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A USEFUL CATEGORY FOR MIXED ABELIAN GROUPS.

GRIGORE CĂLUGĂREANU
Transmitted by F. William Lawvere

ABSTRACT. All the useful categories in the study of the mixed abelian groups (e.g.
Warf and Walk) ignore the torsion. We introduce a new category denoted A which
ignores the torsion-freeness and could characterize some classes of nonsplitting mixed
groups with the aid of Walk.

1. Introduction

The categories Warf , first introduced as H in [7] and Walk, first introduced as C in [2]
have useful applications in the theory of the mixed abelian groups. In what follows we
introduce the category A whose objects are all the abelian groups (i.e. Ob(A) =Ob(Ab))
and whose morphisms, are A(G,H) = Ab(G,H)/J(G,H) where

J(G,H) = {f : G → H|T (G) ≤ ker(f)} ,

for G,H ∈ Ob(A), study its categorical properties and establish connections with the
above mentioned category Walk. Finally, some results that justify the utility of this
category are given.

Needless to say, all the groups considered will be abelian.

2. The categorical structure

For two groups G and H, we consider on the abelian group Ab(G,H) the binary relation

ρG,H defined by (f, g) ∈ ρG,H ⇔ T (G) ⊆ ker(f − g) where G
f−→−→
g

H.

2.1. Lemma. For α, β ∈ Ab(G,H) the inclusion kerα ∩ kerβ ⊆ ker(α+ β) holds.

2.2. Proposition. The relation ρG,H is a congruence relation.

Proof. Indeed, using 2.1 two times, the relation ρG,H is :

• reflexive T (G) ⊆ G = ker(0) = ker(f − f) ⇒ (f, f) ∈ ρG,H ,∀f ∈ Ab(G,H)

• symmetric (f, g) ∈ ρG,H ⇒ T (G) ⊆ ker(f − g) = ker(g − f) ⇒ (g, f) ∈ ρG,H
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• transitive (f, g), (g, h) ∈ ρG,H ⇒ T (G) ⊆ ker(f − g), ker(g − h) ⇒ T (G) ⊆ ker(f −
g) ∩ ker(g − h) ⊆ ker((f − g) + (g − h)) = ker(f − h) ⇒ (f, h) ∈ ρG,H .

Moreover, if (f, g), (f1, g1) ∈ ρG,H then T (G) ⊆ ker(f − g) ∩ ker(f1 − g1) ⇒ T (G) ⊆
ker((f − g) + (f1 − g1)) = ker((f + f1)− (g + g1)) ⇒((f + f1), (g + g1)) ∈ ρG,H .

There is a well-known order isomorphism between congruences and subgroups:
J(G,H) = ρG,H 〈0〉 = {f ∈ Ab(G,H)|T (G) ⊆ ker(f)} is the corresponding subgroup.

Elementary: T (G) ⊆ ker(f) ∩ ker(g) ⊆ ker(f ± g), so that

2.3. Remark. For every f, g ∈ J(G,H) also f ± g ∈ J(G,H) holds.

Clearly, if T is a torsion group, J(T,H) = {0} for every group H and so A(T,H) =
Ab(T,H).

2.4. Lemma. (a) kerα ⊆ ker(β ◦ α); (b) For G
α−→ H

β

−→ K, T (H) ⊆ kerβ ⇒ T (G) ⊆
ker(β ◦ α).
Proof. (b) Indeed, x ∈ T (G) ⇒ α(x) ∈ T (H) ⊆ kerβ ⇒ x ∈ ker(β ◦ α).
2.5. Proposition. The relations {ρG,H |G,H ∈ Ob(Ab)} are compatible with composi-
tion.

Proof. Indeed, using Lemma 2.4 (a) and (b), one has: (f, g) ∈ ρG,H , (f,
′ g′) ∈ ρH,K ⇒

ker(f ◦ f ′ − g ◦ g′) = ker((f ′ ◦ (f − g) + (f ′ − g′) ◦ g) ⊇
ker(f ′ ◦ (f − g)) ∩ ker((f ′ − g′) ◦ g) 2.4⊇ ker(f − g) ∩ T (G) ⊇ T (G) ⇒
(f ′ ◦ f, g′ ◦ g) ∈ ρG,K .

Hence, we define the category A, as a quotient category of Ab whose objects are all
the abelian groups (i.e. Ob(A) = Ob(Ab)) and whose morphisms, for each two groups
G,H are given by A(G,H) = Ab(G,H)/J(G,H) (or Ab(G,H)/ρG,H). We shall denote
the classes f = f + J(G,H) in A(G,H). The composition in A is well-defined according
to the above Proposition and 1G + J(G,G) is the identity morphism. Associativity and
bilinearity are easily verified (using 2.2) so that

2.6. Theorem. A is an additive category.

For the following elementary results we use the notation: if f : G → H then f |T (G) :

T (G) → H and ˜f |T (G) : T (G) → T (H) (because im(f |T (G)) ⊆ T (H)).

2.7. Proposition. (a) f + J(G,G) is the identity in A(G,G) iff f |T (G) : T (G) → G is
the inclusion (i.e. f fixes the finite order elements);

(b) if f |T (G) or ˜f |T (G) is a monomorphism in Ab then f+J(G,H) is a monomorphism
in A(G,H);

(c) if ˜f |T (G) is an epimorphism in Ab then f+J(G,H) is an epimorphism in A(G,H).
If H splits over T (H), the converse also holds.
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Proof. Clearly, the equality in A is characterized as follows: f = f + J(G,H) = g =
g + J(G,H) ⇔ f − g ∈ J(G,H) ⇔ T (G) ≤ ker(f − g) ⇔

(f − g)(T (G)) = 0 ⇔ f |T (G) = g|T (G).
Hence, for (a) it suffices to observe that 1G|T (G) : T (G) → G is the inclusion.

(b) For L
α−→−→
β

G
f−→ H and f |T (G) monic in Ab suppose f ◦α = f ◦ β. Then f ◦ α =

f ◦ β and f ◦α|T (L) = f ◦β|T (L). Using
˜α|T (L) : T (L) → T (G) (indeed, im(α|T (L)) ⊆ T (G))

and f ◦α|T (L) = f |T (G) ◦ ˜α|T (L) we derive
˜α|T (L) =

˜β|T (L) or α|T (L) = β|T (L). Hence α = β.

(c) ForG
f−→ H

α−→−→
β

L and ˜f |T (G) epic in Ab suppose α◦f = β◦f. Then α ◦ f = β ◦ f

and α ◦ f |T (G) = β ◦ f |T (G). As above α ◦ f |T (G) = α|T (H) ◦ ˜f |T (G) so that α|T (H) = β|T (H)

and α = β.
If T (H) is a direct summand of H, all homomorphisms σ, τ : T (H) → L extend to

morphisms σ1, τ1 : H → L. Now, set T (G)
˜f |T (G)−→ T (H)

σ−→−→
τ

L such that σ ◦ ˜f |T (G) =

τ ◦ ˜f |T (G). As before, using any extensions σ1, τ1 we derive σ1 ◦ f |T (G) = σ1|T (H) ◦ ˜f |T (G) =

σ ◦ ˜f |T (G) = τ1 ◦ f |T (G) or σ1 ◦ f = τ1 ◦ f. Hence σ1 = τ1 or σ1|T (H) = τ1|T (H) and σ = τ.

2.8. Remark. The groups G such that for every group H, each homomorphism σ :
T (G) → H extends to a homomorphism σ1 : G → H are exactly the splitting ones.

Indeed, for H = T (G) and σ = 1T (G) there is an extension u : G → T (G) such that
u ◦ i = 1T (G), where i : T (G) → G is the inclusion.

2.9. Remark. A is not balanced and so, not normal nor conormal.

Proof. Consider the inclusion i : T (G) → G of the torsion part of a nonsplitting
mixed group G such that T (G) is no epimorphic image of G (e.g.

∏
p∈P

Z(p) /∈ M1 (see

[9])). According to the proposition above i ∈ A(T (G), G) is a monomorphism and an
epimorphism but not an isomorphism in A. Indeed, if i should be an isomorphism in A
there would exist a morphism π : G → T (G) in Ab such that π◦ i = 1T (G), i ◦ π = 1G in
A. Hence π|T (G) = 1T (G) and so π would be an epimorphism.

2.10. Theorem. In A the torsionfree groups are exactly the zero objects. In particular,
all the torsionfree groups are A-isomorphic.

Proof. A group G is an initial object in A iff Ab(G,H) = J(G,H) holds for each group
H. Hence G is initial iff T (G) ≤ ker(f) holds for each group H and each homomorphism
f : G → H. Taking f any injective homomorphism we obtain T (G) = 0. Conversely,
if T (G) = 0 surely T (G) ≤ ker(f) holds for every H and every f . Hence J(G,H) =

Ab(G,H) and A(G,H) = Ab(G,H)/Ab(G,H) =
{
0
}
.

Further, G is a terminal object in A iff Ab(H,G) = J(H,G) holds for each group H.
Hence G is terminal iff T (H) ≤ ker(f) holds for each group H and each homomorphism
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f : H → G. Taking H = G, f = 1G we obtain T (G) = 0. Conversely, T (G) = 0
implies T (H) ≤ ker(f) for each group H and each homomorphism f : H → G. Indeed,
f(T (H)) ⊆ T (G) implies f(T (H)) = 0 and so T (H) ≤ ker(f).

Hence the zero objects in A are the torsionfree groups.

2.11. Theorem. A has cokernels.

Proof. Finally, for f + J(G,H) ∈ A(G,H), if p : H → H = H/(f(T (G)) denotes the
canonical projection, we verify that p+ J(H,H) = coker(f).

First, p◦f ∈ J(G,H). Indeed, T (G) ≤ ker(p◦f) ⇔ (p◦f)(T (G)) = 0 ⇔ p(f(T (G)) =
0, which clearly holds. Next, if the following diagram commutes

L

�
�

�
�

�
0

✒

G
f ✲ H

g

✻

❅
❅

❅
❅

❅
0

❘

H

p

❄

there is a unique homomorphism h : H → L such that the following triangle commutes

L

�❅
❅

❅
❅

❅

h

H

g

✻

p
✲ H

Indeed, g ◦ f = 0 in A iff g ◦ f ∈ J(G,L). This is consequently equivalent to T (G) ≤
ker(g◦f) ⇔ f(T (G)) ≤ ker(g) and so, to ker(p) ≤ ker(g). Hence a unique homomorphism
h : H → L exists such that the above triangle commutes.

2.12. Remark. For each G,H the group A(G,H) can be identified with a subgroup of
Ab(T (G), T (H)).

Indeed, first observe that J(G,H) can be identified with Ab(G/T (G), H). Indeed,
T (G) ≤ ker(f) implies that there is a unique homomorphism f : G/T (G) → H with
f = pT (G) ◦ f . Next, use the left exactness of the contravariant functor Ab(−, H)
for the short exact sequence 0 → T (G) → G → G/T (G) → 0. We obtain the exact
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sequence 0 → Ab(G/T (G), H) → Ab(G,H)
t→ Ab(T (G), H) and then A(G,H) =

Ab(G,H)/J(G,H) ∼= Ab(G,H)/Ab(G/T (G), H) ∼=
Ab(G,H)/ker(t) ∼= im(t), which can be identified with a subgroup of
Ab(T (G), T (H)).

2.13. Theorem. The category A has products.

Proof. Let {fi + J(G,Gi) : G → Gi} be a family of morphisms in A and {pj :
∏
i∈I

Gi →
Gj,∀j ∈ I} the canonical projections for the direct product (from Ab). Clearly there
is a unique f : G → ∏

i∈I

Gi such that fi = pi ◦ f. One easily checks that ∀i ∈ I : gi ∈
fi + J(G,Gi), gi = pi ◦ g implies g ∈ f + J(G,

∏
i∈I

Gi).

Indeed, T (G) ≤ ker(gi − fi), ∀i ∈ I ⇒ T (G) ≤ ker(g − f) because ker(g − f) =⋂
i∈I

ker(gi − fi).

Clearly, there is a unique factorization fi + J(G,Gi) = (pi + J(
∏
i∈I

Gi, Gj)) ◦ (f +

J(G,
∏
i∈I

Gi)).

Notice that in A there are finite direct sums (products) defined as usually in Ab (as
objects). Moreover

2.14. Theorem. A has infinite coproducts (direct sums).

Proof. Let {fi + J(Gi, G) : Gi → G} be a family of morphisms inA. The proof is similar
to the previous one: it reduces to the inclusion

⊕
i∈I

ker(fi) ≤ ker(f) and the equality

T (
⊕

i∈I Gi) =
⊕

i∈I T (Gi), where fi = f ◦ qi gives the unique decomposition with {qj :
Gj → ⊕

i∈I Gi,∀j ∈ I} the canonical injections into the coproduct (direct sum).

2.15. Remark. A does not have kernels.

Indeed, for a morphism f ∈ A(G,H), (T (G) ∩ ker(f), incl) must be the kernel in A.
But this is not the case in general.

2.16. Theorem. Two groups G and H are isomorphic in A iff there are two torsion-free
groups U and V such that G⊕ U ∼= H ⊕ V.

Proof. The condition is sufficient: first, notice that if U is torsion-free, the canoni-
cal projection pG : G ⊕ U → G, respectively injection eG : G → G ⊕ U have mutu-
ally inverse classes in A. Indeed, pG ◦ eG = 1G implies pG ◦ eG = 1G in A and con-
versely, (eG ◦ pG, 1G⊕U) ∈ ρG⊕U,G⊕U , this being justified as follows: ker(1G⊕U − eG ◦ pG) =

ker (eU ◦ pU) = G ≥ T (G) = T (G⊕U). Then G A∼= G⊕U and one uses also G⊕U ∼= H⊕V
and similarly H ⊕ V

A∼= H.

The condition is also necessary: suppose G
A∼= H, that is, there are homomorphisms

f : G → H and g : H → G such that f◦g−1H = s ∈ J(H,H) and g◦f−1G = t ∈ J(G,G).
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First observe that the restrictions f |T (G) : T (G) → T (H), g|T (H) : T (H) → T (G)
are mutually inverses in Ab (indeed, e.g. f |T (G) ◦ g|T (H)(h) = 1H(h) + s(h) = h =
1T (H)(h),∀h ∈ T (H) using T (H) ≤ ker(s)). Define P as the pushout in the following
commutative diagram

0 ✲ T (G)
f |T (G)∼= T (H)

in ✲ H
pr✲ H/T (H) ✲ 0

✙✟✟✟✟✟✟✟✟✟✟✟✟

g

0 ✲ G

in

❄
✲ P

❄
✲ H/T (H)

������������
✲ 0

A well-known exercise from abelian category theory shows that the bottom line is also
exact . As g : H → G renders the upper triangle commutative, the bottom line splits and
so P ∼= G⊕H/T (H). Using the 3× 3−lemma the same pushout may be used

0 0 0

0 ✲ T (G)
❄ f |T (G)∼= T (H)

in ✲ H
❄ pr✲ H/T (H)

❄
✲ 0

0 ✲ G

in

❄
✲ P

❄
✲ H/T (H)

������������
✲ 0

0 ✲ G/T (G)

pr

❄
= G/T (G)

❄
✲ 0

❄
✲ 0

0
❄

0
❄

0
❄

in order to prove that P ∼= H ⊕ G/T (G). Hence G ⊕ H/T (H) ∼= H ⊕ G/T (G) with
torsion-free groups H/T (H) and G/T (G).

Similarly to [7], one can write down an isomorphism in terms of the given functions f
and g : indeed
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G⊕H/T (H) −→ H ⊕G/T (G)

(x, y + T (H)) �−→ (f(x− g(y)) + y, x− g(y) + T (G))

and

H ⊕G/T (G) −→ G⊕H/T (H)

(y, x+ T (G)) �−→ (g(y − f(x)) + x, y − f(x) + T (H))

define group morphisms that are inverses of one another.

As in [3], one can also prove the above result by G⊕H/ker(s) ∼= H ⊕G/ker(t).

Then

2.17. Corollary. G
A∼= H and G

Walk∼= H iff there are torsion groups S, T and torsion-
free groups U, V such that G⊕ S ∼= H ⊕ T and G⊕ U ∼= H ⊕ V.

3. A full embedding

As in [4] there is a natural embedding of To, the full subcategory of Ab which consists
of all the torsion abelian groups, into A.
3.1. Theorem. The functor I : To → A, defined by I(T ) = T on objects and ITS :
To(T, S) → A(T, S), ITS(f) = f + J(T, S) = {f} on morphisms, is a full embedding.

Proof. Indeed, as we already have noticed for any T ∈ Ob(To), J(T,G) = {0} and
hence A(T, S) = {{f} |f ∈ Ab(T, S)} .
3.2. Theorem. I has an adjoint (to the right): K : A→ To, defined K(G) = T (G) on

objects and KGH(f) =
˜f |T (G) on morphisms.

Proof. First of all, notice that K is well-defined (see the characterization of the equality

of the morphisms in A : for each G,H ∈ A we can consider KGH(f) =
˜f |T (G) because

f = g ⇔ f |T (G) = g|T (G) ⇔ ˜f |T (G) = ˜g|T (G)). Next, for the adjoint situation the unit
η : 1To → K ◦ I is trivially given by the identity 1T : T → K(I(T )) = T for each
T ∈ Ob(To), and the counit ε : I ◦ K → 1A is given by the inclusion εG : I(K(G)) =
T (G) → G for each G ∈ Ob(A), all these being natural transformations. Moreover, one

easily verifies K
η·K→ K ◦I ◦K K·ε→ K = 1K and I

I·η→ I ◦K ◦I ε·I→ I = 1I . [Another proof: one
verifies the natural equivalence of abelian group-valued bifunctors αT,G : A(I(T ), G) →
To(T,K(G)),∀T ∈ Ob(To),∀G ∈ Ob(A)].
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3.3. Corollary. K is a limit preserving monofunctor and I is a colimit preserving
epifunctor.

Indeed, this is a known property of functors which admit an adjoint to the right.

3.4. Corollary. I also reflects colimits.

Use the dual of Ex. 27H(c), p.204,[1].

3.5. Remark. I is not an equivalence of categories.
Indeed, I is an equivalence ⇔ I is dense (representative) ⇔ ∀G ∈ Ob(Ab) =

Ob(A),∃T ∈ Ob(To) : T = I(T )
A∼= G.

This is also equivalent with the existence of two torsion-free groups U, V such that
G ⊕ U ∼= T ⊕ V. Taking the torsion parts (we apply the functor T : Ab → Ab, T (G) =
T (G),∀G ∈ Ab) of these groups we observe that T (G) ∼= T.

Hence, I is an equivalence ⇔ ∀G ∈ Ob(Ab),∃U, V torsion-free groups : G ⊕ U ∼=
T (G)⊕ V.

For splitting mixed groups this last condition holds when
a) G is torsion: obviously U = V = 0;
b) G is torsion-free: obviously U = T (G) = 0, V = G;
c) G is splitting mixed, say G = T ⊕ F : obviously U = 0, V = F.
So in order to prove that I is not an equivalence an example of non-splitting mixed

group M such that ∀U, V torsion-free groups, M ⊕ U �∼= T (M)⊕ V suffices.

4. Relations with Walk

The categoryWalk was also defined as a quotient category ofAb byOb(Walk) =Ob(Ab)
and Walk(G,H) = Ab(G,H)/I(G,H) where

I(G,H) = {f ∈ Ab(G,H)|im(f) ⊆ T (H)} or, similarly with A, with the aid of a
congruence relation ωG,H defined by (f, g) ∈ ωG,H ⇔ im(f − g) ⊆ T (H).

Notice that f ∈ I(G,H) ⇔ G =
−1

f (T (H)).

4.1. Remark. I(G,H) ∩ J(G,H) can be identified with Ab (G/T (G), T (H)) .
Indeed, f ∈ I(G,H) ∩ J(G,H) iff there is a unique f1 ∈ Ab (G/T (G), T (H)) such

that f = pT (G) ◦ f1 ◦ in, the inclusion in : T (H) → H. The situation is described in the
following canonical commutative diagram

G
f ✲ H

✠�
�

�
�

�
pT (G)

�❅
❅

❅
❅

❅

in

G/T (G)
pr

✲ G/kerf
❄

f0

✲ imf

✻

incl
✲ T (H)
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with f1 = incl ◦ f0 ◦ pr(as for the converse, im(pT (G) ◦ f1 ◦ in) ≤ im(in) = T (H) resp.
T (G) = ker(pT (G)) ≤ ker(pT (G) ◦ f1 ◦ in)).
4.2. Remark. {f ∈ Ab(G,H)|f−1(T (H)) is a direct summand of G} ≤ I(G,H) +
J(G,H).

Proof. Indeed, for any f ∈ Ab(G,H) set S = f−1(T (H)) = {x ∈ G|f(x) ∈ T (H)} , the
preimage. Surely, T (G) ≤ S and ker(f) = f−1(0) ≤ S. If S is a direct summand and
G = S ⊕ K, consider g ∈ I(G,H), g(s + k) = f(s),∀s ∈ S, k ∈ K (i.e. img ≤ f(S) ≤
T (H)) and h ∈ J(G,H), h(s+ k) = f(k),∀s ∈ S, k ∈ K (i.e. T (G) ≤ S ≤ kerh). Clearly
f = g + h.

A more categorical proof was pointed out by the referee: if G = S ⊕ K and iS, iK
respectivelly pS, pK denote the canonical injections respectivelly projections then iS ◦pS +
iK ◦ pK = 1G so that f = f ◦ iS ◦ pS + f ◦ iK ◦ pK . Clearly, f ◦ iS ◦ pS ∈ I(G,H) and
f ◦ iK ◦ pK ∈ J(G,H).

5. Endomorphism rings in A
In Warf and Walk the endomorphism rings for torsion-free rank one groups are charac-
terized (see [8] and [5]).

If we denote EndA(G) = A(G,G) for any group G then

5.1. Theorem. The map α : EndA(G) → EndAb(T (G)), α(f + J(G,G)) = ˜f |T (G) is a
ring embedding. If G splits, this is a ring isomorphism.

Proof. Indeed, g ∈ f + J(G,G)) ⇔ f |T (G) = g|T (G) shows that α is well-defined and
injective. The compatibility with addition and composition are immediate. If G splits,
the endomorphisms of T (G) extend to the whole G and so α is also surjective.

6. Classification

Walk was constructed as a quotient category of Ab in order to neglect torsion. Similarly,
A is a quotient category of Ab which neglects torsion-freeness. It is natural to ask to
what extent these two quotient categories characterize classes M of abelian groups.

Using 2.17 we easily get

6.1. Proposition. If G
Walk∼= H and G

A∼= H then T (G) ∼= T (H) and G/T (G) ∼=
H/T (H).

Proof. If there are torsion groups S, T and torsion-free groups U, V such that G⊕ S ∼=
H ⊕ T and G ⊕ U ∼= H ⊕ V then T (G) = T (G ⊕ U) ∼= T (H ⊕ V ) = T (H). Further,
G/T (G) ∼= G⊕S

T (G)⊕S
= G⊕S

T (G⊕S)
∼= H⊕T

T (H⊕T )
= H⊕T

T (H)⊕T
∼= H/T (H) the second isomorphism

being obtained as G/kerλ ∼= im(λ) for λ = pr ◦ inj : G → G⊕ S → G⊕S
T (G)⊕S

.
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6.2. Corollary. G
Walk∼= H and G

A∼= H characterize the class of all the splitting mixed
groups.

Finally, some open problems:

Problem 1. Are the groups G such that T (G)
A∼= G exactly the splitting (mixed) groups?

Problem 2. Find classes M of abelian groups such that two groups G and H are
isomorphic (in M) iff G and H are isomorphic in Walk and in A.

As for this last problem, following definitions from [9], the classes M1 and M2 of
mixed abelian groups could be considered. Recall that

G ∈ M1 if T (G) is a homomorphic image of G and G ∈ M2 if G/T (G) can be
embedded in G.
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Aurelio Carboni, Università dell Insubria: carboni@fis.unico.it
P. T. Johnstone, University of Cambridge: ptj@pmms.cam.ac.uk
G. Max Kelly, University of Sydney: maxk@maths.usyd.edu.au
Anders Kock, University of Aarhus: kock@imf.au.dk
F. William Lawvere, State University of New York at Buffalo: wlawvere@acsu.buffalo.edu
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