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PROPER MAPS FOR LAX ALGEBRAS AND THE
KURATOWSKI-MRÓWKA THEOREM

MARIA MANUEL CLEMENTINO AND WALTER THOLEN

Abstract. The characterization of stably closed maps of topological spaces as the
closed maps with compact fibres and the role of the Kuratowski-Mrówka’ Theorem in
this characterization are being explored in the general context of lax (T, V )-algebras,
for a quantale V and a Set-monad T with a lax extension to V -relations. The general
results are being applied in standard (topological and metric) and non-standard (labeled
graphs) contexts.

1. Introduction

Bourbaki [2] emphasized the importance of proper maps of topological spaces, defined
as the stably closed continuous maps. Point-set topologists prefer to introduce them as
the closed continuous maps with compact fibres and to usually call them perfect ([9]),
often imposing Hausdorff separation conditions in addition. We will employ Bourbaki’s
terminology in this paper. The statement that closed maps with compact fibres are proper
generalizes Kuratowski’s Theorem which asserts that X → 1 is proper when X is compact.
Mrówka [16] showed that compactness of X is not only sufficient but also necessary for
propriety of X → 1, which then gives that proper maps have compact fibres.

Extrapolating from the Manes-Barr presentation (see [1]) of topological spaces as the
lax relational algebras of the ultrafilter monad (induced by the underlying Set-functor of
compact Hausdorff spaces [15]), in this paper we consider the question of to which extent
the description of proper maps as closed maps with compact fibres may be transferable to
the context of lax (T, V )-algebras, as considered with slight variations in [3, 7, 17, 10] and
other papers, where the quantale V replaces the two-element chain (so that V -relations
replace ordinary relations) and the Set-monad T replaces the ultrafilter monad. In order
not to lose the V -categorical intuition [13], we prefer to call lax (T, V )-algebras and their
lax homomorphisms (T, V )-categories and (T, V )-functors, respectively. We define proper
(T, V )-functors as in [4, 12] equationally, as the strict homomorphisms amongst lax, and
call an object X compact when X → 1 is proper, with 1 denoting the terminal object. The
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terminal structure on a singleton set will generally be distinct from its discrete structure,
which is being used when forming fibres. Keeping this distinction in mind, with the known
and easily-established pullback stability of proper morphisms one obtains that their fibres
are proper as maps, and then compact as objects whenever the terminal structure is
discrete.

While there is a compelling definition of “proper map” in the general context, it is less
obvious how to define “closed map”. We first pursue a technique that was already used
in [12] in some key examples and relies on assigning to every (T, V )-category structure
on X a V -category structure on TX in a functorial manner, such that in the example
V = 2 and T the ultrafilter monad, closedness of a continuous map f : X → Y is
equivalently described as propriety of the monotone map Tf : TX → TY in 2-Cat ∼=
Ord, the category of (pre)ordered sets. (We often omit the prefix “pre” in this paper.)
This leads us to the general characterization of proper (T, V )-functors as those f with
proper fibres for which Tf is proper (Theorem 3.2), as presented by the second author
at CT2011. We then introduce a family of closure operators which work well when V
is constructively completely distributive. Mrówska’s result in the general context relies,
as in the topological role model, on the provision of suitable “test objects” (Theorem
5.2). With these at hand, proper (T, V )-functors can be characterized entirely in terms of
closure (Theorem 6.1). However, in the general context there are features not apparent
at the level of the role model Top, and we illustrate them by non-standard examples
that leave the realm of categories considered in [12], like the categories of metric and of
topological spaces and their natural hybrid, the category of approach spaces [14].

Following a preliminary version of this paper, Solovyov [18] gave a definition of closed
morphism in (T, V )-Cat that avoids the use of closure operators and the hypothesis that
V be constructively completely distributive: see Remark 4.3.

The authors are indebted to Dirk Hofmann who advised them about his proof of
Lemma 7.1 in the cases that the quantale V is the two-element chain or the extended non-
negative real half line. The proof given here is an easy adaptation of his argumentation
to our more general context. They also thank George Janelidze for his careful reading of
the paper and various helpful comments for its improvement.

2. The setting

Throughout the paper V is a cartesian closed, unital, associative and commutative quan-
tale. Hence, V is a frame endowed with an associative and commutative binary operation
⊗ which, like the binary meet ∧, preserves arbitrary joins in each variable; in addition,
we assume that the top element > serves as the ⊗-neutral element.

We consider a monad T = (T,m, e) of the category Set and, for simplicity, assume
that T is taut, so that T preserves inverse images (i.e., pullbacks of monomorphisms along
arbitrary maps). In particular, T preserves monomorphisms, and for i : A ↪→ X and
x ∈ TX we will often write x ∈ TA when x ∈ Ti(TA).
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Furthermore, we assume that T comes with a fixed lax extension T̂ to the category V -
Rel of V -relations, that is: to the category with objects sets and morphisms r : X−→7 Y
given by functions r : X × Y → V whose composite with s : Y−→7 Z is defined by

(s · r)(x, z) =
∨
y∈Y

r(x, y)⊗ s(y, z)

for all x ∈ X, z ∈ Z. Note that V -Rel has an involution r 7→ r◦ : Y−→7 X with
r◦(y, x) = r(x, y), and that every map f : X → Y may be considered a V -relation
f◦ : X−→7 Y with f◦(x, y) = > when f(x) = y, and f◦(x, y) = ⊥ (the bottom element)
otherwise. Unless |V | = 1 there is no danger in identifying f◦ with f ; its converse,
f ◦ : Y−→7 X, serves as the right adjoint to f◦ in the 2-category V -Rel, the 2-cells of
which are given by pointwise order: r ≤ r′ if and only if r(x, y) ≤ r′(x, y) for all x ∈ X,
y ∈ Y .

We must clarify what we mean by lax extension: T̂ assigns to every V -relation r the
V -relation T̂ r : TX−→7 TY subject to the axioms (A)-(F) below.

(A) Tf ≤ T̂ f , (Tf)◦ ≤ T̂ (f ◦),

(B) r ≤ r′ ⇒ T̂ r ≤ T̂ r′,

(C) T̂ s · T̂ r ≤ T̂ (s · r),

(D) T̂ T̂ r ·m◦X = m◦Y · T̂ r,

(E) r · e◦X ≤ e◦Y · T̂ r,

for all r, r′ : X−→7 Y , s : Y−→7 Z and f : X → Y . (A)-(E) mean equivalently that
T̂ : V -Rel→ V -Rel is a lax functor, m◦ : T̂ → T̂ T̂ a natural transformation (so that m
satisfies in particular the Beck-Chevalley condition as used in [4, 6]), and e◦ : T̂ → 1 a lax
natural transformation, extending T laxly (in the sense of (A)). They imply in particular
the identities

T̂ (s · f) = T̂ s · Tf, T̂ (g◦ · r) = (Tg)◦ · T̂ r, T̂1X = T̂ (e◦X) ·m◦X

(with g : Z → Y ), see [17, 19]. We require in addition:

(F) T̂ (h · r) = Th · T̂ r

(with h : Y → Z). We do not assume a priori that T̂ is flat, i.e., that T̂1X = 1TX , which
forces the inequalities (A) to become identities.

A (T, V )-category (X, a) is a set X with a V -relation a : TX−→7 X with 1X ≤ a · eX
and a · T̂ a ≤ a · mX . A (T, V )-functor f : (X, a) → (Y, b) is a map f : X → Y
with f · a ≤ b · Tf . This defines the (ordinary) category (T, V )-Cat. For T = I the
identity monad (identically extended to V -Rel), (T, V )-Cat is the category V -Cat, i.e.
the category of (small) categories enriched over the monoidal-closed category V .
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The forgetful functor

(T, V )-Cat // Set, (X, a) � // X, f � // f

is topological, hence (T, V )-Cat is complete and cocomplete. In particular, (1,>), with
1 = {∗} and >(w, ∗) = > for every w ∈ T1, is the terminal object, and the structure d
on the pullback of f : (X, a)→ (Z, c) and g : (Y, b)→ (Z, c)

X ×Z Y
q //

p

��

Y

g

��
X

f // Z

is given by
d(w, (x, y)) = a(Tp(w), x) ∧ b(Tq(w), y),

for any w ∈ T (X×Z Y ), (x, y) ∈ X×Z Y . The left adjoint to the forgetful functor assigns
to each set X the discrete structure

1]X = e◦X · T̂1X .

The monad T may be extended to become a monad of V -Cat which we again denote by
T = (T,m, e): for a V -category (X, a0), let T (X, a0) = (TX, T̂ a0). There is a comparison
functor

K : (V -Cat)T // (T, V )-Cat

which commutes with the underlying-set functors; it sends (X, a0 : X−→7 X,α : TX → X)
to (X, a0 · α : TX−→7 X) (see [20]). It is less trivial and requires the full extent of
hypothesis (D) to show that K has a left adjoint, which sends a (T, V )-category (X, a) to
(TX, â,mX) and a (T, V )-functor f to Tf , where

â := T̂ a ·m◦X

(see [11]). We will make use of the composite of this left adjoint with the forgetful functor
(V -Cat)T → V -Cat:

(T, V )-Cat // V -Cat, (X, a) � // (TX, â), f � // Tf.

2.1. Examples.

1. For V = 2 = {false ≤ true}, with ⊗ = &, an (I, 2)-category (X, a) is a set X equipped
with a (pre)order, that is a relation ≤ on X with

x ≤ x, (x ≤ y & y ≤ z) ⇒ x ≤ z,

for all x, y, z ∈ X (no anti-symmetry assumed!), while (I, 2)-functors are exactly mono-
tone maps. We write Ord for (I, 2)-Cat=2-Cat.
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If V = [0,∞] is the real half-line, ordered by the relation ≥, and ⊗ = + (with
v + ∞ = ∞ for every v ∈ [0,∞]), then an (I, [0,∞])-category (X, a) is a set X
equipped with a (generalized) metric a, that is a map a : X ×X → [0,∞] such that

0 ≥ a(x, x), a(x, y) + a(y, z) ≥ a(x, z),

for all x, y, z ∈ X, and (I, [0,∞])-functors are non-expansive maps ([13]). We write
Met for (I, [0,∞])-Cat = [0,∞]-Cat.

2. Let V = 2 and P = (P,m, e) be the power-set monad in Set, extended to Rel by

A(P̂ r)B ⇔ ∀x ∈ A ∃y ∈ B (x r y),

for r : X−→7 Y , A ⊆ X and B ⊆ Y . (Note that P̂ is a non-flat extension of P .) Then,
as shown in [17], (P, 2)-Cat is isomorphic to Ord. In particular, every ordered set
(X,≤) defines a (P, 2)-category (X,�) via

A � y :⇔ ∀x ∈ A (x ≤ y),

and conversely.

For every (X, a) ∈ (P, 2)-Cat, â : PX−→7 PX is defined by

A âB ⇔ ∃A ∈ PX (mX(A) = A & A (P̂ a)B)

⇔ ∃A ∈ PX (
⋃
A = A & ∀A′ ∈ A ∃y ∈ B (A′ � y))

⇔ ∀x ∈ A ∃y ∈ B (x ≤ y).

3. Let V = 2 and F = (F,m, e) be the filter monad on Set, extended to Rel by putting

x (F̂ r) y :⇔ ∀B ∈ y ∃A ∈ x ∀x ∈ A ∃y ∈ Y (x r y),

for a relation r : X−→7 Y , x ∈ FX, y ∈ FY . As shown in [17], (F, 2)-Cat is isomorphic
to Top.

4. When restricted to ultrafilters, F̂ gives the lax extension Û of the ultrafilter Set-monad
U = (U,m, e) to Rel which may be described by:

x (Ûr) y ⇔ ∀A ∈ x, B ∈ y ∃x ∈ A, y ∈ B (x r y),

for a relation r : X−→7 Y and x ∈ UX, y ∈ UY . As shown by Barr [1], the category
(U, 2)-Cat is isomorphic to the category Top of topological spaces and continuous
maps (see [3, 7] for details).

If (X, a) is an (U, 2)-category, then the ordered set (UX, â) has the following structure:

x â y ⇔ ∀A ⊆ X, A closed (A ∈ y ⇒ A ∈ x)
⇔ ∀A ⊆ X, A open (A ∈ x ⇒ A ∈ y),
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for all x, y ∈ UX.

In fact, for any V , U has a flat extension to V -Rel given by:

(Ûr)(x, y) :=
∧

A∈x, B∈y

∨
x∈A, y∈B

r(x, y),

for a relation r : X−→7 Y , x ∈ UX, y ∈ UY .

When V = [0,∞] is the real half-line, it was shown in [3] that (U, [0,∞])-Cat is
isomorphic to the category App of approach spaces and non-expansive maps [14]. The
structure â, for a given approach space (X, a), will be studied in Section 7.

5. Consider now the free-monoid monad L = (L,m, e) on Set, (flatly) extended to Rel
by putting

(x1, . . . , xn) (L̂r) (y1, . . . , ym) ⇔ n = m & xi r yi, for all i = 1, · · · , n,

for r : X−→7 Y , (x1, . . . , xn) ∈ LX, (y1, . . . , ym) ∈ LY . Then an (L, 2)-category (X, a)
is a multi-ordered set, that is, the relation a : LX−→7 X is such that

(x) a x, ((x1
1, . . . , x

1
n1

), . . . , (xl1, . . . , x
l
nl

)) (L̂a) (y1, . . . , ym) a z ⇒ (x1
1, . . . , x

l
nl

) a z.

6. For a monoid (H,µ, η), we consider the Set-monad H = (H × −,m, e), with mX =
µ× 1X and eX = 〈η, 1X〉. H has a flat extension to Rel given by

(α, x) (Ĥr) (β, y) ⇔ α = β & x r y,

for any r : X−→7 Y , (α, x) ∈ H ×X and (β, y) ∈ H × Y . Writing x α // y instead of
(α, x) a y for a relation a : H × X−→7 X, an (H, 2)-category (X, a) can be seen as an
H-labeled graph such that

x
η // x , x

α // y
β // z ⇒ x

β·α // z ,

for all x, y, z ∈ X and α, β ∈ H. An (H, 2)-functor f : (X, a) → (Y, b) is a map
f : X → Y satisfying the condition:

x
α // y ⇒ f(x) α // f(y) .

For each H-labeled graph (X, a), the (pre)order â induced on H ×X by a is given by:

(α, x) â (β, y) ⇔ ∃γ ∈ H (α = β · γ & x
γ // y ).
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3. Proper (T, V )-functors

A (T, V )-functor f : (X, a)→ (Y, b) is proper if f · a = b · Tf . In order to be able to talk
about fibres of f , we should first clarify that very term. For each y ∈ Y , the assignment
∗ 7→ y defines a (T, V )-functor y : (1, 1]) → (Y, b), where 1] = e◦1 · T̂11 is the discrete
structure on 1 = {∗}; explicitly, for w ∈ T1,

1](w, ∗) = T̂11(w, e1(∗)).

By fibre of f on y we mean the pullback (f−1y, ã)→ (1, 1]) of f along the (T, V )-functor
y : (1, 1]) → (Y, b). We note that (f−1y, ã) → (X, a) is a monomorphism, but in general
not regular, i.e., ã does not need to be the restriction of a : TX×X → V to T (f−1y)×f−1y:

ã(x, x) = a(x, x) ∧ 1](T !(x), ∗) (where ! : f−1y → 1)

= a(x, x) ∧ T̂1X(T !(x), e1(∗)),

for every x ∈ T (f−1y) and x ∈ f−1y.
Proper (T, V )-functors have proper fibres, since:

3.1. Proposition. [See [4]] Proper maps are stable under pullback in (T, V )-Cat.

Proof. Consider the pullback diagram of Section 2, with f proper. Then

b · Tq = (b ∧ b) · Tq
≤ ((g◦ · c · Tg) ∧ b) · Tq (g · b ≤ c · Tg ⇒ b ≤ g◦ · g · b ≤ g◦ · c · Tg)
= (g◦ · c · Tg · Tq) ∧ (b · Tq)
= (g◦ · c · Tf · Tp) ∧ (b · Tq)
= (g◦ · f · a · Tp) ∧ (b · Tq) (f proper)
= (q · p◦ · a · Tp) ∧ (b · Tq) (the diagram is a pullback)
= q · ((p◦ · a · Tp) ∧ (q◦ · b · Tq)) (V cartesian closed)
= q · d.

We can now prove a first characterization theorem.

3.2. Theorem. A (T, V )-functor f : (X, a) → (Y, b) is proper if, and only if, all of its
fibres are proper, and the V -functor Tf : (TX, â)→ (TY, b̂) is proper.

Proof. If f is proper, from b · Tf = f · a one obtains

b̂ · Tf = T̂ b ·m◦Y · Tf = T̂ b · T̂ T̂ f ·m◦X (D)

≤ T̂ (b · T̂ f) ·m◦X (C)

≤ T̂ (b · Tf) ·m◦X (∗)
= T̂ (f · a) ·m◦X
= Tf · T̂ a ·m◦X = Tf · â; (F)
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here (*) comes about since

b · T̂ f = b · T̂1Y · Tf = b · T̂ (e◦Y ) ·m◦Y · Tf
≤ b · T̂ b ·m◦Y · Tf (1Y ≤ b · eY ⇒ e◦Y ≤ b · eY · e◦Y ≤ b)
≤ b ·mY ·m◦Y · Tf ≤ b · Tf.

Conversely, assume all fibres of f to be proper in (T, V )-Cat and Tf to be proper in
V -Cat. Since

b = b · e◦TY ·m◦Y ≤ e◦Y · T̂ b ·m◦Y = e◦Y · b̂,
for all x ∈ TX, y ∈ Y one obtains:

b · Tf(x, y) = b(Tf(x), y)

≤ b̂(Tf(x), eY (y))

=
∨

z∈(Tf)−1(eY (y))

â(x, z) (Tf proper)

=
∨

z∈(Tf)−1(eY (y))

(T̂ a ·m◦X)(x, z)

=
∨

z∈(Tf)−1(eY (y))

∨
X∈m−1

X x

T̂ a(X, z)⊗>

Since tautness of T guarantees that the diagram

T (f−1y) T ! //

��

T1

Ty

��
TX

Tf // TY

is a pullback, every z ∈ (Tf)−1(eY (y)) = (Tf)−1(Ty(e1(∗))) satisfies z ∈ T (f−1y) and
T !(z) = e1(∗). Using propriety of (f−1y, ã)→ (1, 1]) one gets:∨

z∈(Tf)−1(eY (y))

∨
X∈m−1

X x

T̂ a(X, z)⊗> ≤
∨

z∈(T !)−1(e1(∗))

∨
X∈m−1

X x

T̂ a(X, z)⊗
∨

x∈f−1y

ã(z, x)

≤
∨

z∈(T !)−1(e1(∗))

∨
X∈m−1

X x

∨
x∈f−1y

T̂ a(X, z)⊗ a(z, x)

≤
∨

X∈m−1
X x

∨
x∈f−1y

a(mX(X), x)

≤
∨

x∈f−1y

a(x, x)

= (f · a)(x, y).

Hence, f is proper.
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Next we show that propriety of fibres trivializes whenever the lax natural transforma-
tion e◦ : T̂ → 1 is strict.

3.3. Proposition. If e◦ : T̂ → 1 is a natural transformation, then any (T, V )-functor
has proper fibres.

Proof. For a (T, V )-functor f : (X, a) → (Y, b) and y ∈ Y , we must show that the
diagram

T (f−1y) T ! //

_ã
��

T1

_
1]

��
f−1y

! // 1

commutes, and for that it suffices to consider x ∈ T (f−1y) with

1](T !(x), ∗) = T̂1(T !(x), e1(∗)) > ⊥

and show ã(x, ∗) = >. From the commutativity of the diagram

T (f−1y) T ! //

_e◦

��

T1 �̂T1 //

_e◦1
��

T1

_e◦1
��

f−1y ! // 1 1 // 1

we first obtain

⊥ < e◦1 · T̂1 · T !(x, ∗) = e◦1 · T !(x, ∗) = ! · e◦(x, ∗) =
∨

x∈f−1y

e◦(x, x) = >,

and then
! · ã(x, ∗) ≥ ! · e◦(x, x) = >.

3.4. Corollary. If e◦ : T̂ → 1 is a natural transformation, then a (T, V )-functor f :
(X, a)→ (Y, b) is proper if, and only if, the V -functor Tf is proper.

3.5. Remark. This Corollary shows that, in Examples 2.1.4 and 2.1.5, propriety of
(T, V )-functors can be characterized at the V -categorical level. However our main exam-
ple, the ultrafilter monad, shows that the hypothesis that e◦ be a natural transformation
is essential for the validity of the Corollary.

The notion of proper morphism leads to a natural notion of compactness: a (T, V )-
category (X, a) is compact whenever !X : (X, a) → (1,>) is proper. When T1 ∼= 1, so
that the generator (1, 1]) coincides with the terminal object (1,>), (X, a) is compact if,
and only if, the only fibre of !X : (X, a)→ (1,>) is proper. In general we can prove:
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3.6. Proposition. If (X, a) is a compact (T, V )-category, then the fibre of the (T, V )-
functor !X : (X, a)→ (1,>) is proper. Furthermore, if > is the discrete structure 1] on 1
(in particular, when T1 ∼= 1), the converse is true.

Proof. Let (X, a) be compact and t : (X, ã) → (1, 1]) be the fibre of !X along ∗ ∈ 1.
Then, for any x ∈ TX, since V is a frame,

t · ã(x, x) =
∨
x∈X

ã(x, x) =
∨
x∈X

(a(x, x) ∧ 1](T !(x), ∗)) = > ∧ 1](T !(x, ∗)) = 1](Tt(x), ∗),

so that t is proper.

3.7. Corollary. If > is the discrete structure on 1, then the following conditions are
equivalent, for a (T, V )-functor f :

(i) f is proper;

(ii) Tf is proper and f has compact fibres.

3.8. Corollary. If > is the discrete structure on 1 and e◦ a natural transformation,
then every (T, V )-category is compact.

We point out that, when the lax extension T̂ is flat, > = 1] if and only if T1 ∼= 1,
since flatness of T̂ gives 1](x, ∗) = e◦1(x, ∗) = > only if x = e1(∗). In this case it is easily
checked that T must be the identity monad (see [6]).

We will be able to demonstrate easily that Corollary 3.7 generalizes the characteri-
zation of the proper maps in Top as the closed maps with compact fibres once we have
interpreted the condition that “Tf be proper” to mean equivalently that “f be closed”.
To this end, the next section introduces a suitable notion of closedness.

4. Closed (T, V )-functors

Recall that an ordered set X is constructively completely distributive (ccd) if there are
adjunctions

⇓ a
∨
a ↓: X −→ DownX

where DownX is the lattice of down-closed sets in X, ordered by inclusion (cf. [21]).
Writing x� a instead of x ∈ ⇓ a, one then has

x� a ⇔ ∀A ⊆ X (a ≤
∨

A ⇒ ∃y ∈ A (x ≤ y)),

and a =
∨
{x ∈ X |x� a}.

Throughout the remainder of the paper, we assume V to be ccd. Fixing v ∈ V , for a
(T, V )-category (X, a) and A ⊆ X we let

A(v) := {x ∈ X |
∨
x∈TA

a(x, x) ≥ v}.
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For a (T, V )-functor f : (X, a)→ (Y, b) one then has⋂
u�v

f(A(u)) ⊆ f(A)(v).

Indeed, if y ∈ f(A(u)) for every u � v in V , so that we can write y = f(x) for some
x ∈ A(u), we obtain

u ≤
∨
x∈TA

a(x, x) ≤
∨
x∈TA

b(Tf(x), y)

and, with Tf(TA) = T (f(A)) (the Axiom of Choice granted), v ≤
∨

y∈T (f(A))

b(y, y).

We call f : (X, a)→ (Y, b) closed if⋂
u�v

f(A(u)) = f(A)(v)

for all v ∈ V , A ⊆ X.

4.1. Proposition. Every proper (T, V )-functor is closed, and the converse statement
holds in V -Cat (i.e., when T = I).

Proof. Let f : (X, a) → (Y, b) in (T, V )-Cat be proper, and y ∈ f(A)(v) for v ∈ V , so
that

v ≤
∨

y∈T (f(A))

b(y, y) =
∨
x∈TA

b(Tf(x), y) ≤
∨
x∈TA

∨
x∈f−1y

a(x, x).

For every u� v one then obtains x ∈ TA, x ∈ f−1y with u ≤ a(x, x), and y ∈
⋂
u�v

f(A(u))

follows.
Let now T = I and f be closed. For all x ∈ X, y ∈ Y , with v := b(f(x), y) and

A := {x}, from

y ∈ f(A)(v) ⊆
⋂
u�v

f(A(u))

one obtains for every u� v some z ∈ f−1y with a(x, z) ≥ u. Consequently,

v = b(f(x), y) ≤
∨

z∈f−1y

a(x, z),

as desired.
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4.2. Corollary. For every (T, V )-functor f : (X, a) → (Y, b), the V -functor Tf :
(TX, â)→ (TY, b̂) is proper if and only if it is closed.

4.3. Remark. Following the appearance of a preliminary version of this paper Solovyov
[18] showed that f : (X, a)→ (Y, b) is closed if, and only if,

∀A ⊆ X (b · Tf · TiA· !◦TA ≤ f · a · TiA· !◦TA),

with iA : A ↪→ X, !TA : TA→ 1 denoting the obvious maps. This characterization makes
the implication (proper⇒ closed) trivial and makes it possible to obtain the results of the
following two sections without the blanket assumption that V be completely distributive.

5. The Kuratowski-Mrówka Theorem

In order to be able to characterize compactness of a (T, V )-category (X, a) by the condition

(KM) the projection X × Z → Z along any (T, V )-category (Z, c) is closed,

one needs to provide suitable test objects (Z, c) that can be used in the sufficiency proof
of the condition. For that purpose, using a particular instance of a construction given in
[5], for every set X and x ∈ TX we consider the set

Z := X ∪ {ω} (for some ω 6∈ X)

and the V -relation c : TZ−→7 Z with

c(z, z) =

{
> if z = eZ(z) or (z = x and z = ω),

⊥ else,

for all z ∈ TZ, z ∈ Z, assuming TX ⊆ TZ (and TTX ⊆ TTZ) without loss of generality.
In order to determine when c will provide Z with the structure of a (T, V )-category, we
highlight two convenient properties of the V -relation c:

1. With i denoting the inclusion map X ↪→ Z, c satisfies i◦ · c = e◦X · (Ti)◦. Consequently,
when T̂ is flat, (Ti)◦ · T̂ c = (TeX)◦ · (TTi)◦ and in particular

T̂ c(Z, z) > ⊥ ⇒ Z = TeX(z) (1)

for all Z ∈ TTZ, z ∈ TX.

2. The V -relation c has finite fibres, that is:

c◦(z) = {z ∈ TZ | c(z, z) > ⊥}
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is finite for all z ∈ Z. Consequently, if the lax natural transformation e◦ : T̂ → 1 is
finitely strict, so that

TX �̂Tr //

_e◦X
��

TY
_e◦Y
��

X �r // Y

commutes strictly whenever r has finite fibres, then e◦Z · T̂ c = c · e◦TZ, and in particular

T̂ c(Z, eZ(z)) > ⊥ ⇒ ∃w ∈ TZ (Z = eTZ(w) & c(w, z) = >) (2)

for all Z ∈ TTZ, z ∈ Z.

Note that for the ultrafilter monad e◦ is finitely strict although, as mentioned in Remark
3.5, it is not a strict natural transformation.

5.1. Proposition. If T̂ is flat and e◦ finitely strict, then (Z, c) is a (T, V )-category.

Proof. It suffices to show

T̂ c(Z, z)⊗ c(z, z) > ⊥ ⇒ c(mZ(Z), z) = >

for all Z ∈ TTZ, z ∈ TZ, z ∈ Z. The premiss implies T̂ c(Z, z) > ⊥ and c(z, z) = >. If z ∈
TX, one obtains Z = TeX(z) = TeZ(z) from (1) and therefore c(mZ(Z), z) = c(z, z) = >.
If z 6∈ TX, since c(z, z) = >, we must have z = ω and z = eZ(ω), and (2) gives w ∈ TZ
with Z = eTZ(w), and we may conclude again c(mZ(Z), z) = c(w, z) = >.

5.2. Theorem. Let T̂ be flat and e◦ : T̂ → 1 be finitely strict. Then a (T, V )-category
(X, a) is compact if, and only if, (KM) holds.

Proof. As a pullback of X → 1, the second projection q : X × Z → Z is proper for
every (T, V )-category (Z, c) when (X, a) is compact, and therefore closed. Conversely, let
(X, a) be such that (KM) holds. We must now show∨

x∈X

a(x, x) = >,

for every x ∈ TX. For Z = X ∪ {ω} and c as defined above, one considers the set
∆X = {(x, x) |x ∈ X} ⊆ X × Z. Since q(∆X) = X ⊆ Z, from c(x, ω) = > with x ∈ TX
one obtains ω ∈ q(∆X)(>), hence

ω ∈
⋂
u�>

q(∆
(u)
X )

by hypothesis. Consequently, for all u � > one can find x ∈ X with (x, ω) ∈ ∆
(u)
X , that

is (using the product structure of X × Z):∨
w∈T∆X

a(Tp(w), x) ∧ c(Tq(w), ω) ≥ u,
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with p : X×Z → X the first projection. For any w ∈ T∆X one has Tq(w) ∈ TX, so that
when (without loss of generality) u > ⊥, we must have c(Tq(w), ω) = > with Tq(w) = x,
and then also Tp(w) = x. Hence, for all ⊥ < u � > we have found an x ∈ X with
a(x, x) ≥ u, which implies ∨

x∈X

a(x, x) = >,

as desired.

6. Characterization of propriety via closure

We now have all the ingredients that allow for a characterization of propriety of a (T, V )-
functor f : (X, a) → (Y, b) in terms of closure, making essential use of the V -functor
Tf : (TX, â)→ (TY, b̂) again. V continues to be constructively completely distributive.

6.1. Theorem. Let T1 ∼= 1, T̂ be flat and e◦ be finitely strict. Then the following
conditions are equivalent for a (T, V )-functor f :

(i) f is proper;

(ii) every pullback of f is closed, and Tf is closed;

(iii) all fibres of f are compact, and Tf is closed.

Proof. (i) ⇒ (ii): From Theorem 3.2 and Propositions 3.1 and 4.1. (ii) ⇒ (iii): From
Theorem 5.2. (iii) ⇒ (i): From Corollary 3.7.

6.2. Remark.

(1) Without the hypothesis T1 ∼= 1, stably-closed maps need not be proper (see 7.2), and
proper maps may have non-compact fibres (see 7.6).

(2) In Theorem 6.1 we do not know whether the condition that Tf be closed may be
removed from (ii) or be replaced in (iii) by the condition that f be closed.

7. Examples

7.1. V -categories (See [12].) By Corollary 3.8 every V -category is compact, and by
Corollary 4.2 closed V -functors are exactly the proper ones. In case V = 2, for a monotone
map f : (X,≤)→ (Y,≤),

f proper ⇔ ∀x ∈ X (↑Y f(x) ⊆ f(↑X x))

⇔ ∀A ⊆ X (↑Y f(A) ⊆ f(↑X A)),

with ↑X A = {x′ ∈ X | ∃x ∈ A : x ≤ x′}.
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When V = [0,∞], for a non-expansive map f : (X, a)→ (Y, b),

f proper ⇔ ∀x ∈ X, y ∈ Y b(f(x), y) = inf{a(x, x′) |x′ ∈ X, f(x′) = y}
⇔ ∀A ⊆ X, y ∈ Y b(f(A), y) = inf{a(A, x′) |x′ ∈ X, f(x′) = y},

with a(A, x′) = inf
x∈A

a(x, x′).

7.2. Ordered sets as (P, 2)-categories (See [12].) Consider the lax extension P̂ of
the power-set monad as described in Example 2.1.2. Then a monotone map f : (X,�)→
(Y,�) is proper if, and only if, for all A ⊆ X,

↑↑Y f(A) ⊆ f(↑↑XA), (3)

where ↑↑XA = {x ∈ X |A � x}. Taking A = ∅ in (3) one sees immediately that proper
maps are surjective, while putting A = {x} shows that they are (I, 2)-proper. Here
closedness of f is equivalent to surjectivity since, for any A ⊆ X, A(>) = X. So, stably-
closed (P, 2)-functors need not be proper. Note, however, that neither of the hypotheses
of Theorem 6.1 is satisfied here.

7.3. Topological spaces as (F, 2)-categories If F̂ is the lax (non-flat) extension of
F considered in Example 2.1.3, an (F, 2)-functor is proper if, and only if, it is closed (in
the ordinary topological sense) and every fibre has a largest element with respect to the
underlying (pre)order of X (that is, x ≤ x′ when eX(x) → x′): see [12]. In particular,
proper (F, 2)-functors must be surjective stably-closed maps.

7.4. Topological and approach spaces as (U, V )-categories For an (U, V )-
category (X, a) and x, y ∈ UX one has, by definition,

â(x, y) =
∨

X∈m−1
X x

Ûa(X, y) =
∨

X∈m−1
X x

∧
A∈X, B∈y

∨
z∈A, y∈B

a(z, y).

Using the hypothesis that V is ccd, we first show that â(x, y) can be written more conve-
niently, provided that V is linearly ordered.

7.5. Lemma. If the order of V is linear, then â(x, y) =
∨
{u ∈ V | ∀A ∈ x (A(u) ∈ y)}.

Proof. For “≤”, consider any X ∈ UUX with mX(X) = x. It suffices to show that every

u�
∧

A∈X, B∈y

∨
z∈A, y∈B

a(z, y) has the property that A(u) ∈ y for all A ∈ x. But if for A ∈ x

we assume A(u) 6∈ y, so that B := X \ A(u) ∈ y, considering

A := A] = {z ∈ UX : A ∈ z} ∈ X (since A ∈ x)

we would conclude
u�

∨
z∈A, y∈B

a(z, y)



342 MARIA MANUEL CLEMENTINO AND WALTER THOLEN

and therefore A(u) ∩B 6= ∅, a contradiction.

For “≥”, consider v �
∨
{u ∈ V | ∀A ∈ x (A(u) ∈ y)} in V . For all A ∈ x, B ∈ y, the

ultrafilter y contains A(v) ∩B 6= ∅, so that v ≤
∨
z∈A]

a(z, y) for some y ∈ B, and

v ≤
∧
B∈y

∨
z∈A], y∈B

a(z, y)

follows for every A ∈ x. Now,

F = {A ⊆ UX |A] ⊆ A for some A ∈ x}

is a filter on UX, and

J := {B ⊆ UX | v >
∧
B∈y

∨
z∈B, y∈B

a(z, y)}

is an ideal on UX that is disjoint from F. Here, in order to establish closure of J under
binary union we use the linearity of the order of V , as follows: If B and C belong to J, then

v >
∨

z∈B, y∈B

a(z, y) and v >
∨

z∈C, y∈C

a(z, y) for some B,C ∈ y, hence

v >

( ∨
z∈B, y∈B

a(z, y)

)
∨

( ∨
z∈C, y∈C

a(z, y)

)

≥
∨

z∈B∪C, y∈B∩C

a(z, y),

and then
v >

∧
D∈y

∨
z∈B∪C, y∈D

a(z, y)

since B ∩ C belongs to y. Now, the filter F must be contained in an ultrafilter X which
does not meet the ideal J. By definition of F one has x = mX(X), and by definition of J

v ≤
∧

A∈X, B∈y

∨
z∈A, y∈B

a(z, y) ≤ â(x, y)

follows.

7.6. Proposition. If V is linearly ordered, for an (U, V )-functor f : (X, a)→ (Y, b) one
has:

f closed ⇔ Uf closed.
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Proof. As a V -functor, Uf is closed if, and only if, it is proper. We must show that
propriety of Uf is equivalent to closedness of f . First let f be closed. For x ∈ UX,

y ∈ UY , we must show b̂(Uf(x), y) ≤
∨

z∈(Uf)−1y

â(x, z), and for that, by Lemma 7.1, it

suffices to show that, whenever u� v in V with B(v) ∈ y for all B ∈ Uf(x), one has some
z ∈ UX with Uf(z) = y and A(u) ∈ z for all A ∈ x. But since f is closed, for every A ∈ x
one has f(A)(v) ⊆ f(A(u)) ∈ y. Therefore, any ultrafilter z on X containing the filterbase
{A(u) |A ∈ x} disjoint from the ideal {C ⊆ X | f(C) 6∈ y} will be as required.

Conversely, let Uf be proper and y ∈ f(A)(v) with A ⊆ X, v ∈ V . For every u � v
we must show y ∈ f(A(u)). Since every ultrafilter y on Y containing f(A) is the image of
an ultrafilter x on X containing A, one has:

u� v ≤
∨

y∈Uf(A)

b(y, y)

=
∨

y∈Uf(A)

b̂(y, eY (y))

=
∨

x∈UA

b̂(Uf(x), eY (y))

=
∨

x∈UA

∨
x′∈(Uf)−1(eY (y))

â(x, x′)

=
∨

x∈UA

∨
x′∈(Uf)−1(eY (y))

∨
{w ∈ V | ∀B ∈ x (B(w) ∈ x′)}.

Hence there exist x ∈ UA, x′ ∈ (Uf)−1(eY (y)) and w ≥ u such that B(w) ∈ x′ whenever
B ∈ x. In particular, A(u) ∈ x′, and so f(A(u)) ∈ Uf(x′) = eY (y), that is y ∈ f(A(u)).

Since U1 = 1, Û is flat and e◦ is finitely strict (although not strict in general), Theorem
6.1 gives:

7.7. Corollary. If V is linearly ordered, for an (U, V )-functor f : (X, a) → (Y, b) the
following conditions are equivalent:

(i) f is proper;

(ii) f is stably closed;

(iii) f is closed with compact fibres.

In case V = 2 this Corollary recovers the classical results for Top, while in case
V = [0,∞] it recovers the results obtained in [8].
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7.8. Multi-ordered sets as (L, 2)-categories The extension L̂ of the free-monoid
monad given in Example 2.1.5 is flat, with L1 6∼= 1, and e◦ a strict natural transformation.
Hence, by Corollary 3.4, an (L, 2)-functor f : (X, a) → (Y, b) is proper whenever Lf is
closed. Closedness of f does not imply propriety. In fact, an (L, 2)-functor f : (X, a) →
(Y, b) is:

1. proper if, and only if, whenever (f(x1), . . . , f(xn)) b y, there exists x ∈ f−1y such
that (x1, . . . , xn) a x;

2. closed if, and only if, whenever (f(x1), . . . , f(xn)) b y, there exists a list (x′1, . . . , x
′
m),

with {x′1, · · · , x′m} ⊆ {x1, · · · , xn} and x ∈ f−1y such that (x′1, . . . , x
′
m) a x.

7.9. Labeled graphs as (H, 2)-categories For the flat extension Ĥ of H =
(H ×−,m, e) (H a monoid) of Example 2.1.6, we have:

1. Since e◦ is a natural transformation, every (H, 2)-functor f : (X, a) → (Y, b) has
proper fibres; hence,

f proper ⇔ Hf proper ⇔ Hf closed.

2. Although propriety of fibres is trivial, compactness is not: for (X, a) an H-labeled
graph,

(X, a) compact ⇔ ∀α ∈ H, x ∈ X ∃x′ ∈ X ( x α // x′ ).

3. Closed (H, 2)-functors need not be proper: for an (H, 2)-functor f : (X, a)→ (Y, b),

f proper⇔ ∀α ∈ H, x ∈ X, y ∈ Y ( f(x) α // y ⇒ ∃x′ ∈ f−1y ( x α // x′ )),

f closed⇔ ∀α ∈ H, x ∈ X, y ∈ Y ( f(x) α // y ⇒ ∃x′ ∈ f−1y ∃β ∈ H ( x
β // x′ )).
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[6] M.M. Clementino, D. Hofmann, G. Janelidze, The monads of classical algebra are seldom
weakly cartesian, DMUC Preprint 12-46, University of Coimbra 2012.

[7] M.M. Clementino, W. Tholen, Metric, Topology and Multicategory – A Common Approach,
J. Pure Appl. Algebra 179 (2003) 13–47.

[8] E. Colebunders, R. Lowen, P. Wuyts, A Kuratowski-Mrówka theorem in approach theory,
Topology Appl. 153 (2005), 756–766.

[9] R. Engelking, General Topology, revised and completed edition (Heldermann Verlag, Berlin
1989).

[10] D. Hofmann, Topological theories and closed objects, Adv. Math. 215 (2007) 789-824.

[11] D. Hofmann, Dualities for distributive spaces, arxiv: math.CT/1009.3892

[12] D. Hofmann, W. Tholen, Lax algebra meets topology, Topology Appl. 159 (2012), 2434–
2452.

[13] F.W. Lawvere, Metric spaces, generalized logic, and closed categories, Rend. Sem. Mat. Fis.
Milano 43 (1973) 135–166. Reprints in Theory and Applications of Categories 1 (2002) 1–
37.

[14] R. Lowen, Approach Spaces: The missing link in the Topology-Uniformity-Metric Triad,
Oxford Mathematical Monographs (Oxford University Press, Oxford 1997).

[15] E. Manes, A triple theoretic construction of compact algebras, in: Lecture Notes in Math.
80 (Springer, Berlin 1969) pp. 91-118.

[16] S. Mrówka, Compactness and product spaces, Colloq. Math. 7 (1959), 19–22.

[17] G. Seal, Canonical and op-canonical lax algebras, Theory Appl. Categ. 14 (2005), 221-243.

[18] S. Solovyov, On a lax-algebraic characterization of closed maps. Preprint, Masaryk Univer-
sity, Brno (Czech Republic) 2012.

[19] W. Tholen, Lax-algebraic Methods in General Topology. Lecture notes.
http://www.math.yorku.ca /∼tholen (2007)

[20] W. Tholen, Ordered topological structures, Topology Appl. 156 (2009), 2148-2157.

[21] R. Wood, Ordered sets via adjunction, Categorical Foundations, pp. 5-47, Encyclopedia
Math. Appl., 97, Cambridge Univ. Press, Cambridge, 2004.



346 MARIA MANUEL CLEMENTINO AND WALTER THOLEN

CMUC, Department of Mathematics,
University of Coimbra,
3001-454 Coimbra, Portugal

Department of Mathematics and Statistics,
York University,
Toronto, ON M3J 1P3, Canada
Email: mmc@mat.uc.pt

tholen@mathstat.yorku.ca

This article may be accessed at http://www.tac.mta.ca/tac/ or by anonymous ftp at
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/27/14/27-14.{dvi,ps,pdf}



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.
Full text of the journal is freely available in .dvi, Postscript and PDF from the journal’s server at
http://www.tac.mta.ca/tac/ and by ftp. It is archived electronically and in printed paper format.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For in-
stitutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors The typesetting language of the journal is TEX, and LATEX2e
strongly encouraged. Articles should be submitted by e-mail directly to a Transmitting Editor. Please
obtain detailed information on submission format and style files at http://www.tac.mta.ca/tac/.

Managing editor Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor Michael Barr, McGill University: barr@math.mcgill.ca

Assistant TEX editor Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors
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