, A

f
//B ), T2 a tree of type (B

l2 //C , B
g

//C )
and s ∈ | ◦A,B,C |(f, g), where f ∈ A(A,B), g ∈ A(B,C), A,B,C ∈ O(A) and
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h = f ◦s h, then

(h)

s

T1 T2

is a tree of type (A
l1·l2 //C , A h //C ).

4. If T is a tree of type (A
l //B, A

f
//B ), and β ∈ A(A,B)[f, g], where f, g ∈

A(A,B), A,B ∈ O(A), then

(g)

β

T

is a tree of type (A
l //B, A

g
//B ).

These trees can be thought of 2 dimensional pasting diagrams in multitopic category
in which 0-cells and 1-cells are as in A and 2-cells are 0-specifications, 2-specifications and
2-cells.

Now the equivalence relation '⊂ Υ×Υ is defined. This is done in terms of elementary
tree transformations T1 −→ T2. Define ' to be the transitive closure of −→, hence

'=−→∗

Each elementary tree transformation step is invertible. Each step is labelled as XX
and its inverse as XX. The elementary steps are classified according to their origin in
ana-bicategory.

In these elementary steps the position (pos ∈ {u, l, r}∗) indicates where the transfor-
mation is applied. So pos is a string from alphabet {u, l, r}, which gives the position
relative to the root node. The logic is simple. Start from the root node of the tree. Read
pos from left to right and on seeing u move up, on l move left and on r move right. If such
a move is not possible for any part of the string pos then the position is invalid. Denote
℘(T ) to be the set of all valid positions in T .

If T is a tree and pos a valid position in T , then T [pos] is the subtree of T at position
pos. The notation reminds us of the fact that pos is the index for the trees, just like
numbers are indexes for the sequences.

If pos is a string and pos′ is a prefix for it, then pos−pos′ denotes the string such that
pos′ · (pos − pos′) = pos, where · is the string concatenation operation.
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Composition Law: This comes from composition in category A(−,−).

1. (VC) This transformation is the replacement of two nodes representing arrows in
category A(−,−), with their composite. Let β · γ = δ in A(−,−).

T2

γ

pos

β

T1

(pos,V C,δ,β,γ)

//

T2

δ
pos

T1

(pos,V C,δ,β,γ)
oo

Structural Laws: These are the laws that change the specifications used and the skeleton
of the tree. There are two laws for the 0-specifications and 2-specifications, and three laws
for the three natural anaisomorphisms α, λ and ρ.

1. (S0) This transformation is for changing the 0-specifications. Let p, q ∈ |1A|(1).

T

q

pos

[A]

(pos,S0,p,q)

//

T

1A,p,q

pos

p

[A]

(pos,S0,p,q)
oo

2. (S2) This transformation is for changing the 2-specifications. Let s ∈ |◦A,B,C |(f1, g1),
t ∈ | ◦A,B,C |(f2, g2), β ∈ A(A,B)[f1, f2] and γ ∈ A(B,C)[g1, g2].

T3

t

pos

β

T1

γ

T2

(pos,S2,β,γ,s,t)

//

T3

β ◦s,t γ

pos

s

T1 T2

(pos,S2,β,γ,s,t)
oo
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3. (ALP) This transformation changes the shape of the tree. It changes the tree from
right oriented one to left oriented. Let s ∈ | ◦A,B,C |(f, g), t ∈ | ◦A,C,D |(f ◦s g, h),
u ∈ | ◦B,C,D |(g, h), v ∈ | ◦A,B,D |(f, g ◦u h).

T4

v

pos

T1 u

T2 T3

(pos,ALP ,s,t,u,v)

//

T4

αs,t,u,v

pos

t

s

T1 T2

T3

(pos,ALP ,s,t,u,v)
oo

4. (LMD) This transformation eliminates the 0-specification on the right of a 2-specification.
Let s ∈ | ◦A,B,B |(f, 1B,p), p ∈ |1B|(1).

T2

T1

pos

(pos,LMD,s,p)

//

T2

λs,p

pos

s

T1 p

[B]

(pos,LMD,s,p)
oo

5. (RHO) This transformation eliminates the 0-specification on the left of a 2-specification.
Let s ∈ | ◦A,A,B |(1A,p, f), p ∈ |1A|(1).
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T2

T1

pos

(pos,RHO,s,p)

//

T2

ρs,p

pos

s

p

[A]

T1

(pos,RHO,s,p)
oo

Identity Law: This law is reflective of the fact that composition with identity does not
affect the 2-cell.

1. (ID) This transformation introduces the identity node into the tree. Let codom(T1) =
f , then

T2

T1

pos

(pos,ID,f)

//

T2

Idf

pos

T1

(pos,ID,f)
oo

Now we can define a set of two cells to be

Cell2(M) = Υ/ '

4.2. Composition: Composition of trees is defined as a typed concatenation of two trees.
Let T1 be a tree such that codom(T1) = f , T2 and pos be such that T2[pos] = (f). Then
T = T1 �pos T2 is a tree such that at position pos in T2, T1 is attached. (The composition
can be thought of as composition of 2-PD’s.)

Formally,

(∀pos′ ∈ ℘(T2)) T [pos′] =

{

T2[pos′] if pos′ is not a prefix of pos
T1 �pos′′ T2[pos′] otherwise, where pos′′ = pos − pos′

4.3. Lemma. Cell1(M) and Cell2(M) along with composition �− is a multicategory.

Proof.
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Well defined: Composition is well defined i.e. T1 ' T ′
1 and T2 ' T ′

2, then T1 �p T2 '
T ′

1 �q T ′
2.

Let 〈t1i〉 be transformations for T1 −→ T ′
1, 〈t2i〉 be transformations for T2 −→ T ′

2.
〈t2i〉 transforms position p to q, and p ∗ 〈t1i〉 be sequence of transformations with p
prefixed to every transformation in 〈t1i〉. Now, p ∗ 〈t1i〉 · 〈t2i〉 is transformations for
T1 �p T2 −→ T ′

1 �q T ′
2.

Associativity: Composition is associative.

Let T1, T2, T3 be trees, p ∈ ℘(T2) and q ∈ ℘(T3) such that codom(T1) = f , codom(T2) =
g, T2[p] = (f) and T3[q] = (g). Then (T1 �p T2) �q T3 = T1 �q·p (T2 �q T3). In pictures,

(f)

T1

(g)

T2

(f)

p

T3

(g)

q

T1 �p T2 =

(g)

T2

T1

T2 �q T3 =

T3

T2

(f)
q · p

(T1 �p T2) �q T3 = T1 �q·p (T2 �q T3) =

T3

T2

T1

Commutativity: Composition is commutative.

Let T1, T2, T3 be trees and p, q ∈ ℘(T3) such that codom(T1) = f , codom(T2) = g,
T3[p] = (f) and T3[q] = (g). Then T1 �p (T2 �q T3) = T2 �q (T1 �p T3). In pictures,

(f)

T1

(g)

T2

T3

(f)

p

(g)

q

T1 �p T3 =
T3

T1 (g)

q
T2 �q T3 =

T3

(f)

p

T2



EQUIVALENCE OF 2D-MULTITOPIC CATEGORY AND ANA-BICATEGORY 641

T1 �p (T2 �q T3) = T2 �q (T1 �p T3) =
T3

T1 T2

Identity: Composition respects identity laws.
Let T be a tree and p ∈ ℘(T ) such that codom(T ) = f and T [p] = (g). Also Idf and

Idg be identity trees for f and g respectively.

1. Idg �p T ' T .

T =
T

(g)

p
Idg =

(g)

Idg

(g)

Idg �p T =

T

Idg

(g)

(p,ID,g)
//

T = T

2. T �〈u〉 Idf ' T .

T =

(f)

T

Idf =

(f)

Idf

(f)
〈u〉

T �〈u〉 Idf =

(f)

Idf

T

(〈u〉,ID,f)
//

(f)

T

For any well ordered set I, define

LI = {(i, j)|(i, j) ∈ I × I ∧ j = SI(i)}

∇2,I = {(i, j)|(i, j) ∈ I × I ∧ i ≤ j}

and

∇3,I = {(i, j, k)|(i, j, k) ∈ I × I × I ∧ i ≤ j ≤ k}

where SI is the successor function inside I. Note LI ⊂ ∇2,I . Given m,m′ ∈ I such that
m < m′, then define [m,m′]I = {i ∈ I|m ≤ i∧ i ≤ m′} and ]m,m′[I= {i ∈ I|i ≤ m∨m′ ≤
i}. Given a well ordered set I and j 6∈ I, define j J I to be the extension of I with j such
that j < I. Analogously, I J j. Given two well ordered sets I and J , define I J J to be
well ordered set such that I < J and ordering within elements of I and J are preserved.
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4.4. Definition. Pasting diagram (PD) is a triple f̄ = (I, fO, fA), where

fO : I −→ Cell0(M)
fA : LI −→ Cell1(M)

such that

(∀(i, j) ∈ LI)(fA(i, j) : fO(i) −→ fO(j))

Define |f̄ | = |I| and f̄ |J = (J, fO|J , fA|J).

Also, we say (I, gO, gA) = ḡ ≤ f̄ = (J, fO, fA),

I ⊂ J ∧ gO = fO|I ∧ gA = fA|I

This defines a partial order on pasting diagrams. Given pasting diagram f̄ = (I, fO, fA)
and m,m′ ∈ I, define ḡ = f̄ ↑(m,m′)= ([m,m′]I , gO|[m,m′]I , gA|[m,m′]I ).

We now define a complete set of specifications for a given pasting diagram. Intuitively
this is a collection of 0-specifications and 2-specifications that fit together to define the
composition of 1-cells such that between any pair of 0-cells there is an unique 1-cell. The
basic idea in this definition is that all α, ρ, λ’s associated with these specifications are
identities.

4.5. Definition. I indexed set of specifications is a quadruple S = (Θ,F , S0, S2),

Θ : I −→ Ob(f̄)
F : ∇2,I −→ Ar(f̄)
S0 : I −→ |1−|
S2 : ∇3,I −→ | ◦−,−,− |

such that

1. F(i, j) : Θ(i) −→ Θ(j),

2. S0(i) ∈ |1Θ(i)|(1),

3. F(i, i) = 1Θ(i),S0(i),

4. S2(i, j, k) ∈ | ◦Θ(i),Θ(j),Θ(k) |(F(i, j),F(j, k)),

5. F(i, k) = F(i, j) ◦S2(i,j,k) F(j, k).

Given I indexed set of specifications S, for any non empty J ⊆ I, the subsystem S|J
is the restriction of S to J .

S ↑(m,m′) is the upper half of S from m to m′, i.e. S ↑(m,m′)= S|[m,m′]I . S ↓(m,m′) is the
lower half of S from m to m′ i.e. S ↓(m,m′)= S|]m,m′[I .
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4.6. Definition. I indexed set of specifications S = (Θ,F , S0, S2) is said to be a set of
specifications for pasting diagram f̄ = (I, fO, fA) if

1. Θ = fO

2. F|LI
= fA

4.7. Definition. α-coherent systems: I indexed set of specifications S is said to be an
α-coherent system if

αS2′(i,j,k),S2′(i,k,l),S2′(j,k,l),S2′(i,j,l) = IdF ′(i,l)

for all i, j, k, l ∈ I such that i ≤ j ≤ k ≤ l.

4.8. Definition. ρ-coherent systems: I indexed set of specifications S is said to be an
ρ-coherent system if

ρS2′(i,i,j),S0′(i) = IdF ′(i,j)

for all i, j ∈ J such that i ≤ j.

4.9. Definition. λ-coherent systems: I indexed set of specifications S is said to be an
λ-coherent system if

λS2′(i,j,j),S0′(j) = IdF ′(i,j)

for all i, j ∈ J such that i ≤ j.

4.10. Definition. I indexed set of specifications S = (Θ,F , S0, S2) is a complete set of
specifications whenever it is α, ρ, λ-coherent system.

4.11. Lemma. Given an object A and p ∈ |1A|(1), there exists s ∈ | ◦A,A,A |(1A,p, 1A,p)
such that 1A,p ◦s 1A,p = 1A,p and ρs,p = λs,p = αs,s,s,s = Id1A,p

Proof. From 2.2 ∃s ∈ | ◦A,A,A |(1A,p, 1A,p) such that ρs,p = Id1A,p
. Using coherence we

have

1A,p ◦s 1A,p

λs,p

+3

ρs,p
+3
1A,p

So, λs,p = ρs,p = Id1A,p
. Using coherence again,

(1A,p ◦s 1A,p) ◦s 1A,p
λs,p◦s,sId1A,p

=Id1A,p

&.VVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVV

αs,s,s,s

��

1A,p ◦s 1A,p

1A,p ◦s (1A,p ◦s 1A,p)

Id1A,p
◦s,sρs,p=Id1A,p

08hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

So, αs,s,s,s = Id1A,p
.
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4.12. Lemma. Given f̄ = (I, fO, fA), a complete set of specifications S = (Θ,F , S0, S2)
for f̄ , and ḡ = (J, gO, gA) such that

1. J = I J j,

2. f̄ = ḡI

Then there exists a complete set of specifications S ′ = (Θ′,F ′, S0′, S2′) for ḡ such that

S = S ′|I

Proof. In this proof for simplicity we use natural numbers. Since I and J are well ordered
sets, we have I ∼= {0, ..., n} and J ∼= {0, ..., n + 1}. Hence, we use natural numbers as
indexes in this proof locally.

Let

1. Θ′(i) = Θ(i), 0 ≤ i ≤ n, and Θ′(n + 1) = gO(n + 1)

2. F ′(i, j) = F(i, j), 0 ≤ i ≤ j ≤ n, and F(n, n + 1) = gA(n)

3. S0′(i) = S0(i), 0 ≤ i ≤ n

4. S2′(i, j, k) = S2(i, j, k), 0 ≤ i ≤ j ≤ k ≤ n

In this proof we locally use the following abbreviations:

F ′
i,j := F ′(i, j)

◦i,j,k := ◦S2′(i,j,k)

◦i,j,k := ◦S2′(i,j,k),S2′(i,j,k)

ρi,j := ρS2′(i,i,j),S0′(i)

λi,j := λS2′(i,j,j),S0′(j)

αi,j,k,l := αS2′(i,j,k),S2′(i,k,l),S2′(j,k,l),S2′(i,j,l)

1Θ′(i) := 1Θ′(i),S0′(i)

Idi,j := IdF ′(i,j)

Base Step: Choose any S0′(n + 1). From 4.11 we have S2′(n + 1, n + 1, n + 1) such
that ρn+1,n+1 = λn,n+1 = αn+1,n+1,n+1,n+1 = Idn+1,n+1

Induction Step: For any 0 ≤ i ≤ n, suppose we completed the following process for
all i < j ≤ n + 1, we choose S2′(i, n, n + 1) ∈ | ◦Θ′(i),Θ′(n),Θ′(n+1) |(F

′(i, n),F ′(n, n + 1)),
and let F ′(i, n + 1) = F ′(i, n) ◦i,n,n+1 F

′(n, n + 1).
Now we need to define S2′(i, j, n + 1) for i ≤ j ≤ n + 1 ∧ j 6= n.

1. (I1) For j = n + 1, from saturation we have an unique S2′(i, n + 1, n + 1) such that

λi,n+1 = Idi,n+1
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2. (I2) For j = i, from saturation we have an unique S2′(i, i, n + 1) such that

ρi,n+1 = Idi,n+1

3. (I3) For any i < j < n, from saturation we have an unique S2′(i, j, n + 1) such that

αi,j,n,n+1 = Idi,n+1

The selection satisfies ρ and λ coherence. We need to show the α coherence for i ≤ j ≤
k ≤ l = n + 1. This has 8 cases depending on where equalities and inequalities lie. All of
the following diagrams commute due to coherence.

Case 1. i < j < k < l = n + 1, k 6= n

((F ′
i,j ◦i,j,k F

′
j,k) ◦i,k,n F ′

k,n) ◦i,n,n+1 F
′
n,n+1

αi,j,k,n◦i,n,n+1Idn,n+1
lll

lllll
ll

rz llllllll

αi,k,n,n+1

EE
EE

EE
EE

EE

EE
EE

EE
EE

EE

�&
EE

EE
EE

EE
EE

EE
EE

EE
EE

EE(F ′
i,j ◦i,j,n (F ′

j,k ◦j,k,n F ′
k,n)) ◦i,n,n+1 F

′
n,n+1

αi,j,n,n+1

��

(F ′
i,j ◦i,j,k F

′
j,k) ◦i,k,n+1 (F ′

k,n ◦k,n,n+1 F
′
n,n+1)

αi,j,k,n+1
yy

yy
yy

yy
yy

yy
yy

yy
yy

yy

x� yy
yy

yy
yy

yy

yy
yy

yy
yy

yy
F ′

i,j ◦i,j,n+1 ((F ′
j,k ◦j,k,n F ′

k,n) ◦j,n,n+1 F
′
n,n+1)

Idi,j◦i,j,n+1αj,k,n,n+1

RRR
RR

RRR
RR

$,RRRR
RRRR

F ′
i,j ◦i,j,n+1 (F ′

j,k ◦j,k,n+1 (F ′
k,n ◦k,n,n+1 F

′
n,n+1))

Now,

1.
αi,j,k,n ◦i,n,n+1 Idn,n+1 = Idi,n+1

because αi,j,k,n = Idi,n from specifications S.

2.
αi,j,n,n+1 = Idi,n+1

from choice in item (I3) above.

3.
Idi,j ◦i,j,n+1 αj,k,n,n+1 = Idi,n+1

because αj,k,n,n+1 = Idj,n+1, by induction as j > i.

4.
αi,k,n,n+1 = Idi,n+1

from choice in item (I3) above.
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5. Since the diagram above commutes, we have

αi,j,k,n+1 = Idi,n+1

Case 2. i < j < k = l = n + 1

(F ′
i,j ◦i,j,n+1 F

′
j,n+1) ◦i,n+1,n+1 1Θ′(n+1)

λi,n+1

WWWWWWWWWWWW

WWWWWWWWWWWW

'/WWWWWWWWWWWW

WWWWWWWWWWWW

αi,j,n+1,n+1

��

F ′
i,j ◦i,j,n+1 F

′
j,n+1

F ′
i,j ◦i,j,n+1 (F ′

j,n+1 ◦i,n+1,n+1 1Θ′(n+1))

Idi,j◦i,j,n+1λj,n+1gggggggggggg

gggggggggggg

/7ggggggggggg
ggggggggggg

Now,

1.

λi,n+1 = Idi,n+1

from choice in item (I1) above.

2.

Idi,j ◦i,j,n+1 λj,n+1 = Idi,n+1

because λj,n+1 = Idj,n+1, by induction as j > i.

3. Since the diagram above commutes, we have

αi,j,n+1,n+1 = Idi,n+1

Case 3. i < j = k < l = n + 1

(F ′
i,j ◦i,j,j 1Θ′(j)) ◦i,j,n+1 F

′
j,n+1

λi,j◦i,j,n+1Idj,n+1

VVVVVVVVVVV

VVVVVVVVVVV

'/VVVVVVVVVVV

VVVVVVVVVVV

αi,j,j,n+1

��

F ′
i,j ◦i,j,n+1 F

′
j,n+1

F ′
i,j ◦i,j,n+1 (1Θ′(j) ◦i,j,n+1 F

′
j,n+1)

Idi,j◦i,j,n+1ρj,n+1hhhhhhhhhhh

hhhhhhhhhhh

/7hhhhhhhhhhh
hhhhhhhhhhh

Now,
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1.

λi,j ◦i,j,n+1 Idj,n+1 = Idi,n+1

because λi,j = Idi,j from choice in item (I1) above.

2.

Idi,j ◦i,j,n+1 ρj,n+1 = Idi,n+1

because ρj,n+1 = Idj,n+1, by induction as j > i.

3. Since the diagram above commutes, we have

αi,j,j,n+1 = Idi,n+1

Case 4. i < j = k = l = n + 1

(F ′
i,n+1 ◦i,n+1,n+1 1Θ′(n+1)) ◦i,n+1,n+1 1Θ′(n+1)

λi,n+1
XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

'/XXXXXXXXXXXXXX

XXXXXXXXXXXXXX

αi,n+1,n+1,n+1

��

F ′
i,n+1 ◦i,n+1,n+1 1Θ′(n+1)

F ′
i,n+1 ◦i,n+1,n+1 (1Θ′(n+1) ◦n+1,n+1,n+1 1Θ′(n+1))

Idi,n+1◦i,n+1,n+1ρn+1,n+1fffffffffffff

fffffffffffff

/7fffffffffffff
fffffffffffff

Now,

1.

λi,n+1 = Idi,n+1

from choice in item (I1) above.

2.

Idi,j ◦i,n+1,n+1 ρn+1,n+1 = Idi,n+1

because ρn+1,n+1 = Idj,n+1 from 4.11.

3. Since the diagram above commutes, we have

αi,n+1,n+1,n+1 = Idi,n+1
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Case 5. i = j < k < l = n + 1

(1Θ′(i) ◦i,i,k F
′
i,k) ◦i,k,n+1 F

′
k,n+1

ρi,k◦i,k,n+1Idk,n+1

VVVVVVVVVVV

VVVVVVVVVVV

'/VVVVVVVVVVV

VVVVVVVVVVV

αi,i,k,n+1

��

F ′
i,k ◦i,k,n+1 F

′
k,n+1

1Θ′(i) ◦i,i,n+1 (F ′
i,k ◦i,k,n+1 F

′
k,n+1)

ρi,n+1hhhhhhhhhhhh

hhhhhhhhhhhh

/7hhhhhhhhhhhh

hhhhhhhhhhhh

Now,

1.
ρi,k ◦i,k,n+1 Idk,n+1 = Idi,n+1

because ρi,k = Idi,k from specifications S.

2.
ρi,n+1 = Idi,n+1

from choice in item (I2) above.

3. Since the diagram above commutes, we have

αi,i,k,n+1 = Idi,n+1

Case 6. i = j < k = l = n + 1

(1Θ′(i) ◦i,i,n+1 F
′
i,n+1) ◦i,n+1,n+1 1Θ′(n+1)

ρi,n+1◦i,n+1,n+1Id1Θ′(n+1)

WWWWWWWWWWW

WWWWWWWWWWW

'/WWWWWWWWWWW

WWWWWWWWWWW

αi,i,n+1,n+1

��

F ′
i,n+1 ◦i,n+1,n+1 1Θ′(n+1)

1Θ′(i) ◦i,i,n+1 (F ′
i,n+1 ◦i,n+1,n+1 1Θ′(n+1))

ρi,n+1ggggggggggggg

ggggggggggggg

/7ggggggggggggg

ggggggggggggg

Now,

1.
ρi,n+1 ◦i,n+1,n+1 Id1Θ′(n+1)

= Idi,n+1

because ρi,n+1 = Idi,n+1 from choice in item (I2) above.
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2.

ρi,n+1 = Idi,n+1

from choice in item (I2) above.

3. Since the diagram above commutes, we have

αi,i,n+1,n+1 = Idi,n+1

Case 7. i = j = k < l = n + 1

(1Θ′(i) ◦i,i,i 1Θ′(i)) ◦i,i,n+1 F
′
i,n+1

ρi,i◦i,i,n+1Idi,n+1

VVVVVVVVVVV

VVVVVVVVVVV

'/VVVVVVVVVVV

VVVVVVVVVVV

αi,i,i,n+1

��

1Θ′(i) ◦i,i,n+1 F
′
i,n+1

1Θ′(i) ◦i,i,n+1 (1Θ′(i) ◦i,i,n+1 F
′
i,n+1)

ρi,n+1hhhhhhhhhhhh

hhhhhhhhhhhh

/7hhhhhhhhhhh

hhhhhhhhhhh

Now,

1.

ρi,i ◦i,i,n+1 Idi,n+1 = Idi,n+1

because ρi,i = Idi,i from 4.11 above.

2.

ρi,n+1 = Idi,n+1

from choice in item (I2) above.

3. Since the diagram above commutes, we have

αi,i,i,n+1 = Idi,n+1

Case 8. i = j = k = l = n + 1

αn+1,n+1,n=1,n+1 = Idn+1,n+1

from 4.11.
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4.13. Lemma. Given f̄ = (I, fO, fA), a complete set of specifications S = (Θ,F , S0, S2)
for f̄ and ḡ = (J, gO, gA) such that

1. J = j J I,

2. f̄ = ḡ|I

Then there exists a complete set of specifications S ′ = (Θ′,F ′, S0′, S2′) for ḡ such that

S = S ′|I

Proof. Symmetric to 4.12.

4.14. Lemma. Given f̄ = (I, fO, fA), a complete set of specifications S = (Θ,F , S0, S2)
for f̄ , and ḡ = (J, gO, gA) such that

1. J = L J I J R,

2. f̄ = ḡ|I

Then there exists a complete set of specifications S ′ = (Θ′,F ′, S0′, S2′) for ḡ such that

S = S ′|I

Proof. Use 4.12 to extend to the right and 4.13 to extend to the left.

4.15. Lemma. Given a pasting diagram f̄ = (I, fO, fA), there is a complete set of speci-
fications S = (Θ,F , S0, S2) for f̄ .

Proof. We use induction on size of |I|.

1. Base case: Use 4.11.

2. Induction step: Use 4.12.

4.16. Normal form for complete specification trees: Given a PD f̄ , and a
complete set of specifications S for f̄ , we have trees with only specification nodes that are
constructed from S; they use only specifications appearing in S, placed in the same way
as in S and contains no 2-cell nodes. Call such a tree a specification tree and denote a set
of such trees as ΥS (dom(T ) = f̄ whenever T ∈ ΥS). All such T ∈ ΥS are equivalent to
a unique tree in normal form in ΥS as shown below. We denote the normal form tree for
S by

∐

S.
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4.17. Definition. A tree T ∈ ΥS is said to be in normal form if and only if

1. |f̄ | = 0, and

T =

(h)

p

[A]

2. or, |f̄ | = 1, and

T =
(g)

(g)

3. or, |f̄ | > 1, and

T =

(h)

s

T1 (g)

and T1 is in normal form.

4.18. Lemma. Given a complete specification set S and T ∈ ΥS, then T '
∐

S, i.e.
T −→∗

∐

S.

Proof. An algorithm for converting a specification tree into its normal form is given. It
actually produces a witness for converting T into its normal form. This is called Norm
and has type

Norm : ΥS −→ (→∗)

where (→∗) is set of sequences of elementary transformations.
Norm is defined recursively as:

1.

Norm











(h)

p

[A]










= ε

2.

Norm











(h)

s

(f) (g)










= ε
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3.

Norm



























(h)

v

T1 u

T2 T3



























= Norm



























(h)

t

s

T1 T2

T3



























· (ε, ID, h) · (ε, ALP , s, t, u, v)

4.

Norm





















(h)

s

T p

[B]




















= Norm







(h)

T





· (ε, ID, h) · (ε, LMD, s, p)

5.

Norm





















(h)

s

p

[A]

T





















= Norm







(h)

T





· (ε, ID, h) · (ε, RHO, s, p)

6.

Norm















(h)

v

T (g)














= 〈l〉 ∗ Norm







(f)

T
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Let 〈ti〉 = Norm(T ). Then 〈ti〉 is a transformation for T −→
∐

S. Hence, T '
∐

S.

4.19. Corollary. Given a complete specification set S and T1, T2 ∈ ΥS then T1 ' T2.

Proof. T1 '
∐

S ' T2.

4.20. Residue modulo complete specifications of a tree: Given a tree T , let
number of 0-specifications in T be #0(T ) and number of 2-specifications in T be #2(T ).
Let #(T ) = #2(T ) + 1 − #0(T ).

For any tree T such that dom(T ) = f̄ and S being a complete specification set for f̄ ,
we define [T ]S the residue of T modulo S recursively as below. We also produce a witness
for the transformation that finds [T ]S, denoted as ∨S(T ). Now,

1. If

T =

(f)

p

[A]

, then [T ]S = 1A,S0(0),p and ∨S(T ′) = (ε, S0, S0(0), p).

2. If

T =
(g)

(g)

then [T ]S = Idg and ∨S(T ) = (ε, ID, f).

3. If

T =

(h)

s

T1 T2

then
[T ]S = [T1]S↑dom(T1) ◦S2(0,#(T1),#(T1)+#(T2)),s [T2]S↑dom(T2)

and

∨S(T ) = 〈l〉 ∗ ∨S↑dom(T1)(T1) · 〈r〉 ∗ ∨S↑dom(T2)(T2)

· (ε, S2, [T1]S↑dom(T1), [T2]S↑dom(T2), S2(0, #(T1), #(T1) + #(T2)), s)

4. If

T =

(g)

β

T1
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then [T ]S = [T1]S · β and

∨S(T ) = 〈u〉 ∗ ∨S(T1) · (ε, V C, [T1]S · β, [T1]S, β)

Denote by 〈T 〉S, the tree obtained using transformations ∨S(T ) on T . Then note that
〈T 〉S[〈u〉] ∈ ΥS. We denote 〈T 〉S[〈u〉] as T/S. Thus we have an equation

T ' T/S �〈u〉 [T ]S

Let −→r be the restriction of −→ (elementary transformations) for the case where
pos = ε i.e. the transformation is applied at the root only.

4.21. Lemma. If T −→r T ′ and S a complete set of specifications for dom(T ), then
[T ]S = [T ′]S.

Proof. For simplicity in this proof, subscript S is removed from [T ]S.

1. VC For (ε, V C, δ, β, γ), [T ] = [T1] · β · γ and [T ′] = [T1] · δ = [T1] · β · γ. Hence,
[T ] = [T ′].

2. VC For (ε, V C, δ, β, γ), proof is same as above.

3. S0 For (ε, S0, p, q), [T ] = 1Θ(i),S0(i),q and [T ′] = 1Θ(i),S0(i),p · 1Θ(i),p,q = 1Θ(i),S0(i),q.
Hence, [T ] = [T ′].

4. S0 For (ε, S0, , p, q), proof is the same as above.

5. S2 For (ε, S2, β, γ, s, t), [T ] = ([T1] · β) ◦S2(i,j,k),t ([T2] · γ) and [T ′] = ([T1] ◦S2(i,j,k),s

[T2]) · (β ◦s,t γ). Hence, [T ] = [T ′].

6. S2 For (ε, S2, β, γ, s, t), proof is the same as above.

7. ALP For (ε, ALP , s, t, u, v), [T ] = [T1]◦S2(i,j,l),v(γ◦S2(j,k,l),uδ) and [T ′] = ([T1]◦S2i,j,k,s

[T2])◦S2(i,k,l),t [T3]. From naturality we have, [T ′] = αi,j,k,l · [T ] and from α coherence,
we have αi,j,k,l = Idi,l. Hence, [T ] = [T ′].

8. ALP For (ε, ALP , s, t, u, v), proof is the same as above.

9. LMD For (ε, LMD, s, p), [T ] = [T1]·Idf = [T1] and [T ′] = ([T1]◦S2(i,j,j),s1Θ(j),S0(j),p)·
λs,p. From naturality we have, [T ′] = λi,j · [T ] and λ coherence we have λi,j = Idi,j .
Hence, [T ] = [T ′].

10. LMD For (ε, LMD, s, p), proof is the same as above.

11. RHO For (ε, RHO, s, p), [T ] = [T1] ·Idf = [T1] and [T ′] = (1Θ(j),S0(j),p◦S2(i,i,j),s [T1]) ·
ρs,p. From naturality we have, [T ′] = ρi,j · [T ] and ρ coherence we have ρi,j = Idi,j .
Hence, [T ] = [T ′].
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12. RHO For (ε, RHO, s, p), proof is the same as above.

13. ID For (ε, ID, f), [T ] = [T1], [T ′] = [T1] · Idf = [T1].

14. ID For (ε, ID, f), proof is the same as above.

4.22. Lemma. If [T1]S = [T ′
1]S, then [T1 �p T2]S = [T ′

1 �p T2]S

Proof. Since T1 is a subtree of T1 �p T2 and T ′
1 is a subtree of T ′

1 �p T2, while evaluating
[T1 �p T2]S and [T ′

1 �p T2]S, at a certain point we need to evaluate [T1]S and [T ′
1]S. But

then [T1]S = [T ′
1]S and the rest of the evaluation is same for [T1 �p T2]S and [T ′

1 �p T2]S.
Hence, [T1 �p T2]S = [T ′

1 �p T2]S

4.23. Corollary. If T ' T ′ and S is a complete set of specifications for dom(T ), then
[T ]S = [T ′]S.

Proof. Using 4.21 and 4.22 we have T −→ T ′ =⇒ [T ]S = [T ′]S. Using induction on the
number of steps in '=−→∗, we get the required result.

4.24. Lemma. Suppose T1, T2 ∈ Υ such that τ(T1) = τ(T2), and S is a complete set of
specifications for dom(T1) = dom(T2), then

T1 ' T2 ⇐⇒ [T1]S = [T2]S

Proof. (=⇒) 4.23

(⇐=)

T1

∨S(T1)
// 〈T1〉S = T1/S �〈u〉 [T1]S

' // ΥS �〈u〉 [T1]S

=

��

T2
∨S(T2)

// 〈T2〉S = T2/S �〈u〉 [T2]S
' // ΥS �〈u〉 [T2]S

4.25. Definition. A tree T is said to be universal if and only if [T ]S is an isomorphism,
where S is any complete set of specifications for dom(T ).

4.26. Lemma. Given any pasting diagram f̄ , there is an universal 2-cell U such that
dom(U) = f̄ .
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Proof. Let S be a set complete set of specifications for f̄ , then consider U = ΥS. Let S ′

be any complete set of specifications for f̄ . We use induction on the structure of the U .

1. |f̄ | = 0,

U =

(h)

p

[A]

then, [U ]S′ = 1A,p′,p which is an isomorphism.

2. or, |f̄ | = 1, and

T =
(g)

(g)

then, [U ]S′ = Idf which is an isomorphism.

3. or, |f̄ | > 1, and

T =

(h)

s

T1 (g)

then, by induction [T1]S′ is an isomorphism. Hence, [T ]S′ = [T1]S′ ◦s′,s Idg is an
isomorphism.

4.27. Lemma. Given any 2-cell T such that dom(T ) = f̄ and a universal 2-cell U such
that dom(U) = ḡ = f̄ ↑(m,m′), then there is a 2-cell T ′, such that U �− T ′ ' T .

Proof. Let S be a set of complete set of specifications for ḡ = dom(U). Since, ḡ =
f̄ ↑(m,m′), we extend S to S ′ such that S ′ is complete set of specifications for f̄ . Now, let

S ′′ = S ′ ↓(m,m′), h̄ = f̄ [codom(U)/(m,m′)], pos = 〈l|h̄|−m−1 ·rif(m=0)(0)else(1)〉, pos′ = u ·pos
and, pos′′ = pos′ · u. Then U/S �pos

∐

S′′ ∈ ΥS′ with dom(U/S �pos

∐

S′′) = f̄ . Now we
have,

T ' T/S ′ �〈u〉 [T ]S′

' (U/S �pos

∐

S′′) �〈u〉 [T ]S′

' (((U/S �〈u〉 [U ]S) �〈u〉 [U ]−1
S ) �pos

∐

S′′) �〈u〉 [T ]S′

' ((U �〈u〉 [U ]−1
S ) �pos

∐

S′′) �〈u〉 [T ]S′

= (U �〈u〉 [U ]−1
S ) �pos′ (

∐

S′′ �〈u〉[T ]S′)
= U �pos′′ ([U ]−1

S �pos′ (
∐

S′′ �〈u〉[T ]S′))

Thus T ′ = ([U ]−1
S �pos′ (

∐

S′′ �〈u〉[T ]S′)) satisfies the lemma.
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4.28. Lemma. Given an universal 2-cell U , and two 2-cells T1 and T2 such that, dom(U) =
ḡ, dom(T1) = dom(T2) = f̄ , codom(T1) = codom(T2) and codom(U) = fA(m). Then
U �p1 T1 ' U �p2 T2, implies T1 ' T2.

Proof. In this proof we use isomorphism of indexes with natural numbers. LetS be
complete set of specifications for ḡ. Let h̄ = f̄ [ḡ/(m,m + 1)]. Let S ′ be an extension
of S to h̄ and S ′′ = S ′ ↓m,m+|ḡ|. Let p1′ = ∨S′′(T1)(p1), p2′ = ∨S′′(T2)(p2), and p =

〈l|f̄ |−m−1 · rif(m=0)(0)else(1)〉. Then

U �p1 T1 ' U �p2 T2

⇒ U �p1′ (T1/S
′′ �〈u〉 [T1]S′′) ' U �p2′ (T2/S

′′ �〈u〉 [T2]S′′)
⇒ U �p′ (

∐

S′′ �〈u〉[T1]S′′) ' U �p′ (
∐

S′′ �〈u〉[T2]S′′)
⇒ (U �p

∐

S′′) �〈u〉 [T1]S′′ ' (U �p

∐

S′′) �〈u〉 [T2]S′′

⇒ ((U/S �〈u〉 [U ]S) �p

∐

S′′) �〈u〉 [T1]S′′ ' ((U/S �〈u〉 [U ]S) �p

∐

S′′) �〈u〉 [T2]S′′

⇒ ((U/S �p

∐

S′′) �〈u〉 δ) �〈u〉 [T1]S′′ ' ((U/S �p

∐

S′′) �〈u〉 δ) �〈u〉 [T2]S′′

⇒ δ · [T1]S′′ = δ · [T2]S′′

⇒ [T1]S′′ = [T2]S′′

⇒ T1 ' T2

where δ = (IdF ′′(0,m) ◦S2′′(0,m,m+1),S2′′(0,m,m+1) [U ]−1
S ) ◦S2′′(0,m+1,|h̄|),S2′′(0,m+1,|h̄|) IdF ′′(m+1,|h̄|).

Since [U ]S is an isomorphism, so is δ.

4.29. Theorem. Construction (−)# transforms ana-bicategory to 2D-multitopic category.

5. Equivalence of 2D-multitopic category and ana-bicategory

In section 3 and section 4 two constructions (−)∗ and (−)# were described. In this section
we show that these constructions form adjoint pairs in the sense of FOLDS. First we take

two composites M � (−)∗
//M∗ � (−)#

//M∗# and A � (−)#
//A# � (−)∗

//A#∗ . A ' A#∗ is obvious
because all the data is preserved. In fact this is equality.

Non obvious equivalence is that of M ' M∗#, on which we start to work now.

5.1. FOLDS signature. The FOLDS signature for 2D-multitopic category (L2D−Mlt)
is
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Eq[0]

e0
l

��

e0
r

��

U [0]

u0
��

��
��

����
��

��

Id

i
��

��
��

����
��

��

Eq[m]

em
l

��

em
r

��

U [m]

um�
��

��
�

����
��

��

◦[m,n, i]

c0hhhhhhhhhhhhhhhhhhhhh

sshhhhhhhhhhhhhhhhhhhhh c1
ooooooooooo

wwooooooooooo c2

��
C2[0]

c0
RRRRRRRRRRRRRR

((RRRRRRRRRRRRRR

C2[1]

d1
0

JJJJJJJJ

%%JJJJJJJJJ
c1

JJJJJJJJ

%%JJJJJJJJJ

. . . C2[m]

dm
0

��

...
dm

m−1

��

cm

��

. . . C2[n]

dn
0

qqqqqqqqqqq

xxqqqqqqqq ...
dn

n−1

qqq
qqq

xxqqqqqqqqqqqq
cnqqq

q

xxqqqqqqqqqqqqqqq

. . . C2[m + n − 1 = k]

dk
0
hhhhhhhhhhhhhhhhhhhhhhh

sshhhhhhhhhhhhhhhhhh ...
dk

k−1
hhhhhhhhhhhh

sshhhhhhhhhhhhhhhhhhhhhhhhhhh

ckhhhhhhhhhhhhhhhhhh

sshhhhhhhhhhhhhhhhhhhhhhh

. . .

C1

d

��

c

��
C0

The following equations hold for the arrows in the above one way category.

(∀n ∈ {1, 2, . . .})(∀1 ≤ i < n)(dn
i · d = dn

i−1 · c)
c0 · d = c0 · c

(∀n ∈ {1, 2, . . .})(dn
0 · d = cn · d)

(∀n ∈ {1, 2, . . .})(dn
n−1 · c = cn · c)
i · d1

0 = i · c1

(∀n ∈ {0, 1, . . .})(∀p ∈ C2[n] ↓ L2D−Mlt)(eql · p = eqr · p)
(∀m ∈ {0, 1, . . .})(∀n ∈ {0, 1, . . .})(∀0 ≤ i < n)(c1 · d

n
i = c0 · c

m)
(∀m ∈ {0, 1, . . .})(∀n ∈ {0, 1, . . .})(∀0 ≤ i < n)(∀0 ≤ j < i)(c1 · d

n
j = c2 · d

m+n−1
j )

(∀m ∈ {0, 1, . . .})(∀n ∈ {0, 1, . . .})(∀0 ≤ i < n)(∀i < j < n)(c1 · d
n
j = c2 · d

m+n−1
m+j−1 )

(∀m ∈ {0, 1, . . .})(∀n ∈ {0, 1, . . .})(∀0 ≤ i < n)(∀0 ≤ j < m)(c0 · d
m
j = c2 · d

m+n−1
i+j )

(∀m ∈ {0, 1, . . .})(∀n ∈ {0, 1, . . .})(∀0 ≤ i < n)(c1 · c
m = c2 · c

m+n−1)

The 2D-multitopic category is L2D−Mlt structure that satisfies the following axioms
(Σ2D−Mlt).

1. Equality:

1. Reflexivity
(∀c ∈ C2[n])(∃e(c, c) ∈ Eq[n])

2. Symmetry
(∀e1(c1, c2) ∈ Eq[n])(∃e2(c2, c1) ∈ Eq[n])

3. Transitivity

(∀e1(c1, c2) ∈ Eq[n])(∀e2(c2, c3) ∈ Eq[n])(∃e3(c1, c3) ∈ Eq[n])
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2. Composition:

1. Existence of composite

(∀a ∈ C2[m])(∀b ∈ C2[n])
(cm(a) = dm(pm

i (b))
=⇒
(∃d ∈ C2[m + n − 1])(∃c(a, b, d) ∈ ◦[m,n, i]))

2. Composition is well defined

(∀a ∈ C2[m])
(((∃e(a, a′) ∈ Eq[m])
∧((∀b ∈ C2[n])(∀d ∈ C2[m + n − 1])(∃c(a, b, d) ∈ ◦[m,n, i])))
=⇒
(∃c(a′, b, d) ∈ ◦[m,n, i]))

3. Composition is well defined

(∀b ∈ C2[n])
(((∃e(b, b′) ∈ Eq[n])
∧((∀a ∈ C2[m])(∀d ∈ C2[m + n − 1])(∃c(a, b, d) ∈ ◦[m,n, i])))
=⇒
(∃c(a, b′, d) ∈ ◦[m,n, i]))

4. Uniqueness of composition

(∀a ∈ C2[m])(∀b ∈ C2[n])
(cm(a) = dm(pm

i (b))
∧(∀d ∈ C2[m + n − 1])(∀d′ ∈ C2[m + n − 1])

(∃c(a, b, d) ∈ ◦[m,n, i])(∃c′(a, b, d′) ∈ ◦[m,n, i])
=⇒
(∃e(d, d′) ∈ Eq[m + n − 1]))

3. Commutativity:

(∀a ∈ C2[m])(∀a′ ∈ C2[m
′])(∀b ∈ C2[n])

(cm(a) = dm(pm
i (b)) ∧ cm(a′) = dm(pm

j (b)) ∧ i < j
∧(∀ab ∈ C2[m + n − 1])(∀a′b ∈ C2[m

′ + n − 1])
(∀a′ab ∈ C2[m

′ + m + n − 2])(∀aa′b ∈ C2[m + m′ + n − 2])
(∃c(a, b, ab) ∈ ◦[m,n, i])(∃c′(a′, b, a′b) ∈ ◦[m′, n, i])
(∃c′′(a′, ab, a′ab) ∈ ◦[m′,m + n − 1, j + m − 1])
(∃c′′′(a, a′b, aa′b) ∈ ◦[m,m′ + n − 1, i])

=⇒
(∃e(a′ab, aa′b) ∈ Eq[m + m′ + n − 2]))
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4. Associativity:

(∀a ∈ C2[l])(∀b ∈ C2[m])(∀d ∈ C2[n])
(cl(a) = dm(pm

j (b)) ∧ cm(b) = dn(pn
i (d))

∧(∀ab ∈ C2[l + m − 1])(∀bd ∈ C2[m + n − 1])
(∀(ab)d ∈ C2[l + m + n − 2])(∀a(bd) ∈ C2[l + m + n − 1])
(∃c(a, b, ab) ∈ ◦[l,m, j])(∃c′(b, d, bd) ∈ ◦[m,n, i])
(∃c′′(ab, d, (ab)d) ∈ ◦[l + m − 1, n, l + m + n − 2])
(∃c′′′(a, bd, a(bd)) ∈ ◦[l,m + n − 1, i + j])

=⇒
(∃e((ab)d, a(bd)) ∈ Eq[l + m + n − 2]))

5. Identity:

(∀f ∈ C1)(∃Idf ∈ I)(∀m)
((∀a ∈ C2[m])(∀0 ≤ i < m)

(dn(pn
i (a)) = f =⇒ (∃c(i(Idf ), a, a) ∈ ◦[1, n, i]))

∧(∀a ∈ C2[m])
(cn(a) = f =⇒ (∃c(a, i(Idf ), a) ∈ ◦[n, 1, 0])))

6. Universality:

1. Definition of universal 2-cell

Univ(u ∈ U [n])
iff
(∀m ≥ n)(∀a ∈ C2[m])(∀0 ≤ i < m)(∀0 ≤ j < n)

((dn
j (un(u)) = dm

i+j(a))
=⇒
(∃b ∈ C2[m − n + 1])

((∃c(un(u), b, a) ∈ ◦[n,m − n + 1, i])
∧(∀b′ ∈ C2[m − n + 1])

(∃c′(un(u), b′, a) ∈ ◦[n,m − n + 1, i])
=⇒
(∃e(b, b′) ∈ Eq[m − n + 1])))

2. Existence of universal 2-cell for length 0 PD

(∀A ∈ C0)(∃u ∈ U [0])(c(d0(u0(u))) = A ∧ Univ(u))

3. Existence of universal 2-cell for length > 0 PD

(∀n ∈ {1, 2, . . .})

(∀f0 ∈ C1)
∏i<n

i=1 ((∀fi ∈ C1)(d(fi) = c(fi−1)))
(∃u ∈ U [n])

((∀0 ≤ i < n)((di(un(u)) = fi) ∧ Univ(u)))
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5.2. Structure. We define M and M∗# as two L2D−Mlt structures. The meaning
of the arrows will be common for both and will be described after filling in the object
descriptions.

5.3. Definition. M: C0 and C1 are Cell0(M) and Cell1(M). C2[i] is 2-cells with
length of domain i. U [i] are universals of domain length i. I is identity 2-cells. Eq[i] =
{(c, c)|c ∈ C2[i]}. ◦[m,n, i] = {(α, β, γ) ∈ C2[m] × C2[n] × C2[m + n − 1]|α · β = γ}.

5.4. Definition. M∗#: C0 and C1 are same as above. C2[i] = {T ∈ Υ||dom(T )| = i}.
Eq[i] = {(T1, T2)|T1, T2 ∈ C2[i]∧T1 ' T2}. I = {T |T ∈ C2[1]∧T ' Idf for some f ∈ C1}.
U [i] ⊂ C2[i] are the universal arrows as defined in 4.25. ◦[m,n, i] = {(T1, T2, T3) ∈
C2[m] × C2[n] × C2[m + n − 1]|T1 � T2 ' T3}.

c and d map 1-cells to their domain and codomain 0-cells. dm
i and cm maps 2-cell to

its ith place in domain and to its codomain 1-cell. em
l and em

r are left and right sides of
equality on 2-cells. um is an injection of universals into 2-cells and i is an injection of
identities into C2[1].

All the axioms in Σ2D−Mlt are true for the structure M∗# as has been verified in the
previous section. For M they are automatic from the axioms of 2D-multitopic category.

5.5. Evaluation: 0 and 1 cells of these two structures coincide as was given by the
constructions in the previous chapters. For 2-cells, we define a map from M∗# to M
called ev, an abbreviation for evaluation, remembering the fact that trees in Υ come from
2 cells in M which has composition defined in it.

ev : Υ −→ Cell2(M)

This is defined inductively on the structure of trees (in Υ) and we show it is invariant
under the equivalence relation ' defined in previous chapter.

1. If T =
(f)

(f)
, then ev(T ) = Idf .

2. If T =

(f)

p

[A]

, then ev(T ) = p.

3. If T =

(h)

s

T1 T2

, ev(T1) = α and ev(T2) = β, then ev(T ) = α · β · s
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4. If T =

(g)

β

T1

and ev(T1) = α, then ev(T ) = α · β.

5.6. Lemma.

T −→r T ′ =⇒ ev(T1) = ev(T2)

Proof. To show that ev is invariant under ', we show it is invariant under each elemen-
tary step. Let the resulting tree after elementary transformation of T be T ′.

1. VC For (ε, V C, δ, β, γ), ev(T ) = ev(T1) ·β ·γ and ev(T ′) = ev(T1) · δ = ev(T1) ·β ·γ.
Hence, ev(T ) = ev(T ′).

2. VC For (ε, V C, δ, β, γ), proof is the same as above.

3. S0 For (ε, S0, p, q), ev(T ) = q and ev(T ′) = p · 1A,p,q = q. Hence, ev(T ) = ev(T ′).

4. S0 For (ε, S0, p, q), proof is the same as above.

5. S2 For (ε, S2, β, γ, s, t), ev(T ) = (ev(T1) · β) · (ev(T2) · γ) · t and ev(T ′) = ev(T1) ·
ev(T2) · s · (β ◦s,t γ) = ev(T1) · ev(T2) · β · γ · t. Hence, ev(T ) = ev(T ′).

6. S2 For (ε, S2, β, γ, s, t), proof is the same as above.

7. ALP For (ε, ALP , s, t, u, v), ev(T ) = ev(T1) · (ev(T2) · ev(T3) · u) · v, and ev(T ′) =
(ev(T1) · ev(T2) · s) · ev(T3) · t ·αs,t,u,v. By using definition of αs,t,u,v, we have ev(T ) =
ev(T ′).

8. ALP For (ε, ALP , s, t, u, v), proof is the same as above.

9. LMD For (ε, LMD, s, p), ev(T ) = ev(T1) and ev(T ′) = (ev(T1) · p · s ·λs,p. By using
definition of λs,p, we have ev(T ) = ev(T ′).

10. LMD For (ε, LMD, s, p), proof is the same as above.

11. RHO For (ε, RHO, s, p), ev(T ) = ev(T1) and ev(T ′) = p · ev(T1) · s · ρs,p = ev(T1) ·
(p · s) · ρs,p. By using definition of ρs,p, we have ev(T ) = ev(T ′).

12. RHO For (ε, RHO, s, p), proof is the same as above.

13. ID For (ε, ID, f), ev(T ) = ev(T1), ev(T ′) = ev(T1) · Idf . Hence, ev(T ) = ev(T ′).

14. ID For (ε, ID, f), proof is the same as above.
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5.7. Lemma. If ev(T1) = ev(T ′
1), then ev(T1 �p T2) = ev(T ′

1 �p T2)

Proof. Since T1 is a subtree of T1 �p T2 and T ′
1 is a subtree of T ′

1 �p T2, while evaluating
ev(T1 �p T2) and ev(T ′

1 �p T2), at a certain point we need to evaluate ev(T1) and ev(T ′
1).

But then ev(T1) = ev(T ′
1), and the rest of the evaluation is same for ev(T1 �p T2) and

ev(T ′
1 �p T2). Hence, ev(T1 �p T2) = ev(T ′

1 �p T2)

5.8. Corollary.

T ' T ′ =⇒ ev(T ) = ev(T ′)

Proof. Using 5.6 and 5.7 we have T −→ T ′ =⇒ ev(T ) = ev(T ′). Using induction on the
number of steps in '=−→∗ we get the required result.

5.9. Lemma.

T1 ' T2 ⇐⇒ ev(T1) = ev(T2)

Proof. (=⇒) 5.8
(⇐=) Let S be a complete set of specifications for dom(T1). Then we have T1 '

T1/S � [T1]S and T2 ' T2/S � [T2]S. Since T1/S ' T2/S, we have ev(T1/S) = ev(T2/S).
Also since T1/S is composed of only specifications(universals), ev(T1/S) is universal, hence
left cancellable. Thus,

eq(T1) = ev(T2)
⇒ ev(T1/S) · [T1]S = ev(T2/S) · [T2]S
⇒ [T1]S = [T2]S
⇒ T1 ' T2

5.10. The Span: To show FOLDS equivalence for M and M∗# we need to find tuple

(S, p, q) as M S
p

oo q
//M∗# such that p, q are fiberwise surjective. We will show that

actually S = M∗#, q = Id and p is constructed using ev for 2-Cells. Since p, q are natural
transformations, we use pC0 etc to denote its components.

Surjectivity of q is immediate. Now we list the components of p.

pC0 = IdC0

pC1 = IdC1

pC2[m] = ev|C2[m]

pId = ev|Id
pU [m] = ev|U [m]

pEq[m] = (ev|C2[m] ◦ π1, ev|C2[m] ◦ π2)
p◦[m,n,i] = (ev|C2[m] ◦ π1, ev|C2[m] ◦ π2, ev|C2[m] ◦ π3)

p being a natural transformation is obvious. pC0 and pC1 are obviously surjective as
they are identities.

5.11. Lemma. pC2[m] = ev|C2[m] is fiberwise surjective on M(C2[m]).
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Proof. Since p is an identity on ˙C2[m] and pC2[m] preserves the frame for C2[m], surjec-
tivity will imply fiberwise surjectivity.

1. m = 0: For any β ∈ M(C2[0]), let p ∈ M(U [0]) such that dom(p) = dom(β), then
there is an unique γ ∈ M(C2[1]) such that β = p · γ. Now, consider T = p �〈u〉 p ∈
M∗#(C2[0]), then ev(T ) = p · γ = β.

2. m = 1: For any β ∈ M(C2[1]), consider T = β ∈ M∗#(C2[1]), then ev(T ) = β.

3. m ≥ 2: We use induction.

1. Base case n = 2: For any γ ∈ M(C2[2]), let s ∈ M(U [2]) such that dom(s) =
dom(γ). Then there is β ∈ M(C2[1]) such that γ = s · β. Now, tree T =
s �〈u〉 β ∈ M∗#(C2[2]), is such that ev(T ) = s · β = γ.

2. Induction Step: Suppose for all α ∈ M(C2[n]), there is Tα such that ev(Tα) =
α. Now consider γ ∈ M(C2[n + 1]), and s ∈ M(U [2]) such that dom(s) ≤0

dom(γ). Then there is β ∈ M(C2[n]) such that γ = s · β. By induction
hypothesis, there is a tree Tβ such that ev(Tβ) = β. Let pos be such that
Tβ[pos] = codom(s). Then tree T = s �pos Tβ ∈ M∗#(C2[n + 1]) is such that
ev(T ) = s · β = γ.

5.12. Lemma. pId = ev|Id is fiberwise surjective.

Proof. Let Idf ∈ M(Id) and T ∈ M∗#(C2[1]) such that pC2[1](T ) = Idf . Since,
M(i)(Idf ) = Idf = pC2[1](T ), we need to show that T ∈ M∗#(Id), M∗#(i)(T ) = T ,
and pId(T ) = Idf .

Since pC2[1](T ) = Idf , we have T ' Idf , hence T ∈ M∗#(Id). Since M∗#(i) is an
injection, we have M∗#(i)(T ) = T . Now, pId(T ) = ev|Id(T ) = Idf .

5.13. Lemma. A 2-cell α : f +3g is universal in M if and only if α is an isomorphism
in M∗.

Proof. It is obvious that universals are isomorphisms (for any β, consider α−1 · β).

Suppose α is an universal in M. Then let β be such that α · β = Idf . Now,

α · (β · α) = (α · β) · α
= Idf · α
= α
= α · Idg

Since, universals are left-cancellable, β · α = Idg.
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5.14. Lemma. Given a T ∈ M∗#(C2[m]),

T ∈ M∗#(U [m]) ⇐⇒ ev(T ) ∈ M(U [m])

Proof. Let S be CSS for dom(T ). Now T ' T/S�〈u〉 [T ]S, hence ev(T ) = ev(T/S) · [T ]S.
As T/S is a tree made of only specifications (universals), ev(T/S) is an universal.

(=⇒) Since T ∈ M∗#(U [m]), [T ]S is an isomorphism. So, from 5.13, ev([T ]S) is an
universal. Hence the composite ev(T/S) · ev([T ]S) = ev(T ) is an universal.

(⇐=) Now since ev(T ) and ev(T/S) are universals, from 2.4, ev([T ]S) is an universal.
Now from 5.13, [T ]S is an isomorphism. Hence, T ∈ M∗#(U [m]).

5.15. Lemma. pU [m] = ev|U [m] is fiberwise surjective.

Proof. Let u ∈ M(U [m]) and T ∈ M∗#(C2[m]) such that pC2[m](T ) = u. Since,
M(um)(u) = u = pC2[m](T ), we need to show that T ∈ M∗#(U [m]), M∗#(um)(T ) = T ,
and pU [m](T ) = u.

Since u is an universal and ev(T ) = u, T ∈ M∗#(U [m]) from 5.14. Since M∗#(um) is
an injection, we have M∗#(um)(T ) = T . Now, pU [m](T ) = ev|U [m](T ) = u.

5.16. Lemma. pEq[m] = (ev|C2[m] ◦ π1, ev|C2[m] ◦ π2) is fiberwise surjective.

Proof. Let (α, α) ∈ M(Eq[m]) and T, T ′ ∈ M∗#(C2[m]) such that pC2[m](T ) = pC2[m](T
′)

= α. Since, M(em
l )((α, α)) = α = pC2[m](T ), and M(em

r )((α, α)) = α = pC2[m](T
′), we

need to show that (T, T ′) ∈ M∗#(Eq[m]), M∗#(em
l )((T, T ′)) = T , M∗#(em

r )((T, T ′)) =
T ′, and pEq[m]((T, T ′)) = (α, α).

Since ev(T ) = ev(T ′), T ' T ′ (5.9), hence (T, T ′) ∈ M∗#(Eq[m]). Since M∗#(em
l ) and

M∗#(em
r ) are projections, we have M∗#(em

l )((T, T ′)) = T , M∗#(em
r )((T, T ′)) = T ′. Now,

pEq[m]((T, T ′)) = (ev|C2[m] ◦ π1, ev|C2[m] ◦ π2)(T, T ′) = (ev|C2[m](T ), ev|C2[m](T
′)) = (α, α).

5.17. Lemma. If T1 and T2 are two composable trees at position pos, then ev(T1�posT2) =
ev(T1) · ev(T2).

Proof. We use induction on the structure of T2.

1. T2 is an empty tree. Then, ev(T1 �pos T2) = ev(T1) = ev(T1) · Idcodom(T1) = ev(T1) ·
ev(T2).

2. T2 = T ′ �〈l〉 (T ′′ �〈r〉 s). Here we have two cases.

1. pos begins with l. Then,

ev(T1 �pos T2) = ev(T1 �pos 〈l〉 T ′) · ev(T ′′) · s
= ev(T1) · ev(T ′) · ev(T ′′) · s
= ev(T1) · ev(T2)

Here, ev(T1 �pos 〈l〉 T ′) = ev(T1) · ev(T ′) as tree T ′ is less complex than T2.
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2. pos begins with r. Then,

ev(T1 �pos T2) = ev(T ′) · ev(T1 �pos 〈r〉 T ′′) · s
= ev(T ′) · ev(T1) · ev(T ′′) · s
= ev(T1) · ev(T ′) · ev(T ′′) · s
= ev(T1) · ev(T2)

In here, ev(T1 �pos 〈r〉 T
′′) = ev(T1) · ev(T ′′) as tree T ′′ is less complex than T2.

3. T2 = T ′ �〈u〉 β. Then,

ev(T1 �pos T2) = ev(T1 �pos 〈u〉 T ′) · β
= ev(T1) · ev(T ′) · β
= ev(T1) · ev(T2)

5.18. Lemma. p◦[m,n,i] = (ev|C2[m] ◦ π1, ev|C2[m] ◦ π2, ev|C2[m] ◦ π3) is fiberwise surjective.

Proof. Let (α, β, γ) ∈ M(◦[m,n, i]), T1 ∈ M∗#(C2[m]), T2 ∈ M∗#(C2[n]), and T3 ∈
M∗#(C2[m + n − 1]) such that pC2[m](T1) = α, pC2[n](T2) = β, and pC2[m+n−1](T3) =
γ. Since, M(c0)((α, β, γ)) = α = pC2[m](T1), M(c1)((α, β, γ)) = β = pC2[n](T2), and
M(c0)((α, β, γ)) = γ = pC2[m+n−1](T3), we need to show that (T1, T2, T3) ∈ M∗#(◦[m,n, i]),
M∗#(c0)((T1, T2, T3)) = T1, M

∗#(c1)((T1, T2, T3)) = T2, M
∗#(c2)((T1, T2, T3)) = T3, and

p◦[m,n,i]((T1, T2, T3)) = (α, β, γ).
Since ev(T3) = γ = α · β = ev(T1) · ev(T2) = ev(T1 � T2), we have T1 � T2 ' T3, hence

(T1, T2, T3) ∈ M∗#(◦[m,n, i]). Since M∗#(c0), M
∗#(c1), and M∗#(c2) are projections, we

have M∗#(c0)((T1, T2, T3)) = T1, M
∗#(c1)((T1, T2, T3)) = T2 and M∗#(c2)((T1, T2, T3)) =

T3. Now, p◦[m,n,i]((T1, T2, T3)) = (ev|C2[m] ◦ π1, ev|C2[m] ◦ π2, ev|C2[m] ◦ π3)((T1, T2, T3)) =
(ev|C2[m](T1), ev|C2[m](T2), ev|C2[m](T3)) = (α, β, γ).

5.19. Theorem. 2D-multitopic category and ana-bicategory are equivalent.
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Jean-Louis Loday, Université de Strasbourg: loday@math.u-strasbg.fr
Ieke Moerdijk, University of Utrecht: moerdijk@math.uu.nl
Susan Niefield, Union College: niefiels@union.edu
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