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CATEGORIES OF COMPONENTS AND LOOP-FREE CATEGORIES

EMMANUEL HAUCOURT

Abstract. Given a groupoid G one has, in addition to the equivalence of categories
E from G to its skeleton, a fibration F (Definition 1.11) from G to its set of connected
components (seen as a discrete category). From the observation that E and F differ
unless G[x, x] = {idx} for every object x of G, we prove there is a fibered equivalence
(Definition 1.12) from C[Σ-1] (Proposition 1.1) to C/Σ (Proposition 1.8) when Σ is a
Yoneda-system (Definition 2.5) of a loop-free category C (Definition 3.2). In fact, all
the equivalences from C[Σ-1] to C/Σ are fibered (Corollary 4.5). Furthermore, since
the quotient C/Σ shrinks as Σ grows, we define the component category of a loop-free
category as C/Σ where Σ is the greatest Yoneda-system of C (Proposition 3.7).

1. Introduction and purpose

Although loop-free categories (Definition 3.2) have been introduced by André Haefliger
(as small categories without loops or scwols) for a very different purpose [6, 18, 19], our
interest in them comes from the algebraic study of partially ordered spaces or pospaces
[26, 33].

The source of our motivation for studying pospaces lies on the notion of progress graph
which has been proposed by Edsger W. Dijkstra as a natural model for concurrency1 [8]:
by their very definition, progress graphs are special instances of pospaces, however, the
framework they offer is too restricted from a theoretical point of view. Thus, in practice,
any PV program2 gives rise to a pospace (more precisely a progress graph) we would like
to abstract in the same fashion as topological spaces are abstracted by groupoids.

To this aim, we notice that loop-free categories arise in the context of pospaces as
groupoids do in the context of spaces, precisely, we define the fundamental (loop-free)
categories of pospaces (Section 5) as one defines the fundamental groupoids of spaces
[24]. Formally speaking, the properties of the fundamental category functor −→π1 (from the
category of pospaces PoTop to the category of loop-free categories LfCat) are similar to
those of the usual fundamental groupoid functor (from the category of topological spaces
Top to the category of groupoids Grd). In particular, both of them preserve push-out
squares under (almost) the same hypothesis (van Kampen Theorems) and the proof of
this result, given by Eric Goubault [14] (for pospaces) and Marco Grandis [16] (for d-
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spaces), follows the classical one [24]. Yet, both PoTop and Top are complete, cocomplete
and admit a cartesian closed reflective subcategory that have all the “reasonable” objects
of the category in which they are included [23], still both LfCat and Grd are epireflective
subcategories of the category of small categories Cat. Up to now, there is a strong and
straightforward analogy between the algebraic approach of partially ordered spaces and
the one of topological spaces. Applying the same pattern, one can even adapt the no-
tion of fundamental groupoid to several other contexts that extend the one of pospaces
[13, 16, 31]. Things would not be more complicated if we were not entrapped by the
need for finite representation, which is an ubiquitous problem when one intends to make
concrete calculation using computers. A natural idea to solve it consists on defining a
notion which plays, in the context of pospaces or other, the role that arcwise connected
components play in the framework of spaces [11, 17]. Indeed, the information contained in
the fundamental groupoid of an arcwise connected topological space is already contained
in its fundamental group; in fact, the fundamental groupoid of a space is entirely deter-
mined by the fundamental groups of its arcwise connected components. This property
comes from two more general and algebraic facts (compare to Theorem 4.1):

1. the skeleton of any groupoid G is obtained as the coproduct in Grd of the family of
groups G[x, x] for x ranging over the set C which contains exactly one object taken
from each connected component of G and

2. there is a fibration (Definition 1.11) from G to its set of connected components (seen
as a discrete category) given by the quotient functor generated by the collection of
morphisms of G (Proposition 1.8).

The two previous properties suggest that any groupoid G has a some sort of “finite presen-
tation” as soon as its collection of connected components is finite and the groups G[x, x]
are finitely generated. For instance, the fundamental groupoid of the euclidean circle has
a single component and its fundamental group is Z though its collection of objects is
uncountable.

On the contrary, for any object x of any loop-free category C, the monoid C[x, x] is
reduced to {idx} and in general, the quotient turning all the morphisms of a loop-free
category into identities is not a fibration, therefore, recovering any piece of information
about C from its set of connected components and the structure of the monoids C[x, x]
is hopeless. However, considering properties 1 and 2 as a guideline, we aim at giving a
suitable notion of component (based on the study of loop-free categories) in the context of
pospaces: this task will be completed when we have proved Theorem 4.1. Furthermore, we
expect that our construction produces finite results when it is applied to progress graphs,
this fact is illustrated in Section 5 though it has not been formally proved yet. Still, some
results by Lisbeth Fajstrup take a step in this direction [9]. Besides, the construction we
are about to describe actually holds for any small category (Theorem 2.6), nevertheless
it is way more fruitfully applied to loop-free ones (Theorem 3.8 and 4.1).

The method presented here is an improvement of an earlier one given in [11], indeed,
it has the “good” theoretical properties the original one lacks of (Theorem 2.6, 3.8, 4.1 as
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well as a Van Kampen like Theorem [22, 23]). Marco Grandis has an alternative approach
[17], however, even on basic examples (free of any “pathology”), the results he obtains
differ from ours.

Let us now specify some pieces of notation: C is always put for a small category, for
any morphism f of C, we respectively denote the source and the target of f by s(f) and
t(f), we put e(f) for the pair {s(f), t(f)}, Iso(C) for the set of isomorphisms of C and
given x and y, two objects of C, the homset of morphisms C whose source and target are
respectively x and y is denoted by C[x, y]. In general, for any collection Σ of morphisms
of C, we put Σ[x, y] := C[x, y] ∩ Σ. The group of autofunctors of C is denoted by Aut(C).

The category of fractions of C over Σ is described in [3, 12], in regard of its importance
in the rest of this paper we give a reminder about it, forewarning the reader that the
problem of smallness of homsets will be ignored because this construction will only be
used for small categories.

1.1. Proposition. Given a category C and a collection Σ of morphisms of C, there exists a
category, unique up to isomorphism, denoted by C[Σ-1] and called category of fractions
(of C over Σ), as well as a unique functor IΣ from C to C[Σ-1] such that:

1. the functor IΣ sends any morphism of Σ to an isomorphism of C[Σ-1] and

2. for any functor F from C to D sending any morphism of Σ to an isomorphism of
D, there is a unique functor G from C[Σ-1] to D such that F = G ◦ IΣ.

In addition, we can choose C[Σ-1] and IΣ so that for all objects x of C we have IΣ(x) = x.
The category of groupoids is a reflective subcategory of the category of small categories

whose left adjoint is given by C[Σ-1] where Σ is the collection of all morphisms of C.

1.2. Definition. [Calculus of fractions [3, 12]] Let C be a category and Σ be a collection
of morphisms of C, we say that Σ admits a right calculus of fractions over C when the
following properties are satisfied:

1. all the identities of C are in the collection Σ,

2. the collection Σ is stable under composition,

3. for all morphisms γ and σ respectively taken from C[x, y] and Σ[y′, y], there are two
morphisms γ′ and σ′ respectively in C[x′, y′] and Σ[x′, x] such that the diagram 1.1
commutes,

4. for all morphisms γ and δ of C[x, y] and all morphisms σ of Σ[y, y′] such that σ◦γ =
σ ◦ δ, there exists a morphism σ′ in Σ[x′, x] such that γ ◦ σ′ = δ ◦ σ′: see diagram
1.2.

y

x

γ @@����
y′

σ∈Σ__???

x′
σ′ // x

γ

��

δ

EEy
σ // y′

Diagram 1.1
x′

σ′∈Σ

^^

γ′

??

Diagram 1.2
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The statement 3 is called the right extension property of Σ in C. Reversing all the
arrows in the previous definition, we obtain the notion of left calculus of fractions.
When Σ both satisfies axioms of left calculus of fractions and right calculus of fractions,
we say that Σ admits a left and right calculus of fractions over C.

1.3. Proposition. Given a category C and a collection Σ of morphisms admitting a right
calculus of fractions, the category of fractions C[Σ-1] can be described in the following way:

objects the collection of objects of C[Σ-1] is the collection of objects of C,

morphisms the homset
(
C[Σ-1]

)
[x, y] is given by{

(γ, σ)
∣∣ σ ∈ Σ, t(σ) = x, t(γ) = y, s(σ) = s(γ)

}/
∼x,y ,

where the ordered pair
(
(γ, σ), (γ′, σ′)

)
belongs to the equivalence relation ∼x,y when,

by definition, there are two morphisms τ and τ ′ in Σ such that the diagram 1.3
commutes.

The composite of the ∼x,y-equivalence class of (γ, σ) followed by the ∼y,z-equivalence
class of (δ, τ) is the ∼x,z-equivalence class of (δ ◦ γ′, σ ◦ τ ′) where the morphisms γ′ and
τ ′ come from the right extension property of Σ in C and make diagram 1.4 commute.

y v δ //
τ∈Σ

RRR

))RRRR
z

u

γ
55llllllllll

σ ))SSSSSSSSSS vτoo τ ′ // u′

γ′
iiSSSSSSSSSS

σ′uukkkkkkkkkk w

γ′
55

τ ′∈Σ ))

y

x u
γkkkk

55kkkkk

σ∈Σ
// x

Diagram 1.3 Diagram 1.4

1.4. Definition. [Σ-zigzag] Two objects x and y of C are said to be Σ-zigzag connected
when x = y or there is a finite sequence (z0, . . . , zn+1) (n ∈ N) of objects of C such that
{z0, zn+1} = {x, y} and for all k in {0, . . . , n}, one of the sets Σ[zk, zk+1] and Σ[zk+1, zk] is
not empty; thus we define an equivalence relation over the objects of C whose equivalence
classes are called the Σ-components of C. A Σ-zigzag between x and y is a sequence
(σn, . . . , σ0) whose entries belong to Σ and such that for all k in {0, . . . , n}, e(σk) =
{zk, zk+1}. If Σ contains all the identities of C, then the condition x = y can be omitted.

A finite sequence (σn, . . . , σ0) (n ∈ N) of morphisms of C is said to be composable
when for all k in {0, . . . , n − 1}, the target of σk is the source of σk+1, the sequence is
said to be Σ-composable when for all k in {0, . . . , n− 1}, the target of σk is in the same
Σ-component as the source of σk+1, in a yet more general way, for any equivalence relation
∼ over the set of objects of C, the sequence (σn, . . . , σ0) is said to be ∼-composable when
for all k in {0, . . . , n−1}, the target of σk is in the same ∼-equivalence class as the source
of σk+1.

Let us define the generalized congruences [1] which are at the core of the construction
that we will describe.
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1.5. Definition. [Generalized congruences] Given a small category C, a generalized
congruence over C is an ordered pair of equivalence relations, denoted by (∼o,∼m),
respectively over the set of objects of C and over the set of non empty ∼o-composable
sequences of C. Furthermore, these relations have to satisfy the following properties,
which are given both in a formal manner (on the left hand side) and a graphical one (on
the right hand side):

1. if x ∼o y, then (idx) ∼m (idy),
x

o
�O

y
O� =⇒

x

idx

&&
x

y

idy

99 y
m

�O
�O
�O
�O
�O
�O

2.
if (δn, . . . , δ0) ∼m (γp, . . . , γ0),
then t(δn) ∼o t(γp)
and s(δ0) ∼o s(γ0),

x

(δn,...,δ0)

&& y

x′

(γp,...,γ0)

88 y′
m

�O
�O
�O
�O
�O
�O
�O

=⇒
x

o
�O

(δn,...,δ0)

&& y
o

�O

x′
O�

(γp,...,γ0)

88 y′
O�

3. if s(γ) = t(δ),
then (γ, δ) ∼m (γ ◦ δ),

y
γ

$$JJJJJJ

x
γ◦δ

//

δ
99tttttt
=

z
=⇒

x
(γ◦δ)

//

(γ,δ)

��
z

m
O�
O�
O�

4. if (δn, . . . , δ0) ∼m (δ′n′ , . . . , δ
′
0), (γp, . . . , γ0) ∼m (γ′p′ , . . . , γ

′
0) and t(δn) ∼o s(γ0),

then (γp, . . . , γ0, δn, . . . , δ0) ∼m (γ′p′ , . . . , γ
′
0, δ

′
n′ , . . . , δ

′
0).

x

(δn,...,δ0)

&& y o /o/o/o u

(γp,...,γ0)

&&
v

x′

(δ′
n′ ,...,δ

′
0)

88 y′ u′

(γ′
p′ ,...,γ

′
0)

88 v′
m

�O
�O
�O
�O
�O
�O
�O

m

�O
�O
�O
�O
�O
�O
�O

=⇒
x

(γp,...,γ0,δn,...,δ0)

++ v

x′

(γ′
p′ ,...,γ

′
0,δ′

n′ ,...,δ
′
0)

33 v′
m

�O
�O
�O
�O
�O
�O

In Axiom 4, the sequence (γ′p′ , . . . , γ
′
0, δ

′
n′ , . . . , δ

′
0) is ∼o-composable (in virtue of Axiom

2 and transitivity of ∼o). Any usual congruence over a category [29] can be seen as a
special instance of generalized congruence in which the relation ∼o is the equality over
the collection of objects. Moreover, for any ordered pair of binary relations (Ro, Rm)
respectively over the set of objects of C and over the set of finite non empty sequences
of morphisms of C, there is a unique generalized congruence (∼o,∼m) over C such that
Ro ⊆∼o, Rm ⊆∼m and which is minimum in the sense where for any other generalized
congruence (∼′

o,∼′
m) such that Ro ⊆∼′

o and Rm ⊆∼′
m, we have ∼o⊆∼′

o and ∼m⊆∼′
m. In

this case, the generalized congruence (∼o,∼m) is said to be generated by (Ro, Rm).
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1.6. Proposition. [Universal property of a generalized congruence] Let (∼o,∼m) be a
generalized congruence over a category C and F be the collection of functors F whose range
is C and satisfy the two following properties:

1. for all objects x and y of C, if x ∼o y, then Fx = Fy,

2. for all ∼o-composable sequences (γn, . . . , γ0) and (δp, . . . , δ0),
if (γn, . . . , γ0) ∼m (δp, . . . , δ0), then F (γn) ◦ · · · ◦ F (γ0) = F (δp) ◦ · · · ◦ F (δ0).

There exists a category, unique up to isomorphism and denoted by C/∼, as well as a
unique functor Q∼ from C to C/∼ in F such that for any functor F in F, there is a unique
functor G from C/∼ to A such that F = G ◦ Q∼. Furthermore, Q∼ is an epimorphism
of categories and for all objects y of C/∼, there is an object x of C such that Q∼(x) = y.

1.7. Definition. The category C/∼ is called the quotient of C by ∼ while Q∼ is the
quotient functor.

In the rest of the paper, we will deal with sequences of Σ-composable sequences, so,
in order to avoid double indices, we will write −→γ to designate a sequence of morphisms
(γn, . . . , γ0) with γi as a generic element for i in {0, . . . , n}. By extension, we will denote
by (−→γ

N
, . . . ,−→γ0 ) a sequence of sequences of morphisms using uppercases as indices. We

say that a non empty Σ-composable sequence is normalized when none of its elements
are in Σ.

1.8. Proposition. [Generalized congruence generated by Σ] Given a category C and a
collection Σ of morphisms of C, the generalized congruence generated by the relations

Ro := ∅ and Rm :=
{(

(σ), (ids(σ))
)
,
(
(σ), (idt(σ))

)∣∣∣σ ∈ Σ
}

is analytically described as in the present statement: the relation ∼o on objects of C is
given by Definition 1.4 and the relation ∼m over the set of non empty ∼o-composable
sequences3 is the reflexive, symmetric and transitive closure of the relation ∼1

m defined
below:

1. for all morphisms σ in Σ[a, b],{
(γn, . . . , γk+1, σ, γk−1, . . . , γ0) ∼1

m (γn, . . . , γk+1, ida, γk−1, . . . , γ0)
(γn, . . . , γk+1, σ, γk−1, . . . , γ0) ∼1

m (γn, . . . , γk+1, idb, γk−1, . . . , γ0)

2. for all k in {0, . . . , n− 1} such that s(γk+1) = t(γk),

(γn, . . . , γk+1, γk, . . . , γ0) ∼1
m (γn, . . . , γk+1 ◦ γk, . . . , γ0).

In other words, for all ∼o-composable sequences −→γ and
−→
δ , we write −→γ∼m

−→
δ when there

is a finite sequence of ∼o-composable sequences −→α0,. . . ,
−→α

N
, where N ∈ N, such that:

3In this case, we also write Σ-composable instead of ∼o-composable.
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1. −→α0 = −→γ and −→α
N

=
−→
δ ,

2. for all K in {0, . . . , N − 1}, −→α
K
∼1

m
−−→α

K+1
.

Such a sequence −→α0,. . . ,
−→α

N
is called a sequence of ∼1

m-transformations. Then, the ordered
pair (∼o,∼m) is a generalized congruence over C. In this case, the quotient category and
the quotient functor are respectively denoted by C/Σ and Q/Σ, moreover, the last one is
caracterized by the following universal property: for all functor F from C to D sending
any morphism of Σ to an identity of D, there is a unique functor G from C/Σ to D such
that F = G ◦QΣ.

In particular, in virtue of Propositions 1.1 and 1.8, there is a unique functor PΣ from
C[Σ-1] to C/Σ such that QΣ = PΣ ◦ IΣ.

The notion of fibration is implicitly contained in the statement of Theorem 4.1.

1.9. Definition. [Fiber over an object [4]] Given a functor F : F −→ B, for any object
I of B, the fiber of F over I is the subcategory of F whose objects are those X such that
F (X) = I and whose morphisms are those f such that F (f) = idI . The fiber of F over I
is denoted by FI .

1.10. Definition. [Cartesian morphism [4]] Given a functor F : F −→ B and a mor-
phism α in B[J, I], a morphism f of F [Y,X] is said to be cartesian over α when

1. F (f) = α and

2. for all morphisms g of F [Z,X] such that F (g) can be factorized as shown in the
diagram 1.5, there exists a unique morphism h in F [Z, Y ] satisfying F (h) = β and
making the diagram 1.6 commute.

Diagram 1.5 F (Y )
α

((PPP
Diagram 1.6 Y f

##GG
G

F (Z)
F (g)

//

β 66nnn
F (X) Z g

//
h <<xxx

X

1.11. Definition. [Fibration [4]] A functor F : F −→ B is a fibration of base B when
for all objects I and J of B, for all morphisms α in B[J, I] and for all objects X of FI ,
there exists a morphism f which is cartesian over α and whose target is X.

The Proposition 1.13 justify the terminology introduced in the next definition:

1.12. Definition. A functor F from F to B is a fibered equivalence when it is full,
faithful and for all objects y of B, there is an object x of F such that F (x) = y.

Any fibered equivalence is obviously an equivalence of category and is also called, in
the terminology of Saunders Mac Lane [29], a left adjoint-left inverse.

1.13. Proposition. Any fibered equivalence F : F −→ B is a fibration.



CATEGORIES OF COMPONENTS AND LOOP-FREE CATEGORIES 743

Proof. For each object I of B, we choose an object G(I) of F such that F (G(I)) = I.
As the functor F is full and faithful, the map 1.1 is a bijection which enables us to define
for all morphisms β in B[J, I] the image of β by G as

the unique element α of F [G(J), G(I)] such that F (α) = β. The functor G we have
defined

is the right adjoint to F , satisfies F ◦G = IdB and the co-unit of the adjunction F a G
is the identity.

Any fibered equivalence is clearly an equivalence of categories so the unit η of this
adjunction is an isomorphism from IdF to G ◦ F .

F [G(J), G(I)] // B[J, I]

α � //

Map 1.1
F (α)

Moreover, for any object X of F , ηX is the unique morphism of F [X, GFX] such that
F (ηX) = idFX since the co-unit of the adjunction F a G is an identity. Now we

can prove that F is a fibration: let I be an object of B, X be an object of FI and α
be a morphism of B[J, I], we put f := η-1

X ◦ G(α). Referring to what we have proved
in the preamble, we know that f belongs to F [Y, X], where Y := G(J), and also that
F (f) = F (η-1

X ) ◦ F (G(α)) = α. Now we check that f is cartesian over α. Let g and β be
two morphisms respectively taken from F [Z,X] and B[F (Z), F (Y )] and that make the
diagram 1.7 commute. Let h be G(β) ◦ ηZ , it comes F (h) = F (G(β)) ◦ F (ηZ) = β.

In addition, since η is an isomorphism from IdF to G ◦ F , the diagram 1.8 commutes
and provides the equality g = f ◦ h.

GJ = Y G(α)

**UUUUUUUU

f=η-1X ◦G(α)

��

F (Y ) = J
F (f)=α

**UUUUUU GFZ GFg //

G(β) 55kkkkkkk
GI = GFX

η-1X ��
F (Z)

F (g)
//

β 55kkkkkkk
=

F (X) = I Z

ηZ

OO

g
//

h=G(β)◦ηZ

((

X

ηX

OO

Diagram 1.7 Diagram 1.8

We still have to check that such a morphism h is unique. Let h1 and h2 be two
morphisms on F [Z, Y ] satisfying F (h1) = F (h2) = β, for F is faithful (as an equivalence
of categories) we have h1 = h2.

2. Yoneda-systems and categories of components

2.1. Definition. [Yoneda morphisms] Let C be a category, x and y be two objects of C
and σ be a morphism in C[x, y], we say that σ is inversible4 in the sense of Yoneda
when it satisfies the following conditions:

4A neologism which means “consistent with having an inverse”.



744 EMMANUEL HAUCOURT

preservation of the future cone: for all objects y′ of C, if C[y, y′] 6= ∅,
the map

(
YC(y

′)
)
(σ) is a bijection and

preservation of the past cone: for all objects x′ of C, if C[x′, x] 6= ∅,
the map

(
YC(σ)

)
(x′) is a bijection.(

YC(y
′)
)
(σ) : C[y, y′] // C[x, y′]

γ � // γ ◦ σ

(
YC(σ)

)
(x′) : C[x′, x] // C[x′, y]

δ
� // σ ◦ δ

We also write, for short, that σ is a Yoneda-morphism. The terminology as well as
the notations

(
YC(y

′)
)
(σ) and

(
YC(σ)

)
(x′) refer to the Yoneda embedding of the category C

in its category of presheaves SetC
op

. Moreover, the collection of all the Yoneda-morphisms
of C is denoted by Yoneda(C).

2.2. Proposition. The Yoneda-morphisms compose.

Proof. This is a straightforward consequence of the fact that bijections compose.

2.3. Proposition. Given a category C, two objects x and y of C and a morphism σ in
C[x, y]; the morphism σ is an isomorphism of C if and only if σ is a Yoneda-morphism
and C[y, x] 6= ∅.

Proof. Suppose that σ is a Yoneda-morphism such that C[y, x] 6= ∅, applying Definition
2.1 with y′ = x and x′ = y, there exists a unique morphism γ in C[y, x] such that γ◦σ = idx

and a unique morphism δ in C[y, x] such that σ ◦ δ = idy, it follows that
σ is an isomorphism. The converse is straightforward.

2.4. Proposition. Any Yoneda-morphism is both a monomorphism and an epimorphism.

Proof. Immediately comes from the injectivity of maps
(
YC(y

′)
)
(σ) and

(
YC(σ)

)
(x′)

described in Definition 2.1.

2.5. Definition. [Yoneda-systems] Let Σ be a collection of morphisms of a category C
and suppose the variables x, y, x′ and y′ range over the set of objects of C. The collection
Σ is called a Yoneda-system of C when:

1. Iso(C) ⊆ Σ ⊆ Y oneda(C),

2. (a) for all morphisms γ of C[x, y], for all morphisms σ of Σ[y′, y], there exist a
morphism γ′ of C[x′, y′] and a morphism σ′ of Σ[x′, x] such that the diagram
2.1 is a pull-back square in C,

(b) for all morphisms γ of C[x, y], for all morphisms σ of Σ[x, x′], there exist a
morphism γ′ of C[x′, y′] and a morphism σ′ of Σ[y, y′] such that the diagram
2.2 is a push-out square in C
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y y′
σ′1

//
σ′2

//

x

γ AA�����
y′

σ∈Σ
^^====

x′

γ′ @@

y

σ′∈Σ]]

Diagram 2.1
x′

σ′∈Σ

^^

γ′

??
pull
back
in C

Diagram 2.2
x

σ∈Σ

__>>>> γ

@@�����

push
out
in C

σ1 //

OO

Diagram 2.3

σ2 //

OO OO

3. and the collection Σ is stable under composition.

The collection Σ is said to be stable under change (respectively co-change) of base
when Axiom (2a) (respectively (2b)) of Definition 2.5 is satisfied.

Before coming to the next theorem, we recall that a complete lattice [2, 32] is a
partially ordered set5 (T ,v) whose subsets6 have a least upper bound and a greatest
lower bound. We also introduce the following notation: if

(
Σi

)
i∈I

is a family of collections
of morphisms of a given category C, we denote by

⊎
i∈I

Σi the (collection of morphisms of

the) subcategory of C generated by the set-theoretical union
⋃
i∈I

Σi.

2.6. Theorem. [Complete lattice of Yoneda-systems of C] Let C be a category, the collec-
tion of all Yoneda-systems of C, denoted by TC and equipped with inclusion order ⊆, is a
complete lattice in which

1. the greatest lower bound is given by the set-theoretical intersection
⋂

,

2. the least upper bound is given by
⊎

and

3. the least element is the collection of all the isomorphisms of C.

Moreover, the greatest element of TC, denoted by Σ, is the set-theoretical intersection
of the elements of the family Sα, indexed by the ordinals, whose members are sets of
morphisms of C and which is transfinitely defined [7, 25, 27, 28] as follows:

initial case S0 is the set of all Yoneda-morphisms of C.
Given an ordinal λ such that for all ordinal α < λ, the set Sα is already defined, we
construct the set Sλ in the following way:

successor case if λ = α + 1 is the successor of some ordinal α, then Sα+1 is the set of
morphisms σ in Sα which satisfies:

- for all morphisms γ satisfying t(γ) = t(σ), there exist a morphism σ′ which be-
longs to Sα and a morphism γ′ of C such that t(σ′) = s(γ), t(γ′) = s(σ),
s(σ′) = s(γ′) and the square formed by σ, γ, σ′ and γ′ is a pull-back in C;
dually

5Partially ordered sets are also called posets for short.
6Even the empty one, so complete lattices cannot be empty.
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- for all morphisms γ satisfying s(γ) = s(σ), there exist a morphism σ′′ which
belongs to Sα and a morphism γ′′ of C such that s(σ′′) = t(γ), s(γ′′) = t(σ),
t(σ′′) = t(γ′′) and the square formed by σ′′, γ, σ′′ and γ′′ is a push-out in C.

limit case if λ is a limit, which means that it is not a successor, the set Sλ is the set-
theoretical intersection of the members of the family (Sα)

α<λ
.

Proof. A routine verification proves that the collection of isomorphisms of a category is a
Yoneda-system of this category and it is obviously the least one with respect to inclusion.

Let I be a non empty set and (Σi)i∈I
be a family of Yoneda-systems of C, by construc-

tion, the collection of morphisms of C described below is stable under composition and
satisfies the first point of definition 2.5 since Yoneda-morphisms compose (Proposition
2.2).⊎

i∈I

Σi :=
{

σn ◦ · · · ◦ σ1

∣∣∣ n ∈ N\{0}, {i1, . . . , in} ⊆ I and ∀k ∈ {1, . . . , n} σk ∈ Σik

}
Given an element σn ◦ · · · ◦σ1 of

⊎
i∈I

Σi, where n ∈ N\{0}, we have a finite subset

{i1, . . . , in} of I such that for all k in {1, . . . , n}, the morphism σk is in Σik . Let γ be
a morphism of C sharing the same source as σ1: the situation is depicted by diagram
2.4. From a finite induction (apply consecutively Definition 2.5 (2b) to Σi1 , . . . , Σin), we
obtain a finite sequence of push-out squares (see diagram 2.5) which gives, once pasted,
the expected push-out square (see diagram 2.6).

σ′1∈Σi1 // σ′n∈Σin //
σ′n◦···◦σ′1∈

U
i∈I

Σi

//

Diagram 2.4

γ
OO

σ1∈Σi1

//
σn∈Σin

//
γ

OO

σ1∈Σi1

//
push-out

Diagram 2.5

γ1

OO

σn∈Σin

//
γn−1

OO
push-out γn

OO

Diagram 2.6

γ
OO

σn◦···◦σ1∈
U

i∈I
Σi

//
push-out γn

OO

Up to duality, the same proof holds for the pull-back squares, using (2a) instead of
(2b).

The collection
⋂
i∈I

Σi is obviously stable under composition and no less clearly satisfies

the first point of Definition 2.5. The stability under change (cochange) of base of
⋂
i∈I

Σi

is inherited from the stability under change (cochange) of base of Σi for each i ∈ I since
push-outs and pull-backs are uniquely defined up to isomorphism.

The operators
⋂

and
⊎

are obviously associative over the collection of Yoneda-systems
of C, this result holds whether the families of morphisms considered are Yoneda-systems
or not. Now we prove that the description of Σ is valid.
Clearly, if λ1 and λ2 are ordinals such that λ1 ≤ λ2 then Sλ2 ⊆ Sλ1 , so let Σ be the
set-theoretical intersection of the family (indexed by ordinals) of sets Sα. It comes im-
mediately that all the elements of Σ are Yoneda-morphisms. We prove by transfinite
induction that Iso(C) ⊆ Sα for any ordinal α. It is true for S0 by Proposition 2.3. If it
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is true for Sα, then so is it for Sα+1 since the push-out, as well as the pull-back, of any
isomorphism along any morphism is still an isomorphism. The case where λ is a limit
ordinal is trivial. Still by transfinite induction, we verify that all the sets Sα are stable
under composition: the case of S0 is given by Proposition 2.2. Now suppose Sα is stable
under composition and let σ1 and σ2 be two elements of Sα+1 such that σ2 ◦ σ1 exists, if
both inner squares of diagram 2.3 are push-out squares, then so is the outer shape; by
construction of Sα+1, we can suppose that σ′1 and σ′2 belong to Sα which, by hypothesis
of induction, is stable under composition and thus contains σ′2 ◦σ′1. Once again, the same
proof holds, up to duality, for pull-back squares and we have proved that Sα+1 is stable
under composition. The case where λ is a limit ordinal is trivial. Because C is a small
category, the collection Sα, which is indexed by the ordinals and decreasing with respect
to inclusion, has to be stationary beyond some ordinal λ. It follows that Sλ is stable under
change and co-change of base and contains only Yoneda-morphisms. Then, together with
what has been proved, Sλ is stable under composition and contains all the isomorphisms
of C. It remains to prove, still by transfinite induction, that any set Sα contains all the
Yoneda-systems of C. It is obvious for S0. Let Σ be a Yoneda-system included in Sα, given
σ in Σ and a morphism γ of C sharing the same target as σ, by Definition 2.5 (diagram
2.1) we can choose σ′ in Σ and thus, by hypothesis of induction, in Sα. The same proof
holds in the case where γ and σ shares the same source, referring to the diagram 2.2 to
prove that we can pick σ′′ in Sα. Thus, by construction of Sα+1, the morphism σ belongs
to Sα+1 and finally Σ ⊆ Sα+1. The case where λ is a limit ordinal is obvious.

Given any category C, a consequence of Theorem 2.6 is the existence of the greatest
(with respect to inclusion) Yoneda-system of C: it is denoted by Σ. Then we define the
category of components of C as the quotient of C by Σ, in other words C/Σ with the
notation of Proposition 1.8.

2.7. Corollary. [Action of autofunctors on Σ] The greatest Yoneda-system Σ of a small
category C and its complementary in the set of morphisms of C are stable by the direct
image of any autofunctor of C, in other words Σ and its complementary are stable under
the (right) action of Aut(C) over the set of morphisms of C.

Proof. Let Φ be an autofunctor of C, then Φ(Σ) is a Yoneda-system of C so Φ(Σ) ⊆ Σ.

Given an autofunctor Φ of C, it comes from Corollary 2.7 that the functor QΣ ◦ Φ
sends any element of Σ to an identity of C/Σ hence, by Proposition 1.8, there exists a
unique endofunctor Φ/Σ of C/Σ such that QΣ ◦ Φ = Φ/Σ ◦QΣ.

2.8. Proposition. The map sending any autofunctor Φ of C to Φ/Σ is a morphism of
group from Aut(C) to Aut(C/Σ).

Proof. Given Φ1 and Φ2 two autofunctors of C, we have QΣ ◦Φ2 ◦Φ1 = Φ2/Σ ◦Φ1/Σ ◦QΣ.
It follows, since (Φ2 ◦ Φ1)/Σ is unique, that Φ2/Σ ◦ Φ1/Σ = (Φ2 ◦ Φ1)/Σ. In particular,
considering Φ2 = Φ-1

1 , we see that Φ1 is an autofunctor of C/Σ.
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2.9. Remark. If for all objects x and y of C, we have C[x, y] = ∅ if and only if C[y, x] = ∅,
then Proposition 2.3 implies that Σ is the set of isomorphisms of C and thus S0 = Σ. In all
“concrete” cases7, the induction described in Theorem 2.6 stops after only finitely many
iterations. Note that Corollary 2.7 is not satisfied for any Yoneda-system. In the poset
(R,≤) seen as a small category, the morphisms are the ordered pairs of real numbers (x, y)
such that x ≤ y, we have a Yoneda-system of (R,≤) taking Σ := {(x, y) ∈ R × R | x ≥
0 or y < 0}. Clearly, given any strict “translation” τ of (R,≤), which means that τ is an
autofunctor of (R,≤) defined by x 7−→ x + t where t ∈ R\{0}, the direct image of Σ by
τ is not included in Σ.

In regard with the abstract, let us consider a groupoid G, its greatest Yoneda-system
is the set of all its morphisms and the relation ∼ over the objects of G defined by x ∼ y
when G[x, y] is not empty, is an equivalence relation whose classes are called the connected
components of G. Consequently, its category of components is the discrete category having
exactly one object for each connected component of G. As expected, the notion of Σ-
component of a small category extends the notion of connected component of a groupoid
[24]. Furthermore, given a groupoid G, one has the following equivalent statements:

1. the functor PΣ is a fibered equivalence,

2. for all objects x and y of G, the set G[x, y] is either empty or a singleton.

In particular, if G is the fundamental groupoid of a topological space X [24], each of
the preceding statements is also equivalent to the assertion that X is simply connected
in the sense where for any base point b of X, the fundamental group π1(X, b) is trivial.
Furthermore, the set of arcwise connected components of a topological space X (usually
denoted by π0(X) and seen as a small discrete category) is isomorphic to the category of
components of the fundamental groupoid of X.

2.10. Proposition. Any Yoneda-system Σ of a category C is a left and right calculus of
fractions over C.

Proof. We treat the case of the right calculus of fractions. The only point of Definition
1.2 which is not obviously satisfied by Σ is the fourth one: suppose that σ ◦ γ = σ ◦ δ
with the notation of Definition 1.2, thus σ is a Yoneda-morphism hence, by Proposition
2.4, we know that γ = δ, then it suffices to take σ′ := idx.

2.11. Remark. Let Σ be a Yoneda-system of a category C and consider the diagram
2.7, from point (2a) of Definition 2.5 we obtain, since σ is in Σ, a representative of the
pull-back as in diagram 2.8 where σ′ is in Σ.

Yet, invoking the fact that γ is an element of Σ, we obtain another representative of
the same pull-back, as shown by diagram 2.9, in which the morphism γ′′ is in Σ. As a
consequence, we have an isomorphism ξ of C such that γ′ = γ′′ ◦ ξ, it follows that γ′ is

7We refer here to a branch of theoretical computer science, the static analysis of concurrent programs,
where the categories of components are used to reduce the size of the models to analyze [15].
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also an element of Σ. We can go further: let Σ and Σ′ be two Yoneda-systems of C and
consider the diagram 2.10, for all pull-back squares as in diagram 2.11, we have σ∗ ∈ Σ
and σ′∗ ∈ Σ′. The same holds for push-out squares.

x x u

x y
σ >>}}}

z

γ``AAA
y

σ =={{{
z

γaaCCC σ∈Σ
DD				

σ′∈Σ′ZZ5555 σ′∈Σ′ DD				
σ∈Σ

ZZ5555
x

σ1 ??~~~
y

σ2__???

y

σ∈Σ @@���
z

γ∈Σ^^<<<<

x′
ξ

33X Z ] _ a d f
σ′∈Σ

??

γ′

__

x′′
σ′′

??

γ′′∈Σ

``
σ∗

YY4444 σ′∗

EE����
d

σ3

^^===
σ4

@@���

Diagram 2.7 Diagram 2.8 Diagram 2.9 Diagram 2.10 Diagram 2.11 Diagram 2.12

From this last remark, we deduce a handy description of the notion of Σ-zigzag con-
nectedness described in Definition 1.4.

2.12. Lemma. Let Σ be a Yoneda-system of a category C. Given two objects x and y of
C, x and y are Σ-zigzag connected if and only if there are two objects u and d of C as well
as four morphisms σ1, σ2, σ3 and σ4 respectively taken from Σ[x, u], Σ[y, u], Σ[d, x] and
Σ[d, y] such that the diagram 2.12 commutes.

Proof. Easily follows from the previous facts.

3. Loop-free categories

3.1. Definition. A morphism γ of some category C is said to be without return when
the homset C[t(γ), s(γ)] is empty. Otherwise, we say that γ admits a return or has a
return.

3.2. Definition. A category C is said to be loop-free when all its morphisms, except
its identities, are without return.

One can think of loop-free categories as a generalization of partially ordered sets since
the lack of return can be reformulated in these terms : C[x, y] 6= ∅ and C[y, x] 6= ∅ implies
x = y and C[x, x] = {idx}, which can be understood as a generalized antisymmetry.

The category of loop-free categories LfCat is an epireflective subcategory of the cate-
gory of small categories whose left adjoint is given by C/Σ (Proposition 1.8) where Σ is
the collection of morphisms of C which have a return.

3.3. Proposition. Any sub-category of a loop-free category is loop-free. The isomor-
phisms and endomorphisms of a loop-free category are its identities. If the composite of
two morphisms of a loop-free category in an isomorphism, then both of these morphisms
are identities. In particular, any loop-free category is skeletal, in other words two given
objects of a loop-free category are isomorphic if and only if they are equal.

Proof. Easily follows from Definition 3.2.
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3.4. Remark. If C is a loop-free category and σ is a Yoneda-morphism of C, then
C[s(σ), t(σ)] is reduced to the singleton {σ} because the map

(
YC(y

′)
)
(σ) is a bijec-

tion from C[s(σ), s(σ)] onto C[s(σ), t(σ)] and, for the category C is loop-free, the homset
C[s(σ), s(σ)] is a singleton. In regard of this remark, when x and y are two objects of C
and the homset C[x, y] contains an element of a Yoneda-system Σ over C, we will use the
notation x Σ // y to mean that the single element of C[x, y] belongs to Σ.

3.5. Definition. A collection Σ of morphisms of a category C is said to be pure in C
when for all morphisms γ and δ of C such that s(γ) = t(δ), if the morphism γ ◦ δ belongs
to Σ, then γ and δ also belong to Σ.

3.6. Lemma. Any Yoneda-system Σ of a loop-free category C is pure in C.

Proof. Consider an element σ of Σ and two morphisms δ and γ of C such that σ = γ ◦ δ.

From the point (2b) of Definition 2.5, we have an element σ′ of Σ and
a morphism δ′ of C which form a push-out square of C, we also have a
unique morphism ξ of C making the diagram 3.1 commute. Since C is
a loop-free category and both morphisms δ′ and ξ admit a return, both
are identities. In particular, we have γ = σ′ therefore γ is in Σ. We
prove the same way, using the point (2a) instead of (2b), that δ is in Σ.

ξ

OO

δ′
??

id

66

σ′
__

γ

hh

σ

__????? δ

??�����

push
out

Diagram 3.1

We have the material to enhance Theorem 2.6, to this aim, we recall that a locale8

[5, 26, 30, 32] is a complete lattice (L,v) in which the generalized distributivity holds.
Formally, it means that we have

y ∧
( ∨

i∈I

xi

)
=

∨
i∈I

(
y ∧ xi

)
for all families (xi)i∈I of elements of L indexed by a set I and for all elements y of L. In
particular, the collection of open subsets of a topological space is a locale.

3.7. Proposition. Given a loop-free category C, the collection LC of all the Yoneda-
systems of C, ordered by inclusion, is a locale.

Proof. We already know that (LC,⊆) is a complete lattice (Theorem 2.6) so we just have
to prove the generalized distributivity: let Σ′ be a Yoneda-system of C and

(
Σi

)
i∈I

be a
family of Yoneda-systems of C,

the inclusion
⊎
i∈I

(Σ′ ∩Σi) ⊆ Σ′ ∩
(⊎

i∈I

Σi

)
comes immediately from the stability under

composition of Σ′.
Conversely, an element of the right hand side member can be written as a composite

γ = σn ◦ · · · ◦ σ1 where n is a non zero natural number and {i1, . . . , in} is and a finite

8Sometimes called “pointless” topology or topology without points.
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subset of I such that for all k in {1, . . . , n}, the morphism σk is in Σik . By pureness
of Σ′ (Lemma 3.6), all the morphisms σ1, . . . , σn belong to Σ′ and hence so does their
composite.

In the next result, we describe the structure of each Σ-component of a given loop-free
category C.

3.8. Theorem. [Structure of a Σ-component] Let C, Σ, K and K be respectively a loop-
free category, a Yoneda-system of C, a Σ-component of C and the full sub-category of C
whose objects are the elements of K. The following properties are satisfied:

1. the category K is isomorphic to the poset (K,v), seen as a small category, where
for all elements x and y of K, x v y means that the homset C[x, y] is not empty.
In particular any diagram in K is commutative.

2. The poset (K,v) is a lattice: in other words, any pair {x, y} of elements of K has a
greatest lower bound and a least upper bound in (K,v) respectively denoted by x∧ y
and x ∨ y.

3. If two objects x and y of C are in the same Σ-component, then diagram 3.2 is both
the push-out square and the pull-back square (in C) of the diagrams 3.3 and 3.4,
besides, all the arrows appearing in these three diagrams belong to Σ.

In particular, any morphism of C whose source and target belong to the same Σ-component
is a morphism of Σ.

x ∨ y x ∨ y

x

88qqqqq y

ffMMMMM
x y x

88qqqqq y

ffMMMMM

x ∧ y

ffNNNNN
88qqqqq

x ∧ y

ffNNNNN
88qqqqq

Diagram 3.2 Diagram 3.3 Diagram 3.4

Proof. The relation v is obviously reflexive and the transitive, it is also antisymmetric
because C is loop-free. Let α be an element of K[x, y], for x and y are taken from the
same Σ-component, there are four morphisms σ1, σ2, σ3 and σ4 in Σ which form, together
with α, the commutative diagram 3.5 (Lemma 2.12 and remark 3.4). As a consequence,
α is an element of Σ (Lemma 3.6) and therefore the homset K[x, y] is a singleton (remark
3.4). By the way, we have proved that any morphism of C between two objects of the
same Σ-component is in Σ. Let x and y be two elements K. The diagram 3.6 (given
by Lemma 2.12) admits a pull-back in C as shown by diagram 3.7 with σ′1 and σ′2 taken
from Σ (remark 2.11). The object d clearly belongs to K. If d′ is a lower bound of {x, y}
in (K,v), then C[d′, x] and C[d′, y] are two singletons whose respective elements γ and δ
belong to Σ; so diagram 3.8 commutes (remark 3.4). The universal property of pull-back
squares implies that K[d′, d] is not empty, in other words d′ v d. We prove analogously the
existence of the least upper bound of {x, y}. The third assertion immediately follows.
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u u

x

σ1

AA����� α // y

σ2

]];;;;;
u x

σ1
??�����

y

σ2
__?????

x

σ1
>>}}}}}

y

σ2
``@@@@@

Diagram 3.5

σ3

\\:::::: σ4

BB����� x
Diagram 3.6

σ1
@@�����

y

σ2
^^=====

Diagram 3.7
d

σ′2

^^=====
σ′1

@@�����

pull-back

Diagram 3.8
d′

γ

__?????
δ

??�����

From now on, C is a (small) loop-free category and Σ is a Yoneda-system of C; besides,
the ordered pair (∼o,∼m) is the generalized congruence described in Proposition 1.8.
In this framework, Σ admits a right calculus of fractions (Proposition 2.10) so we have
a handy description of the category of fractions C[Σ-1] (Proposition 1.3). Finally, the
pureness of Σ provides a convenient characterization of identities of C/Σ.

3.9. Remark. Given a Σ-composable sequence −→γ:=(γn, . . . , γ0), an induction proves that
if all the entries of −→γ are in Σ and −→γ ∼m

−→
δ , where

−→
δ is another Σ-composable sequence,

then all the entries of
−→
δ are also in Σ. Indeed, for Σ is pure and stable under composition,

the entries of the sequence (. . . , γk+1 ◦ γk, . . .) are in Σ if and only if so are the ones of
(. . . , γk+1, γk, . . .).

Remark 3.9 can be rephrased saying that if −→γ and
−→
δ are two ∼m-equivalent Σ-

composable sequences one of which possesses an element that is not in Σ, then so does
the other.

3.10. Remark. Provided that n ≥ 1, one can always, up to several ∼1
m-transformations,

remove from a Σ-composable sequence −→γ := (γn, . . . , γ0) an entry which is in Σ. More
precisely, suppose that γk belongs to Σ, as suggested by diagram 4.2 where the inner
commutative square comes from Theorem 3.8, we already have:

(γk) ∼1
m (idy ◦ γk) ∼1

m (idy, γk) ∼1
m

(
( y Σ // y ∨ x′ ), γk

)
∼1

m

(
( y Σ // y ∨ x′ ) ◦ γk

)
,

moreover, since γk belongs to Σ so does
(
( y Σ // y ∨ x′ ) ◦ γk

)
and it comes

(
( y Σ // y ∨ x′ ) ◦

γk

)
∼1

m (idy∨x′) , then (idy∨x′) ∼1
m ( x′

Σ // y ∨ x′ ) ∼1
m (idx′) and finally (γk) ∼m (ids(γk+1)).

It follows, since (∼o,∼m) is a generalized congruence, that (. . . , γk+1, γk, . . .) ∼m

(. . . , γk+1, ids(γk+1), . . .) ∼m (. . . , γk+1 ◦ ids(γk+1), γk−1, . . .) .
In particular, the sequence (γn, . . . , γk+1, γk−1, . . . , γ0) is not empty, Σ-composable and we
have −→γ ∼m (γn, . . . , γk+1, γk−1, . . . , γ0).

Note that remark 3.10 is still valid in the case where Σ has the right (respectively the
left) extension property.

3.11. Lemma. A Σ-composable sequence −→γ is ∼m-equivalent to a sequence having for
single element an identity if and only if all its elements are in Σ. In other words, the
sequence −→γ represents an identity of C/Σ if and only if all its elements are in Σ.

Proof. If (σn, . . . , σ0) is a Σ-composable sequence whose elements are in Σ, then we have
(σn, . . . , σ0) ∼m (σ0) ∼m (ids(σ0)) by remark 3.10, the converse straightforwardly comes
from remark 3.9.
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3.12. Lemma. Let γ be a morphism in C[x, y] and z be an object of C such that x ∼o z and
C[z, y] is not empty, there exists a unique morphism γ′ in C[x ∨ z, y] making the diagram
3.10 commute.

Proof. Applying Theorem 3.8 and the fact that any element of Σ is a Yoneda-morphism,
we construct the diagram 3.9 which provides the expected morphism γ′.

x
γ

%%
Σ
''NNN

N x

Σ

��

γ

##GGGGGGGGGG

x ∧ z

Σ 77pppp

Σ %%KKK
KK x ∨ z

γ′ // y C[s(σ), y] // C[Σ-1][x, y]

z
γ′′

::

Σ

99sssss
out
push

x ∨ z
γ′

// y γ � //

Map 3.1
IΣ(γ)

Diagram 3.9 Diagram 3.10

From now on and for the rest of the article, we denote the equivalence relation over C[x, y]
defined in Proposition 1.3 by ∼x,y.

3.13. Lemma. Let x and y be two objects of C[Σ-1] such that C[Σ-1][x, y] is not empty,
then:

1. there exists a morphism σ of Σ such that C[s(σ), y] is not empty and t(σ) = x,
2. for any morphism σ in Σ such that C[s(σ), y] is not empty and t(σ) = x, the map

3.1 is a bijection. In particular, the functor IΣ is faithful.

Proof. The first point is obvious from Propositions 1.3 and 2.10. We set u := s(σ)
and choose two morphisms γ and δ of C[u, y] and two morphisms τ1 and τ2 of Σ[t, u] so
that diagram 3.11 commutes (Proposition 1.3). Since τ1 = τ2 (Theorem 3.8) and τ1 is
a monomorphism (Proposition 2.4) we have γ = δ. Let (δ, τ) represent an element of
C[Σ-1][x, y] and set v := s(τ), in particular we have u ∼o v. By hypothesis the set C[u, y]
is not empty, so there exists a unique morphism γ′ in C[u ∨ v, y] such that triangle 1 of
diagram 3.12 commutes (Lemma 3.12); triangles 2 and 3 also commute (Theorem 3.8)
therefore diagram 3.12 commutes too. Now we set γ := γ′◦(u Σ // u ∨ v) and thus obtain
(δ, τ) ∼x,y (γ, σ).

y y u ∨ v
γ′oo

u

γ

88qqqqqqqqqqqqq

σ
&&NNNNNNNNNNNNN t

τ1∈Σoo τ2∈Σ // u

δ

ffMMMMMMMMMMMMM

σ
xxppppppppppppp v

Σ

33hhhhhhhhhhhhhhhhhhhhhhhhh

δ
@@��������

τ
((QQQQQQQQQQQQQQQQ u ∧ v

1

Σ
//

Σ
oo

2
u

σ
uujjjjjjjjjjjjjjjjjjjj

Σ
bbEEEEEEEEE

Diagram 3.11
x

Diagram 3.12
x

3
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3.14. Proposition. Let C be a loop-free category and Σ be a Yoneda-system of C. The
isomorphisms of C[Σ-1] are the morphisms of C[Σ-1] which have a return, in addition,
each of them can be written as IΣ(σ2) ◦

(
IΣ(σ1)

)-1 for some elements σ1 and σ2 of Σ.
Furthermore, the collection of isomorphisms of C[Σ-1] is pure in C[Σ-1] and any homset
of C[Σ-1][x, y] which contains an isomorphism is a singleton.

Proof.
Let x and y be two objects of C[Σ-1] and f be a morphism of
C[Σ-1][x, y] which has a return g. Let (γ, σ) and (γ′, σ′) respectively
represent the morphisms f and g, the diagram 3.13 commutes and
the morphisms σ, σ′ and σ′′ belong to Σ (Proposition 1.3). Actu-
ally γ, γ′ and γ′′ also belong to Σ (Theorem 3.8 and Lemma 3.6)
therefore (γ, σ) represents the isomorphism IΣ(γ) ◦

(
IΣ(σ)

)-1. The
collection of isomorphisms of C[Σ-1] is pure for so is the collection
of morphisms of C[Σ-1] that have a return. Whatever γ is, the dia-
gram 3.14 commutes provided the morphisms σ1, σ2 and σ3 belong
to Σ (Theorem 3.8), therefore C[Σ-1][x, y] is a singleton.

x Diagram 3.13

z1
γ //

σ
OO

y

z3
γ′′

//
σ′′

OO

z2
γ′

//
σ′

OO

x

x z2
σ2oo

σ3��
z1

σ1

OO

γ
//tt Σjjj

z1∧z2jj
Σjj

44jjj

Diagram 3.14
y

4. The fibered equivalence from C[Σ-1] to C/Σ

In this section, we prove the existence of a fibered equivalence from C[Σ-1] to C/Σ, this
fibered equivalence is indeed given by PΣ, which is the unique functor from C[Σ-1] to C/Σ

such that QΣ = PΣ ◦ IΣ (Proposition 1.8).

4.1. Theorem. The functor PΣ is a fibered equivalence.

4.2. Corollary. Given a loop-free category C, a Yoneda-system Σ over C and two objects
x and y of C such that C[x, y] is not empty, the following map is a bijection. In particular,
the functor QΣ is faithful.

C[x, y] // C/Σ[QΣ(x), QΣ(y)]

γ � // QΣ(γ)

Proof. Follows from QΣ = PΣ ◦ IΣ, Lemma 3.13 and Theorem 4.1.

4.3. Corollary. [Quotient of a loop-free category by a Yoneda-system] If C is a loop-
free category and Σ a Yoneda-system of C, then the quotient category C/Σ is loop-free.
Besides, if the category C is a poset, that is to say C is loop-free and for all objects x
and y of C, the set C[x, y] contains at most one element, then C/Σ is also a poset. In
particular, the category of components of a loop-free category (respectively a poset) is also
loop-free (respectively a poset).
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Proof. Given two objects a and b of C/Σ such that neither C/Σ[a, b] nor C/Σ[b, a] are
empty, we have two objects x and y of C whose image by PΣ are respectively a and b and
neither C[Σ-1][x, y] nor C[Σ-1][y, x] are empty (Theorem 4.1). It follows from Proposition
3.14 that C[Σ-1][x, y] has a single element which can be written as IΣ(σ2) ◦

(
IΣ(σ1)

)-1 for
some elements σ1 and σ2 of Σ and therefore C/Σ[a, b] has a single element which is

PΣ

(
IΣ(σ2) ◦

(
IΣ(σ1)

)-1)
= QΣ(σ2) ◦

(
QΣ(σ1)

)-1
= ida = idb .

Furthermore, if we suppose that all the homsets of C contain at most one element, then so
are the homsets of C[Σ-1] (Lemma 3.13) and hence, by Theorem 4.1, so are the homsets
of C/Σ.

4.4. Corollary. [Quotients and Skeleta] Given a Yoneda-system of a loop-free category
C, the quotient category C/Σ is isomorphic to the skeleton of C[Σ-1].

Proof. The category C/Σ is skeletal by Corollary 4.3 and equivalent to C[Σ-1] by Theorem
4.1.

4.5. Corollary. Given a Yoneda-system Σ over a loop-free category C, the group Aut(C/Σ)
freely and transitively acts (on the left) on the set of equivalences from C[Σ-1] to C/Σ and
all the equivalence from C[Σ-1] to C/Σ are fibered.

Proof. Given a skeletal category S, the category of functors from any category C to
S is still skeletal, the action is thus free and transitive since the category C/Σ is skeletal
(Corollary 4.4). Moreover, any equivalence whose codomain is skeletal is obviously fibered.

Given a category C, we put x v y for C[x, y] 6= ∅; in the case where C is loop-free, v is
an order relation over the collection |C| of objects of C. The next corollary describes the
image of the morphism of groups given by Proposition 2.8.

4.6. Corollary. Given a loop-free category C and an autofunctor Ψ of C/Σ, there is an
autofunctor Φ of C such that QΣ ◦Φ = Ψ ◦QΣ if and only if there is an automorphism φ
of (|C|,v) such that for all objects x and y of C and for all Σ-component K, if x and y
belong to K then φ(x) and φ(y) belong to Ψ(K).

Proof. Suppose we have φ as in the statement of Corollary 4.6, for any object x of C,
we put Φ(x) := φ(x). Furthermore, if C[x, y] is not empty, then the map ξx,y from C[x, y]
to

(
C/Σ

)
[QΣ(x), QΣ(y)] given by Corollary 4.2 is a bijection.

So, given a morphism γ in C[x, y], we set Φ(γ) := ξ-1φ(x),φ(y)

(
Ψ

(
ξx,y(γ)

))
thus defining

the expected automorphism of C. The converse is obvious.
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The rest of the section is devoted to intermediate results leading to the proof of
Theorem 4.1.

4.7. Definition. Given a non empty sequence (γn, . . . , γ0) of morphisms of C, we write: •
(γn, . . . , γk+1, γk, γk−1, . . . γ0)∼′1

m(γn, . . . , γk+1, γ
′
k, γk−1, . . . γ0) when there exists some k in

{0, . . . , n} and some morphism γ′k in C such that the diagram 4.1 commutes (x∧x′ and y∨y′

refer to Theorem 3.8), and • (γn, . . . , γk+2, γk+1, γk, γk−1, . . . , γ0)∼′1
m(γn, . . . , γk+2, γk+1 ◦

γk, γk−1, . . . , γ0) when there exists some k in {0, . . . , n− 1} such that t(γk) = s(γk+1).

x
γk // y Σ // y ∨ y′ x

γk // y Σ // y ∨ x′

x ∧ x′

Diagram 4.1
Σ

//
Σ

OO

x′
γ′k

// y′
Σ

OO

Diagram 4.2

y ∧ x′
Σ

//
Σ

OO

x′
Σ

OO

γk+1

// y′

Since Σ is pure in C (Lemma 3.6) and stable under composition, in either case, if
one of the sequences on either side of ∼′1

m is Σ-composable (respectively Σ-composable
normalized), then so is the other. Given two sequences of morphisms of C, −→γ and

−→
δ for

instance, we write −→γ ∼′
m

−→
δ when there exists a sequence (−→γ0 , . . . ,

−→γ
K
, . . . ,−→γ

N
) of sequences

of morphisms of C such that −→γ0 = −→γ , −→γ
N

=
−→
δ and for all K in {0, . . . , N − 1} we have

−→γ
K
∼′1

m
−−→γ

K+1
. Such a sequence (−→γ0 , . . . ,

−→γ
K
, . . . ,−→γ

N
) is called a sequence of ∼′1

m-transfor-
mations. Given a Σ-composable sequence −→γ an element of which is not in Σ, we denote
by −→γ × the subsequence of −→γ obtained by removing all the entries of −→γ that belong to
Σ.

4.8. Lemma. Let −→γ and
−→
δ be two Σ-composable sequences having at least one element

which is not in Σ, then the following statements are satisfied:
1. the sequence −→γ × is Σ-composable and normalized,
2. −→γ ∼m

−→γ ×,
3. if −→γ ∼1

m

−→
δ , then −→γ ×∼′1

m

−→
δ × or −→γ × =

−→
δ × and

4. if −→γ ×∼′1
m

−→
δ ×, then −→γ ∼m

−→
δ .

In particular we have −→γ ∼m

−→
δ if and only if −→γ ×∼′

m

−→
δ ×.

Proof. Since one of the elements of −→γ is not in Σ, the sequence −→γ × is not empty,
moreover the sequence −→γ × is Σ-composable and satisfies −→γ ∼m

−→γ × (remark 3.10). For
Σ is pure in C (Lemma 3.6) and stable under composition (Definition 2.5), we have the
third point. If diagram 4.1 commutes, then (γk) ∼m (γ′k), the fourth point follows because
∼ is a generalized congruence.

4.9. Lemma. Let γ, γ′, δ and δ′ be four morphisms respectively taken from C[y, z], C[y′, z′],
C[x, y] and C[x′, y′]. If x ∼o x′, y ∼o y′, z ∼o z′ and the diagrams 4.3 and 4.4 commute,
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then so does the diagram 4.5.

x δ // y Σ // y ∨ y′ y γ // z Σ // z ∨ z′ x
γ◦δ // z Σ // z ∨ z′

x ∧ x′
Σ

//
Σ

OO

x′
δ′

// y′
Σ

OO

y ∧ y′
Σ

//
Σ

OO

y′
γ′

// z′
Σ

OO

x ∧ x′
Σ

//
Σ

OO

x′
γ′◦δ′

// z′
Σ

OO

Diagram 4.3 Diagram 4.4 Diagram 4.5

Proof. Since diagram 4.3 commutes and diagram 4.7 is a pull-back square (Theorem 3.8),
there exists a unique morphism δ′′ in C[x ∧ x′, y ∧ y′] making the diagram 4.6 commute.
The same way, since diagram 4.7 is a push-out square (Theorem 3.8), there exists a unique
morphism γ′′ in C[y ∨ y′, z ∨ z′] making the diagram 4.8 commute and the expected result
follows.

x δ // y
Σ
$$HH

HH
y

Σ
$$HH

HH
y

Σ
$$HH

HH
γ // z

Σ
##HHH

HH

x ∧ x′
Σ

::uuuuu

Σ ##GGG
GG

δ′′ // y ∧ y′
Σ

::vvvv

Σ ##FF
FF

y ∨ y′ y ∧ y′

Σ ##FF
FF

Σ
::vvvv

y ∨ y′ y ∧ y′
Σ

::vvvv

Σ ##FF
FF

y ∨ y′
γ′′ // z ∨ z′

x′
δ′

// y′
Σ

;;xxxx
y′

Σ

;;xxxx
y′

Σ

;;xxxx

γ′
// z′

Σ

;;xxxxx

Diagram 4.6 Diagram 4.7 Diagram 4.8

4.10. Lemma. Let two morphisms γ and γ′ respectively taken from C[x, y] and in C[x′, y′]
where x, x′, y and y′ are objects of C such that x ∼o x′ and y ∼o y′, then the diagram
4.9 is commutative if and only if there exists two objects x′′ and y′′ of C such that the sets
Σ[x′′, x], Σ[x′′, x′], Σ[y, y′′] and Σ[y′, y′′] are not empty and the diagram 4.10 commutes.

x
γ // y Σ // y ∨ y′ x

γ // y Σ // y′′

x ∧ x′

Diagram 4.9

Σ

OO

Σ
// x′

γ′
// y′

Σ

OO

x′′

Diagram 4.10

Σ

OO

Σ
// x′

γ′
// y′

Σ

OO

Proof. Suppose there exist x′′ and y′′ such that diagram 4.10 commutes, by Theorem
3.8 we have diagram 4.11 in which the dotted triangles as well as, by hypothesis, the
outer shape, commute. Moreover, the morphisms x′′

Σ // x ∧ x′ and y ∨ y′
Σ // y′′ are bi-

morphisms (Proposition 2.4) so the inner rectangle of diagram 4.11 also commutes.
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y′′

x
γ // y

Σ
//

Σ

88

y ∨ y′

Σ

AA

x
γ // y Σ // y ∨ y′

Σ // y ∨ y′ ∨ y′′

x ∧ x′

Σ

OO

Σ // x′
γ′

// y′

Σ

OO Σ

HH

x ∧ x′

1
Σ //

Σ

OO

x′
γ′ // y′

4

Σ
//

Σ

OO

y′ ∨ y′′

Σ

OO

x′′

Σ

HH

Σ

@@

Σ

88

Diagram 4.11

x ∧ x′ ∧ x′′

Diagram 4.12

3

Σ
//

Σ

OO

x′ ∧ x′′

2

Σ
//

Σ

OO

x′′
γ′′

// y′′

Σ

OO

4.11. Lemma. Given three morphisms γ, γ′ and γ′′ respectively taken from C[x, y], C[x′, y′]
and C[x′′, y′′] where x, x′, x′′, y, y′ and y′′ are objects of C such that x ∼o x′, x′ ∼o x′′,
y ∼o y′ and y′ ∼o y′′; if the diagrams 4.13 and 4.14 commute, then so does the diagram
4.15.

x
γ // y Σ // y ∨ y′ x′

γ′ // y′
Σ // y′ ∨ y′′ x

γ // y Σ // y ∨ y′′

x ∧ x′

Diagram 4.13
Σ

//

Σ

OO

1

x′
γ′

// y′

Σ

OO

x′ ∧ x′′

Diagram 4.14
Σ

//

Σ

OO

2

x′′
γ′′

// y′′

Σ

OO

x ∧ x′′

Diagram 4.15
Σ

//

Σ

OO

x′′
γ′′

// y′′

Σ

OO

Proof. The rectangles 1 and 2 (on diagram 4.12) commute by hypothesis and the
commutative rectangles 3 and 4 (on the same diagram) are given by thorem 3.8, we
conclude by applying Lemma 4.10 to the outer shape of diagram 4.12.

Now we come to the most technical fact of the paper though the underlying ideas
remain simple and rather easy to grasp in any “concrete” example.

4.12. Lemma. [Interpolation] Let x, y, x0, . . . , xn, y0, . . . , yn be objects of C. If the state-
ments a, b and c are satisfied, then there exists a sequence of objects z1, . . . , zn of C
satisfying the statements d and e.
a x v y, x ∼o x0, yn ∼o y,

b ∀k ∈ {1, . . . , n}, yk−1 ∼o xk,

c ∀k ∈ {0, . . . , n}, xk v yk,

d x v z1 v . . . v zn v y and

e ∀k ∈ {1, . . . , n}, zk ∼o xk

Diagramatically, if

x0
�O

v // y0

�O
�O
�O
�O
�O

x2
v //

�O
�O
�O
�O
�O

y2

�O
�O
�O
�O
�O

x4

�O
�O
�O
�O
�O

. . . xn−1

�O
�O
�O
�O
�O

v // yn−1

�O
�O
�O
�O
�O

x
O� v // y

�O

x1 v
// y1 x3 v

// y3 . . . yn−2 xn v
// yn

O�
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then we have a sequence z1, . . . , zn of objects of C such that

x0
�O

v // y0
�O

x2
v //

�O
y2

�O
x4

�O
. . . xn−1

�O

v // yn−1
�O

x
O�

v // z1

O�

v //
�O

z2

O�

v //
�O

z3

O�

v //
�O

z4
�O

O�

zn−1
�O

O�

v // zn
�O

O�

v // y
�O

x1

O�

v
// y1

O�

x3

O�

v
// y3

O�

. . . yn−2

O�

xn

O�

v
// yn

O�

where /o/o/o represents ∼o and x v y means the homset C[x, y] is not empty.

Proof. All along this proof, the symbols ∧ and ∨ refer to Theorem 3.8. We choose a
morphism γk in C[xk, yk] for each k in {0, . . . , n} and set a0 := x∧ x0 and ak := yk−1 ∧ xk

for each k in {1, . . . , n}.
For every k in {0, . . . , n} we denote by σk the single element of Σ[ak, xk]. Finally we

set δk := γk ◦ σk for each k in {0, . . . , n}.
Then we recursively construct the push-out squares 0 , 1 , 2 , . . . , n as indicated be-

low.

x
γ′0 // x′1

γ′1 // x′2
γ′2 // x′3

γ′3 // x′4 . . . x′n−1

γ′n−1 // x′n
γ′n // x′n+1

a0

0Σ

OO

δ0
// y0

Σ
OO

a1

1
Σ

OO

δ1
// y1

Σ

OO

a2
δ2

//

2

Σ
OO

y2

Σ

OO

a3
δ3

//

3

Σ
OO

y3

Σ

OO

an−1
δn−1

//

n-1Σ

OO

yn−1

Σ

OO

an
δn

//

n

Σ
OO

yn

Σ

OO

Since x′n+1 ∼o y, we can also recursively construct the pull-back squares 0
′
, 1

′
, 2

′
,

. . . n-1
′
, n ′ as indicated below.

z0

Σ

��

γ′′0 //

n ′

z1

Σ
��

γ′′1 //

n-1
′

z2

Σ
��

γ′′2 //

n-2
′

z3

Σ
��

· · · zn−1

Σ
��

γ′′n−1 // zn
γ′′n // x′n+1 ∧ y

Σ
��

x′n+1 ∧ y Σ //

Σ
��

y

Σ
��

x
γ′0

// x′1 γ′1

// x′2 γ′2

// x′3 · · · x′n−1

1
′

γ′n−1

// x′n

0
′

��
Σ

γ′n

// x′n+1 x′n+1 Σ
// x′n+1 ∨ y

We paste these squares to obtain the pull-back depicted on diagram 4.16. Since the
arrow y Σ // x′n+1∨y is a Yoneda-morphism and C[x, y] is not empty, there exists a unique
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morphism δ in C[x, y] such that diagram 4.17 commutes.

z0
γ′′n◦···◦γ′′0 // x′n+1 ∧ y Σ // y

Σ
��

y

Σ
��

x

Diagram 4.16

��
Σ

γ′n◦···◦γ′0
// x′n+1 Σ

// x′n+1 ∨ y x

Diagram 4.17
γ′n◦···◦γ′0

//

δ

44iiiiiiiiiiiiiiiiiiiiiiiiiii x′n+1 Σ
// x′n+1 ∨ y

Then we apply the universal property of pull-back squares to obtain the unique morphism
ξ of C[x, z0] that makes the diagram below commute.

x

idx

&&

δ

&&

ξ

��?
??

??
??

?

z0
γ′′n◦···◦γ′′0 // x′n+1 ∧ y Σ // y

Σ
��

x
��

Σ

γ′n◦···◦γ′0
// x′n+1 Σ

// x′n+1 ∨ y

In particular we have x v z0 v x which implies, since C is loop-free, that ξ = idx. Finally,
it comes

x
γ′′0 // GFED@ABCz1

γ′′1 //

Σ
��

GFED@ABCz2
γ′′2 //

Σ
��

GFED@ABCz3

Σ
��

· · · ONMLHIJKzn−1
γ′′n−1 //

Σ
��

GFED@ABCzn
γ′′n //

Σ
��

x′n+1 ∧ y Σ //

Σ
��

y

x′1 x′2 x′3 · · · x′n−1 x′n x′n+1

y0

Σ

OO

y1

Σ

OO

y2

Σ

OO

· · · yn−2

Σ

OO

yn−1

Σ

OO

yn

Σ

OO

a1

Σ

OO

a2

Σ

OO

a3

Σ

OO

· · · an−1

Σ

OO

an

Σ

OO

and z1, . . . , zn is the expected sequence of objects.

4.13. Lemma. [Translation] Let γ be a morphism in C[x, y] and two objects x′ and y′ of
C such that x′ ∼o x, y′ ∼o y and the homset C[x′, y′] is not empty. There exists a unique
morphism γ′ in C[x′, y′] such that the diagram 4.18 commutes.

x
γ // y y ∨ y′OO

Σ

//Σ
y ∨ y′OO

Σ

x ∧ x′

Diagram 4.18

Σ

OO

Σ
// x′

γ′
// y′ x ∧ x′

Diagram 4.19

γ0

66nnnnnnnnnnnnn

γ1

// y′ x ∧ x′

Diagram 4.20
Σ

//

γ1

$$
x′

γ′
// y′
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Proof. Denote by γ0 the following composite of morphisms x ∧ x′
Σ // x

γ // y Σ // y ∨ y′ .

Since the arrows y Σ // y∨y′ and x ∧ x′
Σ // x′ are Yoneda-morphisms, there exist a unique

morphism γ1 in C[x∧x′, y′] that makes the diagram 4.19 commute and a unique morphism
γ′ in C[x′, y′] that makes the diagram 4.20 commute.

As suggested by the terminology of linear algebra and the dotted segments on diagram
4.18, we say that we translate γ (to γ′) along x, x′ and y, y′. We also say the translation
of γ along x, x′ and y, y′ is γ′.

4.14. Lemma. [Assembly] If (γn, . . . , γ0) is a Σ-composable sequence whose elements are
respectively taken from C[xk, yk] (for 0 ≤ k ≤ n) and x, y are two objects of C such that,
x ∼o x0, y ∼o yn and the homset C[x, y] is not empty, then we have a composable sequence
(ζn, . . . , ζ0) such that s(ζ0) = x, t(ζn) = y and for each k in {0, . . . , n}, the morphism ζk

belongs to C[zk, zk+1] where zk and zk+1 are objects of C such that xk ∼o zk, yk ∼o zk+1

and the diagram 4.21 commutes.

xk
γk // yk

Σ // yk ∨ zk+1 x0
γ0 // y0

Σ // y0 ∨ y xk
γk // yk

Σ // yk ∨ y′k

xk ∧ zk

Diagram 4.21
Σ

//

Σ

OO

zk
ζk

// zk+1

Σ

OO

x0 ∧ x

Diagram 4.22
Σ

//

Σ

OO

x
ζ0

// y

Σ

OO

xk ∧ x′k
Diagram 4.23
Σ

//

Σ

OO

x′k γ′k

// y′k

Σ

OO

Moreover, if (ζ ′n, . . . , ζ
′
0) is another such composable sequence, then ζ ′n◦· · ·◦ζ ′0 = ζn◦· · ·◦ζ0.

Proof. There is a sequence z1, . . . , zn of objects of C such that for each k in {1, . . . , n},
zk ∼o xk and x v z1 v . . . v zn v y (interpolation Lemma 4.12). We extend this
sequence setting z0 := x and zn+1 := y. For each k in {0, . . . , n} we translate γk to ζk

along xk, zk and yk, zk+1 (diagram 4.21 and translation Lemma 4.13). The composable
sequence (ζn, . . . , ζ0) has the expected properties. Besides, if (ζ ′n, . . . , ζ

′
0) is another such

sequence, we prove that ζ ′n ◦ · · · ◦ ζ ′0 = ζn ◦ · · · ◦ ζ0 by recursively applying Lemma 4.9.

Given a Σ-composable sequence −→γ , any sequence
−→
ζ satisfying the conclusions of

Lemma 4.14 is called an assembly of −→γ from x to y. Thus, Lemma 4.14 allows us to
define the value of −→γ from x to y as Valx,y(

−→γ ) := ζn ◦ · · · ◦ ζ0 where
−→
ζ is any assembly

of −→γ .

4.15. Corollary. Given a Σ-composable sequence −→γ := (γn, . . . , γ0) whose elements γk

respectively belong to C[xk, yk] and two objects x and y of C such that x ∼o x0, y ∼o yn

and C[x, y] is not empty, we have the following statements:

1. if x = s(γ0), y = t(γn) and (γn, . . . , γ0) is composable,
then Valx,y(

−→γ ) := γn ◦ · · · ◦ γ0,

2. if n = 0, which means that the sequence (γn, . . . , γ0) is reduced to (γ0),
then Valx,y(

−→γ ) is given by the translation of γ0 along x0, x and y0, y (diagram 4.22),
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3. if x ∼o y, then Valx,y(
−→γ ) belongs to Σ[x, y] and finally

4. if the sequence −→γ is normalized and
−→
δ is a sequence of morphisms of C such that

−→γ ∼′
m

−→
δ , then Valx,y(

−→γ ) = Valx,y(
−→
δ ).

Proof. The first point is obvious since we can take ζn := γn, . . . , ζ0 := γ0 as an assembly
of (γn, . . . , γ0). The second point follows from translation Lemma (4.13) and the third
one from Theorem 3.8.

By definition of ∼′
m, we can suppose that −→γ ∼′1

m

−→
δ and by definition of ∼′1

m (4.7), we
have either:

1.
−→
δ = (γn, . . . , γk+1 ◦ γk, . . . , γ0) for some k ∈ {0, . . . , n− 1} or

2.
−→
δ = (γn, . . . , γk+1, ξ1, ξ0, γk−1, . . . , γ0) for some k ∈ {0, . . . , n} where ξ1 ◦ ξ0 = γk or

3.
−→
δ = (γn, . . . , γk+1, γ

′
k, γk−1, . . . , γ0) for some k ∈ {0, . . . , n} where γ′k has been

obtained by translating γk along xk, x
′
k and yk, y

′
k (diagram 4.23).

In the first case, the sequence (ζn, . . . , ζk+1 ◦ ζk, · · · , ζ0) is an assembly of the sequence
(γn, . . . , γk+1◦γk, . . . , γ0) (Lemma 4.9) so Valx,y(γn, . . . , γ0) = ζn◦· · ·◦(ζk+1◦ζk)◦· · ·◦ζ0 =

Valx,y(
−→
δ ).

In the second case, one just has to exchange the roles of
−→
δ and (γn, . . . , γ0).

In the third one, the diagram 4.24 commutes because (ζn, . . . , ζ0) is an assembly of
(γn, . . . , γ0), then by Lemma 4.11, the diagram 4.25 also commutes. Thus the sequence
(ζn, . . . , ζ0) is also an assembly of the sequence

−→
δ and then Valx,y(

−→
δ ) = ζn ◦ · · · ◦ ζ0 =

Valx,y(γn, . . . , γ0).

xk
γk // yk

Σ // yk ∨ zk+1 x′k
γ′k // y′k

Σ // y′k ∨ zk+1 x
γ // y Σ // y ∨ y′

xk ∧ zk

Diagram 4.24
Σ

//

Σ

OO

zk
ζk

// zk+1

Σ

OO

x′k ∧ zk

Diagram 4.25
Σ

//

Σ

OO

zk
ζk

// zk+1

Σ

OO

x ∧ x′

Diagram 4.26
Σ

//

Σ

OO

x′
γ′

// y′

Σ

OO

We can finally gives an “intuitive” and “handy” description of the relation ∼m.

4.16. Proposition. Given a Yoneda-system Σ on a loop-free category C and two mor-
phisms γ and γ′ respectively taken from C[x, y] and C ′[x′, y′], we have (γ) ∼m (γ′) if and
only if the translation of γ along x, x′ and y, y′ is γ′, that is to say x ∼o x′, y ∼o y′ and
the diagram 4.26 commutes.

Proof. Suppose (γ) ∼m (γ′). We first suppose that x = x′ and y = y′. Two situations
may arise, in the first one, we have γ ∈ Σ or γ′ ∈ Σ so γ = γ′ (remark 3.4). In the second
one, none of these two morphisms belong to Σ, therefore (γ) and (γ′) are two normalized
Σ-composable sequences such that (γ) ∼m (γ′), hence we have (γ) ∼′

m (γ′) (Lemma 4.8)
and then γ = Valx,y

(
(γ)

)
= Valx,y

(
(γ′)

)
= γ′ (Corollary 4.15).
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In the general case, as (γ) ∼m (γ′) we have x ∼o x′ and y ∼o y′ (because (∼o,∼m)
is a generalized congruence) and the morphism γ′ belongs to C[x′, y′]. Since C[x′, y′] is
not empty, we translate γ to δ along x, x′ and y, y′ (Lemma 4.13) that is to say diagram
4.27 commutes, therefore (γ) ∼m (δ) (Lemma 4.8) and finally (γ′) ∼m (δ) because ∼m is
transitive. Then we have γ′ = δ by applying the first case.

The converse immediately follows from Proposition 1.8.

x
γ // y Σ // y ∨ y′OO

Σ

u
γ // y

idy // y ∨ y = y

x ∧ x′

Diagram 4.27

Σ

OO

Σ
// x′

δ
// y′ u = u ∧ u

Diagram 4.28
idu

//
idu

OO

u
γ′

// y
idy

OO

Recall that with the notations of Propositions 1.1 and 1.8, PΣ is the unique functor
from C[Σ-1] to C/Σ such that QΣ = PΣ ◦ IΣ.

4.17. Lemma. Given a Yoneda-system Σ on a loop-free category C, the functor PΣ is
faithful.

Proof. Let x and y be two objects of C[Σ-1] such that C[Σ-1][x, y] is not empty, by
Lemma 3.13, there exists an object u of C and a morphism σ in Σ[u, x] such that any
element of C[Σ-1][x, y] (which is a ∼x,y-equivalence class by Proposition 1.3) has a unique
representative written as (γ, σ) where γ belongs to C[u, y]. Then let γ and γ′ be two
morphisms of C[u, y] such that PΣ(γ, σ) = PΣ(γ′, σ), which means that (γ) ∼m (γ′). By
Proposition 4.16, the diagram 4.28 commutes, in other words γ = γ′.

Now we can complete the proof of the main result of the article:

Proof of Theorem 4.1. Let a and b be two objects of C[Σ-1], let f be a morphism
of C/Σ[PΣ(a), PΣ(b)] (if it exists) and the Σ-composable sequence (γn, . . . , γ0) be a ∼m-
representative of f . We translate γn to γ′n in such way that t(γ′n) = b, then γn−1 to γ′n−1 in
such way that t(γ′n−1) = s(γ′n) and so on till we have the composable sequence (γ′n, . . . , γ

′
0).

Necessarily, s(γ′0) ∼o a because (γn, . . . , γ0) ∼m (γ′n, . . . , γ
′
0) (Proposition 4.16). Up to the

replacement of s(γ′0) by s(γ′0) ∧ a, we can suppose that C[s(γ′0), a] 6= ∅ (Theorem 3.8).
Therefore we have a unique morphism σ from s(γ′0) to a and it belongs to Σ (Theorem

3.8), besides, the composite γ := γ′n ◦ · · · ◦ γ′0 is the value of (γn, . . . , γ0) from s(γ′0) to
b. Thus we have PΣ

(
IΣ(γ) ◦

(
IΣ(σ)

)-1)
= QΣ(γ) = f and IΣ(γ) ◦

(
IΣ(σ)

)-1 belongs to
C[Σ-1][a, b].

Let y be an object of C/Σ, by Proposition 1.6, there exists an object x of C such that
QΣ(x) = y, furthermore, by Proposition 1.1, we have IΣ(x) = x. Thus, x is an object of
C[Σ-1] such that PΣ(x) = y. Finally, PΣ is faithful (Lemma 4.17), therefore it is a fibered
equivalence (Definition 1.12).
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5. Examples

We focus on some examples of categories of components to show that the methods we
have developed actually provide the expected results.

5.1. If P is a partition of a set X and x, y are two points of X, we write x ∼P y when
x and y belong to the same element P of P. A partition P′ of the same set X is said
to be finer than P when for each element P ′ of P′ there exists an element P of P such
that P ′ ⊆ P . Given a poset (X,v) seen as a category denoted by X , the collection of
Yoneda-systems of X is in one-to-one correspondence with the collection of partitions P
of X such that for all points x and y of X,

1) if there exists z in X such that z v x, z v y and z ∼P x, then the least upper
bound x ∨ y of {x, y} exists (in (X,v)) and y ∼P x ∨ y and

2) if there exists z in X such that x v z, y v z and x ∼P z, then the greatest lower
bound x ∧ y of {x, y} exists (in (X,v)) and x ∧ y ∼P y.

The preceding bijection easily comes from the facts that push-out and pull-back in X
correspond to least upper bound and greatest lower bound in (X,v) and every morphism
of X is a Yoneda-morphism of X .

In particular, given two Yoneda-systems Σ and Σ′ of X and their corresponding par-
titions P and P′, one has Σ ⊆ Σ′ if and only if P is finer than P′. Hence the locale of
Yoneda-systems of X is isomorphic to the collection of partitions of X satisfying 1) and
2) ordered by the following relation.{(

P, P′
)∣∣∣P, P′ partitions of X satisfying 1) and 2) ; P is finer than P′

}
In particular, each element P of a partition P satisfying 1) and 2) is an order convex
sub-lattice of (X,v). In other words, for all elements p1 and p2 of P , the set {x ∈
X | p1 v x v p2} (which may be empty) is contained in P , the least upper and the
greatest lower bound of the pair {p1, p2} exist in (X,v) and both of them belong to P .
This fact immediately follows from the pureness of the Yoneda-system corresponding to
the partition P (Lemma 3.6) and Theorem 3.8. If (X,v) is a chain (i.e. for all x and y in
X, one has x v y or y v x), then any partition P of X whose elements are order convex
sub-lattices of (X,v) satisfies 1) and 2).

5.2. We recall that a lattice is a non empty poset in which any pair of elements
admits a least upper bound and a greatest lower bound. With the preceding example in
mind, one easily verifies that the collection of all morphisms of a lattice is its greatest
Yoneda-system; consequently, the category of components of any lattice is reduced to the
terminal object of Cat. Conversely, let C be a loop-free category and Σ be the greatest
Yoneda-system of C, if the category of components of C is reduced to the terminal object
of Cat, then C has a single Σ-component which is a lattice (Theorem 3.8), in other words,
the category C is a lattice.

5.3. Let us now consider a geometric example: the set of objects of the category C
is X:=[0, 1]2\]1

3
, 2

3
[2 and the description of the morphisms of C is based on the partition
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X = A ∪ B1 ∪ B2 ∪ C given below. Indeed, each morphism is given a “type” depending
on which parts its extremities belong to.

A:=
[
0, 1

3

]2, B1 :=
(]

1
3
, 1

]
×

[
0, 2

3

[)
\
]

1
3
, 2

3

[2, B2 :=
([

0, 2
3

[
×

]
1
3
, 1

])
\
]

1
3
, 2

3

[2 and C :=
[

2
3
, 1

]2.

For all objects x :=(x1, x2) and y :=(y1, y2) of C, we write x v y when x1 ≤ x2 and
y1 ≤ y2; if x 6v y then by definition the homset C[x, y] is empty. Moreover, for each object
x of C, the homset C[x, x] is the singleton {idx}. For the rest of the description of C, we
suppose that x @ y, in this case, the table 1 gives an extensive description of each homset
C[x, y]. Besides, the composition law of C is given by table 2: writing γ ◦ δ, the morphism
δ is read vertically while γ is read horizontally.

x ∈ y ∈ C[x, y]
A A {σx,y}
B1 B1 {σx,y}
B2 B2 {σx,y}
C C {σx,y}
A B1 {rx,y}
A B2 {hx,y}
B1 C {h′x,y}
B2 C {r′x,y}
B1 B2 ∅
B2 B1 ∅
A C {ux,y , dx,y}

Table 5.1

In table 5.2, the indices indicate the source and the target.
When composition makes sense the resulting morphism is
given in the corresponding entry, a blank means that the com-
ponent of y does not meet the one of w.

◦ σw,z hw,z rw,z h′w,z r′w,z uw,z dw,z

σx,y σx,z hx,z rx,z h′x,z r′x,z ux,z dx,z

hx,y hx,z ux,z

rx,y rx,z dx,z

h′x,y h′x,z

r′x,y r′x,z

ux,y ux,z

dx,y dx,z
Table 5.2

Tables 5.1 and 5.2 completely define the cat-
egory C. Yet, they suggest that in some
sense, the morphisms σx,y, that is to say
“those which do not cross any frontier”, do
not influence the “type” of the morphism they
are composed with. Hence, the morphisms
σx,y behave as “neutral elements” with re-
spect to the “type” of morphism. Then, the
greatest Yoneda-system of C, denoted by Σ,
is the family of morphisms σx,y and the Σ-
components of C are A, B1, B2 and C. The
category of components of C is freely gener-
ated by the graph on figure 5.1.

r’

h’h

r

2B

B1

C

A

Figure 5.1

Besides, the group of autofunctors of the category of components of C is isomorphic
to Z/2Z, hence there are exactly two equivalences from C[Σ

-1
] to C/Σ (Corollary 4.5).

Furthermore, the map from X to X sending each point (x, y) to (y, x) implies, together
with Corollary 4.6, that the group morphism from Aut(C) to Aut(C/Σ) given by Proposition
2.8 is surjective.
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5.4. We come back to the case where the set X is [0, 1]2\]1
3
, 2

3
[2 with the product

order v and denote by X the induced category. The partition of X corresponding to the
greatest Yoneda-system of X is

An,p :=
[

n
3
, n+1

3

]
× [p

3
, p+1

3

]
, Bn :=

[
n
3
, n+1

3

]
×]1

3
, 2

3

[
and Cn :=]1

3
, 2

3

[
×

[
n
3
, n+1

3

]
where n and p range over {0, 2}. Hence the category of components of X is isomorphic
to the poset {0 < 1 < 2} × {0 < 1 < 2}\{(1, 1)} which is not a lattice.

5.5. The geometric example 5.3 is an instance of a general situation we now describe,
more details are available in [10, 11, 14, 23, 31, 33]. A pospace, denoted by

−→
X , is a

topological space X equipped with an order relation v whose graph is closed in X ×
X. Pospaces and their morphisms, namely the continuous and increasing maps, form a
complete and co-complete category9 denoted by PoTop. The segment [0, 1] equiped with
the natural order is an object of PoSpc denoted by

−→
I . Given two points a and b of

−→
X ,

a directed path from a to b on
−→
X is an element γ of PoTop[

−→
I ,
−→
X ] such that γ(0) = a

and γ(1) = b. Given γ and δ, two directed paths on
−→
X such that γ(0) = δ(1), we defined

the concatenation γ · δ of δ followed by γ as in classical algebraic topology [20, 24].
Denoting by U the forgetful functor from PoTop to the category of Hausdorff spaces (the
underlying topological space of any pospace is Hausdorff [33]), we say that an element h of
PoTop[

−→
I ×

−→
I ,
−→
X] is a directed homotopy from the directed path γ1 to the directed path

γ2 when U(h) is a usual homotopy [20, 24] from U(γ1) to U(γ2). Writing γ1 vdih γ2 when
there exists a directed homotopy from γ1 to γ2, we define an order relation over the set of
directed paths on

−→
X . Let F−→

X
be the free category spanned by the graph whose vertices

and arrows are respectively the points of
−→
X and the dipaths on

−→
X , the head and tail of

an arrow γ being respectively γ(0) and γ(1). Then we define the congruence ∼dih on F−→
X

as the one induced by the relation α ∼1
dih γ ◦ δ when α vdih γ · δ10 and the fundamental

category of
−→
X , denoted by −→π1(

−→
X ), as the quotient F−→

X
/∼dih. The fundamental category

of a pospace is loop-free, in regard of Theorem 4.1 this obvious fact is crucial because
we define the category of components of a pospace as the category of components of
its fundamental category. From the example where X:=[0, 1]2\]1

3
, 2

3
[2, we know that the

category of components C of a pospace may differ from the category of components P of
its underlying poset. In fact, it may happen that none of the categories C and P can be
embedded in the other. Aside from the problem of components, the construction of the
fundamental category we have given is a special instance of a general one [21] which also
encompasses the fundamental groupoid construction.

5.6. Let us give an example in dimension 3: given a real number ε such that 0 ≤
ε < 1

2
, let

−→
X ε be the sub-pospace of

−→
R 3 whose underlying set is the unit cube [0, 1]3 from

which we have removed the 3 following subsets I×]ε, 1-ε[×]ε, 1-ε[, ]ε, 1-ε[×I×]ε, 1-ε[ and
]ε, 1-ε[×]ε, 1-ε[×I; see figure 5.2. The category of components of

−→
X ε is freely generated

9A proof of the co-completeness of PoTop is given in [23].
10Note that here, ◦ and · are formally distinct since they are respectively put for the composition law

of F−→
X

and the concatenation of dipaths: one of the purpose of ∼dih is precisely to identify them.
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by a graph (pictured on figure 5.3) which has a planar representation given on figure 5.4.
For any parameter ε taken from ]0, 1

2
[, each Σε-component of

−→
X ε is 3 dimensional in the

sense that its interior, as a subset of R3, is not empty. On the other hand, in the case
of
−→
X0, some components are reduced to a singleton (0-dimensional) while the others are

segments (1-dimensional). The group of autofunctors of the category of components of
−→
X ε is isomorphic to the group of permutations over a 3 elements set. Still, one can take
1
2

for the parameter ε; in this case,
−→
X 1

2
is just

−→
I 3 (product of 3 copies of

−→
I in PoSpc)

and, since the fundamental category of
−→
X 1

2
is the lattice [0, 1]3 (together with the product

order), its category of components is the terminal object of Cat.

1−2ε

Figure 5.2

Figure 5.3

Figure 5.4

5.7. Consider the set T whose elements are points (x1, x2) of [0, 1]2 such that x2 ≤ x1.
The usual product order over R2 induces an order over T denoted by v. The category
of components of (T,v) is (T,v). Indeed, every element P of a partition of T satisfying
properties 1) and 2) of example 5.1 is necessarily a singleton. By the way, the poset (T,v)
is isomorphic to the set of non empty compact intervals of [0, 1]; if we add the empty set,
we obtain a lattice, thus making the category of components trivial.

5.8. For the last example, we consider the poset (X,v) where X:=
(
{0}×R

)
∪

(
R×

{0}
)

and v is the order induced on X by the product order on R2. By the way, the
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set X has a pospace structure
−→
X inherited from the product pospace structure of R2

and its fundamental category is isomorphic to the poset (X,v). Moreover, the category
of components of

−→
X and the one of its underlying poset (X,v) are isomorphic to the

poset {(-1, 0), (0, -1), (1, 0), (0, 1), (0, 0)} equipped with the order induced by the usual
product order on R2. The five Σ-components of (X,v) are respectively the open half-
lines {0}×]0, +∞[, {0}×]-∞, 0[, ]0, +∞[×{0}, ]-∞, 0[×{0} and the singleton {(0, 0)}.
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