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A UNIVERSAL PROPERTY OF THE MONOIDAL 2-CATEGORY OF
COSPANS OF ORDINALS AND SURJECTIONS

M. MENNI AND N. SABADINI AND R. F. C. WALTERS

Abstract. We prove that the monoidal 2-category of cospans of ordinals and sur-
jections is the universal monoidal category with an object X with a semigroup and a
cosemigroup structures, where the two structures satisfy a certain 2-dimensional sepa-
rable algebra condition.

1. Introduction

Universal properties of cospan-like categories have been studied in geometry and computer
science. For example, the category of 2-cobordisms has been shown to be the universal
symmetric monoidal category with a symmetric Frobenius algebra (see [3] for an exposition
and references). Further, Lack showed in [4] that the category of cospans of finite sets is the
universal symmetric monoidal category with a symmetric separable algebra. Rosebrugh,
Sabadini and Walters showed in [6] a similar property of the category of cospans of finite
graphs.

The aim of this paper is to make a first step in extending these results to the 2-
dimensional structure of cospans. To concentrate attention we avoid symmetries and find
that a very natural extension of Lack’s work characterizes the 2-category of cospans of
monotone surjections between totally ordered sets, in the world of not-necessarily sym-
metric monoidal 2-categories.

Part of the work involves describing universal properties of bicategories of cospans.
Work along these lines has been already done in [2] and [1] and it is possible that some
of the results in this paper can be obtained as a byproduct of the work done in the
papers just mentioned. On the other hand, our present concern allows us to make some
simplifying assumptions and we have decided to prove the universal properties we need
without appealing to more general work. We hope that the more concrete proofs presented
here will make our work more accessible and, at the same time, allow one to see more
clearly into the combinatorics of the structures involved.

Another relevant work is [7], which is however concerned with categories rather than
2-categories.
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2. The universal semigroup

Denote by Ord the category whose objects are ordinals n = {0 < . . . < n− 1} with n in N
and whose morphisms are monotone functions between these. (Recall that contravariant
functors from Ord are sometimes called augmented simplicial objects [5].) Ordinal addi-
tion is a functor + : Ord×Ord → Ord which together with the initial object 0 induces
a strict monoidal category (Ord, +, 0). This monoidal category is presented in detail
in Section VII.5 of [5] where, in particular, it is proved that (1,∇ : 1 + 1 → 1, ! : 0 → 1)
is the universal monoid in the sense that for any strict monoidal category (C,⊗, I) to-
gether with a monoid (C,m : C ⊗ C → C, u : I → C) in C there exists a unique strict
monoidal functor (Ord, +, 0) → (C,⊗, I) which maps the monoid (1,∇, !) to (C, m, u).
(See Proposition 1 loc. cit.)

Now let sOrd be the subcategory of Ord determined by the surjective maps. The
monoidal structure on Ord restricts to sOrd and exercise 3(b) of Section VII.5 of [5]
states that (sOrd, +, 0) has the following universal property. A semigroup in (C,⊗, I) is
defined to be a pair (C, m : C ⊗ C → C) such that C is an object of C and m is associative.
Then (1,∇) is the universal semigroup.

The main results of this paper will also use the following results concerning pushouts
in sOrd and their interaction with the tensor +. First let us say that a category has
strict pushouts if every diagram y ← x → z in the category can be completed to a unique
pushout square.

2.1. Lemma. sOrd has strict pushouts.

Proof. It is straightforward to see that the pushout (in the category of finite ordinals and
all functions) of two surjections p ← m → n yields a pushout p → q ← n in the category
of ordinals and surjective functions. Among these pushouts, there is a unique one making
the function m → q order preserving.

The following simple fact will also be essential.

2.2. Lemma. The functor + : sOrd× sOrd → sOrd preserves pushouts.

That is, whenever the left and middle squares below are pushouts

x

f

²²

g // z

p1

²²

x

f ′

²²

g′ // z

p′1
²²

x⊗ x′

f⊗f ′
²²

g⊗g′ // z ⊗ z′

p1⊗p′1
²²

y
p0

// P y
p′0

// P ′ y ⊗ y′
p0⊗p′0

// P ⊗ P ′

then so is the one on the right.

3. Cospans

In this section let C be a category with strict pushouts. Then cospan(C) has the structure
of a 2-category and there are obvious y : C → cospan(C) and z : Cop → cospan(C) such
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that for every C in C, yC = zC. For every arrow f : C → C ′ in C, yf is the cospan
(f : C → C ′ ← C ′ : id) and zf is the cospan (id : C ′ → C ′ ← C : f).

Now let D be a 2-category. Each 2-functor cospan(C) → D induces by composition
functors C → D and Cop → D which coincide at objects. In this section we describe what
else is needed go the other way around.

3.1. Definition. A pair of functors F0 : C → D and F1 : Cop → D is called compatible if

1. they coincide at the level of objects (and so we write F0X = FX = F1X)

2. for every pushout square as on the left below,

X

α

²²

β // B

p1

²²

FX
F0β // FB

A p0

// P FA

F1α

OO

F0p0

// FP

F1p1

OO

the square on the right above commutes.

We write composition in ‘Pascal’ notation. So, for example, the commutative square
above translates to the equation (F1α); (F0β) = (F0p0); (F1p1).

3.2. Lemma. The functors y and z are compatible.

Proof. Straightforward.

Another simple but important fact is the following.

3.3. Lemma. Let F0 : C → D and F1 : Cop → D be compatible functors and let G : D → E
be a functor. Then F0; G and F1; G are also compatible.

Notice that in Definition 3.1 we are not requiring D to be a 2-category. For the
next result let cospan0(C) denote the underlying ordinary category of the 2-category
cospan(C).

3.4. Lemma. Let D be a category and let F0 : C → D and F1 : Cop → D be functors. Then
there exists a unique F : cospan0(C) → D such that y; F = F0 and z; F = F1 if and only
if F0 and F1 are compatible.

Proof. One direction is trivial by Lemmas 3.2 and 3.3. On the other hand, assume
that F0 and F1 are compatible. The conditions y; F = F0 and z; F = F1 determine the
definition of F on objects. In order to define F on 1-cells notice that every cospan
p = (p0 : A → P ← B : p1) is the result of the composition (yp0); (zp1). So, as F must
preserve composition, we have Fp = (F0p0); (F1p1) : FA → FB. So the definition of F
is forced, but it remains to check that F is a functor. Identities are preserved because
F0 and F1 preserve them. Concerning composition, let f = (f0 : X → A ← Y : f1) and
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g = (g0 : Y → B ← Z : g1) be a pair of composable cospans. If we let the following square
be the pushout of f1 and g0

Y

f1

²²

g0 // B

p1

²²
A p0

// P

then f ; g is the cospan (f0; p0) : X → P ← Z : (g1; p1). Now calculate using compatibility
(and recall that F1 is contravariant):

F (f ; g) = F0(f0; p0); F1(g1; p1) = (F0f0); (F0p0); (F1p1); (F1g1) =

= (F0f0); (F1f1); (F0g0); (F1g1) = (Ff); (Fg)

so the result is proved.

An analogous, more general result is dealt with in Example 5.3 of [4]. We prefer to be
somewhat more specific as it will allow us to see more clearly how to extend the results
one dimension up.

4. The extension to 2-cells

When considering 2-categories, ι( ) denotes the operation providing identities for hori-
zontal and vertical composition. That is, 2-cells of the form ιf act as units for vertical
composition and those of the form ιidA

act as units for horizontal composition. Also,
vertical composition of 2-cells is denoted by · and the horizontal one by ∗. In all cases we
write composition in ‘Pascal’ order.

4.1. Definition. Let D be a 2-category and F0 : C → D and F1 : Cop → D be functors.
A compatible selection of 2-cells is a function τ( ) that assigns to each map f : X → Y in
C a two cell τf : idFX ⇒ (F0f); (F1f) in D such that:

1. τidX
= ι(idFX)

2. τα;β = τα · ((F0α) ∗ τβ ∗ (F1α))

Graphically, this can be stated as follows: if α : X → Y and β : Y → Z then the two
2-cells idFX ⇒ (F0(α; β)); (F1(α; β)) below

FX

F0α
²²

id //

τα;β

®¶

FX FX

F0α
²²

id //

τα

®¶

FX

FY
F0β

// FZ
F1β

// FY

F1α

OO

FY //

F0β ##FFFFFFFF
τβ

®¶

FY

F1α

OO

FZ
F1β

;;xxxxxxxx

are the same.
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3. for every pushout in C as below

X

α

²²

β // B

p1

²²
A p0

// P

the following identities hold:

τα ∗ (F0β) = (F0β) ∗ τp1 (F1α) ∗ τβ = τp0 ∗ (F1α).

The idea is, of course, that a compatible selection of 2-cells is exactly what is needed
to extend Lemma 3.4 to two dimensions. But before we prove the result let us prove a
couple of technical lemmas.

First notice that each α : A → B in C induces a 2-cell α : idA ⇒ (yα); (zα).

4.2. Lemma. The assignment α 7→ α is compatible with y and z.

Proof. Straightforward.

Now we need a result analogous to Lemma 3.3.

4.3. Lemma. Let C be a category and let D and E be 2-categories. Also, let F0 : C → D
and F1 : Cop → D be compatible functors and let G : D → E be a 2-functor. If τ( ) is a
selection of 2-cells compatible with F0 and F1 then Gτ( ) is compatible with F0; G and
F0; G.

Proof. Easy.

4.4. Lemma. Let p0 and p1 be the pushout of α and β as in Definition 4.1 and let
γ = α; p0 = β; p1. Then τα ∗ τβ = τγ.

Proof. Calculate:

τα;p0 = τα · ((F0α) ∗ τp0 ∗ (F1α)) = τα · ((F0α) ∗ (F1α) ∗ τβ) =

= (τα ∗ ιX) · ([(F0α) ∗ ιA ∗ (F1α)] ∗ τβ) = (τα · [(F0α) ∗ τidA
∗ (F1α)]) ∗ (ιX · τβ) =

= τ(α;idA) ∗ τβ = τα ∗ τβ
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We can now prove the following.

4.5. Proposition. Let D be a 2-category, let F0 : C → D and F1 : Cop → D be functors
and let τ( ) be a function assigning a 2-cell of D to each map in C. Then the following
are equivalent:

1. there exists a unique 2-functor F : cospan(C) → D such that y; F = F0, z; F = F1

and τ( ) = F ( ) hold; (here and for the rest of the paper F ( ) is denoting the operation

that to each 1-cell f in C assigns the 2-cell F (f))

2. F0 and F1 are compatible and τ( ) is a selection of 2-cells that is compatible with
them.

Proof. Assume that the first item holds. Lemma 3.4 shows that y; F = F0 and z; F = F1

are compatible. Lemmas 4.2 and 4.3 show that τ( ) is a selection of 2-cells that is com-
patible with them.

To prove the converse notice that we can apply Lemma 3.4 again to conclude that there
exists a unique ordinary functor F : cospan0(C) → D such that y; F = F0 and z; F = F1.
So we are left to show that this F extends uniquely to a 2-functor in such a way that
τ( ) = F ( ) holds.

First assume that the functor F does extend to a 2-functor and consider an arbitrary
2-cell α as below.

A

α

²²

X

f0

>>}}}}}}}

g0 ÃÃA
AA

AA
AA

Y

f1

``@@@@@@@

g1~~~~
~~

~~
~

B

Consider cospans f = (f0 : X → A ← Y : f1) and g = (g0 : X → A ← Y : g1). Then it is
not difficult to see that, for α considered as a 2-cell f ⇒ g, α = (yf0) ∗ α ∗ (zf1). So
F (α : f ⇒ g) = F (yf0) ∗ Fα ∗ F (zf1) and hence the definition of F at the level of 2-cells
is completely determined by F (α : f ⇒ g) = (F0f0) ∗ τα ∗ (F1f1).

Finally, we prove that if we define F (α : f ⇒ g) to be the 2-cell (F0f0) ∗ τα ∗ (F1f1)
as above then we do obtain a 2-functor.

1. Fιf = ιFf

Fιf = (F0f0) ∗ τidA
∗ (F1f1) = (F0f0) ∗ ιidA

∗ (F1f1) =

= (F0f0) ∗ (F1f1) = ι(F0f0);(F1f1) = ι(Ff)

2. Consider maps α : A → B and β : B → C inducing 2-cells in unique possible way
(starting from f). Then calculate

F (α · β) = (F0f0) ∗ τ(α;β) ∗ (F1f1) =
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= (F0f0) ∗ (τα · ((F0α) ∗ τβ ∗ (F1α))) ∗ (F1f1) =

= (ι(F0f0) · ι(F0f0)) ∗ (τα · ((F0α) ∗ τβ ∗ (F1α))) ∗ (F1f1) =

= [(ι(F0f0) ∗ τα) · (ι(F0f0) ∗ ((F0α) ∗ τβ ∗ (F1α)))] ∗ (F1f1) =

= [(F0f0) ∗ τα) · ((F0f0) ∗ (F0α) ∗ τβ ∗ (F1α))] ∗ (ι(F1f1) · ι(F1f1)) =

= [(F0f0) ∗ τα ∗ (F1f1)] · [(F0f0) ∗ (F0α) ∗ τβ ∗ (F1α)) ∗ (F1f1)] = (Fα) · (Fβ)

3. Preservation of horizontal composition. Suppose we have 2-cells α : f ⇒ f ′ and
β : g ⇒ g′ as in the diagram below.

A

α

²²

B

β

²²

X

f0

>>}}}}}}}}

f ′0 ÃÃA
AA

AA
AA

A Y

f1

``AAAAAAAA

f ′1~~}}
}}

}}
}

Y

g0

>>}}}}}}}}

g′0 ÃÃA
AA

AA
AA

Z

g1

``AAAAAAAA

g′1~~}}
}}

}}
}

A′ B′

In order to calculate α ∗ β calculate the following pushout and resulting map (every
small square is a push out).

Y

f1

²²

g0 // B

p1

²²

β // B′

r

²²
A

α

²²

p0

// P

α∗β
@@

@

ÃÃ@
@@α′

²²

β′ // R

p′1
²²

A′
q

// Q
p′0

// P ′

Now use Lemma 4.4 to calculate:

F (α ∗ β) = F0(f0; p0) ∗ τα∗β ∗ F1(g1; p1) =

= (F0f0) ∗ (F0p0) ∗ τα′ ∗ τβ′ ∗ (F1p1) ∗ (F1g1) =

= (F0f0) ∗ τα ∗ (F0p0) ∗ (F1p1) ∗ τβ ∗ (F1g1) =

= (F0f0) ∗ τα ∗ (F1f1) ∗ (F0g0) ∗ τβ ∗ (F1g1) = (Fα) ∗ (Fβ)



638 M. MENNI AND N. SABADINI AND R. F. C. WALTERS

5. Adding the monoidal structure

In this section let (C,⊕, 0) be a strict monoidal category with strict pushouts. We have
already seen that cospan(C) is a 2-category. We want to ‘extend’ the tensor ⊕ on C to
one on cospan(C).

5.1. Lemma. There exists a 2-iso cospan(C)× cospan(C) → cospan(C × C) such that
the following diagram commutes.

C × C
y

))RRRRRRRRRRRRRRR
y×y // cospan(C)× cospan(C)

∼=
²²

Cop × Copz×zoo

∼=
²²

cospan(C × C) (C × C)opzoo

Proof. The obvious one.

So we need only build a 2-functor ⊕ : cospan(C × C) → cospan(C) with the right
properties.

5.2. Lemma. The functors

C × C ⊕ // C y // cospan(C) (C × C)op ⊕op
// Cop z // cospan(C)

are compatible if and only if ⊕ preserves pushouts. Moreover, in this case (α, β) 7→ α⊕ β
is a compatible selection of 2-cells.

Proof. The functors coincide at the level of objects. Now, a pushout in C × C is a pair
of pushouts α; p0 = β; p1 and α′; p′0 = β′; p′1 in C. The compatibility condition reduces, in
this case, to (α⊕ α′); (p0 ⊕ p′0) = (β ⊕ β′); (p1 ⊕ p′1) being a pushout. So the first part of
the result follows.

For the second part denote let σ(α,β) = α⊕ β and recall that ( ) is a compatible selec-
tion of 2-cells (Lemma 4.2). It is easy to show that σ(idX ,idY ) = ιidX⊕Y

. In order to check
the second condition calculate:

σ(α,α′);(β,β′) = σ((α;β),(α′;β′)) = (α; β)⊕ (α′; β′) = (α⊕ α′); (β ⊕ β′) =

= (α⊕ α′) · (y(α⊕ α′) ∗ (β ⊕ β′) ∗ z(α⊕ α′)) = σ(α,α′) · (y(α⊕ α′) ∗ σ(β,β′) ∗ z(α⊕ α′))

In order to check the final condition assume that we have a pushout in C × C as on
the left below

(α,α′)
²²

(β,β′) //

(p1,p′1)

²²
α⊕α′

²²

β⊕β′ //

p1⊕p′1
²²

(p0,p1)
//

p0⊕p1

//

then the square on the right above is a pushout because ⊕ preserves them. Then calculate:

σ(α,α′) ∗ y(β ⊕ β′) = α⊕ α′ ∗ y(β ⊕ β′) = y(β ⊕ β′) ∗ p1 ⊕ p′1 = y(β ⊕ β′) ∗ σ(p1,p′1)

The equation z(α⊕ α′) ∗ σ(β,β′) = σ(p0,p′0)z(α⊕ α′) is dealt with similarly.
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5.3. Proposition. Let (C,⊕, 0) be a strict monoidal category with strict pushouts then
the following are equivalent:

1. there exists a unique 2-functor

⊕ : cospan(C)× cospan(C) → cospan(C)

such that the following diagrams commute

C × C
y×y

²²

⊕ // C
y

²²
cospan(C)× cospan(C) ⊕

// cospan(C)

Cop × Cop

z×z
²²

⊕op
// Cop

z

²²
cospan(C)× cospan(C) ⊕

// cospan(C)

and such that α⊕ β = α⊕ β.

2. The functor ⊕ : C × C → C preserves pushouts.

In this case, the structure (cospan(C),⊕, 0) is a monoidal 2-category and the functors
y and z extend to strict monoidal (C,⊕, 0) → cospan(C) and (Cop,⊕, 0) → cospan(C)
respectively.

Proof. Lemma 5.2 together with Proposition 4.5 show that if ⊕ : C × C → C preserves
pushouts then there exists a 2-functor ⊕ : cospan(C × C) → cospan(C) satisfying a num-
ber of properties which, after precomposing with the isomorphism of Lemma 5.1, turn
out to be exactly the ones in the statement of the present result. The rest is trivial by
strictness.

In particular:

5.4. Corollary. (cospan(sOrd), +, 0) is a strict monoidal 2-category.

5.5. Monoidal 2-functors from cospan(C). In this section let (C,⊕, 0) be a strict
monoidal category such that C has strict pushouts and ⊕ preserves these. By Proposi-
tion 5.3 we have the strict monoidal 2-category (cospan(C),⊕, 0).

5.6. Lemma. Let (D,⊗, I) be a strict monoidal 2-category, consider compatible functors
F0 : C → D and F1 : Cop → D and let τ( ) be a compatible selection of 2-cells. Then the
induced 2-functor F : cospan(C) → D is strict monoidal (cospan(C),⊕, 0) → (D,⊗, I)
if and only if F0 and F1 are strict monoidal and τα⊕β = τα ⊗ τβ.
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Proof. Assume that F is a strict monoidal 2-functor. Then clearly F0 = y; F is a strict
monoidal functor and similarly for F1. To check the condition on the selection of 2-cells
just calculate:

τα⊕β = F (α⊕ β) = F (α⊕ β) = Fα⊗ Fβ = τα ⊗ τβ

Conversely, assume that the conditions stated for F0, F1 and τ( ) hold. Clearly
F (X ⊕ Y ) = FX ⊗ FY because F and F0 coincide at the level of objects. Now let
f = (f0 : X → A ← Y : f1) and f ′ = (f ′0 : X ′ → A′ ← Y ′ : f ′1) be 1-cells. Then calculate

F (f ⊕ f ′) = F (f0 ⊕ f ′0 : X ⊕X ′ → A⊕ A′ ← Y ⊕ Y ′ : f1 ⊕ f ′1) =

= F0(f0 ⊕ f ′0); F1(f1 ⊕ f ′1) = ((F0f0)⊗ (F0f
′
0)); ((F1f1)⊗ (F1f

′
1)) =

= ((F0f0); (F1f1))⊗ ((F0f
′
0); (F1f

′
1)) = (Ff)⊗ (Ff ′)

Finally, consider a 2-cells α from f and β from f ′ and calculate using that ⊗ is a
2-functor:

F (α⊕ β) = F0(f0 ⊕ f ′0) ∗ τα⊕β ∗ F1(f1 ⊕ f ′1) =

= ((F0f0)⊗ (F0f
′
0)) ∗ (τα ⊗ τβ) ∗ ((F1f1)⊗ (F1f

′
1)) =

= ((F0f0) ∗ τα ∗ (F1f1))⊗ ((F0f
′
0) ∗ τβ ∗ (F1f

′
1)) = (Fα)⊗ (Fβ)

6. Separable pre-algebras

In this section we introduce the fundamental 1-dimensional structure to be studied in the
paper.

6.1. Definition. Let (D,⊗, I) be a strict monoidal category. A bi-semigroup (X,∇, ∆)
is an object X in D together with morphisms ∇ : X ⊗X → X and ∆ : X → X ⊗X such
that (X,∇) is a semigroup and (X, ∆) is a ‘co-semigroup’ in the sense that ∆ is coasso-
ciative.

It is useful to have a graphical notation for expressions involving ∇ and ∆. A couple
of examples will suffice to introduce it. Consider a bi-semigroup (X,∇, ∆). The identity
on X will be denoted by a straight line. On the other hand, idX ⊗ idX will be denoted by
two parallel horizontal lines. More importantly, ∇ will be denoted as in the left diagram
below

-

-

-
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and ∆ will be denoted as on the right above.

So that, for example, the diagram

-

-

represents the expression (id⊗∇);∇; ∆.

6.2. Definition. Let (D,⊗, I) be a strict monoidal category. A separable pre-algebra is
a bi-semigroup (D,∇, ∆) in D such that:

1. (Separable) ∆;∇ = id : D → D

D

∆
²²

id

##GG
GG

GG
GG

GG

D ⊗D ∇
// D

2. (Frobenius) (∆⊗ idD); (idD ⊗∇) = ∇; ∆ = (idD ⊗∆); (∇⊗ idD)

D ⊗D

∆⊗id
²²

∇ // D

∆
²²

D ⊗D

id⊗∆
²²

∇ // D

∆
²²

D ⊗D ⊗D
id⊗∇

// D ⊗D D ⊗D ⊗D∇⊗id
// D ⊗D

Graphically, separability can be expressed as saying that the following two diagrams

- -

are equal. The authors have found it useful to think of separability as allowing to pop the
‘bubble’ on the left.

On the other hand, Frobenius says that the two diagrams below
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-

-

-

-

which represent (∆⊗ idD); (idD ⊗∇) and (idD ⊗∆); (∇⊗ idD) respectively, are equal to

-

-

which represents ∇; ∆.

6.3. Remark. Notice that the notion of separable pre-algebra can be described as that
of commutative separable algebra (in the sense of Definition 2.7 in [6]) but where the
underlying (co)monoid is not required to have (co)unit.

6.4. Lemma. If we denote the cospan (id : 1 → 1 ← 1 + 1 : ∇) by ∆ : 1 → 1 + 1 then
(1,∇, ∆) is a separable pre-algebra in cospan0(sOrd).

Proof. This is a simple exercise left for the reader. But it is important to mention now
that this separable pre-algebra plays an important role in everything that follows.

7. A universal property of (1,∇, ∆)

The universal property we discuss in this section was independently observed by Lack on
the one hand [4] and by Rosebrugh, Sabadini and Walters on the other [6].

It is important to recall (see Lemma in Chapter VII.5 of [5]) the fact that every
surjection in sOrd can be factored in a unique way as a composition (satisfying certain
conditions) of maps (id+∇+id). (The conditions ensuring uniqueness will not be relevant
for us here.)

Let F0 : C → D and F1 : Cop → D be functors agreeing on objects. We say that F0 and
F1 indulge a commutative square

α

²²

β //

p1

²²
p0

//

if, as in Definition 3.1, (F1α); (F0β) = (F0p0); (F1p1). (Notice that there is a handedness
in this notion. The fact that the functors indulge the square above does not seem to imply
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that it indulges the square obtained by flipping the same square along its diagonal. That
is (F1α); (F0β) = (F0p0); (F1p1) does not seem to imply (F1β); (F0α) = (F0p1); (F1p0).)

7.1. Lemma. If F0 and F1 indulge the two squares below separately

α

²²

β //

α′
²²

β′ //

p′1
²²

p0

//
p′0

//

then they indulge the rectangle.

Proof. Trivial.

There is also a ‘vertical’ version which we shall use when necessary.

7.2. Lemma. [See [4]] Let F0 : sOrd → D and F1 : sOrdop → D be monoidal functors
agreeing on objects. Then they are compatible if and only if they indulge the following
pushout squares

1 + 1

∇
²²

∇ // 1

id
²²

1 + 1 + 1

∇+1
²²

1+∇ // 1 + 1

∇
²²

1 + 1 + 1
∇+1 //

1+∇
²²

1 + 1

∇
²²

1
id

// 1 1 + 1 ∇
// 1 1 + 1 ∇

// 1

Proof. One direction is trivial. Consider a pushout of the form below

k

f

²²

g // n

p1

²²
m p0

// t

If f or g are identities then the square is trivially indulged. So we can assume that f
and g are non-trivial compositions of the type recalled above. Say, f = (l0 +∇+ l1); f

′

and g = (l′0 +∇+ l′1); g
′. The idea of the proof is to split the pushout into four smaller

pushouts as below.

k

l0+∇+l1
²²

l′0+∇+l′1 // l′0 + 1 + l′1

²²

g′ // n

²²
l0 + 1 + l1

f ′

²²

//

²²

//

²²
m // // t

The inductive hypothesis can deal with the two bottom squares and the top right one.
If we can prove that the top left one is indulged then Lemma 7.1 implies that the big
pushout is indulged.

So, concerning the top left pushout, the following things can happen:
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1. l0 + 2 ≤ l′0, that is, f ’s first ∇ is strictly to the left of g’s,

2. l0 + 1 = l′0, that is, f ’s first ∇ “touches” g’s but f and g do not start in the same
way,

3. l0 = l′0, that is, f and g start in the same way,

4. l0 = l′0 + 1, analogous to the first item but to the right,

5. l0 ≥ l′0 + 2, analogous to the second item.

Consider the first case. We let k = k0 + 2 + k1 + 2 + k2, f = (k0 +∇+ k′1); f
′ and

g = (k′0 +∇+ k2); g
′ where k′0 = k0 + 2 + k1 and k′1 = k1 + 2 + k2. Then the pushout is

calculated as below:

k0 + 2 + k1 + 2 + k2

k0+∇+k′1
²²

k′0+∇+k2 // k0 + 2 + k1 + 1 + k2

k0+∇+k1+1+k2

²²
k0 + 1 + k1 + 2 + k2 k0+1+k1+∇+k2

// k0 + 2 + k1 + 1 + k2

and it is indulged because it is the sum of trivial pushouts (that are indulged) and moreover
F0 and F1 are monoidal so the tensor of indulged squares is indulged.

Consider now the second case. Let k = k0 + 1 + 1 + 1 + k1, f = (k0 +∇+ 1 + k1); f
′

and g = (k0 + 1 +∇+ k1); g
′. In this case the pushout in question is calculated as follows

k0 + 1 + 1 + 1 + k1

k0+∇+1+k1

²²

k0+1+∇+k1 // k0 + 1 + 1 + k1

k0+∇+k1

²²
k0 + 1 + 1 + k1 k0+∇+k1

// k0 + 1 + k1

Again, the pushout is a sum of two squares that are trivially indulged and one that is
indulged by assumption.

In order to deal with the third case let k = k0 + 1 + 1 + k1, f = (k0 +∇+ k1); f
′ and

g = (k0 +∇+ k1); g
′. In this case the pushout in question is calculated as follows

k0 + 1 + 1 + k1

k0+∇+k1

²²

k0+∇+k1 // k0 + 1 + k1

id
²²

k0 + 1 + k1 id
// k0 + 1 + k1

Again, the pushout is a sum of two squares that are trivially indulged and one that is
indulged by assumption. The remaining two cases are analogous.
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7.3. Corollary. [See [4] and [6]] Let (D,⊗, I) be a strict monoidal category with a
separable pre-algebra (D,∇, ∆). Then there exists a unique strict monoidal functor

(cospan0(sOrd), +, 0) → (D,⊗, I)

mapping (1 + 1,∇, ∆) to (D,∇, ∆).

Proof. The semigroup (D, ∆) is essentially the same thing as a strict monoidal functor
F0 : sOrd → D (mapping ∇ to ∇) while the co-semigroup (D, ∆) is essentially the same
thing as a strict monoidal F1 : sOrdop → D (mapping ∇ to ∆). As F0 and F1 are strict
monoidal and coincide on 1, they agree on objects. So we are left to prove that F0 and
F1 are compatible. By Lemma 7.2 it is enough to check that F0 and F1 indulge three
pushout squares. But notice that indulgence of these squares is equivalent to Separability
and Frobenius.

7.4. An alternative proof of Corollary 7.3. Corollary 7.3 can be interpreted as
saying that the free monoidal category with a separable pre-algebra is cospan0(sOrd).
In this short section we sketch a ‘graphical’ proof which makes a lot more evident the
relation between the result and the calculation of colimits.

What is the free monoidal category generated by ∇ and ∆ subject to the equations
in Definition 6.2? First, given only ∇ we can build diagrams of the form

-

...
...

...

-

The associative law says that the order of applying ∇s does not matter so with only
∇s we can can build exactly surjective monotone functions. Similarly, using only ∆ we
can produce exactly the reverses of monotone surjections. So using both we can produce
cospans of monotone surjections. But perhaps we can produce more? The answer is no.
If in an expression of ∇s and ∆s a ∆ occurs to the left of a ∇ then only 4 cases can occur.
The first one is when the ∆ and the ∇ do not interact:

-

-
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...
...

...

-

The second case is given by the bubble as drawn after Definition 6.2. The third and
fourth cases are given by the two diagrams representing the expressions in the Frobenius
condition and drawn below the bubble after Definition 6.2. In all four cases, the ∆s can
be moved to the right of the ∇s. In the first case trivially, in the second by popping the
bubble (separability) and in the third and fourth cases by Frobenius. So the free monoidal
category with a separable pre-algebra is cospan0(sOrd).

7.5. Remark. It is important to notice that the process of moving ∆s to the right of ∇s
is really calculating the pushout involved in the composition of cospans.

In Section 8.10 we add 2-dimensional data so that the free monoidal 2-category on this
data is cospan(sOrd). But first let us extract some more information from Lemma 7.2.

7.6. Monoidal 2-functors from cospan(sOrd). Here we characterize when two
functors from sOrd to a 2-category are compatible. Let us say that a selection of 2-cells
τ( ) indulges a square α; p0 = β; p1 if the two equations in Definition 4.1 relating the square
and τ( ) hold.

7.7. Lemma. Let F0 : sOrd → D and F1 : sOrdop → D be compatible monoidal functors.
Let τ( ) be a selection of 2-cells satisfying the first two conditions of Definition 4.1. Then
τ( ) is a compatible selection of 2-cells if and only if it indulges the squares in the statement
of Lemma 7.2.

Proof. Analogous to that of Lemma 7.2.

8. Adjoint bi-semigroups

In this section we introduce what we believe are the right liftings to 2-dimensions of the
Frobenius and separability conditions.

8.1. Definition. Let (D,⊗, I) be a strict monoidal 2-category. An adjoint bi-semigroup
(X,∇, ∆, η, ε) is a bi-semigroup (X,∇, ∆) in D0 together with 2-cells η : idX⊗X ⇒ ∇; ∆
and ε : ∆;∇ ⇒ idX witnessing that ∇ a ∆.

We now lift the conditions of separability and Frobenius to the level of adjoint bi-
semigroups. We first deal with Frobenius.

8.2. Frobenius adjoint bi-semigroups. In order to justify the definition consider first
the following result.
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8.3. Lemma. Let X = (X,∇, ∆, η, ε) be an adjoint bi-semigroup. If the (1-dimensional)
structure (X,∇, ∆) satisfies Frobenius as a bi-semigroup then the following two items are
equivalent:

1. the mates of the associative laws

X ⊗X ⊗X

∇⊗X
²²

X⊗∇ // X ⊗X

∇
²²

X ⊗X ⊗X

X⊗∇
²²

∇⊗X // X ⊗X

∇
²²

X ⊗X ∇
// X X ⊗X ∇

// X

are identity 2-cells

2. (η ⊗X) ∗ (X ⊗∇) = (X ⊗∇) ∗ η and (X ⊗ η) ∗ (∇⊗X) = (∇⊗X) ∗ η.

Proof. Consider the mate of one of the associative laws

X ⊗X

id ''OOOOOOOOOOO
∆⊗X // X ⊗X ⊗X

⇐= ∇⊗X
²²

X⊗∇ // X ⊗X

∇
²²

id

&&LLLLLLLLLL

X ⊗X ∇
// X

⇐=

∆
// X ⊗X

where inside the triangles we have the 2-cells given by ε⊗X : (∆⊗X); (∇⊗X) ⇒ id
and η : id ⇒ ∇; ∆. Notice that the outside of this diagram is one of the Frobenius laws.
Now assume that (η ⊗D) ∗ (D ⊗∇) = (D ⊗∇) ∗ η and calculate:

[(∆⊗X) ∗ (X ⊗∇) ∗ η] · [(ε⊗X) ∗ ∇ ∗∆] =

= [(∆⊗X) ∗ (η ⊗X) ∗ (X ⊗∇)] · [(ε⊗X) ∗ (∆⊗X) ∗ (X ⊗∇)] =

= [((∆ ∗ η)⊗X) ∗ (X ⊗∇)] · [((ε ∗∆)⊗X) ∗ (X ⊗∇)] =

= [((∆ ∗ η)⊗X) · ((ε ∗∆)⊗X)] ∗ (X ⊗∇) =

= [((∆ ∗ η) · (ε ∗∆))⊗X] ∗ (X ⊗∇) = (∆⊗X) ∗ (X ⊗∇)

which shows that the mate is the identity 2-cell. Similarly if one assumes that the other
equation holds then the corresponding mate is the identity.

Conversely, assume that the mates of associativity are identity 2-cells and contemplate
the following diagram:

X ⊗X ⊗X

X⊗∇
²²

id

((QQQQQQQQQQQQQ

X ⊗X

⇐=

id ((QQQQQQQQQQQQQ
X⊗∆ // X ⊗X ⊗X

⇐=
X⊗∇

²²

∇⊗X // X ⊗X

∇
²²

id

&&LLLLLLLLLL

X ⊗X ∇
// X

⇐=

∆
// X ⊗X
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where the triangles are filled with the 2-cells X ⊗ η, X ⊗ ε and η. Pasting 2-cells one
obtains that (X ⊗ η) ∗ (∇⊗X) = (∇⊗X) ∗ η. Indeed, one can calculate:

(X ⊗ η) ∗ (∇⊗X) =

= [(X ⊗ η) ∗ (∇⊗X)] · [(X ⊗∇) ∗ (X ⊗∆) ∗ (∇⊗X) ∗ η] · [(X ⊗∇) ∗ (X ⊗ ε) ∗∇ ∗∆] =

= [(∇⊗X) ∗ η] · [(X ⊗ η) ∗ (∇⊗X) ∗ ∇ ∗∆] · [(X ⊗∇) ∗ (X ⊗ ε) ∗ ∇ ∗∆] =

= [(∇⊗X) ∗ η] · [(X ⊗ η) ∗ (X ⊗∇) ∗ ∇ ∗∆] · [(X ⊗ (∇ ∗ ε)) ∗ ∇ ∗∆] =

= [(∇⊗X) ∗ η] · [(X ⊗ (η ∗ ∇)) ∗ ∇ ∗∆] · [(X ⊗ (∇ ∗ ε)) ∗ ∇ ∗∆] =

= [(∇⊗X) ∗ η] · [[(X ⊗ (η ∗ ∇)) · (X ⊗ (∇ ∗ ε))] ∗ (∇ ∗∆)] =

= (∇⊗X) ∗ η

The proof of the other equation is analogous.

Because of this, we find it natural to introduce the following definition.

8.4. Definition. Let X = (X,∇, ∆, η, ε) be an adjoint bi-semigroup such that the 1-
dimensional structure (X,∇, ∆) satisfies Frobenius as a bi-semigroup. We say that X
satisfies ∇-Frobenius if the equivalent conditions of Lemma 8.3 hold.

It is interesting and useful to notice that the equalities in the second item of Lemma 8.3
can be thought of as rewrite rules. Indeed, notice that in the notation we have used for
expressions with ∆s and ∇s, the left 2-cell of the first equation of item 2 has domain the
left hand diagram below

-

-

-

-

and codomain the right hand diagram below. In other words, the 2-cell pinches the first
two strings. The reader is invited to draw the other 2-cells and exercise in applying the
pinching and popping rules.

Back to the lifting of the Frobenius condition, it must be mentioned that one can
prove the following in a way analogous to Lemma 8.3.
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8.5. Lemma. Let X = (X,∇, ∆, η, ε) be an adjoint bi-semigroup. If the (1-dimensional)
structure (X,∇, ∆) satisfies Frobenius as a bi-semigroup then the following two items are
equivalent:

1. the mates of

X

∆
²²

∆ // X ⊗X

∆⊗X
²²

X

∆
²²

∆ // X ⊗X

X⊗∆
²²

X ⊗X
X⊗∆

// X ⊗X ⊗X X ⊗X
∆⊗X

// X ⊗X ⊗X

are identity 2-cells

2. (∆⊗D) ∗ (D ⊗ η) = η ∗ (∆⊗D) and (D ⊗∆) ∗ (η ⊗D) = η ∗ (D ⊗∆).

So, just as in Definition 8.4 we say that X satisfies ∆-Frobenius if the equivalent
conditions of Lemma 8.5 hold.

8.6. Definition. Let X = (X,∇, ∆, η, ε) be an adjoint bi-semigroup such that (X,∇, ∆)
satisfies Frobenius as a bi-semigroup. We say that X satisfies Frobenius if it satisfies both
∇-Frobenius and ∆-Frobenius.

8.7. Separable adjoint bi-semigroups. In this section we introduce the notion of sep-
arable adjoint bi-semigroup and show that for, these semigroups, 1-dimensional Frobenius
implies 2-dimensional Frobenius.

8.8. Definition. We say that an adjoint bi-semigroup (X,∇, ∆, η, ε) is separable if
(X,∇, ∆) is separable as a bi-semigroup and moreover ε = ιidX

.

Notice that in a separable bi-semigroup, η ∗ ∇ = ι∇ and ∆ ∗ η = ι∆.

8.9. Lemma. Let X = (X,∇, ∆, η, ε) be an adjoint bi-semigroup. If the 1-dimensional
structure (X,∇, ∆) satisfies Frobenius and X is separable then X satisfies Frobenius.

Proof. Because of separability, the triangular identities witnessing that ∇ a ∆ become
η ∗ ∇ = ι∇ and ∆ ∗ η = ι∆. To prove ∇-Frobenius we need to show that the mates of
associativity are identity 2-cells. In particular, we need to show that

[(∆⊗X) ∗ (X ⊗∇) ∗ η] · [(ε⊗X) ∗ ∇ ∗∆]

is ι∇;∆. Under separability, we need only prove that

[(∆⊗X) ∗ (X ⊗∇) ∗ η] · ι∇;∆ = (∆⊗X) ∗ (X ⊗∇) ∗ η

is the identity 2-cell ι∇;∆. As (X,∇, ∆) satisfies Frobenius and ∆ ∗ η = ι∆, we can calcu-
late:

(∆⊗X) ∗ (X ⊗∇) ∗ η = ∇ ∗∆ ∗ η = ∇ ∗∆
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so, indeed, the mate of associativity is the identity. The other condition is dealt with in
an analogous way so X satisfies ∇-Frobenius. To prove ∆-Frobenius one uses the same
idea. For example, one of the conditions is proved as follows:

[η ∗ (X ⊗∆) ∗ (∇⊗X)] · [∇ ∗∆ ∗ (ε⊗X)] = η ∗ ∇ ∗∆ = ∇ ∗∆

so, altogether, X satisfies Frobenius.

Since the counit is the identity, separable adjoint bi-semigroups will usually be denoted
by (X,∇, ∆, η).

8.10. A universal property of cospan(sOrd). In this section we prove a universal
property of cospan(sOrd) as a monoidal 2-category. For brevity let us introduce the
following definition.

8.11. Definition. Let (D,⊗, I) be a strict monoidal 2-category. A Como-algebra is a
separable adjoint bi-semigroup (D,∇, ∆, η) such that (D,∇, ∆) satisfies Frobenius.

Alternatively, one can say that a Como-algebra is a structure (D,∇, ∆, η) such that
(D,∇, ∆) is a separable pre-algebra in D0 and η : idD⊗D ⇒ ∇; ∆ is a 2-cell satisfying

η ∗ ∇ = ι∇ and ∆ ∗ η = ι∆

(essentially saying ∇ a ∆ with trivial counit).
By Lemma 8.9 every Como-algebra satisfies Frobenius. Notice also that 1 + 1 has an

obvious Como-algebra structure: just take η = ∇.

8.12. Proposition. Let (D,⊗, I) be a strict monoidal 2-category with a Como-algebra
(D,∇, ∆, η). Then there exists a unique strict monoidal 2-functor

(cospan(sOrd), +, 0) → (D,⊗, I)

mapping (1 + 1,∇, ∆, η) to (D,∇, ∆, η).

Proof. By Corollary 7.3 be have a strict monoidal functor cospan0(sOrd) → D mapping
the universal separable pre-algebra to the one in D. In order to extend this functor
to a strict monoidal 2-functor we need a compatible selection of 2-cells satisfying the
conditions of Lemma 5.6. That is, a compatible selection τ( ) satisfying τf+g = τf ⊗ τg.
Now, Definition 4.1 forces τ( ) on identities and composition. As every map in sOrd
is built from ∇ and using tensor and composition, a selection of 2-cells as the one we
need is determined by its value τ∇ : idD⊗D ⇒ ∇; ∆. Let us call this selection η. When
does the selection of such a 2-cell induces a compatible selection? The answer is given
by Lemma 7.7. But indulgence of the three distinguished pushouts is equivalent to the
validity of the following equations:

1. η ∗ ∇ = ι∇ and ∆ ∗ η = ι∆

2. (η ⊗D) ∗ (D ⊗∇) = (D ⊗∇) ∗ η and (∆⊗D) ∗ (D ⊗ η) = η ∗ (∆⊗D)
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3. (D ⊗ η) ∗ (∇⊗D) = (∇⊗D) ∗ η and (D ⊗∆) ∗ (η ⊗D) = η ∗ (D ⊗∆)

The first item is exactly separability while the other two items are exactly Frobenius
(Definition 8.6). But a Como-algebra is separable by definition and it always satisfies
Frobenius by Lemma 8.9. So the result follows.

9. Como-units

Let iOrd be the full subcategory of Ord determined by injective monotone functions.
The monoidal structure (Ord, +, 0) restricts to iOrd and the inclusion iOrd → Ord is
strict monoidal. By results in [5], all maps in iOrd are built out of ! : 0 → 1.

9.1. Definition. A unit in a monoidal category (D,⊗, I) is an object X in D equipped
with a map u : I → X.

The object 1 in iOrd together with ! : 0 → 1 is the universal object with unit.

9.2. Lemma. The category iOrd has strict pullbacks and + preserves them.

9.3. Lemma. Every pullback in iOrd is a pasting of trivial pullbacks and pullbacks of the
form

0

id
²²

id // 0

!
²²

0
!

// 1

Proof. Similar to the proof of Lemma 7.2.

9.4. Definition. Let (D,⊗, I) be a monoidal category. A split-unit is a structure
(X, s : I → X, r : X → I) such that (X, s : I → X) is a unit and r : X → I is such that
s; r = idI .

The object 1 has a unique split-unit structure (1, ! : 0 → 1, ? : 1 → 0) in the monoidal
category (cospan0(iOrdop), +, 0).

9.5. Corollary. If (D,⊗, I) is a strict monoidal category and (X, s : I → X, r : X → I)
is a split-unit in it then there exists a unique strict monoidal cospan0(iOrdop) → D
mapping (1, ! : 0 → 1, ? : 1 → 0) to (X, s, r).

Proof. The map r : X → I induces a strict monoidal functor F0 : iOrdop → D while
the map s : I → X induces a strict monoidal F1 : iOrd → D. The functors clearly agree
on objects. By Lemma 9.3, the functors are compatible if and only if they indulge the
pushout

1

!op

²²

!op
// 0

idop

²²
0

idop
// 0

in iOrdop. This means exactly that s; r = id.
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9.6. Definition. Let (D,⊗, I) be a monoidal 2-category. A Como-unit is a split-unit
(X, s : I → X, l : X → I) together with a 2-cell η : ιX ⇒ l; s such that l a s with unit η
and counit ιidI

.

The split-unit (1, ! : 0 → 1, ? : 1 → 0) is a Como-unit when considered as an object in
(cospan(iOrdop), +, 0). We denote the unit of the adjunction ? a! by η.

In a way analogous to Proposition 8.12 we obtain the following corollary.

9.7. Corollary. For every strict monoidal 2-category (D,⊗, I) and Como-unit object
(X, s, l, η) in it, there exists a unique strict monoidal 2-functor

(cospan(iOrdop), +, 0) → (D,⊗, I)

mapping (1, ! : 0 → 1, ? : 1 → 0, η) to (X, s, l, η).

Proof. By Corollary 9.5 we have a unique strict monoidal functor

(cospan0(iOrdop), +, 0) → (D0,⊗, I)

mapping the split-unit (1, ! : 0 → 1, ? : 1 → 0) to (X, s, l). In order to extend this functor
to a strict monoidal 2-functor we need a selection τ( ) of 2-cells satisfying τf+g = τf ⊗ τg.
Such a selection of 2-cells is determined by its value τ(!op:1→0) : ιX ⇒ l; s. Naturally, we
define τ(!op:1→0) = η. Is the resulting selection compatible? We need to check that τ( )

indulges all pushout squares in iOrdop. By Lemma 9.3 we need only check that it indulges
the square in the statement of that lemma. But this says exactly that η ∗ l = l and
s ∗ η = s. Which means that l a s with unit η and counit ιI .
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