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INTERNAL PROFUNCTORS AND COMMUTATOR THEORY;
APPLICATIONS TO EXTENSIONS CLASSIFICATION AND

CATEGORICAL GALOIS THEORY

DOMINIQUE BOURN

Abstract. We clarify the relationship between internal profunctors and connectors on
pairs (R,S) of equivalence relations which originally appeared in the new profunctorial
approach of the Schreier-Mac Lane extension theorem [11]. This clarification allows us to
extend this Schreier-Mac Lane theorem to any exact Mal’cev category with centralizers.
On the other hand, still in the Mal’cev context and in respect to the categorical Galois
theory associated with a reflection I, it allows us to produce the faithful action of a
certain abelian group on the set of classes (up to isomorphism) of I-normal extensions
having a given Galois groupoid.

Introduction

Any extension between the non-abelian groups K and Y can be canonically indexed by a
group homomorphism φ : Y → AutK/IntK. The Schreier-Mac Lane extension theorem
for groups [23] asserts that the class Extφ(Y,K) of non-abelian extensions between the
groups K and Y indexed by φ is endowed with a simply transitive action of the abelian
group Extφ̄(Y, ZK), where ZK is the center of K and the index φ̄ is induced by φ. A
recent extension [11] of this theorem to any action representative ([5], [4], [3]) category
gave rise to an unexpected interpretation of this theorem in terms of internal profunctors
which was closely related with the intrinsic commutator theory associated with the action
representative category in question.
So that there was a need of clarification about the general nature of the relationship
between profunctors and the main tool of the intrinsic commutator theory, namely the
notion of connector on a pair (R, S) equivalence relations, see [12], and also [15], [21],
[20], [16].
The first point is that many of the observations made in [11] in the exact Mal’cev and
protomodular settings are actually valid in any exact category. The second point is a
characterization of those profunctors X1 # Y 1 which give rise to a connector on a pair
of equivalence relations: they are exactly those profunctors whose associated discrete
bifibration (φ

1
, γ

1
) : Υ1 → X1 × Y 1 has its two legs φ

1
and γ

1
internally fully faithful.
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The third point is the heart of Schreier-Mac Lane extension theorem, and deals with the
notion of torsor. It is easy to define a torsor above a groupoid Z1 as a discrete fibration
∇1X → Z1 from the indiscrete equivalence relation on an object X with global support,
in a way which generalizes naturally the usual notion of G-torsor, when G is a group.
The main point here is that when the groupoid Z1 is aspherical and abelian ([8]) with
direction the abelian group A, there is a simply transitive action of the abelian group
TorsA on the set TorsZ1 of classes (up to isomorphism) of Z1-torsors.
This simply transitive action allows us on the one hand (fourth point) to extend now the
Schreier-Mac Lane extension theorem to any exact Mal’cev category with centralizers,
and on the other hand (fifth point) to produce, still in the exact Mal’cev context and in
respect to the categorical Galois theory associated with a reflection I, the faithful action of
a certain abelian group on the set of classes (up to isomorphism) of I-normal extensions
having a fixed Galois groupoid. Incidentally we are also able to extend the notion of
connector from a pair of equivalence relations to a pair of internal groupoids.
A last word: what is rather amazing here is that the notion of profunctor between
groupoids which could rather seem, at first thought, as a vector of indistinction (every-
thing being isomorphic) appears, on the contrary, as a important tool of discrimination.

The article is organized along the following lines:
Part 1) deals with some recall about the internal profunctors between internal categories
and their composition, mainly from [18].
Part 2) specifies the notion of profunctors between internal groupoids and characterizes
those profunctors X1 # Y 1 whose associated discrete bifibration (φ

1
, γ

1
) : Υ1 → X1×Y 1

has its two legs φ
1

and γ
1

internally fully faithful. It contains also our main theorem
about the canonical simply transitive action on the Z1-torsors, when the groupoid Z1 is
aspherical and abelian.
Part 3) deals with some recall about the notion of connector on a pair of equivalence
relations, and extends it to a pair of groupoids.
Part 4) asserts the Schreier-Mac Lane extension theorem for exact Mal’cev categories with
centralizers.
Part 5) describes the faithful action on the I-normal extensions having a fixed Galois
groupoid.

1. Internal profunctors

In this section we shall recall the internal profunctors and their composition.

1.1. Discrete fibrations and cofibrations. We shall suppose that our ambient
category E is a finitely complete category. We denote by CatE the category of internal
categories in E, and by ()0 : CatE→ E the forgetful functor associating with any internal
category X1 its “object of objects” X0. This functor is a left exact fibration. Any fibre
CatXE has the discrete equivalence relation ∆1X as initial object and the indiscrete
equivalence relation ∇1X as terminal object.
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An internal functor f
1

: X1 → Y 1 is then ()0-cartesian if and only if the following square
is a pullback in E, in other words if and only if it is internally fully faithful:

X1
f1 //

(d0,d1)
��

Y1

(d0,d1)
��

X0 ×X0f0×f0

// Y0 × Y0

Accordingly any internal functor f
1

produces the following decomposition, where the
lower quadrangle is a pullback:

X1
f1 //

(d0,d1)

��

γ1 ''OOOOO Y1

(d0,d1)

��

Z1

{{vvvvv
φ1

66mmmmmm

X0 ×X0 f0×f0

// Y0 × Y0

with the fully faithful functor φ
1

and the bijective on objects functor γ
1
. We need to

recall the following pieces of definition:

1.2. Definition. The internal functor f
1

is said to be ()0-faithful when the previous
factorization γ1 is a monomorphism. It is said to be ()0-full when this same map γ1 is a
strong epimorphism. It is said to be a discrete cofibration when the following square with
d0 is a pullback:

X1

d1

��
d0

��

f1 // Y1

d1

��
d0

��
X0 f0

//

OO

Y0

OO

It is said to be a discrete fibration when the previous square with d1 is a pullback.

Suppose f
1

is a discrete cofibration; when the codomain Y 1 is a groupoid, the domain X1

is a groupoid as well and the square with d1 is a pullback as well; when the codomain Y 1

is an equivalence relation, then the same holds for its domain X1. Accordingly, when the
codomain Y 1 of a functor f

1
is a groupoid, it is a discrete cofibration if and only if it is

a discrete fibration.

1.3. Lemma. Any discrete fibration is ()0-faithful. A discrete fibration is ()0-cartesian
if and only if it is monomorphic.

Proof. Thanks to the Yoneda Lemma, it is sufficient to prove these assertions in Set
which is straightforward.
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1.4. Profunctors. Let (X1, Y 1) be a pair of internal categories. Recall from [2] that

an internal profunctor X1 # Y 1 is given by a pair X0
f0← U0

g0→ Y0 of maps (i.e. a span
in E) together with a left action d1 : UY1

1 → U0 of the category Y 1 and a right action
d0 : UX1

1 → U0 of the category X1 which commute with each others, namely which make
commute the left hand side upper dotted square in the following diagram, where all those
commutative squares that do not contain dotted arrows are pullbacks:

U1

p1 //

π0

//

π1

��

p0

��

UY1
1

s0oo

d1

��

d0

��

g1 // Y1

y1

��

y0

��
UX1

1

d1 //

d0

//

f1

��

OO

U0
s0oo

f0

��

g0 //

OO

Y0

OO

X1

x1 //

x0

//
X0

s0oo

The middle horizontal reflexive graph is underlying a category UX1
1 , namely the category

of “cartesian maps” above X1, while the middle vertical reflexive graph is underlying a
category UY1

1 , namely the category of “cocartesian maps” above Y 1. The pairs (d0, d1)
going out from UY1

1 and UX1
1 are respectively coequalized by f0 and g0. A morphism of

profunctors is a morphism of spans above X0×Y0 which commutes with the left and right
actions. We define this way the category Prof(X1, Y 1) of internal profunctors between
X1 and Y 1.
In the set theoretical context, a profunctor X1 # Y 1 is explicitely given by a functor
U : Xop

1 ×Y 1 → Set. An object of U0 is then an element ξ ∈ U(x, y) for any pair of object
in Xop

1 × Y 1, in other words U0 = Σ(x,y)∈X0×Y0U(x, y). Elements of U0 can be figured as
further maps “gluing” the groupoids X1 and Y 1:

x
ξ //______ y

An object of UX1
1 is a pair x′

f→ x
ξ
99K y and we denote d0(f, ξ) = U(f, 1y)(ξ) by ξ.f ,

while an object of UY1
1 is a pair x

ξ
99K y

g→ y′ and we denote d1(ξ, g) = U(1x, g)(ξ) by g.ξ.
An object of U1 is thus a triple:

x′

f

��

y

g

��
x

ξ

88qqqqqqq
y′

We have π0(g, ξ, f) = (ξ.f, g) and π1(g, ξ, f) = (f, g.ξ). The commutation of the two
actions comes from the fact that we have: (g.ξ).f = g.(ξ.f).
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In this set theoretical context, the previous diagram can be understood as a map between
φ = ξ.f and χ = g.ξ, pictured this way:

x′

f

��

φ // y

g

��
x χ

//

ξ

88qqqqqqq
y′

Accordingly this defines a reflexive graph given by the vertical central part of the following
diagram in Set, with two morphisms of graphs:

X1

x1

��

x0

��

U1
f1.p0oo

d1.p1

��
d0.p0

��

g1.p1 // Y1

y1

��

y0

��
X0

OO

U0f0

oo
g0

//

OO

Y0

OO

Actually this reflexive graph takes place in the more general scheme of a category we shall
denote by UX1

1 ]UY1
1 : its objects are the elements of U0, a map between ξ and ξ̄ being given

by a pair (s, t) of map in X1 × Y 1 such that ξ̄.s = t.ξ:

x

s

��

ξ //______ y

t
��

x̄
ξ̄

//______ ȳ

Clearly the categories UX1
1 and UY1

1 are subcategories of UX1
1 ]UY1

1 .
Actually, the same considerations hold in any internal context. The object of objects of
the internal category UX1

1 ]UY1
1 is U0, its object of morphisms Υ1 is given by the pullback

in E of the maps underlying the two actions:

Υ1
υ0 //

υ1

��

UY1
1

d1

��
UX1

1 d0

// U0

Moreover there is a pair (φ
1

: Υ1 → X1, γ1
: Υ1 → Y 1) of internal functors in E according

to the following diagram:

X1

x1

��

x0

��

Υ1
f1.υ0oo

d1.υ1

��
d0.υ0

��

g1.υ1 // Y1

y1

��

y0

��
X0

OO

U0f0

oo
g0

//

OO

Y0

OO
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Without entering into the details, let us say that this pair of functors is characteristic
of the given profunctor under its equivalent definition of a discrete bifibration in the 2-
category CatE. Moreover the commutation of the two actions induces a natural morphism
of reflexive graph:

U1

d1.p1

��
d0.p0

��

(π0,π1) // Υ1

d1.υ1

��
d0.υ0

��
U0

OO

U0

OO

The previous observations give rise to the following diagram in CatE:

UY1
1 ''

''OOOOOOOOO

g
1 // Y 1

∆1U0

::

::uuuuuu

$$

$$IIIIII Υ1 = UX1
1 ]UY1

1 φ
1

**UUUUUUUUUUUUUU

γ
1

44iiiiiiiiiiiiiii

UX1
1

77

77oooooooo

f
1

// X1

1.5. Proposition. Let be given a finitely complete category E and an internal profunc-
tor X1 # Y 1. Then, in the fibre CatU0E, the left hand side quadrangle above is a pullback
such that: UX1

1 ∨ UY1
1 = Υ1 = UX1

1 ]UY1
1 .

Proof. Thanks to the Yoneda embedding, it is enough to check it in Set. A map between
ξ and ξ̄ in Υ1, as above, is in UY1

1 (resp. in UX1
1 ) if and only if s = 1x (resp. t = 1y).

Accordingly the intersection of these two subgroupoids is ∆1U0. The second point is a
consequence of the fact that any map between ξ and ξ̄ in Υ1, as above, has a canonical

decomposition through a map in UY1
1 and a map in UX1

1 :

x
ξ //______

1x
��

y

t
��

x′
ξ̄.s=t.ξ //______

s

��

y

1y′
��

x′
ξ̄

//______ y′

Accordingly any subcategory of Υ1 which contains the two subcategories in question is
equal to Υ1.

What is remarkable is that, in the set theoretical context, the profunctors can be composed
on the model of the tensor product of modules, see [2]. The composition can be transposed
in E as soon as any internal category admits a π0 (i.e. a coequalizer of the domain and
codomain maps) which is universal (i.e. stable under pullbacks), as it is the case when
E is an elementary topos, see [18]. Let Y0

m0← U0
n0→ Z0 be the span underlying another
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profunctor Y 1 # Z1 (and let (µ
1
, ν1) : Γ1 → Y 1 × Z1 denote its associated discrete

bifibration); then consider the following diagram induced by the dotted pullbacks:

V1

����

""FFFF

""FFFF

V Z1
1

����

n1

  BBBB

bbFFFF

UY1
1 ×Y1 V

Y1
1

pV1 //

pU1

��

θ1))RRRRRR

θ0
))RRRRRR

V Y1
1

""EEEE

""EEEEm1

����

Z1

����

U0 ×Y0 V0

pV0 //

pU0

��

iiRRRRRR

θ&& &&

V0

m0

��

n0

""EEEE

bbEEEE

W0
n̄0 // //_________

f̄0

�����
�
�
�
�
�
� Z0

U1

//
//
&&MMMMMMMM

&&MMMMMMMM
UY1

1

((RRRRRRRRRRR

((RRRRRRRRRRR

g1 // Y1

""DDDDD

""DDDDD

UX1
1

//
//

f1 ))SSSSSSSSSSS

ffMMMMMMMM

U0

f0 &&MMMMMMM
g0 //

hhRRRRRRRRRRR
Y0

bbDDDDD

X1

//
// X0

It produces the following internal category Θ1 and the following forgetful functor to Y 1:

Θ1 :

��

UY1
1 ×Y1 V

Y1
1

θ1 //

θ0
//

g1.pU1

��

U0 ×Y0 V0

g0.pU0

��

s0oo

Y 1 : Y1

y1 //

y0

// Y0
s0oo

Then take the π0 of the category Θ1 (it is the coequalizer θ of the pair (θ0, θ1)) which

produces the dashed span X0
f̄0← W0

n̄0→ Z0. The π0 in question being stable under
pullbacks, this span is endowed with a left action of Z1 and a right action of X1 and gives
us the composite (µ

1
, ν1)⊗ (φ

1
, γ

1
).

Given an internal category X1, the unit profunctor is just given by the Yoneda profunctor,
i.e. given by the following diagram, where XO1 is the object of the “commutative triangles”
of the internal category X1 and Xu1 is the object of the “triple of composable maps” of
the internal category X1:

Xu1

p1 //

π0

//

π1

��

p0

��

X∆
1

s0oo

p1

��

p0

��

p2 // X0

x1

��

x0

��
XO1

p2 //

p1

//

p0

��

OO

X1
s1oo

x0

��

x1 //

OO

X0

OO

X1

x1 //

x0

//
X0

s0oo
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It is easy to check that X∆
1 ]X

O
1 = X2

1, namely the domain of the universal internal natural
transformation with codomain X1.
This tensor product ⊗ : Prof(X1, Y 1) × Prof(Y 1, Z1) → Prof(X1, Z1) is associative
up to coherent isomorphism. By these units and the tensor composition, we get the
bicategory ProfE of profunctors in E [18].

1.6. X1-torsor. From now on, we shall be uniquely interested in the full subcategory
GrdE of CatE consisting of the internal groupoids in E. Recall that any fibre GrdXE
is a protomodular category. We shall suppose moreover that the category E is at least
regular.
We say that a groupoid X1 is connected when it has a global support in its fibre GrdX0E,
namely when the map (d0, d1) : X1 → X0 × X0 is a regular epimorphism. We say it is
aspherical when, moreover, the object X0 has a global support, namely when the terminal
map X0 → 1 is a regular epimorphism.

1.7. Proposition. Suppose E is a regular category. Let be given a discrete fibration
f

1
: X1 → Y 1 with Y 1 an aspherical groupoid.

1) If f
1

is a monomorphism, then X1 is a connected groupoid.
2) If moreover X0 has global support, then f

1
is an isomorphism.

3) Any discrete fibration f
1

between aspherical groupoids is a levelwise regular epimor-
phism.

Proof. 1) Since f
1

is a monomorphic discrete fibration it is ()0-cartesian according to
Lemma 1.3 and the following commutative square is a pullback:

X1
f1 //

(d0,d1)
��

Y1

(d0,d1)
��

X0 ×X0f0×f0

// Y0 × Y0

Accordingly X1 is connected as soon as such is Y 1.
2) Then, since f

1
is discrete fibration, the following square that does not contain dotted

arrows is still a pullback:

X0 ×X0

p1

��
p0

��

f0×f0 // Y0 × Y0

p1

��
p0

��
X0 f0

//

OO

Y0

OO

and, by the Barr-Kock Theorem, when X0 has global support, it is the case also for the
following one:

X0
f0 //

����

Y0

��
1 1
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Accordingly f0 (and thus f1) is an isomorphism.
3) Starting from any discrete fibration f

1
: X1 → Y 1, take the canonical reg-epi/mono

decomposition of f
1
:

X1

d1

��
d0

��

q1 // // U1

d1

��
d0

��

// m1 // Y1

d1

��
d0

��
X0 q0

// //

OO

U0

OO

//
m0

//

OO

Y0

OO

Since m1 is a monomorphism, the left hand side squares are a pullback; since q1 is a regular
epimorphism the right hand side squares are still pullbacks. Then m1 is a monomorphic
discrete fibration, and since X0 has global support, so has U0. Then, according to 2),
the functor m1 is an isomorphism, and the discrete fibration f

1
is a levelwise regular

epimorphism.

1.8. Definition. Let X1 be an aspherical groupoid in E. A X1-torsor is a discrete
fibration ∇1U → X1 where U is an object with global support:

U × U
p1

��
p0

��

τ1 // X1

d1

��
d0

��
U τ

//

OO

X0

OO

According to the previous proposition, the maps τ and τ1 are necessarily regular epimor-
phisms. Moreover it is clear that this determines a profunctor: 1 # X1. When X1 is a
group G, we get back to the classical notion of G-torsor, if we consider G as a groupoid
having the terminal object 1 as “object of objects”. In order to emphazise clearly this
groupoid structure, we shall denote it by K1G.

2. Fully faithful profunctors

In this section we shall characterize those profunctors X1 # Y 1 between groupoids whose
associated discrete bifibration (φ

1
, γ

1
) : Υ1 → X1×Y 1 has its two legs φ

1
and γ

1
internally

fully faithful, namely those profunctors such that their associated discrete bifibration
(φ

1
, γ

1
):

UY1
1 ''

''OOOOOOOOO

g
1 // Y 1

∆1U0

::

::uuuuuu

$$

$$IIIIII Υ1 = UX1
1 ]UY1

1 φ
1

**UUUUUUUUUUUUUU

γ
1

44iiiiiiiiiiiiiii

UX1
1

77

77oooooooo

f
1

// X1

is obtained by the canonical decomposition of the discrete fibrations f
1

and g
1

through
the ()0-cartesian maps.
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When X1 and Y 1 are internal groupoids, we have substantial simplifications in the pre-
sentation of profunctors X1 # Y 1. First, since any discrete fibration between groupoids
becomes a discrete cofibration, any commutative square in the definition diagram, even
the dotted ones, becomes a pullback1. Accordingly the objects U1 and Υ1 defined above
coincide, so that the reflexive graph U1 is actually underlying the groupoid UX1

1 ]UY1
1 .

On the other hand, the new perfect symmetry of the definition diagram means that the
pair (γ

1
, φ

1
) : U1 → Y 1 × X1 still determines a discrete bifibration, i.e. a profunctor

Y 1 # X1 in the opposite direction which we shall denote by (φ
1
, γ

1
)∗.

When E is exact, any internal groupoid admits a π0 which is stable under pullback; so that,
in the context of exact categories, the profunctors between groupoids are composable. We
shall be now interested in some special classes of profunctors between groupoids.

2.1. Proposition. Suppose E is a finitely complete category. Let be given a profunctor
(φ

1
, γ

1
) : U1 → X1 × Y 1 between groupoids. Then its functorial leg γ

1
: U1 → Y 1 is

()0-faithful if and only the groupoid UX1
1 is an equivalence relation; it is ()0-cartesian if

and only if we have UX1
1 = R[g0]. By symmetry, the other leg φ

1
: U1 → X1 is ()0-faithful

if and only the groupoid UY1
1 is an equivalence relation; it is ()0-cartesian if and only if

we have UY1
1 = R[f0]

Proof. Thanks to the Yoneda embedding, it is enough to prove it in Set. Suppose that
γ

1
: U1 → Y 1 is faithful. Let be given two parallel arrows in UX1

1 ⊂ U1:

x
ξ //______

f ′

��
f
��

y

1y
��

x′ χ
//______ y

The image of these two arrows of U1 by the functor γ
1

is 1y. Accordingly, since this

functor is ()0-faithful, we get f = f ′, and UX1
1 is an equivalence relation. Conversely

suppose UX1
1 is an equivalence relation. Two maps in U1 having the same image g by γ

1
determine a diagram:

x
ξ //______

f ′

��
f

��

y

g

��
x′ χ

//______ y′

which itself determines the following diagram:

x
g.ξ //______

f ′

��
f

��

y′

1y′

��
x′ χ

//______ y′

1In this way, any profunctor between groupoids can be seen as a double augmented simplicial object
in E such that any commutative square is a pullback
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But since UX1
1 is an equivalence relation, we get f = f ′. Accordingly the functor γ

1
:

U1 → Y 1 is faithful.
Suppose we have moreover UX1

1 = R[g0]. Any pair (ξ, χ) in U0 with a map g between
their respective codomains y and y′, determines a pair (g.ξ, χ) in R[g0]:

x g.ξ

%%LLL

f

��
y′

x′
χ

99ttt

and since we have UX1
1 = R[g0], we get a map f such that g.ξ = χ.f which determines an

arrow in U1 whose image by γ
1

is g:

x
ξ //______

f

��

y

g

��
x′ χ

//______ y′

Conversely suppose γ
1

is fully faithful. Since it is faithful we observed that UX1
1 ⊂ R[g0].

Now given any pair (ξ, χ) in R[g0], the fullness property of γ
1

produces a map f which
completes the following diagram:

x
ξ //______

f
��

y

1y
��

x′ χ
//______ y

and we get R[g0] ⊂ UX1
1 .

2.2. Definition. An internal profunctor between groupoids is said to be faithful when
its two legs φ

1
and γ

1
are ()0-faithful. It is said to be fully faithful when its two legs φ

1
and γ

1
are ()0-cartesian. It is said to be regularly fully faithful when moreover the maps

f0 and g0 are regular epimorphisms.

Examples. 1) Given any internal groupoid X1, its associated Yoneda profunctor is a
regularly fully faithful profunctor:

R2[x0]

p3 //

p2

//

p1

��

p0

��

R[x0]
s1oo

p1

��

p0

��

p2 // X0

x1

��

x0

��
R[x0]

p2 //

p1

//

p0

��

OO

X1
s1oo

x0

����

x1 // //

OO

X0

OO

X1

x1 //

x0

//
X0

s0oo
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It is this precise diagram which makes the internal groupoids monadic above the split
epimorphisms, see [6].

2) Given an abelian group A in E, any A-torsor determines a regularly fully faithful
profunctor K1A# K1A. For that, consider the following diagram where the upper right
hand side squares are pullbacks by definition of an A-torsor:

R[h1]

R(p1)
��

R(p0)
��

p1 //

p0

// T × Too

p1

��
p0

��

h1 // // A

��
T × T
h1 �����

�
�

p1 //

p0

// Too
τT
// //

OO

τT����

1

e

OO

A
//
1e

oo

and complete it by the horizontal kernel equivalence relations. Then, when A is abelian,
the same map h1 is the quotient of the vertical left hand side equivalence relation. Thanks
to the Barr embedding, it is enough to prove it in Set, which is straighforward. Actually
this is equivalent to saying that, when A is abelian, a principal left A-object becomes a
principal symmetric two-sided object, according to the terminology of [1].

2.3. Proposition. Suppose E is a regular category. A morphism τ : (φ
1
, γ

1
)→ (φ′

1
, γ′

1
)

between profunctors above groupoids having their legs φ
1

and φ′
1

()0-cartesian and regu-
larly epimorphic is necessarily an isomorphism. In particular, a morphism between two
regularly fully faithful profunctors is necessarily an isomorphism.

Proof. Consider the following diagram which is part of the diagram induced by the
morphism τ of profunctors:

R[f0]

d1

��

d0

��

R(τ)
//

g1 //
R[f ′0]

d1

��
d0

��

g′1

// Y1

y1

��

y0

��
U0

τ //

OO

f0

����

g0

//
U ′0

g′0 //

f ′0
����

OO

Y0

OO

X0 1X0

// X0

The functor g
1

and g′
1

being discrete fibrations, the left hand side upper part of the
diagram is a discrete fibration between equivalence relations. Since moreover f0 is a
regular epimorphism, the lower square is a pullback by the Barr-Kock theorem and τ an
isomorphism.
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2.4. Proposition. Suppose E is an efficiently regular category [9]. Let X1 # Y 1 and
Y 1 # Z1 be two profunctors between groupoids whose first leg of their associated discrete
bifibrations (φ

1
, γ

1
) and (µ

1
, ν1) is ()0-cartesian. Then their profunctor composition does

exist in E and has its first leg ()0-cartesian. When, moreover, their first legs are regu-
larly epimorphic, their profunctor composition has its first leg regularly epimorphic. By
symmetry, the same holds concerning the second legs. Accordingly regularly fully faithful
profunctors are composable as profunctors, and are stable under this composition.

Proof. Let us go back to the diagram defining the composition. When the first leg φ
1

is ()0-cartesian, we have UY1
1 = R[f0]. By construction the groupoid Θ1 determines a

discrete fibration:

UY1
1 ×Y1 V

Y1
1

θ1 //

θ0
//

pU1

��

U0 ×Y0 V0

pU0

��

s0oo θ // //W0

f̄0

���
�
�

R[f0]

p1 //

p0

// U0
s0oo

f0

// X0

Since E is an efficiently regular category and the codomain of this discrete fibration is an
effective equivalence relation, its domain is an effective equivalence relation as well. Thus,
this domain admits a quotient θ, and a factorization f̄0 which makes the right hand side
square a pullback. Moreover this quotient is stable under pullback, since E is regular.
Accordingly the two profunctors can be composed. Let us notice immediately that when
m0 is a regular epimorphism, such is pU0 . If moreover f0 is a regular epimorphism, then
f̄0 is a regular epimorphism as well, and we shall get the second point, once the first one
is checked.
Suppose now the first leg φ′

1
is ()0-cartesian, i.e. V Z1

1 = R[m0]. We have to check that

WZ1
1 = R[f̄0]. Let us consider the diagram where R[pU0 ] is the result of the pulling back

along g0 of V Z1
1 = R[m0], and R[pU1 ] is the result of the result of the pulling back along

g1 of V1 = R[m1]:

R[pU1 ]

p1

��
p0

��

R(θ1) //

R(θ0)
// R[pU0 ]

p1

��
p0

��

s0oo θ̄ // //WZ1
1

q1

���
�
�

q0

���
�
�

UY1
1 ×Y1 V

Y1
1

θ1 //

θ0
//

pU1

��

U0 ×Y0 V0

pU0

��

s0oo θ // //W0

f̄0

���
�
�

R[f0]

p1 //

p0

// U0
s0oo

f0

// X0

Since any of the upper left hand side squares are pullbacks and (θ, θ̄) is a pair of regular
epimorphims, the upper right hand side squares are pullbacks. This implies that the
right hand side vertical diagram is a kernel equivalence relation. Accordingly we have
WZ1

1 = R[f̄0].
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It is clear that when (φ
1
, γ

1
) : X1 # Y 1 is a fully faithful (resp. regularly fully faithful)

profunctor, the profunctor (φ
1
, γ

1
)∗ : Y 1 # X1 is still fully faihtful (resp. regularly fully

faithful).

2.5. Proposition. Suppose E is an efficiently regular category. Given any regularly
fully faithful profunctor (φ

1
, γ

1
) : X1 # Y 1, the profunctor (φ

1
, γ

1
)∗ : Y 1 # X1 is its

inverse with respect to the composition of profunctors.

Proof. The heart of the composition (φ
1
, γ

1
)∗⊗ (φ

1
, γ

1
) is given by the following dotted

pullbacks where the unlabelled vertical dotted arrow is g1:

U1
π0 //

p1

��

π1
$$JJJJJ

p0 $$JJJJJ
R[f0] p1

""FFFF

""FFFF

����

R[g0]
p1 //

p0

��

ddJJJJJ

f1## ##

U0

g0

��

f0
    BBBB

bbFFFF

X1
x1 // //_________

x0

�����
�
�
�
�
�
� X0

R[f0]
%%JJJJJ

p0 %%JJJJJ

g1 // Y1 y1

##GGGGG

##GGGGG

U0

f0 $$ $$HHHHH
g0 //

eeJJJJJ
Y0

ccGGGGG

X0

The commutations of this diagram shows that the maps θ0 and θ1 needed in the compo-
sition constuction are respectively p0 and π1. Accordingly their coequalizer is the regular
epimorphism f1, and the associated span is just (x0, x1). So that (φ

1
, γ

1
)∗⊗(φ

1
, γ

1
) is just

the Yoneda profunctor associated withX1. By symmetry we obtain that (φ
1
, γ

1
)⊗(φ

1
, γ

1
)∗

is the Yoneda profunctor associated with Y 1.

Accordingly, when E is a finitely complete efficiently regular category, we get the bi-
groupoid RfE of the regularly fully faithful profunctors between internal groupoids in E,
and the associated groupoid RfE whose morphisms are the isomorphic classes of regularly
fully faithful profunctors.
Remark. By the specific (i.e the double choice of the map h1 as a coequalizer) con-
struction of the example 2 above, we associate with any A-torsor a regularly fully faithful
profunctor K1A # K1A. What is very important is that the classical tensor product of
A-torsors coincides with the composition of profunctors. Accordingly this construction
defines the abelian group TorsA as a subgroup of RfE(K1A,K1A).

2.6. The canonical action on the X1-torsors when X1 is abelian. In this
section, we shall show that when X1 is an aspherical abelian groupoid in E, the set TorsX1

of isomorphic classes of X1-torsors is canonically endowed with a simply transitive action
of an abelian group of the form TorsA, where A is an internal abelian group in E.

Aspherical abelian groupoids
Recall from [8] the following:
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2.7. Definition. An internal groupoid Z1 in E is said to be abelian when it is a com-
mutative object in the protomodular fibre GrdZ0E.

We shall see that, in the Mal’cev context (see below), this is equivalent to saying that the
map (z0, z1) : Z1 → Z0 × Z0 is such that [R[(z0, z1)], R[(z0, z1)]] = 0.
When moreover the category E is efficiently regular, any aspherical abelian groupoid Z1

has admits direction [8], namely there exists an abelian group A in E which makes the
following upper squares pullbacks squares:

R[(z0, z1)]
νZ1 // //

p1

��
p0

��

A

��
Z1

OO

// //

(z0,z1) ����

1

e

OO

Z0 × Z0

Let us immediately notice that, in the Mal’cev context, this makes now central the kernel
equivalence relation R[(z0, z1)].

In the set theoretical context, a groupoid Z1 is abelian when, for any of its object z,
the group Autz of endomaps at z is abelian. The groupoid Z1 is asherical, when it is
non empty and connected. So, when the groupoid Z1 is aspherical and abelian, all the
abelian groups Autz are isomorphic. Moreover, what is remarkable is that, given any map
τ : z → z′ in Z1, the induced group homomorphism Autz → Autz′ is independent of the
map τ . The direction A of Z1 is then any of these abelian groups.

The previous construction provides a direction functor d : AsGrdE → AbC from the
category of aspherical groupoids in E to the category of abelian groups in E. Suppose
you have a ()0-cartesian functor f

1
: T 1 → Z1 with T 1 aspherical, then the following

diagram shows that d(f
1
) is a group isomorphism, since the lower square is a pullback

(and consequently the upper left hand side ones):

R[(t0, t1)] //

p1

��
p0

��

R[(z0, z1)]
νZ1 // //

p1

��
p0

��

d(Z1)

��
T1

f1 //

(t0,t1) ����

Z1

OO

// //

(z0,z1) ����

1

e

OO

T0 × T0 f0×f0

// Z0 × Z0

So, let X1 # Y 1 be any fully faithful profunctor between aspherical groupoids whose as-
sociated discrete bifibration is given by the pair (φ

1
, γ

1
) : Υ1 → X1×Y 1. Then necessarily

the groupoids X1 and Y 1 have same direction A, and this fully faithful profunctor deter-
mines a group isomorphism d(γ

1
).d(φ

1
)−1 : A → A. We shall denote by Rf1E(X1, Y 1)

the subset of RfE(X1, Y 1) consisting of those regularly faithful profunctors between as-
pherical groupoids such that d(γ

1
).d(φ

1
)−1 = 1A (or equivalently d(γ

1
) = d(φ

1
)).
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2.8. Proposition. Let E be an efficiently regular category. Suppose the groupoid Z1

in E is aspherical with direction A and g
1

: ∇1X � Z1 is a Z1-torsor. Consider the
following diagram with the horizontal kernel equivalence relations which make pullbacks
the upper left hand side squares:

R[g1]

R(p1)
��

R(p0)
��

p1 //

p0

// X ×Xoo

p1

��
p0

��

g1 // // Z1

z1
��

z0
��

R[g0]

q
����

p1 //

p0

// Xoo
g0

// //

OO

τX
����

Z0

OO

A
//
1oo

Then there is a unique dotted arrow q which completes the previous diagram into a regularly
fully faithful profunctor K1A # Z1 whose legs of the associated discrete bifibration are
such that d(γ

1
) = d(φ

1
).

Proof. Since the category E is regular, it is sufficient to prove the result in Set, thanks
to the Barr embedding [1]. For sake of simplicity, we denote by ν : R[(z0, z1)] → A the
mapping which defines the direction of Z1. The pullback defining A implies that, given
a pair of parallel maps (φ, ψ) : u ⇒ v in Z1, they are equal if and only if ν(φ, ψ) =
0. Let us denote by S the equivalence relation on R[g0] defined by the left hand side
vertical diagram. We get (x, x′)S(y, y′) if and only if g1(x, y) = g1(x′, y′). On the other
hand, we have necessarily: ν(1g0(y), g1(y, y′))+ν(g1(x, y), g1(x, y)) = ν(g1(x, y), g1(x, y′)) =
ν(g1(x, y), g1(x′, y′)) + ν(1g0(x), g1(x, x′)), in other words we get:

ν(1g0(y), g1(y, y′)) = ν(g1(x, y), g1(x′, y′)) + ν(1g0(x), g1(x, x′))

So: (x, x′)S(y, y′) if and only if ν(1g0(y), g1(y, y′)) = ν(1g0(x), g1(x, x′)). Consequently the
map q : R[g0] → A defined by q(x, x′) = ν(1g0(x), g1(x, x′)) is such that S = R[q] and,
being surjective, it is the quotient map of this equivalence relation S. Conversely suppose
you are given a regularly fully faithful profunctor:

R[g1]

R(p1)
��

R(p0)
��

p1 //

p0

// X ×Xoo

p1

��
p0

��

g1 // // Z1

z1
��

z0
��

R[g0]

f1 ����

p1 //

p0

// Xoo
g0

// //

OO

τX
����

Z0

OO

A
//
1oo

such that d(γ
1
) = d(φ

1
). This means that for any pair ((x, y, z), (x, y′, z)) such that

g0(y) = g0(z) and g0(y′) = g0(z), we have ν(g1(x, y′), g1(x, y)) = f1(y′, z) − f1(y, z).
Whence: f1(y′, z) = f1(y′, z)− f1(z, z) = ν(g1(x, y′), g1(x, z)), for any x; in particular we
have f1(y′, z) = ν(1g0(y′), g1(y′, z)) and thus f1(y′, z) = q(y′, z).
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In other words there is a bijection between the sets TorsZ1 and Rf1E(K1A,Z1).

The canonical action
Suppose that our aspherical abelian groupoid Z1 is such that Z0 = 1, namely that
it is actually an abelian group A. We recalled that the set TorsA is canonically en-
dowed with an abelian group structure which is nothing but a subgroup of the group
RfE(K1A,K1A). Thanks to the previous proposition, we can now precise that this sub-
group is Rf1E(K1A,K1A).

2.9. Theorem. Let E be an efficiently regular category. Let Z1 be an aspherical abelian
groupoid with direction A. Then there is a canonical simply transitive action of the abelian
group TorsA on the set TorsZ1 of isomorphic classes of Z1-torsors.

Proof. The action of the A-torsors on Z1-torsors will be naturally given by the composi-
tion (= tensor product) of profunctors K1A# K1A# Z1 whose image by the direction
functor d will be 1A since it is the case for both of them. The fact that this action is sim-
ply transitive comes from the fact that the regularly fully faithful profunctor K1A# Z1

arising from a Z1-torsor is an invertible profunctor, see Proposition 2.5. So that, starting
from a pair (g

1
, g′

1
) of Z1-torsors, the unique A-torsor relating them is necessarily given

by the following composition:

K1A
g′

1

# Z1

(g
1
)−1

# K1A

whose image by d is certainly 1A. Accordingly this group action is nothing else but
the simply transitive action of the sub-Hom-group Rf1E(K1A,K1A) on the sub-Hom-set
RfE(K1A,Z1) inside the subgroupoid Rf1E. So, given a Z1-torsor g

1
and an A-torsor

h1, the tensor product g
1
⊗ h1 will be given by the following diagram:

R[g1]

����

&&MMMMM

&&MMMMM

X ×X

����

g1

$$JJJJJ

ffMMMMM

(T × T )×A R[g0]
pg0 //

pT×T

��

θ1))TTTTTTT

θ0 ))TTTTTTT
R[g0]

&&MMMMMM

&&MMMMMM

��

Z1

����

T ×X pX //

pT

��

iiTTTTTTT

θ$$ $$

X

��

g0

%%KKKKKK

ffMMMMMM

X̄ ḡ0

//

��

Z0

T × T
**UUUUUUUUUUU

**UUUUUUUUUUU

h1 // A
''NNNNNNNN

T
%% %%KKKKKK // //

jjUUUUUUUUUUU
1

e

ggNNNNNNNN

1
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2.10. The additive setting. Let us have a quick look at the translation of the pre-
vious theorem in the additive setting. So let A be an efficiently regular additive category,
and C an object of A. We are going to make explicit the previous simply transitive action
in the slice category A/C (in the pointed category A any abelian group TorsA is triv-
ial). Giving an aspherical internal groupoid A1 in A/C is equivalent to giving an exact
sequence:

A1
α // A0

q // // C // 1

Let us denote by β : B � A1 the kernel of α. The direction of A1 is then nothing but
(pC , ιC) : B × C � C. It is well known that a torsor associated with this abelian group
in A/C is nothing but an extension:

1 // B // m // H
h // // C // 1

and the abelian group of torsors in A/C is nothing but the abelian group ExtA(C,B).
On the other hand, giving a A1-torsor is equivalent to giving an exact sequence together
with a (regular epic) map τ : D → A0 such that q.τ = f and τ.k = α:

1 // A1
// k // D

f // //

τ
��

C // 1

A1 α
// A0 q

// // C // 1

The action of the abelian group ExtA(C,B) can be described in the following way: starting
with the previous “B-torsor” and “A1-torsor”, take the pullback of f and h, then the result
of the action is given by the following 3× 3 construction:

1

��

1

��

1

��
1 // B // (−1,β)//

1B
��

B × A1

(β,1A1
)
// //

m×k
��

A1
//

k̄
��

1

1 // B //
(−m,k.β)

//

��

H ×C D w
// //

h×Cf
��

D̄ //

f̄����

1

1 // 1 // //

��

C
1C

// //

��

C //

��

1

1 1 1

The kernel of the regular epimorphism h×C f is the map m× k; so that the 3× 3 lemma
produces the vertical right hand side exact sequence. The upper right hand side square
is then certainly a pushout. Accordingly, the equality α.(β, 1A1) = α.pA1 = τ.k.pA1 =
τ.pD.(m × k) produces the required factorization τ̄ : D̄ → A0 to have what is equivalent
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to a A1-torsor:

B × A1

(β,1A1
)
// //

��
m×k

��

A1��
k̄
��

A1

α
��

H ×C D

%%JJJJJJJJJ
w // //

pD %%JJJJJJJJJ D̄
τ̄ //___ A0

D

τ

=={{{{{{

Conversely, starting with what is equivalent to two A1-torsors, we get the unique B-torsor
relating them by the vertical right hand side exact sequence given by the following 3× 3
construction:

1

��

1

��

1

��
1 // B // (1,1) //

β
��

B ×B
(−1,1) // //

(k.β)×(k′.β)
��

B //

��

1

1 // A1
// (k,k′)//

���� α
&&

D ×A0 D
′ // //

τ×A0
τ ′

��

H //

��

1

1 // Kerq // //

��

A0 q
// //

��

C //

��

1

1 1 1

3. Connector and centralizing double relation

We shall describe, here, the strong structural relationship between fully faithful profunc-
tors and connectors between equivalence relations. Consider R and S two equivalence
relations on an object X in any finitely complete category E. Let us recall the following
definition from [12], see also [24] and [15]:

3.1. Definition. A connector for the pair (R, S) is a morphism

p : S ×X R→ X, (xSyRz) 7→ p(x, y, z)

which satisfies the identities :

1) xRp(x,y,z) 1’) zSp(x,y,z)
2) p(x,y,y)=x 2’) p(y,y,z)=z

3) p(x,y,p(y,u,v))=p(x,u,v) 3’) p(p(x,y,u),u,v)=p(x,y,v)

In set theoretical terms, Condition 1 means that with any triple xSyRz we can associate
a square:

x R //

S ��

p(x, y, z)
S��

y
R

// z.
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More acutely, any connected pair produces an equivalence relation Σ1 ⇒ R1 in GrdE
on the equivalence relation R whose two legs are discrete fibrations, in other words an
equivalence relation in DiFE:

S ×X R

p0

��

(p,d1.p0)

��

(d0.p0,p)
//

p1 //
R

d0

��

d1

��

oo

S
d0

//

d1 //

OO

X

OO

oo

It is called the centralizing double relation associated with the connector. It is clear
that, conversely, any equivalence relation Σ1 ⇒ R1 in GrdE whose two legs are discrete
fibrations determines a connector between R and the image by the functor ()0 : GrdE→ E
of this equivalence relation Σ1 ⇒ R1.
Example 1) An emblematical example is produced by a given discrete fibration f

1
:

R1 → Z1 whose domain R is an equivalence relation. For that consider the following
diagram:

R[f1]

R(d0)

��
R(d1)

��

p0

//

p1 //
R

d0

��

d1

��

oo f1 // Z1

d0

��

d1

��
R[f0]

p0

//

p1 //

OO

X

OO

oo
f0

// Z0

OO

It is clear that R[f1] is isomorphic to R[f0]×X R and that the map

p : R[f1]
p0→ R

d1→ X

determines a connector for the pair (R,R[f0]).
2) For any groupoid X1, we have such a discrete fibration (which we shall denote by
ε1X1 : Dec1X1 → X1 in GrdE):

R[d0]

p1

��
p0

��

d2 // X1

d1
��

d0
��

X1

OO

d1

// X0

OO

which implies the existence of a connector for the pair (R[d0], R[d1]). The converse is true
as well, see [15] and [12]; given a reflexive graph :

Z1

d1 //

d0

//
Z0

s0oo
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any connector for the pair (R[d0], R[d1]) determines a groupoid structure on this graph.
3) For any pair (X, Y ) of objects, the pair (R[pX ], R[pY ]) of effective equivalence relations
is canonically connected.
4) The diagram defining any fully faithful profunctor (φ

1
, γ

1
) : X1 # Y 1 clearly deter-

mines a centralizing double relation, and thus a connector for the pair (R[f0], R[g0]).

Remark. The main point, here, is to emphasize that the diagram underlying the double
centralizing relation associated with the existence of a connector is the core of the diagram
defining a regularly fully faithful profunctor, and that, whenever the category E is exact,
this core can be effectively completed into an actual regularly fully faithful profunctor by
means of the quotients:

S ×X R

p0

��

(p,d1.p0)

��

(d0.p0,p)
//

p1 //
R

d0

��

d1

��

oo
q1
S // //_____ Y1

y1

��

y0

��
S

d0

//

d1 //

OO

q1
R

�����
�
�
�
� X

OO

oo
qS

// //_____

qR

�����
�
�
�
� Y0

OO

X1

x1 //

x0

//
X0

s0oo

Now let us observe that:

3.2. Proposition. Suppose p is a connector for the pair (R, S). Then the following
reflexive graph is underlying a groupoid we shall denote by R]S:

S ×X R
d0.p0

//

d1.p1 //
Xoo

Proof. Thank to the Yoneda embedding, it is enough to prove it in Set. This is straight-
forward just setting:

(zSuRv).(xSyRz) = xSp(u, z, y)Rv

The inverse of the arrow xSyRz is zSp(x, y, z)Rx.

When S ∩R = ∆X, the groupoid S]R is actually an equivalence relation.

3.3. Proposition. Suppose p is a connector for the pair (R, S) and consider the fol-
lowing diagram in GrdE:

∆X // //

��

R

iR
��

S //
iS
// S]R

It is a pullback such that the supremum of iR and iS is 1R]S.
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Proof. By the Yoneda embedding: the first point is straightforward; as for the second
one: it is a direct consequence of the fact that any map (xSyRz) in S]R is such that:
(xSyRz) = (ySyRz).(xSyRy) = iR(yRz).iS(xSy).

So, when S ∩R = ∆X, the equivalence relation S]R is nothing but S ∨R.

3.4. The Mal’cev context. Let D be now a Mal’cev category, i.e. a category in
which any reflexive relation is an equivalence relation [14] [15].

Commutator theory
In a Mal’cev category, the previous conditions 2) on connectors imply the other ones, and
moreover a connector is necessarily unique when it exists, and thus the existence of a
connector becomes a property; we then write [R, S] = 0 when this property holds. From
[12] recall that:

1) R ∧ S = ∆X implies [R, S] = 0
2) T ⊂ S and [R, S] = 0 imply [R, T ] = 0
3) [R, S] = 0 and [R′, S ′] = 0 imply [R×R′, S × S ′] = 0
When D is a regular Mal’cev category, the direct image of an equivalence relation along
a regular epimorphism is still an equivalence relation. In this case, we get moreover:
4) if f : X � Y is a regular epimorphism, [R, S] = 0 implies [f(R), f(S)] = 0
5) [R, S1] = 0 and [R, S2] = 0 imply [R, S1 ∨ S2] = 0

As usual, an equivalence relation R is called abelian when we have [R,R] = 0, and central
when we have [R,∇X ] = 0. An object X in D is called commutative when [∇X ,∇X ] = 0.
We get also the following precision:

3.5. Proposition. Let D be a Mal’cev category. Suppose p is a connector for the pair
(R, S). The following diagram in GrdD:

∆X // //

��

R

iR
��

S //
iS
// S]R

is a pushout in GrdD.

Proof. Let us consider the following diagram in GrdD:

∆X // //

��

R

f
��

S g
// X1

The previously observed decomposition:

(xSyRz) = (ySyRz).(xSyRy) = iR(yRz).iS(xSy)
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in the groupoid S]R allows us to construct a unique morphism of reflexive graphs φ :
S]R→ X1, just setting φ(xSyRz) = f(yRz).g(xSy). Now since D is a Mal’cev category,
any morphism of reflexive graphs between the underlying graphs of groupoids is necessarily
a functor [15].

Finally, recall also the following from [13], see Proposition 3.2:

3.6. Proposition. Let C be a regular Mal’cev category. Any decomposition in GrdD
of a discrete fibration f

1
: X1 → Y 1 through a regular epic functor:

X1

q
1

� Q
1

f̄
1−→ Y 1

is necessarily made of discrete fibrations.

3.7. A glance at the notion of centralizing double groupoid. Making a
further step, given any pair (U1, V 1) of internal groupoids in E having the same object
of objects U0, we shall say that they admit a centralizing double groupoid, if there is an
internal groupoid in DiFE (objects: internal groupoids; maps: discrete fibrations):

W 1 //
//
V 1

oo

such that its image by the functor ()0 : GrdE → E is U1; namely if there is a diagram
in E which reproduces the core of an internal profunctor between groupoids, where any
commutative square in the following diagram is a pullback:

W1

d0

��

d1

��

d0

//

d1 //
V1

d0

��

d1

��

oo

U1
d0

//

d1 //

OO

U0

OO

oo

It is clear that in general this is a further structure. But in a Mal’cev category this
becomes a property:

3.8. Proposition. Let D be Mal’cev category, and (U1, V 1) a pair of internal groupoids
having the same object of objects U0. A centralizing double groupoid on this pair is unique
if it exists. In this case we shall say that the groupoids U1 and V 1 are connected.

Proof. Consider the following pullback of split epimorphisms:

W1

d0

��

d
U1
1

��

d
V1
0

//

d1 //
V1

d0

��

dV1

��

oo

U1

dU0

//

d1 //

OO

U0

OO

oo
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Since the category D is a Mal’cev category, in the pullback above, the pair (sU1
0 : U1 �

W1, s
V1
0 : V1 � W1) is jointly strongly epic. Accordingly the unicity of the map dV1

0 is a
consequence of the equations dV1

0 .s
V1
0 = 1V1 and dV1

0 .s
U1
0 = sV0 .d

U
0 , while the unicity of the

map dU1
1 is a consequence of the equations dU1

1 .sU1
0 = 1U1 and dU1

1 .sV1
0 = sU0 .d

V
1 .

Remark: Actually, in the Mal’cev context, a pair (U1, V 1) of groupoids is connected if
and only if there is a pair of maps (dV1

0 : W1 = U1 ×U0 V1 → V1, d
U1
1 : W1 = U1 ×U0 V1 →

U1) such that the four previous equations are satisfied with moreover the commutation
equation dV1 .d

V1
0 = dU0 .d

U1
1 .

As previously for the connected equivalence relations, given any pair (U1, V 1) of groupoids
which has a double centralizing groupoid, in a category E, we can observe that the fol-
lowing reflexive graph is underlying a groupoid we shall denote by U1]V 1:

W1
d0.p0

//

d1.p1 //
U0

oo

In order to show this, the quickest argument is to consider the diagram defining the dou-
ble centralizing groupoid as a double simplicial object where any commutative square is
a pullback. The diagonal is then necessarily a simplicial object, while the fact that any of
the structural commutative squares of this diagonal is a pullback is a straigthforward con-
sequence of the fact that any of the commutative squares of the original double simplicial
object is a pullback.

3.9. Proposition. Let D be a Mal’cev category. Suppose the pair (U1, V 1) of internal
groupoids is connected, then the following diagram in GrdD:

∆U0
// //

��

V 1

iV 1
��

U1
//
iU1

// U1]V 1

is a pullback and a pushout.

Proof. The proof is the same as for the equivalence relations in the Mal’cev context. The
first point is straightforward. As for the second one, consider any commutative diagram
in GrdD:

∆U0
// //

��

V 1

f
1��

U1 g
1

// X1

Any map in U1]V 1 is an object of the pullback W1 = U1 ×U0 V1, namely a pair of a map
in U1 and of a map in V 1. Accordingly it is possible to construct a unique morphism
of reflexive graphs φ : W1 → X1. Now, since D is a Mal’cev category, it is necessarily
underlying an internal functor, since U1]V 1 and X1 are actual groupoids, again see [15].
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3.10. Corollary. Let D be a Mal’cev category and X1 # Y 1 an internal profunctor.
In the following diagram, the left hand side quadrangle is a pushout in GrdD:

UY1
1 ''

''OOOOOOOOO

g
1 // Y 1

∆1U0

::

::uuuuuu

$$

$$IIIIII Υ1 = UX1
1 ]UY1

1 φ
1

**UUUUUUUUUUUUUU

γ
1

44iiiiiiiiiiiiiii

UX1
1

77

77oooooooo

f
1

// X1

Example: It is well known that, in the category Gp of groups, an internal groupoid is
the same thing as a crossed module. It is easy to check that a pair of crossed modules

H
h→ G

h′← H ′ corresponds to a pair of groupoids H1 and H ′1 having a centralizing double
groupoid if and only if the restriction of the action of the group G on H to the subgroup
h′(H ′) is trivial (which implies [h(H), h′(H ′)] = 0), and symmetrically the restriction of
the action of the group G on H ′ to the subgroup h(H) is trivial. When this is the case,
the crossed module corresponding to the groupoid H1]H

′
1 is nothing but the factorization

φ : H × H ′ → G induced by the equality [h(H), h′(H ′)] = 0, and the following diagram
becomes a pushout inside the category X-Mod of crossed modules:

H ′

h′

��

((QQQQQQQQQQQQ

1

77ooooooooooooo

��>>>>>>> H ×H ′

φ

}}{{{{{{{{{{{{{{{{{

H

44iiiiiiiiiiiiiiiiii

h !!BBBBBBB

G

Remark. Again, the main point, here, is as above to emphasize that the diagram un-
derlying a double centralizing groupoid is the core of the diagram defining a profunctor;
when the category Mal’cev D is exact, this core can be effectively completed into an actual
profunctor by means of the quotients, thanks to Proposition 3.6:

W1

d1 //

d0

//

d1

��
d0

��

V1
s0oo

d1

��
d0

��

// // Y1

y1

��

y0

��
U1

d1 //

d0

//

����

OO

U0
s0oo

����

// //

OO

Y0

OO

X1

x1 //

x0

//
X0

s0oo
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4. Schreier-Mac Lane extension theorem

A first application of the existence of the canonical action on Z1-torsors deals with the
classification of extensions in D, when the category D is an exact regular Mal’cev category
which admits centralizers.
It was already observed in [7] that, in any finitely complete exact category E, any com-
mutative object X (i.e. such that [∇X,∇X] = 0, with a given commutative connector
π) with global support has a direction, namely: there exists an abelian group A in E such
that the following squares are pullbacks, where π1(x, y, z) = (x, π(x, y, z)):

X ×X ×X
p0

��
π̄1

��

π1

//

p2 //
X ×X
p0

��

p1

��

oo νX // // A

��
X ×X

p0

//

p1 //

OO

X

OO

oo // // 1

ω

OO

which is given by the quotient of the upper left hand side horizontal equivalence relation;
and consequently any commutative object with global support gave rise to an A-torsor.
Accordingly the set of isomorphic classes of commutative objects with global support and
direction A has the abelian group structure of TorsA.
Now let D be an exact Mal’cev category. The previous result applied to the slice category
D/Y says that:
1) any extension f : X � Y which has an abelian kernel equivalence relation produces,
as its direction, an abelian group structure E � Y in D/Y
2) the set ExtEY of extensions above Y having an abelian kernel equivalence relation and
E � Y as direction is nothing but the abelian group TorsE.

The aim of this section is to show that when, moreover, the Mal’cev category D has cen-
tralizers of equivalence relations, there is a way of producing an index φ for any extension
f : X � Y which determines, on the set ExtφY of extensions with this given index φ,
the simply transitive action of an abelian group of type ExtEY . This observation is a
generalization of the Schreier-Mac Lane extension theorem for groups; it was originated
from a first generalization of this Schreier-Mac Lane extension theorem to any action
representative category, see [11].

4.1. Mal’cev categories with centralizers. Let now D be a Mal’cev category.

4.2. Definition. When R is a equivalence relation on an object X, we define Z(R),
and call centralizer of R, the largest equivalence relation on X connected with R, i.e.
such that [R, S] = 0. We shall say that the Mal’cev category D has centralizers, when any
equivalence relation R has a centralizer Z(R).

It is clear, for instance, that a naturally Mal’cev category in the sense of [19] is nothing
but a Mal’cev category with centralizers, such that, for any equivalence relation R on
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X, we have Z(R) = ∇X . More generally, recall that, in a Mal’cev category, an internal
reflexive graph (d0, d1) : X1 ⇒ X0 is a groupoid if and only if we have [R[d0], R[d1]] = 0,
namely R[d1] ⊂ Z(R[d0]). Of course, there is an extremal situation:

4.3. Definition. Let D be a Mal’cev category. A groupoid X1 in D is said to be eccentral
when we have Z(R[d0]) = R[d1].

In other words a groupoid X1 in D is eccentral if and only if, given any reflexive relation
Σ1 on Dec1X1 (see example 2) of connector) in DiFD, its legs (p0, p1):

Σ1

p0 //

p1

// Dec1X1
oo ε1X1 // // X1

are coequalized by ε1X1.
In the regular context, one important point is that eccentral groupoids are strongly related
to centralizers. Before going any further, we have to recall [6] that the functor Dec1 :
GrdD→ GrdD is underlying a comonad such that the following diagram, in the category
GrdD, is a kernel equivalence relation with its quotient:

Dec2
1X1

ε1Dec1X1//

Dec1ε1X1

// Dec1X1

ε1X1 // // X1

4.4. Proposition. Suppose the Mal’cev category D is regular and X1 is an eccentral
groupoid. Then any regular epimorphic discrete fibration j

1
: R1 � X1 where R is an

equivalence relation on an object X, is such that R[j0] is the centralizer Z(R).

Proof. Consider the following diagram in GrdD where Σ1 is the double centralizing
relation associated with a connected pair [R, S] = 0. We shall show that Σ1 factorizes
through R[j

1
] or, equivalently, that j

1
coequalizes p0 and p1. For that take the direct

image along the regular epimorphic discrete fibration Dec1j1
of the equivalence relation

Dec1Σ1:

Dec1Σ1

Dec1p0

))SSSSSSSSSSSS

Dec1p1 ))SSSSSSSSSSSS

ε1Σ

����

// // Dec1j1
(Σ1)

π0

))SSSSSSSSSSSS

π1 ))SSSSSSSSSSSS

//_____ Dec2
1X1

����
Dec1R1

ε1R1
��

iiSSSSSSSSSSSS

Dec1j1

// // Dec1X1

ε1X1
��

iiSSSSSSSSSSSS

Σ1

p0 //

p1

// R1
oo

j
1

// // X1

The maps π0 and π1 are discrete fibrations since they come from a decomposition of a
discrete fibration through a regular epic functor. Accordingly Dec1j1

(Σ1) is a reflexive

relation in DiFD, which factorizes through Dec2
1X1 since X1 is an eccentral groupoid.

So ε1X1.Dec1j1
coequalizes Dec1p0 and Dec1p1, and since ε1Σ1 is a regular epic functor,

the functor j
1

coequalizes p0 and p1.
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4.5. Exact Mal’cev setting. In this section we shall show that when D is an exact
Mal’cev category, the existence of centralizers is characterized by the existence of “enough”
eccentral groupoids.

4.6. Proposition. Let D be an exact Mal’cev category with centralizers. Given any
equivalence relation R, there is a, unique up to isomorphism, regular epic discrete fibration
j

1
: R1 � X1 towards an eccentral groupoid.

Proof. Let Σ1 be the double centralizing relation associated with the connected pair
[R,Z(R)] = 0. Since D is exact, we can take a levelwise quotient of this double relation
which produces a regular epic discrete fibration:

Σ1

π0 //

π1

// R1

j
1 // // X1

We have to show now that the groupoid X1 is eccentral. Suppose given an equivalence
relation Λ1 on Dec1X1 which is in DiF . Then consider the inverse image of Λ1 along the
regular epic discrete fibration Dec1j1

in the following diagram:

Dec1j
−1
1

(Λ1)
π̄0

))SSSSSSSSSSSS

π̄1 ))SSSSSSSSSSSS
����

h1 // // Λ1
π0

((QQQQQQQQQQQQQQ

π1 ((QQQQQQQQQQQQQQ
//______ Dec2

1X1

����
Γ1

π̌0

))TTTTTTTTTTTTTTTTTT

π̌1
))TTTTTTTTTTTTTTTTTT

��

Dec1R1

ε1R1����

iiSSSSSSSSSSSS

Dec1j1

// // Dec1X1

ε1X1
��

hhQQQQQQQQQQQQQQ

Σ1

p0 //

p1

// R1
oo

iiTTTTTTTTTTTTTTTTTT

j
1

// // X1

Its direct image Γ1 along the regular epic discrete fibration ε1R1 is an equivalence relation
in DiF which is a double centralizing relation associated with R. Accordingly this direct
image factorizes through Σ1 according to Proposition 4.4, and produces the left hand side
vertical dotted factorization. Accordingly the pair (π̄0, π̄1) is coequalized by ε1X1.Dec1j1

.
And since h1 is an epimorphism, the pair (π0, π1) is coequalized by ε1X1. Accordingly Λ1

factorizes through Dec2
1X1, and X1 is eccentral.

Suppose now there are two regular epic discrete fibrations j
1

and j′
1

to eccentral groupoids

X1 and X ′1. Then R[j0] = Z(R) = R[j′0]. Accordingly X0 is isomorphic to X ′0. Since j
1

and j′
1

are discrete fibrations, the two equivalence relations R[j1] and R[j′1] are part of
the double centralizing relation associated with the pair (R,Z(R)). Since D is a Mal’cev
category, this double centralizing relation is unique (up to isomorphism), and consequently
we get R[j1] = R[j′1]; so that X1 is isomorphic to X ′1.

4.7. Theorem. Let D be an exact Mal’cev category. Then D has centralizers if and
only if D has “enough” eccentral groupoids with respect to DiFD: namely, from any
groupoid T 1 there is a regular epic discrete fibration φ

1
: T 1 � X1 with X1 an eccentral

groupoid. In this case the eccentral groupoid is unique up to isomorphism and we call it
the index-groupoid of the groupoid T 1.
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Proof. If D has enough groupoids, D has centralizers according to Proposition 4.4. Con-
versely suppose D has centralizers. Let j

1
: Dec1T 1 � X1 be the regular epic discrete

fibration, with X1 eccentral, given by the previous proposition. Since X1 is eccentral,
the functor j

1
trivializes the equivalence relation Dec2

1T 1 since it is in DiF , according to
Proposition 4.4.

Dec2T 1

ε1DecT 1 //

Decε1T 1

// DecT 1

ε1T 1 // //

j
1 '' ''OOOOOOOOO

T 1

φ
1���

�

X1

Accordingly there is a factorization φ
1

which is regular epic and a discrete fibration, since
so is j

1
. The eccentral codomain X1 of this factorization φ

1
is unique up to isomorphism

since, by the previous proposition, it was already the case for the codomain of j
1
.

4.8. The Schreier-Mac Lane theorem. In this section we shall suppose D is an
exact Mal’cev category with centralizers. Let us start with any extension f : X � Y .
Consider its kernel equivalence relation:

R[f ]
p0 //

p1

// Xoo f // Y

and then take its index q
1

: R1[f ] � Q
1

to the eccentral groupoid Q
1
. Since D is exact,

then the groupoid Q
1

admits a π0(Q
1
), namely the coequalizer of the pair (d0, d1) below.

Whence a factorization φ : Y → π0(Q
1
) which is necessarily a regular epimorphism:

R[f ]
p0
��

p1
��

q1 // // Q1

d0 ��
d1��

X

OO

q0
// //

f ����

Q0

OO

q����

Y
φ
// // π0(Q

1
)

A morphism between two extensions above Y having the same index-groupoid Q
1

and
the same index φ is necessarily an isomorphism. We shall denote by ExtφY the set of all
isomorphic classes of extensions with index-groupoid Q

1
and index φ. Now, consider the
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following diagram where the right hand side part is made of pullbacks:

R[f ]
f1φ //

q1

��

p1

��

p0

��

D1φ
d1φ // //

d1

��

d0

��

Q1

d1

��

d0

��
X

f "" ""EEEEEEEEE

q0

��fφ // D0φ
d0φ // //

qφ
����

Q0

q����

Y
φ
// // π0(Q

1
)

This produces a groupoid D1φ such that π0(D1φ) = Y , and the two upper internal functors
are discrete fibrations since so is the functor q

1
. The groupoid D1φ is then aspherical in

the slice category D/Y . Accordingly, with the discrete fibration f
1φ

, we get a D1φ-torsor

in D/Y .

4.9. Proposition. The morphism fφ is an epimorphism.

Proof. It is a consequence of Proposition 1.7.

This construction, associating the D1φ-torsor f
1φ

with the extension f , produces a map-

ping which is clearly injective:

Θ : ExtφY → TorsD1φ

4.10. Theorem. The mapping Θ is bijective.

Proof. Let g
1

: R1[f ′]� D1φ be a D1φ-torsor. Then the following diagram:

R[f ′]
g1 // //

p1

��
p0

��

D1φ
d1φ // //

d1
��

d0
��

Q1

d1
��

d0
��

X ′

f ′ ## ##FFFFFFFFF
g0 // // D0φ

d0φ // //

qφ
����

Q0

q����

Y
φ
// // π0(Q

1
)

shows that the regular epic discrete fibration d1φ.g1
is necessarily the index of R1[f ′].

Accordingly the extension f ′ : X ′ � Y is such that its index is the factorization φ and
consequently belongs to ExtφY .
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We shall work now in the slice category D/Y , where the groupoid D1φ is aspherical. It
is abelian, since the category D/Y is Mal’cev. Let us denote its direction, which is an
abelian group in D/Y , in the following way:

Eφ
eφ // Yoo
sφ
oo

Accordingly the map eφ has an abelian kernel equivalence relation. We recalled above
that a Eφ-torsor in D/Y is nothing but an extension e : E � Y in D having an abelian
kernel relation R[e] and the abelian group Eφ in D/Y as direction, and that the abelian
group TorsEφ is nothing but the group ExtEφY of the extensions with abelian kernel
equivalence relation having the abelian group Eφ in D/Y as direction (see also Section
Baer sums in [9]). Finally, according to the simply transitive action given by our Theorem
2.9, we get what we were aiming to:

4.11. Theorem. Suppose D is an exact Mal’cev category with centralizers. Let f : X �
Y be any extension with index φ. There is on the set ExtφY a canonical simply transitive
action of the abelian group ExtEφY .

5. Reg-epi and Birkhoff reflections

A second application of the canonical action on Z1-torsors will deal with the categorical
Galois theory. We suppose j : C� D is a full replete inclusion and D is regular. Recall
the following:

5.1. Definition. A reflection I : D → C of the inclusion j is said to be a reg-epi
reflection when any projection ηX : X � IX is a regular epimorphism. It is said to be
a Birkhoff reflection [13] when moreover for any regular epimorphism f : X � Y the
factorization R(f) is a regular epimorphism:

R[ηX ]
p0 //

p1

//

R(f) ����

X
ηX // //

f
����

IX

If
����

R[ηY ]
p0 //

p1

// Y ηY
// // IY

A reflection I is a reg-epi reflection if and only if the subcategory C is stable under
subobjects. When I is a Birkhoff reflection, the right hand square above is a pushout.
Accordingly C is stable under regular epimorphism and is certainly a regular category.
Since C is also stable under monomorphism, we conclude that C is a Birkhoff subcategory
of D in the sense of [17]. When D is an exact Mal’cev category, we have the converse: if
C is stable under regular epimorphism, then any reg-epi reflection is a Birkhoff reflection.
So any reflection to a Birkhoff subcategory (subvariety) C of an exact Mal’cev category
(variety) D determines a Birkhoff reflection. For instance, when the exact Mal’cev cate-
gory D is pointed and finitely cocomplete, the inclusion Ab(D) � D of the subcategory
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of abelian objects in D has a reflection A : D → Ab(D); accordingly, this is a Birkhoff
reflection.
Now, let (α, o) : A� I(Y ) be an abelian group in the slice category C/I(Y ). When D is
efficiently regular (we need that to have a group structure on the extensions), pulling back
along ηY : Y � I(Y ) produces a group homomorphism η∗Y,A : ExtCAI(Y )→ ExtDη∗Y (A)Y :

5.2. Proposition. Suppose D is an efficiently regular category and I a reg-epi reflec-
tion. Then the group homomorphism η∗Y,A is a monomorphism.

Proof. Let ψ : C � I(Y ) be a regular epimorphism in C with abelian kernel equivalence
relation and direction α. Suppose is image by η∗Y,A is 0. This means that its pullback ψ̄
along ηY is split:

W
π // //

ψ̄

����

C

ψ
����

I ηY
// //

σ

OO

I(Y )

Since C is in C, the map π.σ : Y → C produces a splitting of ψ which makes it 0 in the
abelian group ExtCAI(Y ).

5.3. I-normal maps and Galois groupoids. When D is a regular Mal’cev category,
recall from [13] that any reg-epi reflection I preserves the pullbacks of any pair of split
epimorphisms and consequently preserves internal groupoids. This implies in particular
that the image I(R[f ]) of the kernel equivalence relation of any map f is a groupoid and
the upper part of the following diagram produces an internal functor we shall denote by
η

1
f : R[f ]→ I(R[f ]):

R[f ]

p1

��
p0

��

ηR[f ] // I(R[f ])

I(p1)
��

I(p0)
��

X ηX
//

OO

f

��

I(X)

OO

I(f)
��

Y ηY
// I(Y )

Following [17], we shall be now interested in certain classes of maps with respect to the
reg-epi reflection I:

5.4. Definition. Given a reg-epi reflection I, a map f : X → Y in D is said to be
I-trivial when the following square is a pullback:

X
ηX // //

f
��

IX

If
��

Y ηY
// // IY
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A map f is said to be I-normal when the projection p0 : R[f ]→ X is I-trivial.

Accordingly, in the Mal’cev context, when the map f is I-normal, the functor η
1
f :

R[f ] → I(R[f ]) becomes a discrete fibration. According to [17], when f is moreover a
regular epimorphism (namely, an I-normal extension), the groupoid I(R[f ]) is called the
Galois groupoid of the I-normal extension f . It is then an aspherical groupoid in the
category C/I(Y ). Consider now the following diagram where any of the right hand side
square is a pullback:

R[f ]

p1

��
p0

��

f̌1 // // Gf
1

d1
��

d0
��

η̄
G
f
1 // // I(R[f ])

I(p1)
��

I(p0)
��

X

f
����

f̌

// // Gf
0 η̄

G
f
0

// //

OO

φf
����

I(X)

OO

I(f)
����

Y =
// Y ηY

// // I(Y )

The upper vertical central part of this diagram is underlying an internal groupoid in
D/Y which is nothing but η∗Y (I(R[f ])) and will be denoted by Gf

1 . So, when f is an I-
normal extension, the groupoid Gf

1 is aspherical in the slice category D/Y and the discrete
fibration f̌

1
determines a Gf

1 -torsor in this category. The image by I of this groupoid Gf
1

is not necessarily I(R[f ]) unless the reflection I is admissible [17], namely unless I-trivial
extensions are stable under pullback. If it is the case, the map I(f̌) is then necessarily an
isomorphism. Now, according to [13], any Birkhoff reflection is admissible.

5.5. The faithful action on ExtY /C1. We shall suppose now I is a Birkhoff reflec-
tion on an efficiently regular Mal’cev category D. Let C1 be an aspherical groupoid in the
slice category C/I(Y ). In this section, we shall be interested in those I-normal extensions
f : X � Y which have (up to isomorphims) C1 as Galois groupoid.
It is clear that any morphism γ : H ′ → H in D/Y between such I-normal extensions is
an isomorphism, since this morphism determines a morphism of η∗Y (C1)-torsors in D/Y .
We shall denote by ExtY /C1 the set of isomorphic classes of the I-normal extensions
h : H � Y which have C1 as Galois groupoid. The last diagram of the previous section
described an inclusion: ExtY /C1 ⊂ TorsY η

∗
Y (C1). We are now in position to assert:

5.6. Theorem. Let D be an efficiently regular Mal’cev category and I a Birkhoff reflec-
tion. Let C1 be an aspherical groupoid in the slice category C/I(Y ) and (α, o) : A� I(Y )
its direction. If the set ExtY /C1 of I-normal extensions f : X � Y having C1 as Galois
groupoid is non-empty, there is on ExtY /C1 a canonical faithful action of the abelian
group ExtCAI(Y ).

Proof. Let us set C̄1 = η∗Y (C1); it is an apherical groupoid in D/Y whose direction is the
abelian group η∗Y (A) in D/Y which we shall denote by (β, ω) : B � Y . Since ExtY /C1

is a subset of TorsY C̄1, it is enough to check that the restriction of the canonical simply
transitive action of the group ExtDBY to the subgroup ExtCAI(Y ) (see Proposition 5.2) is
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stable on this subset ExtY /C1. So, let ψ : C � I(Y ) be a regular epimorphism in C with
abelian kernel equivalence relation and direction (α, o) : A� I(Y ). Then its pullback ψ̄:

W
π // //

ψ̄ ����

C
ψ����

Y ηY
// // I(Y )

determines an I-trivial (η∗Y (A) = B)-torsor in D/Y . Let us check that the action of
this B-torsor on the C̄1-torsor f̌

1
associated with f actually determines an element of

ExtY /C1. For that, let us consider the following diagram:

R[f̌1]

����

$$HHHH

$$HHHH

R[f ]

����

f̌1

!!CCCC

ddHHHH

R[ψ̄]×Bf R[f̌ ]
pf̌ //

pψ̄

��

θ1))SSSSSS

θ0 ))SSSSSS
R[f̌ ]

$$HHHHH

$$HHHHH

����

C̄1

����

W ×Y X
pX //

pW

��

iiSSSSSS

θ%% %%

X

f

��

f̌

""FFFFF

ddHHHHH

X̄
ˇ̄f // //__________

f̄

�����
�
�
�
�
�
� C̄0

φf

�����
�
�
�
�
�
�

R[ψ̄]
))TTTTTTTTTTT

))TTTTTTTTTTT
// B β

$$JJJJJJ

W
ψ̄ && &&MMMMMMM

ψ̄ // //

iiTTTTTTTTTTT
Y

ddJJJJJJ

HHHHH
HHHHH

Y Y

The result of this action is the C̄1-torsor ˇ̄f . So, certainly f̄ = φf .
ˇ̄f is an I-normal regular

epimorphism, since the following upper squares are pullbacks:

R[f̄ ]

p1

��
p0

��

ˇ̄f1 // // C̄1

d1
��

d0
��

ηC̄1 // // C1

����
X̄

f̄
����

ˇ̄f

// // C̄0 ηC̄0

// //

OO

φf
����

C0

OO

����
Y =

// Y ηY
// // I(Y )

In order to check that this I-normal extension f̄ has C1 as Galois groupoid, it remains to

show that I( ˇ̄f) is an isomorphism. The two following squares are pullbacks:

X̄

f̄ ����

W ×Y X
pX // //θoooo

pW ����

X

f
����

Y W
ψ̄
// //

ψ̄
oooo Y
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the right hand side one by definition, the left hand side one since the pair of maps (pW , pψ̄)
determines a discrete fibration between equivalence relations. Moreover the map ψ̄ is I-
trivial by construction, and the reflection I, being admissible, preserves the pullback of
I-trivial regular epimorphisms. Accordingly their images by I are pullbacks in C:

I(X̄)

I(f̄) ����

I(W ×Y X)
I(pX) // //I(θ)oooo

I(pW )
����

I(X)

I(f)����
I(Y ) C

ψ
// //

ψ
oooo I(Y )

We noticed that I(f̌) is an isomorphism; this implies that the following dashed square is
a pullback:

I(W ×Y X)
I(pX) // //

I(pW )

����

I(θ) '' ''OOOOOO
I(X)

I(f)

����

I(f̌)
$$JJJJ

I(X̄)
I( ˇ̄f) // //_______

I(f̄)

�����
�
�
�
�
�

I(Gf
0)

I(φf )

����

C

ψ '' ''PPPPPPPPP
ψ // // I(Y )

KKKK
KKKK

I(Y ) I(Y )

and that consequently the map I( ˇ̄f) is an isomorphism.

Remark. It seems that there is no reason in general for which this action would be
transitive. Certainly any pair (f, f ′) of I-normal extensions having C1 as Galois groupoid
produces a B-torsor φ : T � C̄0 in D/Y according to Theorem 2.9. It is determined by
the following diagram where the two squares are pullbacks:

X ′

f̌ ′ ����

X ′ ×Y X
pX // //pX′oooo

θ
����

X

f̌����
C̄0 T

φ
// //

φ
oooo C̄0

This B-torsor comes from an A-torsor in C/I(Y ) if and only if the map φ is I-trivial,
which would imply that the projections pX and pX′ would be themselves I-trivial:

X ′ ×Y X
pX // //

pX′ ����

X

f
����

X ′
f ′

// // Y

5.7. Central extensions in the pointed setting. We shall suppose now the
category D is a pointed finitely cocomplete exact protomodular category. We already
recalled that the inclusion Ab(D)→ D of the abelian object admits a reflection A : D→



486 DOMINIQUE BOURN

Ab(D) which is a Birkhoff reflection. It is known that the A-normal extensions are nothing
but the usual central extensions, see [16], [25] and [13]. We shall have a quick look at the
previous theorem in this setting. Again, since the category Ab(D) is additive, giving an
internal groupoid in Ab(D)/A(Y ) is equivalent to giving an exact sequence in Ab(D):

A1
α // A0

q// // A(Y ) // 1 (∗)

Let us denote by β : B � A1 the kernel of α. The direction of A1 is then nothing but
(pY , ιY ) : B×A(Y )� A(Y ). A torsor associated with this abelian group in Ab(D)/A(Y )
is nothing but an extension in Ab(D):

1 // B // m // H
h// // A(Y ) // 1

and the associated abelian group of torsors is nothing but the group ExtAb(D)(A(Y ), B).
Now let f : X � Y be a central (=A-normal) extension whose image by the reflection
A is the internal groupoid corresponding to the previous exact sequence (∗). This means
that A(f) = q (up to isomorphism) and that the central kernel of f is A1:

1 // A1
// k // X

f // //

ηX
��

Y //

ηY��

1

A1 α
// A0 q

// // A(Y ) // 1

Theorem 5.6 says that the set ZExt(q,α)(Y,A1) of central extensions whose image by the
reflection A is the exact sequence (∗) admits, when it is non-empty, a faithful action of
the abelian group ExtAb(D)(A(Y ), B). This action can be described in the following way:
starting with the previous B-torsor in Ab(D) and the extension f , take the pullback of f
along η∗Y (h) = h̄, then the result of the action is given by the following construction:

B × A1

(β,1A1
)
// //

��
m̄×k

��

A1��

k̄
��

A1

α
��

H̄ ×Y X
pH̄ ���� $$IIIIIIIII

// // X̄
ηX̄ //___

f̄
����

A0

q
��

H̄
h̄

// Y ηY
// A(Y )

The kernel of the regular epimorphism h̄.pH̄ is the map m̄× k, where m̄ is the kernel of h̄
induced by m; so that the pushout along the regular epimorphism (β, 1A1) : B×A1 � A1

produces an exact sequence in D:

1 // A1
// k̄ // X̄

f̄ // // Y // 1

Theorem 5.6 asserts that its image by the reflection A is the original exact sequence (∗).
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[7] D. Bourn, Baer sums and fibered aspects of Mal’cev operations, Cahiers de Top. et
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