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ON ACTIONS AND STRICT ACTIONS
IN HOMOLOGICAL CATEGORIES

MANFRED HARTL AND BRUNO LOISEAU

Abstract. Let G be an object of a finitely cocomplete homological category C. We
study actions of G on objects A of C (defined by Bourn and Janelidze as being algebras
over a certain monad TG), with two objectives: investigating to which extent actions
can be described in terms of smaller data, called action cores; and to single out those
abstract action cores which extend to actions corresponding to semi-direct products of
A and G (in a non-exact setting, not every action does). This amounts to exhibiting a
subcategory of the category of the actions of G on objects A which is equivalent with
the category of points in C over G, and to describing it in terms of action cores. This
notion and its study are based on a preliminary investigation of co-smash products, in
which cross-effects of functors in a general categorical context turn out to be a useful
tool. The co-smash products also allow us to define higher categorical commutators,
different from the ones of Huq, which are not generally expressible in terms of nested
binary ones. We use strict action cores to show that any normal subobject of an object E
(i.e., the equivalence class of 0 for some equivalence relation on E in C) admits a strict
conjugation action of E. If C is semi-abelian, we show that for subobjects X, Y of
some object A, X is proper in the supremum of X and Y if and only if X is stable
under the restriction to Y of the conjugation action of A on itself. This also amounts
to an alternative proof of Bourn and Janelidze’s category equivalence between points
over G in C and actions of G in the semi-abelian context. Finally, we show that the
two axioms of an algebra which characterize G-actions are equivalent with three others
ones, in terms of action cores. These axioms are commutative squares involving only
co-smash products. Two of them are associativity type conditions which generalize the
usual properties of an action of one group on another, while the third is kind of a higher
coherence condition which is a consequence of the other two in the category of groups,
but probably not in general. As an application, we characterize abelian action cores,
that is, action cores corresponding to Beck modules; here also the coherence condition
follows from the others.

1. Introduction

For two objects G and A of a category C, an action of G on A is an algebra over the
monad induced by the adjunction between the category of points over G and C ([Bourn &
Janelidze 1998], [Borceux, Janelidze & Kelly 2005]). When the category is semi-abelian,
the right adjoint of this adjunction is monadic, hence this induces an equivalence of
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categories between the category of points and the category of actions.
In this paper, we further study this notion of action. We generally work in the context

of finitely cocomplete homological categories, which are of special interest in the theory
of square ring(oid)s and their modules initiated in [Baues, Hartl & Pirashvili 1997], as,
for example, certain categories of filtered objects are of this type, see Example 3.9. Some
results, however, are valid in a wider context (notably in Section 2), while others in
addition require exactness, i.e. only hold in semi-abelian categories. We show that the
essential information of an action ξ of an object G on an object A is contained in the
restriction of ξ to the subobject A �G of TG(A). More precisely, A �G is the kernel of the
canonical map from the sum A + G to the product A × G, or equivalently, from TG(A)
to A (we here adopt the notation from the related (but independent) article [Mantovani
& Metere 2010], and extend it to general co-smash products, unlike in [Hartl & Van der
Linden 2013] where the latter are denoted by ⊗). Therefore, we study the morphisms
ψ : A � G → A which can be extended to actions ξ : TGA → A. We call such objects
action cores. We use them to determine a subcategory of the category of G-actions which
is such that the comparison functors restrict to an equivalence between this category and
the category of points on G. This problem has been independently studied in [Martins-
Ferreira & Sobral 2012] and led to the notion of strict action; for this reason, we call strict
action cores the morphisms ψ : A � G → A which extend to such strict actions, and we
characterize them.

Moreover, we construct a conjugation action (core) of an object on any normal sub-
object, which is strict, and formalize the fact that the semi-direct product along some
action can be viewed as its universal transformation into a conjugation action.

More generally, we define a notion of one subobject normalizing another one, in terms
of the conjugation action, which is equivalent to the latter being proper in the supremum
of both when C is semi-abelian (Theorem 4.13). This also amounts to a formula for the
normal closure of a subobject in the join with another one.

These facts lead to many applications: e.g., based on a detailed comparison of action
cores with TG-algebras, they allow to reprove the equivalence between these algebras and
points over G when C is semi-abelian without using Beck’s criterion. More applications
are given in a thorough study of internal crossed modules in [Hartl & Van der Linden 2013]
and in forthcoming further work, and of higher commutators of subobjects as introduced
in this paper (Definition 4.7), in [Hartl - in preparation]. For the notion of internal crossed
modules, we refer to [Janelidze 2003].

All these applications are based on two observations: the term A � G above comes
as the binary case of co-smash products of any length originally defined in [Carboni &
Janelidze 2003], and co-smash products of different length are interrelated in various
ways: on the one hand, we recall the folding operations defined in [Hartl & Van der Linden
2013] and introduce similar compression operations here; both are crucial in clarifying the
relation between actions and action cores. On the other hand, higher co-smash products
can be constructed from lower ones by means of cross-effects of functors : this concept is
fundamental in algebraic topology and was introduced in [Eilenberg & Mac Lane 1954] for
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functors between abelian categories, and adapted to functors with values in the category
of groups in [Baues & Pirashvili 1999], see also [Hartl & Vespa 2011], [Hartl & Van der
Linden 2013], [Hartl, Pirashvili & Vespa 2012] and [Hartl - in preparation] for further
developments. In this paper we only define binary cross-effects and study some of their
basic properties, in the respectively weakest possible contexts.

We also use the co-smash products machinery to cut the axioms of an action core
(hence of an action) in three pieces, two of which again look like associativity conditions,
on the terms (A � G) � A and (A � G) � G, and have nice interpretations in the category
of groups: the first one says that G acts by endomorphisms of A, and the second then
expresses the usual associativity condition for the action of G on the underlying set of A.
Thus the third condition is void in the category of groups, but probably not in general; it
involves a ternary co-smash product and is of the type of the coherence conditions which
also appeared in the description of internal crossed modules in [Hartl & Van der Linden
2013].

Plan of the paper Section 2 is of a preparatory nature; here we recall and study
co-smash products. The above-mentioned operations between them are constructed in
Definitions 2.3 to 2.5. In Proposition 2.7 and Remark 2.8 we show that binary co-smash
products give rise to the following decomposition of the sum of two objects as semi direct
products: A+G = ((A�G)oA)oG. We then investigate ternary co-smash products, by
observing that they are special cases of cross-effect functors (as well as binary ones and, in
fact, all n-ary are!). In fact, for a functor F from a pointed category with finite sums to an
pointed category with finite limits, its second cross-effect F (−|−) is a bifunctor measuring
the difference between the image of a sum and the product of the images. So the co-smash
product functor is just the second cross-effect functor of the identity endofunctor. In
Proposition 2.12 we show that the ternary co-smash product can be identified with the
second cross-effect of another endofunctor (more precisely, the functor X � − � − is the
second cross-effect of the functor X �−, for a fixed object X). Now Proposition 2.13 states
that under suitable conditions, if a functor F preserves regular epimorphisms then so do
the cross-effect functors F (A|−) and F (−|A), for any object of the category (notably this
applies to endofunctors of a homological category with finite sums). As a consequence, in
a homological category with finite sums, the ternary co-smash product functors preserve
regular epimorphisms, as do the binary ones (see Corollary 2.14). Finally, it is observed

in Proposition 2.15 that for any split short exact sequence 0 ,2K
k ,2X

p
,2Y,

slr any

co-smash product X �Z is a quotient of the sum (K �Y �Z)+(K �Z)+(Y �Z)→ X �Z.
Section 3 is devoted to a general study of actions, action cores and semi-direct products

in categories which are at least pointed, finitely complete and finitely cocomplete proto-
modular. We begin with the observation that a morphism ξ : TGA → A which satisfies
the unit axiom of a TG-algebra, is uniquely determined by its restriction to A �G, which
may be called the core of ξ. Then we study actions from the view point of their core: we
define strict action cores as morphisms ψ : A�G→ G such that in the following diagram,
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the morphism lψ is a monomorphism:

A �G
ιA,G ,2

ψ
��

A+G

qψ

��
A

lψ
,2 Qψ

where ιA,G is the inclusion of A � G in A + G defined in Section 2, iA is the canonical
inclusion of A in A + G, qψ is the coequalizer of ιA,G and iA ◦ ψ, and lψ = qψ ◦ iA. It is
then proved that such a strict action core extends to a TG-algebra (i.e. an action, in the
sense of [Borceux, Janelidze & Kelly 2005]), and that this extension is strict in the sense
of [Martins-Ferreira & Sobral 2012] (in fact, the first version of this paper was written
simultaneously but independently from the latter article and [Mantovani & Metere 2010],
which explains certain similarities of our work with the cited papers). Moreover, the
object Qψ in the diagram is the semi-direct product of A and G along these actions. If
the base category is finitely cocomplete homological, then the category of strict action
cores is equivalent to the category of strict actions, and the semi-direct product functor
restricts to an equivalence between these categories and the category of points (or of split
short exact sequences) (Proposition 3.10). We also define action cores, which are those
morphisms ψ : A�G→ A which extend to actions, but these are only studied in Section 5.
Example 3.7 (the category of groups, where action cores and actions are automatically
strict, because this category is semi-abelian) shows that action cores actually focus on a
different aspect of actions: recall that an action of a group G on a group A is a function
φ : G×A→ A which is a kind of “external conjugation” of G on A, in the sense that when
A and G are imbedded in the semi-direct product, φ(g, a) becomes the “real” conjugate
gag−1. The corresponding action core can be seen as a function ψ : G × A → A which
is a kind of “external commutation” of G on A, in the sense that when A and G are
imbedded in the semi-direct product, ψ(g, a) becomes the “real” commutator gag−1a−1.
Finally, Proposition 3.13 shows how to construct new strict action cores from given ones.

In Section 4, we always work in finitely cocomplete homological categories and are
interested in the construction of conjugation actions. We use Proposition 3.13 to construct
conjugation action cores on normal subobjects of any object, which are strict action cores
(hence induce strict actions) (Proposition 4.1). We introduce the notion of n-ary Higgins
commutators (binary ones were also independently introduced in [Mantovani & Metere
2010]); these commutators and their relation with actions whose study is started here
turned out to also provide a key tool in the study of crossed modules and the “Smith
is Huq” condition, see [Hartl & Van der Linden 2013], and also in subsequent work on
(co)homology and other subjects, by several authors. We here use them to investigate
normality and the normal closure of a subobject in the join with another one, in the case
where the category is semi-abelian. This refines the main result in [Mantovani & Metere
2010] where the second subobject is taken to be the whole object.

We exhibit in Section 5 necessary and sufficient conditions for an arbitrary morphism
ψ : A �G→ A to be an action core. More precisely, we first show in Proposition 5.1 that
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a necessary and sufficient condition for a morphism ψ : A � G → A to extend (uniquely,
of course) to a morphism ξ : TGA → A satisfying the unit axiom of a TG-algebra is the
commutativity of the following diagram:

(A �G) � A
CAA,G ,2

ψ�1A
��

A �G
ψ
��

A � A
cA2

,2 A

where the morphism CA
A,G is one of the compression operations between co-smash products

defined in section 2. Then we show in Proposition 5.7 that, given a morphism ψ : A�G→
A which satisfies this condition, hence has an extension ξ : TGA → A satisfying the unit
axiom, this extension ξ is a TG-algebra if and only if the following diagram commutes:

TGA �G
ξ�1G

��

cTGA,A+G�G ,2 TGA

ξ
��

A �G
ψ

,2 A

(the morphism cTGA,A+G �G being (a restriction of) a conjugation core action defined in
the former section). But we also show that if moreover the category is semi-abelian, then
the commutativity of the latter diagram is equivalent (for a morphism ψ : A � G → G
making the former diagram commute), to this ψ being a strict action, hence showing
that in a semi-abelian category any action is strict, or equivalently giving an alternative
proof of the equivalence between the category of actions on G (i.e. TG-algebras) and the
category of points.

We finally show in Proposition 5.9 that the commutativity of these two diagrams can be
translated in terms of the commutativity of three diagrams involving essentially only the
morphism ψ, co-smash products of A and G and the folding and compression operations
between them introduced in section 2. Two of them are of “associativity condition” type,
while the third resembles the “higher coherence conditions” which also came up in the
study of internal crossed modules in [Hartl & Van der Linden 2013]. This condition is
the most intricate one as it contains a nested cosmash product involving four factors, but
is superfluous in the category of groups. Hence it would be an interesting problem to
characterize semi-abelian categories where the latter property holds, possibly by relating
it to the Smith-is-Huq condition studied in [loc.cit.].

At least, the third condition does not appear in the characterization of strict action
cores corresponding to Beck modules given in Corollary 5.11, which is valid in any finitely
cocomplete homological category.

Conventions and recollections When working in a pointed category with finite
sums, we denote the canonical inclusion Xk → X1 + · · · + Xn by iXk or by ik, and its
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canonical retraction by rXk or by rk; dually, when working in a pointed category with
finite products, we denote the canonical projection X1 × · · · × Xn → Xk by πk and its
canonical section by σk. Identities on objects X of a category C are denoted by 1X , while
the identity functor on C is denoted by IdC. When the category is pointed, the zero
morphisms are denoted by 0. Finally, note that in some examples, we denote the unit of
a group G by eG.

In a pointed category with finite limits, a proper subobject of an objectX is a subobject
which is the kernel of some morphism with domain X; a normal subobject of an object X is
a subobject which is the equivalence class of 0 for some equivalence class R, i.e. a subobject

K of X whose inclusion in X can be factored as K = Ker r1
� ,2 ker r1 ,2 R

r2 ,2 X for
some equivalence relation (R, r1, r2) on X.

Recall that in a finitely complete protomodular category, given a split short exact

sequence 0 ,2 A l ,2 X
p
,2 G

slr ,2 0 , then (l, s) is a strongly epimorphic family of

morphisms with codomain X, so if moreover the category has finite coproducts the mor-
phism 〈 ls 〉 : A + G → X is a strong epimorphism, hence a regular one if moreover the
category is exact. We shall often make use of protomodularity in this way.

2. Comparison between sums and products

The product X � Y in the introduction was used in [Mantovani & Metere 2010], in order
to characterize proper subobjects in semi-abelian categories. Our present paper and, to a
much larger extent, the subsequent article [Hartl & Van der Linden 2013] make essential
use of the following facts:

1. the product � comes as the binary case of a whole family of multi-endofunctors
called the co-smash products [Carboni & Janelidze 2003];

2. the co-smash products give rise to a generalization of the binary Higgins commutator
(following the terminology in [Mantovani & Metere 2010]) to commutators of any finite
family of subobjects of a given object, see section 4 below;

3. the co-smash products of different lengths are interrelated in various ways. First
of all, we need the folding operations from [Hartl & Van der Linden 2013] and similar
compression operations which we introduce here. Secondly, the n-th co-smash product
can be derived from the (n − 1)-st by taking a binary cross-effect, and in fact, can be
viewed as the n-th cross-effect of the identity functor. This also means that the product �
is just the binary cross-effect of the identity functor, and since analyzing its more subtle
properties requires using its own binary cross-effect, these properties involve the ternary
co-smash product.

The concept of cross-effects of a functor originally arose in homotopy theory: for
functors between abelian categories it is due to Eilenberg and MacLane [Eilenberg & Mac
Lane 1954], and later was adapted to functors with values in the category of groups in
[Baues & Pirashvili 1999] and further studied in [Hartl & Vespa 2011]. This definition
of cross-effects actually works in a wide categorical context, and strong properties arise
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in the realm of homological and semi-abelian categories, see (the first version on arXiv
of) [Hartl & Van der Linden 2013] and [Hartl - in preparation]. As outlined before, these
properties of cross-effects can be used to study co-smash products, which themselves turn
out to play a key role in the theory of internal crossed modules and of commutators, see
[loc. cit.], [Rodelo & Van der Linden 2012] and [Martins-Ferreira & Van der Linden 2012].

Co-smash products We first recall the definition of co-smash products from [Carboni
& Janelidze 2003].

2.1. Definition. In a finitely complete pointed category C with finite sums we call co-
smash product X1 � · · · �Xn of objects X1, . . . , Xn, n ≥ 2 the kernel

X1 � · · · �Xn
� ,2 ,2

n∐
k=1

Xk

rX1,...,Xn ,2
n∏
k=1

∐
j 6=k

Xj

where rX1,...,Xn is the morphism determined by

π∐
j 6=mXj ◦ rX1,...,Xn ◦ iXl =

{
iXl if l 6= m

0 if l = m

for l, m ∈ {1, . . . , n}. The kernel morphism is denoted ιX1,...,Xn.

It should be noted that the product � in general is not associative, nor there is a
decomposition like X � Y � Z = (X � Y ) � Z of higher co-smash products into nested
binary ones.

2.2. Example. Let us make explicit what happens in the lowest-dimensional cases, which
are the only ones used in the present article. For objects X, Y , Z of C we have natural
exact sequences

0 ,2 X � Y � ,2
ιX,Y ,2 X + Y

〈
1X 0
0 1Y

〉
� ,2X × Y

for n = 2 and

0 ,2 X � Y � Z � ,2
ιX,Y,Z ,2 X + Y + Z

〈
iX iX 0
iY 0 iY
0 iZ iZ

〉
,2 (X + Y )× (X + Z)× (Y + Z)

for n = 3.

Co-smash products are interrelated in various ways; in particular, the following op-
erations will be used later on. In order to describe them the following notation will be
convenient: for an object A of C and p ≥ 1 we write p·A = A+· · ·+A and A�p = A�· · ·�A
with p summands respectively factors A. Moreover, let ∇p

A : p ·A→ A denote the folding
morphism, determined by ∇p

A ◦ ik = 1A for k = 1, . . . , p. If f : A → B is a morphism in
C we write p · f = f + · · ·+ f : p · A→ p ·B.
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2.3. Definition. Let X, Y be objects of C and p, q ≥ 1. Then the natural folding
operation

SX,Yp,q : X�p � Y �q → X � Y

is the unique morphism such that ιX,Y ◦ SX,Yp,q = (∇p
X +∇q

Y ) ◦ ιX,...,X,Y,...,Y .

It is easy to see that SX,Yp,q exists, cf. the cases (p, q) = (1, 2) and (2, 1) treated in
[Hartl & Van der Linden 2013, Notation 2.23]. These morphisms are special cases of the
folding operations studied in [Hartl - in preparation]. We also need the following type of
operations.

2.4. Definition. Let X1, . . . , Xn be objects of C and p ≥ 1. Then let

C
(p)
X1,...,Xn

: (X1 � · · · �Xn) � (
n∐
k=1

Xk)
�p → X1 � · · · �Xn

be the unique morphism rendering the left-hand square of the following diagram commu-
tative where we abbreviate Σ =

∐n
k=1Xk, Σk =

∐
j 6=kXj and ι = ιX1�···�Xn,Σ,...,Σ:

(X1 � · · · �Xn) � Σ�p ι ,2

C
(p)
X1,...,Xn

��

(X1 � · · · �Xn) + p · Σ
〈

0
p·rX1,...,Xn

〉
,2

〈 ιX1,...,Xn

∇pΣ

〉

��

p ·
∏n

k=1 Σk

rX1,...,Xn
◦∇p∏n

k=1
Σk

��
X1 � · · · �Xn

� ,2
ιX1,...,Xn ,2

∐n
k=1 Xk

rX1,...,Xn ,2
∏n

k=1 Σk

Again, it is easy to see that C
(p)
X1,...,Xn

exists since in the above diagram the bottom
row is exact, the right-hand square commutes and the composition of the two top arrows
is trivial since it factors through rX1�···�Xn,Σ,...,Σ.

The morphisms C
(p)
X1,...,Xn

induce other operations of which we write out only the sim-
plest family, as it suffices for the needs of this paper.

2.5. Definition. Let X1, . . . , Xn be objects of C, p ≥ 1 and k1, . . . , kp a sequence of
integers between 1 and n. Then the natural compression operation

C
Xk1

,...,Xkp
X1,...,Xn

: (X1 � · · · �Xn) �Xk1 � · · · �Xkp → X1 � · · · �Xn

is defined to be composite morphism C
(p)
X1,...,Xn

◦ (1X1�···�Xn � ik1 � · · · � ikp).

As a first application of co-smash products we decompose the functor part of the
monad TG in C introduced in [Bourn & Janelidze 1998] (see also section 3), which is
crucial for our analysis of actions in the sequel. It also induces a decomposition of the
sum which will be used to study normality in section 4.
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Let T−(−) : C2 → C be the bifunctor defined on pairs of objects (G,A) by

TG(A) = Ker(rG : A+G→ G)

(with the obvious consequent definition on morphisms); the kernel morphism

TG(A) � ,2 ,2 A+G

is denoted by κA,G. Moreover, the morphism ηA,G : A → TG(A) is given by noting that
the morphism iA : A→ A+G factors through κA,G since rGiA = 0.

Notice that TG(A) is nothing but G[A, as defined in [Borceux, Janelidze & Kelly 2005],
and for fixed G, ηA,G is nothing but the (value in A of) the unit of the monad (G[−).
Since, in a semi-direct product, we prefer to denote the kernel part on the left and the
cokernel part on the right, hence using the notation G o A instead of A n G, we avoid
the convenient notation G[A and prefer keeping TG(A) as in [Borceux & Bourn 2004]; a
possible compromise could be to write G[A = A [G.

2.6. Remark. It can be shown that the natural morphism

νA = CG
A,G : (A �G) �G→ A �G

endows the endofunctor − �G with the structure of a non-unital monad, i.e., νA satisfies
the associativity axiom of a monad. We do not need this observation here; together with
Theorem 5.9, however, it may lead to a generalization of the notion of internal action, as
will be pursued elsewhere.

2.7. Proposition. Using the preceding notations, in a finitely complete pointed category
with finite sums one has the following split short exact sequences:

0 ,2 TG(A)
κA,G ,2 A+G

rG
,2 G

iGlr ,2 0

and

0 ,2 A �G
jA,G ,2 TG(A)

rA◦κA,G
,2 A

ηA,Glr ,2 0

Proof. Only the second split exact sequence has to be constructed. It is clear by con-
struction that ηA,G is a section of rA ◦ κA,G. The morphism jA,G : A � G → TG(A) arises
from the facts that A�G is the kernel of the morphism rA,G : A+G→ A×G, that TG(A)
is the kernel of rG : A + G → G and that rG = πG ◦ rA,G. The latter observation also
implies that jA,G is the kernel of rA ◦κA,G. Note also that all this is related with the fact,
observed in [Mantovani & Metere 2010], that A �G = TG(A) ∧ TA(G).
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2.8. Remark. Whenever we have a split short exact sequence

0 ,2 A ,2 B ,2 C
ry ,2 0

it is convenient to write B = AoC, where the injections of A and C into B are understood.
With this notation the split short exact sequences above can be rephrased as:

1. A+G = TG(A) o A

2. TG(A) = (A �G) o A

This also implies that

3. A �G = TG(A) ∧ TA(G).

Hence in view of (1) and (2), we obtain the following decomposition of the sum which
is crucial in our study of normal and proper subobjects in section 4:

2.9. Corollary. For objects A,G in a finitely complete pointed category with finite sums
one has

A+G = ((A �G) o A) oG.

Cross effects of functors Our main tool in studying co-smash products is the
notion of cross-effects of functors ; for the purpose of this paper, however, it is sufficient
to introduce only the second (also called binary) cross-effect, as follows.

Let F : D → E be a functor where D is a pointed category with finite sums and E
is a pointed finitely complete category. For objects X, Y in D the canonical morphism
〈F (rX), F (rY )〉 : F (X + Y )→ F (X)× F (Y ) is denoted by rFX,Y .

2.10. Definition. The second cross-effect of F is defined to be the functor

cr2(F ) : D2 → E

given by:
cr2(F )(X, Y ) = Ker

(
rFX,Y : F (X + Y )→ F (X)× F (Y )

)
;

The kernel morphism cr2(F )(X, Y ) � ,2 ,2 F (X + Y ) is denoted by ιFX,Y . The definition

of cr2(F ) on morphisms is immediate.

One often abbreviates cr2(F )(X, Y ) = F (X|Y ).

2.11. Proposition.

1. The bifunctor cr2(F ) is symmetric.

2. The functor cr2(F ) is bireduced, i.e. cr2(F )(X, Y ) = 0 if X = 0 or Y = 0.

3. If moreover E is protomodular then the morphism rFX,Y is a strong epimorphism.
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Proof. Assertion (1) is obvious. For (2), just observe that cr2(0, Y ) = 0 since the
morphism 〈F (r0), F (rY )〉 : F (0+Y )→ F (0)×F (Y ) admits the second projection followed
by F (iY ) as a retraction.

Now suppose that E is a finitely complete protomodular category. We have rFX,Y ◦
F (iX) = σF (X) : F (X)→ F (X)× F (Y ); similarly rFX,Y ◦ F (iY ) = σF (Y ). Considering the

split short exact sequence 0 ,2 F (X)
σF (X) ,2 F (X)× F (Y )

πF (Y )

,2 F (Y )
σF (Y )lr ,2 0 and apply-

ing protomodularity one concludes that the family (σF (X), σF (Y )) is strongly epimorphic.
Hence by [Borceux & Bourn 2004, Proposition A.4.17, 2], rFX,Y is a strong epimorphism.

Now we relate co-smash products and cross-effects. Note that for the identity functor
IdC (which may be defined to be the unary co-smash product) and objects X, Y in C we
have cr2(IdC)(X, Y ) = X � Y . Moreover, ιX,Y = ιIdC

X,Y and rX,Y = rIdC
X,Y . Similarly, the

second cross-effect of the binary co-smash product is the ternary co-smash product, as
follows.

2.12. Proposition. Let C be a finitely complete pointed category with finite sums. Then
there is a natural isomorphism

cr2(X � −)(Y, Z) ∼= X � Y � Z

for objects X, Y, Z in C.

Proof. Consider the following commutative diagram of plain arrows:

(cr2(X � −))(Y, Z)
ι1

,2
_��

ιX�−Y,Z
��

X � Y � Z
ι3lr

_��
ιX,Y,Z

��

ι2

ov
X � (Y + Z) � ,2

ιX,Y+Z

,2

〈1X�rY ,1X�rZ〉
��

X + Y + Z

rX,Y,Z

��

rX,Y+Z ,2 X × (Y + Z)

(X � Y )× (X � Z) ,2
〈ιX,Y ×ιX,Z ,0〉

,2 (X + Y )× (X + Z)× (Y + Z)
〈rX◦πX+Y ,πY+Z〉

07

where the commutativity of the rectangle essentially comes from naturality of ι−,−. Then
the factorization ι1 comes from exactness of the columns and commutativity of the rect-
angle; ι2 comes from exactness of the row and commutativity of the triangle; and finally
ι3 comes from the equality 〈ιX,Y × ιX,Z , 0〉 ◦ 〈1X � rY , 1X � rZ〉 ◦ ι2 = rX,Y,Z ◦ ιX,Y,Z = 0,
which implies 〈1X � rY , 1X � rZ〉 ◦ ι2 = 0 since 〈ιX,Y × ιX,Z , 0〉 is a monomorphism. Then
ι1 and ι3 are mutually inverse isomorphisms.

Note that the morphism ι2 in this proof then is the kernel of 〈1X � rY , 1X � rZ〉; we
shall denote it by ι′X,Y,Z;2 since it refers to a sum in the second variable of the co-smash
product. Similarly, there also exists a morphism ι′X,Y,Z;1 : X �Y �Z → (X +Y ) �Z which
is the kernel of 〈rX � 1Z , rY � 1Z〉 : (X + Y ) � Z → (X � Z)× (Y � Z).
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Basic properties of cross-effects and co-smash products The following facts
are key tools in handling cross-effects and hence also co-smash products.

2.13. Proposition. Suppose that D is a pointed category with finite sums, that E is
homological and that F : D → E preserves regular epimorphisms. Then for all objects A
in D the functors F (A|−) and F (−|A) : D→ E also preserve regular epimorphisms.

For the co-smash product (i.e. the case when D = E is homological with finite co-
products and F = IdE) this means that the functors X � − and − � X preserve regular
epimorphisms. The same result was independently proved for ideal-determined categories
in [Mantovani & Metere 2010].

Proof. By symmetry of the bifunctor F (−|−) it is sufficient to prove this for F (A|−). Let
f : X � ,2 Y be a regular epimorphism. Consider the following commutative diagram
where k and m are kernels of F (f) and of F (1 + f) respectively, and where α is induced
by 〈F (rX), F (rY )〉:

F (A|X)

ι

��

F (1|f) ,2 F (A|Y )

ι

��
Ker(F (1 + f))

α

��

� ,2 m ,2 F (A+X)
F (1+f) � ,2

〈FrA,F rX〉
��

F (A+ Y )

〈FrA,F rY 〉
��

,2 0

0 ,2 Ker(F (f)) � ,2 〈0,k〉 ,2 F (A)× F (X)
1×F (f),2 F (A)× F (Y )

The columns are exact by definition of the cross-effect, and the rows are exact, too; for
the middle row this follows from the hypothesis on F since 1+f is a regular epimorphism.
Thus the snake lemma provides an exact sequence

F (A|X)
F (1|f),2 F (A|Y ) ,2 Coker(α)

We claim that Coker(α) = 0: in fact, the morphism F (iX)k : Ker(F (f)) → F (A + X)
factors through m and thus provides a section s of α, indeed: F (1 + f) ◦ F (iX) ◦ k =
F (iY ) ◦ F (f) ◦ k = 0, and

〈0, k〉 ◦ α ◦ s = 〈FrA, F rX〉 ◦m ◦ s = 〈FrA, F rX〉 ◦ F (iX) ◦ k = 〈0, 1〉 ◦ k = 〈0, k〉

whence α ◦ s = 1 since 〈0, k〉 is monic.

2.14. Corollary. For k = 1, 2, 3 let fk : Xk → Yk be a regular epimorphism in a homo-
logical category with finite sums. Then the induced morphism f1 �f2 �f3 : X1 �X2 �X3 −→
Y1 � Y2 � Y3 also is a regular epimorphism.

Proof. In the decomposition f1 � f2 � f3 = (f1 � 1Y � 1Z) ◦ (1X � f2 � 1Z) ◦ (1X � 1Y � f3)
each of the factors is a regular epimorphism by the symmetry of the ternary co-smash
product and Propositions 2.12 and 2.13.
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2.15. Proposition. Suppose that C is a homological category with finite sums. Let
f : X → Y be a morphism in C with splitting s : Y → X, i.e. such that f ◦ s = 1. Let
k : K → X be a kernel of f and let Z ∈ Ob(C). Then the morphism〈

(〈 ks 〉�1Z)◦ι′K,Y,Z;1

k�1Z
s�1Z

〉
: (K � Y � Z) + (K � Z) + (Y � Z)→ X � Z

is a regular epimorphism.

Proof. This is an immediate consequence of [Hartl & Van der Linden 2013, Proposition
2.24].

3. General properties of internal object actions

For a pointed finitely complete category C with finite sums with a fixed object G, one
may consider the category PtG(C) of G-points of C, formally defined to be the category
(C/G)\(1G). It can be more explicitly described as the category of objects E of C together
with a morphism p : E → G (in C) and a section s : G→ E of p. A morphism b between
two such objects (E, p, s) and (E ′, p′, s′) is a morphism b : E → E ′ in C making the
following diagram commute:

E

b
��

p
,2 G

slr

E ′
p′
,2 G

s′lr

This category is obviously equivalent to the category of split extensions of G, whose
objects are short split exact sequences

0 ,2 A
l ,2 E

p
,2 G

slr ,2 0

(the sequence is exact and s is a splitting of p).
Morphisms between such split extensions are given by pairs of morphisms a : A→ A′

and b : E → E ′ (in C) making the following diagram commute:

0 ,2 A

a
��

l ,2 E

b
��

p
,2 G

slr ,2 0

0 ,2 A′
l′
,2 E ′

p′
,2 G

s′lr ,2 0

The kernel functor Ker : Pt(C) → C which associates to a point E
p
,2 G

slr the ker-

nel of p, has a left adjoint, which sends an object A of C to the point A+G
rG
,2 G

iGlr .
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So it generates a monad TG. More precisely, TG = (TG : C → C, µ−,G : TG ◦ TG →
TG, η−,G : IdC → TG) is defined as follows: TG is the functor defined in section 2; the mul-
tiplication µA,G : TG(TG(A)) → TG(A) is given such that κA,G ◦ µA,G =

〈 κA,G
iG

〉
◦ κTG(A),G,

where κA,G and the unit ηA,G : A → TG(A) are defined in Proposition 2.7. The category
of (internal object) actions (of an object G on objects of the category) then is the cate-
gory CTG of Eilenberg-Moore algebras over this monad [Borceux, Janelidze & Kelly 2005].
Such an algebra ξ : TG(A)→ A is called an action of G on A. Note that in [op. cit.], the
object TG(A) is denoted by G[A, and is considered as a subobject of G + A rather than
of A+G.

Of course, PtG(C) is a subcategory of the functor category Pt(C), whose objects
are points (on variable objects G), and a morphism between two points (G,E, p, s) and
(G′, E ′, p′, s′) is a pair of morphisms a : G → G′ and b : E → E ′ making the following
diagram commute:

E

b
��

p
,2 G

slr

a
��

E ′
p′
,2 G′

s′lr

and similarly for the category of split extensions, and for the category of actions.
As usual, one has a comparison functor J : PtG(C) → CTG , and when the category

C is finitely cocomplete, one also has a semi-direct product functor − o− G : CTG →
PtG(C) sending an algebra (A, ξ) to a point Aoξ G p

,2 G
slr , giving rise to a comparison

adjunction (− o− G,J , η′, ε′) : CTG → PtG(C) [Borceux, Janelidze & Kelly 2005]. It is
well-known [Bourn & Janelidze 1998] that when the category is semi-abelian, then this is
an equivalence of categories.

The goal of this paper is two-fold: firstly, we work under a weaker assumption, namely
in a finitely cocomplete homological category C, and are interested in finding a subcategory
of CTG which is such that the above functors again restrict to an equivalence of categories.
Secondly, we want to analyze all the information on these actions which is contained in
their restriction (along jA,G) to A �G.

Note that the first results in this section do not need the regularity hypothesis on C.

Action cores and strict action cores The starting point of our discussion is the
following observation:

3.1. Lemma. Let C be a finitely complete pointed protomodular category with finite sums,
A and G objects in it. A morphism ξ : TG(A)→ A satisfying the unit axiom (i.e., ξ◦ηA,G =
1A) is uniquely determined by its restriction ψ (along jA,G) to A �G.

Proof. Consider two morphisms ξ and ξ′ : TG(A) → A satisfying this unit axiom, i.e.
ξ◦ηA,G = ξ′◦ηA,G = 1A having same restriction ψ to A�G, i.e. ψ = ξ◦jA,G = ξ′◦jA,G. Then
ξ = ξ′ since by Corollary 2.7 and by protomodularity the pair (ηA,G, jA,G) is (strongly)
epimorphic.
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Lemma 3.1 provides an obvious reason why it is reasonable to describe actions in terms
of morphisms A � G → A rather than TG(A) → A. Less formal reasons are provided by
the characterizations of crossed and Beck modules in terms of the former, given in [Hartl
& Van der Linden 2013]. This also suggests the following definition:

3.2. Definition. Let ξ : TGA→ A be an action of an object G on an object A in a finitely
complete and cocomplete protomodular category. Then the core of ξ is the restriction ψ
of ξ to A �G, i.e. ψ = ξ ◦ jA,G.

Recall that when ξ : TG(A)→ A is an action of G on A, the semi-direct product of A
and G along ξ is the coequalizer of

〈 κA,G
iG

〉
and ξ+ 1G : TG(A) +G→ A+G (as defined in

[Borceux, Janelidze & Kelly 2005], but using our terminology and putting the G’s on the
right). This definition arises naturally from the general theory of monads, but it is clear
that this coequalizer is also the coequalizer of κA,G and iA ◦ ξ. The knowledge of the core
of ξ to A �G along jG,A : A �G→ TG(A) suffices to determine this coequalizer:

3.3. Proposition. Let C be a finitely complete and cocomplete, pointed and protomod-
ular category. Consider a morphism ξ : TG(A) → A satisfying the unit axiom of a TG-
algebra, and consider ψ = ξ ◦ jA,G : A � G → A. Then the coequalizer of κA,G and iA ◦ ξ
(hence the semi-direct product of A and G along ξ, if moreover ξ is a TG-algebra, con-
sidering the observation here above) is also the coequalizer of ιA,G (= κA,G ◦ jA,G) and
iA ◦ ψ.

Proof. We have to show that for any morphism h : A+G→ X one has: h◦κA,G = h◦iA◦ξ
if and only if h ◦ κA,G ◦ jA,G = h ◦ iA ◦ ψ = h ◦ iA ◦ ξ ◦ jA,G. And of course only the
sufficient condition must be proved; but it follows immediately from the fact that the pair
(jA,G, ηA,G) is (strongly) epimorphic by Corollary 2.7.

The following proposition underlines the key role of the object A �G:

3.4. Proposition. Let C be a finitely complete and cocomplete, pointed and protomod-
ular category. Let G and A be objects of C. Consider a morphism ψ : A � G → A, and
let qψ : A+G→ Qψ be the coequalizer of ιA,G and iA ◦ ψ. Let lψ be the composite qψ ◦ iA.
Then:

1. rG coequalizes ιA,G and iA ◦ ψ, giving rise to a unique extension pψ : Qψ → G, such
that pψ ◦ qψ = rG;

2. The morphism sψ = qψ ◦ iG : G→ Qψ is a section of pψ;

3. If lψ is a monomorphism, then ψ extends along jA,G to a TG-algebra ξ : TG(A)→ A
(which is necessarily unique, by Lemma 3.1);

4. If moreover C is regular, hence homological, then the sequence A
lψ ,2 Qψ

pψ ,2 G

is exact (even if lψ is not supposed to be a monomorphism), hence the sequence

0 ,2 A
lψ ,2 Qψ pψ

,2 G
sψlr ,2 0
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is split short exact if and only if lψ is a monomorphism.

Proof.

1. One has: rG ◦ ιA,G = πG ◦ rA,G ◦ ιA,G = 0 and rG ◦ iA ◦ ψ = 0 ◦ ψ = 0.

2. pψ ◦ sψ = pψ ◦ qψ ◦ iG = rG ◦ iG = 1G.

3. Consider the coequalizer q′ : TG(A)→ Q′ of jA,G and ηA,G ◦ψ. Then since qψ ◦κA,G ◦
jA,G = qψ ◦ ιA,G = qψ ◦ iA ◦ ψ = qψ ◦ κA,G ◦ ηA,G ◦ ψ, one gets a unique h : Q′ → Qψ

such that h◦q′ = qψ◦κA,G. In particular, h◦q′◦ηA,G = qψ◦κA,G◦ηA,G = qψ◦iA = lψ.
Now consider the second split short exact sequence of Proposition 2.7:

0 ,2 A �G
jA,G ,2 TG(A)

rA◦κA,G
,2 A

ηA,Glr ,2 0

Its existence implies that the morphism
〈
jA,G
ηA,G

〉
: (A � G) + A → TG(A) is a strong

epimorphism, by protomodularity of C. Hence since q′ is a coequalizer, q′◦
〈
jA,G
ηA,G

〉
is a

strong epimorphism as well. But q′◦
〈
jA,G
ηA,G

〉
= q′◦ηA,G◦

〈
ψ
1A

〉
. Thus q′◦ηA,G : A→ Q′

also is a strong epimorphism.

Now suppose that lψ is a monomorphism. As h◦q′◦ηA,G = lψ, the morphism q′◦ηA,G
is a monomorphism, hence an isomorphism. So let ξ = (q′◦ηA,G)−1◦q′ : TG(A)→ A.
Obviously, one has ξ ◦ ηA,G = 1A. We now show that ξ satisfies the second axiom of
an algebra, i.e. ξ ◦µA,G = ξ ◦TG(ξ). Since lψ is a monomorphism, it suffices to show
that lψ◦ξ◦µA,G = lψ◦ξ◦TG(ξ). But lψ◦ξ◦µA,G = qψ◦κA,G◦µA,G = qψ◦

〈 κA,G
iG

〉
◦κTGA,G

by construction of µA,G. And since qψ is also the coequalizer of iA ◦ ξ and κA,G by
Proposition 3.3, one has lψ ◦ ξ ◦ TG(ξ) = qψ ◦ κA,G ◦ TG(ξ) = qψ ◦ (ξ + 1) ◦ κTGA,G by
construction of TG(ξ). And finally, qψ ◦ (ξ + 1) = qψ ◦

〈 κA,G
iG

〉
.

4. As pψ ◦ qψ = rG, q−1
ψ Ker(pψ) = Ker(rG) = TG(A). As C is regular, Ker(pψ) =

qψq
−1
ψ Ker(pψ) = qψ(TG(A)) = Im(qψ ◦ κA,G). Recalling the constructions at the

beginning of the proof of property 3., we have Im(qψ ◦κA,G) = Im(h ◦ q′) = Im(h) =
Im(h◦(q′ ◦ηA,G)) = Im(lψ) since q′ and q′ ◦ηA,G are regular epimorphisms, the latter
since by regularity of C any strong epimorphism is a regular epimorphism.

These results suggest the following definition:

3.5. Definition. Let C be a finitely complete and cocomplete, pointed protomodular cat-
egory and A and G be two objects in it.

1. An action core of G on A is a morphism ψ : A → G which has an extension
ξ : TGA→ A that is an Eilenberg-Moore algebra on TG (this extension being unique,
by Proposition 3.1).

2. A strict action core is a morphism ψ : A → G which is such that the morphism
lψ, as defined above, is a monomorphism.
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3. The category of strict action cores of C is the category S(C) whose objects are
triples (A,G, ψ), where A and G are objects of C and ψ : A�G→ A is a strict action
core. A morphism (A,G, ψ)→ (A′, G′, ψ′) is an ordered pair (a, g) where a : A→ A′

and g : G→ G′ are morphisms in C making the following diagram commute:

A �G a�g ,2

ψ
��

A′ �G′

ψ′

��
A a

,2 A′

Note that by Proposition 3.4, a strict action core is an action core, and by very
definition, the core of an action is an action core. Moreover, if ψ is an action core, then
by Proposition 3.3 the coequalizer qψ : A + G → Qψ defined above is nothing but the
quotient A + G → A oξ G, where ξ is the unique extension of ψ along jA,G which is a
TG-algebra.

For a fixed object G of C, consider SG the fiber of S on G. The preceding results allow
us to compare the category SG to the category of Eilenberg-Moore algebras on TG (the
injectivity on objects being obvious):

3.6. Corollary. Let C be a finitely complete and cocomplete, pointed protomodular
category, and A and G be objects of it. The extension of the morphisms ψ : A �G→ A to
TG-algebras defined above (for any object (A,G, ψ) in SG) gives rise to a full and faithful
functor ΞG : SG → CTG. Moreover, ΞG is “injective on objects” so that if XG is the full
subcategory of the objects of CTG which are images by ΞG of objects ψ of SG, then ΞG is
an isomorphism of categories between SG and XG. Finally, if (A,G, ψ) is an object of S,
then the construction of A oψ G coincides with the one of G n (A,ΞG(ψ)) in [Borceux,
Janelidze & Kelly 2005].

It follows from Proposition 3.3 and Corollary 3.6 that the actions ξ in XG are exactly
those actions ξ : TG(A)→ A for which the composition of the injection of A in A+G and
the projection from A + G to Aoξ G is a monomorphism, hence are exactly the actions
which are called strict in [Martins-Ferreira & Sobral 2012]. In view of the isomorphism
between SG and XG, morphisms ψ : A � G → A which are strict action cores are exactly
the cores of strict actions, which explains the terminology.

Examples

3.7. Example. In the category of groups, it is well known (see for instance [Magnus,
Karrass & Solitar 1966]) that for two groups A and G, A � G is the subgroup of A + G
generated by commutators [iA(a), iG(g)] or equivalently their inverses [iG(g), iA(a)] for a ∈
A and g ∈ G, and that this subgroup is freely generated by the nontrivial commutators.
We simplify the notation and denote iA(a) by a and similarly for g. We prefer to consider
that the generators are the [g, a]’s. On the other hand, TG(A) is generated by the g·a·g−1’s.
Hence giving a morphism A � G → A in the category of groups is equivalent to giving a
function G∗ ×H∗ → A in the category of sets, or equivalently a function f : G× A→ A
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satisfying f(g, a) = eA whenever g = eG or a = eA. So a group morphism ψ : A �G→ A
can be seen as a function J−,−K : G × A → A such that Jh, gK = eA when a = eA or
g = eG. We denote it this way because it is a kind of “external” commutator operation
of G on A. Let us define φ : G × A → A by φ(g, a) = Jg, aK · a. Then it is easy to
show that lψ is a monomorphism if and only if φ is an action in the usual sense, and the
semi-direct product is of course the classical one.

3.8. Example. Consider the category Nil2 of 2-step nilpotent groups and group mor-
phisms between them. Recall that a group G is 2-step nilpotent iff its commutators are
central, i.e. [G, [G,G]] is trivial, or equivalently if the commutator function G × G → G
which sends (g, g′) to the commutator [g, g′] = gg′g−1g′−1 is bilinear. We also write
[G,G] = G′. We denote the abelianization of a group G by Gab, and the equivalence
class under this quotient of g ∈ G by ḡ. If A and G are two such groups, then (in the
category Nil2 of course) A � G = Aab ⊗ Gab; here again for technical reasons, we prefer
consider that it is Gab⊗Aab. The sum A+2G in Nil2 is the set (Gab⊗Aab)×A×G with
the multiplication (t, a, g) ∗ (t′, a′, g′) = (t + t′ + ḡ ⊗ ā′, aa′, gg′). So (ḡ ⊗ ā, eA, eG) is the
commutator of (0, eA, g) and (0, a, eG) i.e. of iG(g) and iA(a) in the 2-step nilpotent group
A+2G, where iA and iG are as usual the canonical injections of the groups in their 2-step
nilpotent sum. Consider a group morphism ψ : Gab ⊗ Aab → A. Considering (in Sets
again) the composition G×A→ Gab×Aab → Gab⊗Aab → A, and denoting it by J−,−K,
this means that J−,−K is bilinear and that Jg, aK = eA when g is a commutator in G or a
is in A, and conversely a function J−,−K : G×A→ A satisfying these two properties gives
rise to a group morphism ψ : Gab⊗Aab → A. Consider such a ψ and define φ : G×A→ A
by φ(g, a) = Jg, aK · a. Then it can be checked that lψ is a monomorphism if and only if
φ is a group action of H on G, or equivalently if J−,−K satisfies two extra properties: it
takes values in the center of A and for any g, g′ ∈ G and a ∈ A one has Jg, Jg′, aKK = eA.
Moreover in this case, A oψ G is the usual semi-direct product A oφ G, which happens
to be 2-step nilpotent. Conversely, if φ : G×A→ A is an action in the usual sense, then
by defining Jh, gK = φ(g, a) · a−1 one gets a strict action ψ : Gab ⊗ Aab → A if and only
if J−,−K is bilinear and Jg, aK = eA when g is a commutator in G or a is in A; these
conditions are also equivalent to the fact that Aoφ G is a 2-step nilpotent group.

3.9. Example. Consider now the category of “central pairs” defined as follows. Objects
are pairs (G,H) where G is a 2-step nilpotent group, and H is a subgroup satisfying G′ ⊂
H ⊂ Z(G) (so that H is normal in G, and G/H is abelian). A morphism f : (G,H) →
(A,B) is a group morphism f : G→ A such that f(H) ⊂ B. Hence it is equivalent to the
category of central extensions of groups with abelian codomain and is known to be finitely
cocomplete homological, but not semi-abelian [Everaert, Gran & Van der Linden 2008],
[Everaert 2012]; it arises in forthcoming work in the realm of non-linear algebra of degree
2 which was introduced in [Baues, Hartl & Pirashvili 1997]. The sum of two objects (A,B)
and (G,H) is the pair ((G/H⊗A/B)×A×G, {0}×A×B), with a product defined similarly
as in the preceding example, so that in this category (A,B)�(G,H) = (G/H⊗A/B, {0}).
A morphism ψ : (A,B)� (G,H)→ (A,B) in this category is then equivalent to a function
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J−,−K : G × A → A which is bilinear and satisfies Jg, aK = 1G when g ∈ H or a ∈ B.
Then, similarly as in Nil2, lψ is a monomorphism if and only if it takes values in B and
if for any g, g′ ∈ G and a ∈ A one has Jg, Jg′, aKK = 1A. Here again, these conditions
(once ψ is supposed to be a morphism in the category) are equivalent to the fact that
φ : G×A→ A defined as above is a group action and that B ·H contains all commutators
in Aoφ G.

Strict action(cores) in finitely cocomplete homological categories We
may now show that if the category is finitely cocomplete and homological, then the strict
actions are precisely the ones we were looking for:

3.10. Proposition. Let C be finitely cocomplete homological and G an object in it. Then
the comparison adjunction (−o− G,JG, η′, ε′) : CTG → PtG(C) in [Borceux, Janelidze &
Kelly 2005] restricts to an equivalence between XG and PtG(C). Hence composition with
Ξ provides an equivalence of categories between S and Pt(C), which is compatible with
the forgetful functors. Thus S is a fibration whose fibers are the categories SG, and the
“inverse” functors ΨG : PtG(C)→ SG are such that ΞG◦ΨG = JG, the comparison functor
of the adjunction.

Proof. First, let us consider a TG-algebra ξ : TG(A)→ A which is in XG, i.e. which is the
extension of a (unique) ψ : A �G→ G in S. We show that η′ξ is an isomorphism between
ξ and JG(F ′(ξ)). Consider the following diagram:

A �G
jA,G ,2

ψ
�(

TGA

ξ

��

κA,G ,2 A+G

qψ

��
A

lψ
,2

iA

5?

Aoψ G pψ
,2 G

sψlr

Then in view of all what proceeds, the point (A oψ G, pψ, sψ) is the semi-direct product
Aoξ G in the usual sense, and since lψ is the kernel of pψ (because ψ is a strict action),
JG(Aoξ G) is the unique arrow h from TGA to A such that lψ ◦ h = qψ ◦ κA,G, i.e. it is ξ.

Secondly, we show that JG takes values in XG, i.e. that for any object

X
p
,2 G

slr

the algebra JG(X, p, s) is (the extension to TG(A) of) a strict action (A,G, ψ). Moreover
we show that it is such that A oψ G is isomorphic to (X,G, p, s), the G-part of the
isomorphism being the identity: this in fact shows that ε′(X,p,s) is an isomorphism.

Let A � ,2 l ,2 X be a kernel of p. Consider the following diagram. It is commuta-
tive, since 〈 ls 〉 = rG (one may check it by composing these morphisms by the canonical
injections iA and iG):
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A �G � ,2
ιA,G ,2

∃!ψ

��

A+G

〈 ls 〉
_��

rG

�#

rA,G ,2 A×G

πG

��
A � ,2

l
,2

iA

;F

X p
,2 G

iG

Yc

Since ιA,G is the kernel of rA,G and since πG ◦ rA,G = p ◦ 〈 ls 〉, one has: p ◦ 〈 ls 〉 ◦ ιA,G =
πG ◦ rA,G ◦ ιA,G = 0; so since l is the kernel of p, there exists a unique ψ : A �G→ A such
that l◦ψ = 〈 ls 〉◦ιA,G. We claim that (A,G, ψ) is a strict action core. Since l = 〈 ls 〉◦iA is a
monomorphism, it suffices to show that 〈 ls 〉, which is known to be a regular epimorphism,
is the coequalizer of ιA,G and iA ◦ ψ.

Consider qψ : A + G → Qψ the coequalizer of ιA,G and iA ◦ ψ, and pψ and sψ defined
as in Proposition 3.4 above. We will show that qψ ◦ iA is a monomorphism, thus showing
that (A,G, ψ) is an object in S, and that the G-point (Qψ, pψ, sψ), which is nothing but
Aoψ G, is isomorphic to (X, p, s).

First of all, 〈 ls 〉 ◦ iA ◦ψ = l ◦ψ = 〈 ls 〉 ◦ ιA,G hence, since qψ is the coequalizer of iA ◦ψ
and ιA,G, there exists a unique morphism e : Qψ → X such that qψ ◦ e = 〈 ls 〉:

A+G

〈 ls 〉��
qψ

u~

A

iA
7A

l ,2

qψ◦iA �'

X

Q

e

LR

and of course, then e ◦ qψ ◦ iA = 〈 ls 〉 ◦ iA = l, so this diagram commutes. But then, since l
is the kernel of p, it is a monomorphism, hence so is qψ ◦ iA. But then, by Proposition 3.4
above, qψ ◦ iA = ker pψ.

Then consider the following diagram:

A+G

〈 ls 〉

	�

qψ

��

rG
,2 G

iGlr

0 ,2 A
qψ◦iA

,2 Qψ

e
w�

pψ
,2 G

sψlr ,2 0

0 ,2 A
l
,2 X

p
,2 G

slr ,2 0

The only part of this diagram which has not been shown to commute is the bottom
right-hand square. But one has pψ ◦ qψ = rG = p ◦ 〈 ls 〉 = p ◦ e ◦ qψ, hence p ◦ e = pψ
since qψ is a (regular) epimorphism. And e ◦ sψ = e ◦ qψ ◦ iG = 〈 ls 〉 ◦ iG = s. Hence all
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conditions of the Short Split Five Lemma are satisfied, so e is an isomorphism, and thus
defines an isomorphism (e, 1G) in Pt(C).

Note that we then have implicitly constructed (by composition with the inverse of Ξ)
a functor Pt(C) → S. We denote it by Ψ (and its restriction to the fibers on G by ΨG).

For a point X p
,2 G

sqx
, Ψ(X,G, p, s) is a strict action on A = Ker(p). It is easy to verify

that if X ′
p′
,2 G′

s′qx
is another point and (x, g) is a morphism of points between them, i.e.

a pair of morphisms making the following diagram commute

X p
,2

x
��

G
sqx

g
��

X ′
p′
,2 G′

s′qx

then Ψ(x, g) is the unique morphism a : A→ A′ making the following diagram commute

A = Ker(p)

a

��

ker(p) ,2 X

x

��
A′ = Ker(p′)

ker(p′)
,2 X ′

which indeed is a morphism of strict actions between Ψ(X,G, p, s) and Ψ(X ′, G′, p′, s′).
Finally, the very constructions of ΨG and ΞG ensure that ΞGΨG = JG.

3.11. Example. Recall that the conjugation action of an object E of C on itself is defined
in [Bourn & Janelidze 1998], as a split extension on E, to be the short exact sequence
0 → E

σ1−→ E × E
π2−→ E → 0 with the splitting ∆: E → E × E being the diagonal

morphism. By Proposition 3.10, it corresponds to some strict action core cE2 : E �E → E.
We claim that this corresponding action core is ∇2

E ◦ ιE,E, where ∇2
E : E + E → E is

the codiagonal, and that the corresponding algebra ΞE(cE2 ) is ∇2
E ◦ κE,E. Indeed, since

ψ = ΞE(ψ) ◦κE,E, it suffices to prove the second assertion, and by the construction of ΞE

it suffices to show that the following diagram commutes:

TEE
κE,E ,2

κE,E
��

E + E

〈 σ1
∆E
〉

��

E + E

∇2
E
��
E

σ1 ,2 E × E

Followed by π1, one gets π1◦σ1◦∇2
E◦κE,E = ∇2

E◦κE,E on the one hand, and π1◦〈 σ1
∆E
〉◦κE,E

= 〈 π1◦σ1
π1◦∆E

〉 ◦ κE,E =
〈

1E
1E

〉
◦ κE,E = ∇2

E ◦ κE,E on the other hand. And followed by π2, one
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gets π2 ◦ σ1 ◦ ∇2
E ◦ κE,E = 0 ◦ ∇2

E ◦ κE,E = 0 on the one hand, and π2 ◦ 〈 σ1
∆E
〉 ◦ κE,E =

〈 π2◦σ1
π1◦∆E

〉 ◦ κE,E =
〈

0
1E

〉
◦ κE,E = r2 ◦ κE,E = 0 on the other hand.

Of course, this construction c
(−)
2 is functorial. More precisely, c

(−)
2 may be considered

as a functor C → S, or as a natural transformation S → 1C, where S : C → C is defined
by F (E) = E �E and S(f) = f � f , both meaning that the following diagram commutes:

E � E
cE2
��

f�f ,2 F � F
cF2
��

E
f

,2 F

which follows immediately from naturality of ι and of ∇2.
Then the split extension

0 ,2 E
i1 ,2 E ocE2

E
p2 ,2 E ,2 0

is (canonically isomorphic to) the following one:

0 ,2 E
i1 ,2 E × E p2 ,2 E ,2 0

by the very definition of c2. We will generalize this construction to a (strict) conjugation
action core of an object on any normal subobject in section 4.

3.12. Example. The split short exact sequence of Corollary 2.7:

0 ,2 A �G
jA,G ,2 TG(A)

rA◦κA,G
,2 A

ηA,Glr ,2 0

corresponds to a strict action core ψ of A on A � G such that TG(A) = (A � G) oψ A; it
will be explicitly determined in 4.6. Similarly, the split short exact sequence

0 ,2 TG(A)
κA,G ,2 A+G

rG
,2 G

iGlr ,2 0

corresponds to a strict action core ψ′ of G on TG(A) such that A+G = TG oψ′ G, hence
one may write A+G = ((A �G) oψ A) oψ′ G.

The following proposition allows to construct new strict action cores from given ones:

3.13. Proposition. Let ψ : A � G → A be a strict action core in a finitely cocomplete
homological category C, h : H → G be a morphism and b : B → A a monomorphism in C.

1. Suppose that B is h-stable under ψ, i.e. the morphism ψ ◦ (b � h) : (B � H) → A
factors through a morphism ψ′ : B �H → B such that b ◦ ψ′ = ψ ◦ (b � h). Then ψ′

is a strict action core of H on B.

2. If moreover h is a monomorphism, then bo h is a monomorphism.

If b = 1A and h is a monomorphism we call ψ′ the restriction of ψ to H and denote
it by ψ �H .



ON ACTIONS AND STRICT ACTIONS IN HOMOLOGICAL CATEGORIES 369

Proof.

1. Consider the following diagram of solid arrows, where q′ is the coequalizer of ιB,H
and iB ◦ ψ′; all squares and the bottom triangles are commutative, and the upper
triangles are coequalized by q′ and q = qψ respectively:

B +H

q′

��

b+h ,2 A+G

q

��

B �H

ψ′

��

b�h ,2

ιB,H
5>

A �G
ψ

��

ιA,G
5=

Q
f ,2 Aoψ G

B

iB

BJ

b
,2

q′◦iB

5>

A

iA

BJ

lψ

5>

We have to show that q′ ◦ iB is a monomorphism. Since q ◦ (b + h) ◦ iB ◦ ψ′ =
q ◦ iA ◦ b ◦ ψ′ = q ◦ iA ◦ ψ ◦ (b � h) = q ◦ ιA,G ◦ (b � h) = q ◦ (b + h) ◦ ιB,H , there is
a unique f : Q → A oψ G such that q ◦ (b + h) = f ◦ q′. Then lψ ◦ b = q ◦ iA ◦ b =
q ◦ (b+ h) ◦ iB = f ◦ q′ ◦ iB. Hence, since b and lψ are monomorphisms, so is q′ ◦ iB.

2. Note that under these conditions, Q is B oψ′ H and f is nothing but b o h; if
moreover h is a monomorphism, we may complete the diagram with the projections
of Q to H and of Aoψ G to G and apply [Bourn 2001, Corollary 9] or [Borceux &
Bourn 2004, Lemma 4.2.5, 5.] to conclude that f is a monomorphism.

3.14. Remark. It is obvious that in the category of points (hence in the equivalent
category of short split exact sequences) over a pointed regular category C, kernels and
images are computed degreewise, since it is a functor category. So, consider two strict
action cores ψ : A �G→ A and ψ′ : B �H → B and a morphism (f : A→ B, g : G→ H)
between them. Then the equivalence of categories above ensures that there exist strict
action cores ψ̃ and ψ̃′ (of Ker(g) on Ker(f) and of Im(g) on Im(f) respectively) such that

ker(f o g) = ker(f) o ker(g) : Ker(f) oψ̃ Ker(g)→ Aoψ G

and
im(f o g) = im(f) o im(g) : Im(f) oψ̃′ Im(g)→ B oψ′ H

4. Conjugation action core of an object on a normal subobject

In this section and in the following one, the category C will always at least be finitely
cocomplete and homological. We introduce a general notion of (strict) conjugation action
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core of an object E on any of its normal subobjects1, and a notion of Higgins commutator.
We also explain the link between the two notions.

Conjugation action cores

4.1. Proposition. Let n : N ,2 ,2 E be a normal subobject in a finitely cocomplete ho-
mological category C. Then there is a (necessarily unique) strict action core cN,E : N�E →
N of E on N such that n◦cN,E = cE2 ◦ (n�1). We then call cN,E the conjugation action
core of E on N . It is natural with respect to pair morphisms (E,N) → (E ′, N ′), i.e.
morphisms f : E → E ′ in C such that f(N) ⊂ N ′ for a given normal subobject N ′ of E ′.

Proof. We first prove the assertion in the case when N is proper in E. Let π : E → G
be a cokernel of n. Then we have the following diagram of plain arrows which commutes
by naturality of commutator morphisms:

N � E
cN,E

��

n�1 ,2 E � E π�π ,2

cE2
��

G �G
cG2
��

N
n ,2 E

π ,2 G

Thus π ◦ cE2 ◦ (n � 1) = cG2 ◦ (π � π) ◦ (n � 1) = cG2 ◦ (π ◦ n � π) = 0 � π = 0 since the functor
− � − is bireduced by Proposition 2.11 (2), whence cE2 ◦ (n � 1) factors through n, thus
providing the desired morphism cN,E. By Proposition 3.13 it is a strict action core.

Now if N is merely a normal subobject in E, say with associated equivalence relation
(R, r1, r2) with s : E → R as a common section of both r1 and r2, then the inclusion n of

N in E is the composition N
k ,2 R

r2 ,2 E , where k is a kernel of r1. Then N is proper
in R, hence, as proved above, the conjugation action core of R on N is defined, which
provides the dotted arrow on the left side in the bottom of the following commutative
diagram. But E is a subobject of R via s, so by Proposition 3.13 and commutativity of
the outer pentagon the morphism cN,E = cN,R ◦ (1N � s) is the desired strict action core
of E on N .

N � E
1N�s

u~

n�1E

 )
N �R k�1 ,2

cN,R

��

R �R
cR2
��

r2�r2 ,2 E � E
cE2
��

N
k ,2

n

3;R
r2 ,2 E

Naturality of this strict action core is immediate by naturality of cE2 .

1In a former version of this paper, we only quoted the conjugation action core on proper subobjects.
We thank Tim Van der Linden for having observed this generalization to normal subobjects.
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4.2. Example. The restriction to X = A or X = G of the conjugation action core of
A+G on A �G is nothing but the corresponding compression operation: we have

cA�G,A+G �X= CX
A,G and hence also cA�G,TG(A) �A= CA

A,G,

cf. Definition 2.5. To see this, consider the following commutative diagram

(A �G) �X
1A�G�iX

,2

jA,G�1X

��

ιA,G◦CXA,G
'.

(A �G) � (A+G) ιA�G,A+G

,2

ιA,G�1A+G

��

(A �G) + (A+G) 〈 ιA,G
1A+G

〉 ,2
ιA,G+1A+G

��

A+G

TG(A) �X
κA,G�iX ,2

κA,G◦cTG(A),A+X�X

07(A+G) � (A+G)
ιA+G,A+G ,2 (A+G) + (A+G)

∇2
A+G ,2 A+G

Then the assertion follows from the fact that jA,G�1X composed with the lower composite
morphism is ιA,G ◦ cA�G,A+G �X .

4.3. Example. Consider the (non exact) category of central pairs of Example 3.9. We
compute the conjugation action core on any normal subobject of any object. Let G =
(G,H) be an object in this category. An equivalence relation on (G,H) in C is (the
inclusion into (G × G,H × H) of) a pair (R, S), where R is a congruence on G, S is a
congruence on H, S ⊆ R, and S contains all commutators in R (that it is central in R
is automatic). A normal subobject of (G,H) is “the equivalence class of 0 for such an
equivalence relation”, i.e. the inverse image of R by the inclusion σ1 (or equivalently σ2) of
(G,H) in (G,H)× (G,H). So it is the pair N = ([e]R, [e]S), where e is the unit of G and
[e]R its equivalence class (in G) for R, and [e]S in H for S. Recall that the object G �G is
the pair (G/H ⊗ G/H, {0}), the inclusion in the sum sending ḡ ⊗ ḡ′ on the commutator
of (0, 1, g) and (0, g′, 1) in the sum G + G, while the conjugation action core c : G � G → G
sends ḡ⊗ ḡ′ to the commutator of g′ and g in G. The diagram that has to be filled up to
get the result is the following:

N � G = ((G/H ⊗ [e]R/[e]S), {0})

��

,2 G � G = (G/H ⊗G/H, {0})
cG2
��

N = ([e]R, [e]S) ,2 G = (G,H)

To get this morphism, it suffices to show that the morphism G× [e]R → G, (g, g′) 7→ [g′, g]
is bilinear (which is immediate by the very fact that G is 2-step nilpotent), takes values
in [e]R and takes the value e if g ∈ H or g′ ∈ [e]S, which follow immediately from the
hypotheses on H and S.

We now give two properties which literally generalize certain standard facts in the
theory of groups or Lie algebras.

First we quote a universal property of the semi-direct product:
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4.4. Proposition. Let ψ : A �G→ A be a strict action core in C, and let

A
f−→ X

g←− G

be morphisms in C. Then there exists a morphism h =
〈
f
g

〉
: A oψ G → X such that

h ◦ lψ = f and h ◦ sψ = g iff the following square commutes:

A �G ψ ,2

f�g
��

A

f
��

X �X
cX2

,2 X

(1)

Moreover, if h exists it is unique.

Proof. Uniqueness follows from the fact that (lψ, sψ) is a (strongly) epimorphic pair. To
prove existence, by the definition of A oψ G as a quotient of A + G, we must show that
commutativity of diagram (1) is equivalent with the relation

〈
f
g

〉
◦ ιA,G =

〈
f
g

〉
◦ iA ◦ ψ.

But
〈
f
g

〉
◦ ιA,G = ∇2

X ◦ (f + g) ◦ ιA,G = ∇2
X ◦ ιX,X ◦ (f � g) = cX2 ◦ (f � g). On the other

hand,
〈
f
g

〉
◦ iA ◦ ψ = f ◦ ψ, whence the assertion.

In particular, Proposition 4.4 shows that the semi-direct product can be viewed as a
universal transformation of an abstract strict action core into a conjugation action core:

4.5. Corollary. A strict action core ψ : A �G→ A in C coincides with the restriction
to G of the conjugation action core of AoψG on A, or formally, cA,AoψG ◦ (1A � sψ) = ψ.

Proof. In Proposition 4.4, take X = Aoψ G, f = lψ, g = sψ so that h = 1AoψG. We get
lψ ◦ψ = cX2 (lψ � sψ) = cX2 ◦ (lψ � 1G) ◦ (1A � sψ) = lψ ◦ cA,X ◦ (1A � sψ), whence the assertion
since lψ is a monomorphism.

4.6. Corollary. We have TG(A) = (A �G) oCAA,G
A, cf. Definition 2.5.

This is an immediate consequence of Corollary 4.5 and Example 4.2.

Higgins Commutators To make further progress we define Higgins commutators of
subobjects in terms of co-smash products; this actually is the starting point of a new
approach to categorical commutator calculus which is further developed in [Hartl & Van
der Linden 2013] and [Hartl - in preparation], and serves as a fundamental tool in [Rodelo
& Van der Linden 2012] and [Martins-Ferreira & Van der Linden 2012].

4.7. Definition. The n-fold commutator morphism of an object X of C is the nat-
ural composite morphism

cXn : X � · · · �X ,2ιX...X,2 X + · · ·+X
∇nX ,2 X

Moreover, if xi : Xi ↪→ X are subobjects of X, define their Higgins commutator to be
the following subobject of X:

[X1, . . . , Xn] = Im( X1 � · · · �Xn
x1�···�xn ,2 X � · · · �X cXn ,2 X ).
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4.8. Remark. This generalizes the definition of a binary Higgins commutator which was
independently given in [Mantovani & Metere 2010]. With the notations of definition 4.7,
the Huq commutator of X1, X2 is the proper closure of the Higgins commutator [X1, X2]
defined above (where the proper closure of a subobject is defined to be the kernel of its
cokernel).

Recall that the Huq commutator [x1, x2]Huq : [X1, X2]Huq → X of two (mono)mor-
phisms x1 : X1 → X and x2 : X2 → X is the smallest normal subobject of X that should
be divided out to make x1 and x2 commute – so that they do commute if and only
if [X1, X2]Huq = 0 [Huq 1968]. It is the kernel of the regular (hence normal) epimorphism
q : X → Q, where Q is the colimit (via the dotted arrows) of the four plain arrows in the
following diagram:

X1

q1

��

σ1

w�

x1

�%
X1 ×X2

q12 ,2 Q X
qlr lr [X1, X2]Huqlr[x1,x2]Huq

lr

X2

σ2

]g

x2

9D

q2

LR

Since q is normal, to show that [x1, x2]Huq is the proper closure of the Higgins commutator
[x1, x2]Hig : [X1, X2]Hig → X defined above, it suffices to show that the morphism q above
is the cokernel of [x1, x2]Hig. So one has to show that if a morphism f : X → A is such
that f ◦ [x1, x2]Huq = 0 then one can complete a cocone

{f : X → A, f1 : X1 → A, f2 : X2 → A, f12 : X1 ×X2 → A}

on this diagram of four arrows. Of course, it suffices to put fi = f ◦ xi for i = 1, 2. So it
remains to get the morphism f12 : X1×X2 → A. Recall that rX1,X2 : X1 +X2 → X1×X2

is a strong epimorphism (this is well known and is a special case of Proposition 2.11),
hence it is a cokernel, hence the cokernel of its kernel, which by very definition is X1 �X2,
or more precisely ιX1,X2 . Therefore, we show that the morphism f ◦ 〈 x1

x2 〉 : X1 +X2 → C
is such that f ◦ 〈 x1

x2 〉 ◦ ιX1,X2 = 0. Indeed

f ◦ 〈 x1
x2 〉 ◦ ιX1,X2 = f ◦ ∇2

X ◦ (x1 + x2) ◦ ιX1,X2

= f ◦ ∇2
X ◦ ιX,X ◦ (x1 � x2)

= f ◦ [x1, x2]Hig ◦ qHig

= 0
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X1 +X2

〈x1
x2 〉

��

rX1,X2

��

X1

f1=f◦x1

��

σ1

w�

x1

�'
X1 ×X2

f12 ,2 A X
flr [X1, X2]Higlr[x1,x2]Hig

lr X1 �X2qHig

lr lr

x1�x2

��

ιX1,X2
=ker(rX1,X2

)

bj

X2

σ2

]g

x2

7A

f2=f◦x2

LR

X +X

∇X

LR

X �X
ιX,X=ker(rX,X)

lr

Hence, there exists a unique morphism f12 : X1×X2 → A such that f12◦rX1,X2 = f ◦〈 x1
x2 〉.

Then of course f12 ◦ σi = fi (i = 1, 2) as required.
Thus, if X1, X2 generate X (i.e. if the morphism [x1, x2] : X1 + X2 → X is a regular

epimorphism), then [X1, X2] coincides with the commutators of X1, X2 of Huq and of
Smith; the Smith case is due to Everaert and Gran (see [Everaert & Van der Linden
2012]).

The link with the subject of this paper is that stability under the conjugation action
core can be expressed in terms of commutators:

4.9. Lemma. Let X
x ,2 A Y

ylr be subobjects of an object of C. Then X is Y -stable
under the conjugation action (core) of A on itself (see Proposition 3.13) iff [X, Y ] ≤ X,
i.e. the injection of [X, Y ] into A factors through x.

Proof. Consider the following commutative diagram of solid arrows:

X � Y

ψ

��

x�y ,2

q


 �)

A � A

cA2

��

[X, Y ]
u

u�

�)
i

�)
X ,2 x ,2 A

Then by the respective definitions, X is Y -stable iff a morphism ψ as indicated exists
and renders the diagram commutative; and [X, Y ] ⊂ X iff a morphism u as indicated
exists and renders the diagram commutative. But these conditions are equivalent since q
is a regular epimorphism hence a strong one, and x is monic (see for instance [Borceux &
Bourn 2004, Appendix A.4.]).

4.10. Definition. Let X x ,2 A Y
ylr be subobjects of an object of C. We say that Y

normalizes X if X is Y -stable under the conjugation action core of A on itself (i.e. if
[X, Y ] ≤ X, in view of Lemma 4.9).
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4.11. Proposition. The following properties are equivalent for subobjects X, Y of A as
above:

1. X is a normal subobject of X ∨ Y , the subobject generated by X and Y (i.e. the
image of the morphism 〈 xy 〉 : X + Y → A).

2. X ∨ Y acts strictly on X by conjugation.

3. Y normalizes X.

In particular, when Y = A, one gets:
X is a normal subobject in A if and only if A acts strictly on X by conjugation.

Proof. (1) implies (2) by Proposition 4.1.
(2) implies (3): Let us denote by x′, y′, z the inclusions of X and Y in X ∨ Y

and the inclusion of X ∨ Y in A, respectively. (2) means the existence of a morphism
ψ′ : X � (X ∨ Y ) → X making the left-hand bottom square in the following diagram
commute; (3) means the existence of a morphism ψ : X �Y → X making the outer square
commute; so it suffices obviously to take ψ = ψ′ ◦ (1X � y′).

X � Y x�y

$,
1X�y′
��

ψ

 )

X � (X ∨ Y )

ψ′

��

x′�1X∨Y ,2 (X ∨ Y ) � (X ∨ Y )

c
(X∨Y )�(X∨Y )
2
��

z�z ,2 A � A
cA2
��

X
x′

,2

x

07X ∨ Y z
,2 A

(3) implies (1): by Proposition 3.13 we obtain a strict action core ψ of Y on X, and
the universal property (Proposition 4.4) of the semi-direct product implies that there
is a morphism 〈 xy 〉 : X oψ Y → A such that 〈 xy 〉 ◦ lψ = x and 〈 xy 〉 ◦ sψ = y. Now

Im(〈 xy 〉) = Im(〈 xy 〉) = X ∨ Y since by construction X oψ Y is a quotient of X + Y . But

X = Im(lψ) is proper in X oψ Y , whence Im(〈 xy 〉 ◦ lψ) = Im(x) = X is the image (in

Im(〈 xy 〉 = X ∨ Y ) of a proper subobject of X oψ Y by a regular epimorphism, hence it
is a normal subobject, since proper subobjects are normal and since normal subobjects
are stable under direct images along regular epimorphisms. (See for instance [Borceux
& Bourn 2004, Propositions 3.2.7 and 4.3.2]. Notice however that the definition of a
normal subobject in this book is more general than the one used here, but they show in
Proposition 3.2.12 that they are equivalent in a protomodular pointed category.)

Note also that the notions of normal and proper subobjects, and other related ones,
have been studied more deeply in [Janelidze, Márki & Ursini 2007], [Janelidze, Márki
& Ursini 2009] and [Mantovani & Metere 2010], where it is proved that conversely, in a
pointed regular Mal’tsev category, a direct image of a kernel is a normal subobject.
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4.12. Corollary. A finitely cocomplete homological category C is semi-abelian (i.e.
Barr exact) iff the following condition holds:

(P) A subobject X of an object A of C is proper in A iff it is stable under the conjugation
action core of A, i.e. iff [X,A] ≤ X.

The result that property (P) holds in semi-abelian categories was recently indepen-
dently obtained by Mantovani and Metere [Mantovani & Metere 2010].

Proof. Immediate since a finitely cocomplete homological category is semi-abelian if and
only if it has the property that every normal subobject is a proper subobject.

The following is an extremely useful criterion of normality in semi-abelian categories,
as will be shown in the sequel and in subsequent work.

4.13. Theorem. Suppose that C is semi-abelian. Then the following properties are equiv-
alent for subobjects X, Y of A as above:

1. Y normalizes X.

2. X is a proper subobject of X ∨ Y .

3. The object X ∧ Y is proper in Y and the sequence

0→ X
x′ ,2 X ∨ Y q◦rY ,2 Y/(X ∧ Y )→ 0

is short exact where x′ is the factorization of x through X∨Y and q : Y → Y/(X∧Y )
is the projection.

If these conditions (1)-(3) are satisfied we write X ∨ Y = [X]Y , or even X · Y when
no ambiguity can occur.

We note that the implication (1) ⇒ (3) is a crucial ingredient in the commutator
theory in [Hartl - in preparation].

Proof. The equivalence of (2) and (3) is immediate using the second Noether isomor-
phism theorem, and the equivalence of (2) and (1) follows from Proposition 4.11 and the
exactness of C.

Of course, the notation [X]Y comes from the fact that in the category of groups, when
the conditions are verified the join X ∨ Y indeed is the group X · Y of products x · y with
x ∈ X and y ∈ Y .
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4.14. Proposition. Let C be a finitely cocomplete homological category. Consider two
subobjects X, Y of an object A as above. Then:

1. [X, Y ] is a normal subobject in [X, Y ] ∨X;

2. [X, Y ] ∨X is a normal subobject in X ∨ Y and is the smallest normal subobject of
X ∨ Y containing X;

3. If moreover C is semi-abelian, then one may write:

X ∨ Y = ([X, Y ] ·X) · Y

and
CXBX∨Y = [X, Y ] ·X

where CUBV denotes the proper closure of a subobject U in an object V . In partic-
ular,

CXBA = [X,A] · A

Proof. By Lemma 2.7, one has the decomposition X + Y = ((X � Y ) oX) o Y , hence
in particular X � Y is a proper subobject of (X � Y ) oX, and (X � Y ) oX is a proper
subobject of X + Y = ((X � Y ) oX) o Y . All of them are subobjects of A+ A. Taking
the images of these subobjects by the folding morphism ∇2

A : A + A → A, we get that
∇2
A(X � Y ) = [X, Y ] is a normal subobject of ∇2

A((X � Y ) o X) and ∇2
A((X � Y ) o X)

is a normal subobject of ∇2
A(X + Y ) = X ∨ Y . But ∇2

A((X � Y ) oX) = [X, Y ] ∨X, so
indeed [X, Y ] is a normal subobject in [X, Y ] ∨X and [X, Y ] ∨X is a normal subobject
in X ∨Y . So [X, Y ]∨X is the smallest normal subobject of X ∨Y containing X, because
by Lemma 4.9 and Proposition 4.11, any normal subobject of X ∨ Y containing X must
contain [X,X ∨ Y ], hence must contain [X, Y ]. So (1) and (2) are proved, and (3) is an
immediate consequence of them and of the preceding results.

We conclude this section with the following result, which is useful in [Hartl & Van der
Linden 2013]:

4.15. Proposition. Let C be a finitely cocomplete homological category. Consider a
morphism f : X → Y . Then the image Im(f) is a normal subobject of Y if and only if
the composite morphism

X � Y f�1Y ,2 Y � Y
cY2 ,2 Y

factors through it.
In particular, if C is semi-abelian, then these two equivalent conditions are equivalent

to the fact that f is proper (i.e. Im(f) is proper in Y ).
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Proof. Let X
q ,2 Im(f) m ,2 Y be the regular epi-mono decomposition of f . By

Proposition 4.11, Im(f) is a normal subobject of Y if and only Y acts on it by conjugation,
i.e. if the composite cY2 ◦ (m � 1Y ) factors through m by some morphism cIm(f),Y . Then
of course cY2 ◦ (f � 1Y ) factors through m by cIm(f),Y ◦ (q � 1Y ). Conversely, suppose that
cY2 ◦ (f � 1Y ) factors through m by some morphism h. Then since q � 1Y is a regular
epimorphism by Proposition 2.13, hence a strong one, and since m is a monomorphism,
cY2 ◦ (m � 1Y ) factors through m, so Im(f) is a normal subobject in Y .

X � Y q�1Y � ,2

h !)

Im(f) � Y m�1Y ,2

cIm(f),Y

��

Y � Y
cY2
��

Im(f) ,2 m
,2 Y

5. Other characterizations of (strict) action cores

In this paragraph C remains a finitely cocomplete homological category, even if, at some
places, we shall pay special attention to the semi-abelian case. The functor ΞG of Corollary
3.6 associates to any object (A,G, ψ) of S on another object A an algebra (A, ξ) over the
monad TG, which moreover makes the following diagram commute.

A �G
jA,G ,2

ψ
�'

TG(A)

ξ
w�

A

Using our preceding results, we here give necessary and sufficient conditions for an ar-
bitrary morphism ψ : A � G → A to have such an extension to an algebra over TG, so
they are necessary for ψ to be a strict action core. Hence if the category C is such that
the comparison functor JG is an equivalence of categories between PtG(C) and CTG (in
particular if C is semi-abelian) they are also sufficient, but we also give a direct proof of
this fact in a semi-abelian category, providing an alternative proof (without using Beck’s
criterion) of the fact that JG is an equivalence of categories in this case. Based on a
result of [Hartl & Van der Linden 2013] we also provide a characterization of action cores
corresponding to Beck modules in the semi-abelian setting.

5.1. Proposition. Let ψ : A�G→ A be a morphism in C. Then the following conditions
are equivalent:
1. ψ can be extended along jA,G to a morphism ξ : TG(A) → A satisfying the unit axiom
of a TG-algebra, i.e. ξ ◦ ηA,G = 1A.
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2. The following diagram commutes:

(A �G) � A
CAA,G ,2

ψ�1A
��

A �G
ψ
��

A � A
cA2

,2 A

(2)

Moreover under these conditions, the resulting morphism ξ also satisfies lψ ◦ ξ =
qψ ◦ κA,G, where qψ : A + G → Qψ is the coequalizer of ιA,G and iA ◦ ψ and lψ is the
composite qψ ◦ iA as in Proposition 3.4.

Proof. That some ξ extends ψ along jA,G with ξ ◦ ηA,G = 1A can be translated into the
following diagram:

A �G
jA,G ,2

ψ
�)

TG(A)

ξ
��

A
ηA,Glr

A

so by Proposition 4.4 and Example 4.2, it is immediate that such an extension exists
if and only diagram (2) commutes. Moreover, since the pair (jA,G, ηA,G) is a (strongly)
epimorphic family, in order to prove that lψ ◦ ξ = qψ ◦ κA,G, it suffices to verify that
lψ ◦ ξ ◦ jA,G = qψ ◦ κA,G ◦ jA,G and lψ ◦ ξ ◦ ηA,G = qψ ◦ κA,G ◦ ηA,G. The first equality
amounts to qψ ◦ iA ◦ψ = qψ ◦ ιA,G, which is true because qψ is the coequalizer of these two
morphisms, and the second to qψ ◦ iA ◦ ξ ◦ ηA,G = qψ ◦ κA,G ◦ ηA,G, which is true because
ξ ◦ ηA,G = 1A and κA,G ◦ ηA,G = iA.

5.2. Example. In the category of groups, consider a homomorphism ψ : A � G → A.
As seen above, ψ is the extension to A � G of a unique function J−,−K : G × A → A
such that JeG, aK = Jg, eAK = eA. In Example 3.7 we defined φ(g, a) = Jg, aK · a and
saw that ψ is a strict action core if and only if φ is an action in the usual sense. More
generally, and rather starting out from φ, one may determine the condition on φ which
insures that ψ satisfies the equivalent conditions of Proposition 5.1. In view of the proof
of this proposition, it is more convenient to apply the classical universal property of
the semi-direct product than condition 2. Considering that the strict action core ψ0

of Proposition 5.1 corresponds to a classical action φ0, the property that is needed to
insure the existence of ξ is: for any x ∈ A � G,ψ(φ0(a, x)) = a · ψ(x) · a−1 (note that
we indeed work with ψ on the one hand, and with φ0 on the other hand). But since
φ0(a,−) and conjugation by a both are group morphisms, it suffices to prove this for
an x of the form [g, a′]. And φ0(a, [g, a′]) = a · [g, a′] · a−1 (in TG(A), or in A + G).
But, working in A + G, using the well-known formula x · [y, z] = [x, y] · [y, xz] · x (or
equivalently [x, [y, z]] = [x, y] · [y, xz] · [z, y]), one gets: a · [g, a′] · a−1 = [a, g] · [g, aa′] ·
a · a−1 = [g, a]−1 · [g, aa′]. So since ψ is a morphism and since ψ([g, a]) = φ(g, a) · a−1,
one gets ψ(φ0(a, [g, a′])) = ψ([g, a])−1 · ψ([g, aa′]) = a · (φ(g, a))−1 · φ(g, aa′) · (aa′)−1 and
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a ·ψ[g, a′] ·a−1 = a ·φ(g, a′) ·a′−1 ·a−1 = a ·φ(g, a′) · (aa′)−1. So these terms are equal if and
only if (φ(g, a))−1 · φ(g, aa′) = φ(g, a′), or φ(g, aa′) = φ(g, a) · φ(g, a′), i.e. φ(g,−) is an
endomorphism of A. So we see that ψ extends to a unital morphism ξ iff the corresponding
function φ : G × A → A satisfies part (2) of the classical definition on an action of G on
the group A, which says that (1) φ is an action on the set A and (2) φ acts through
endomorphisms of A.

We now give a characterization of strict action cores in terms of their extensions to
TG(A):

5.3. Proposition. Let ψ : A�G→ A be any morphism. Then, using the same notations
as above, the following properties are equivalent:
1) ψ is a strict action core, i.e. lψ is a monomorphism;
2) ψ satisfies the equivalent conditions of Proposition 5.1 and the induced ξ : TG(A)→ A
is such that Ker(ξ) (or more precisely: the morphism κA,G ◦ ker(ξ)) is proper in A+G.

Moreover, when these two equivalent conditions are verified, Ker(ξ) is the kernel of
qψ : A+G→ Qψ (or more precisely: the morphism κA,G ◦ ker(ξ) is the kernel of qψ).

Proof. We first prove that 1)⇒ 2). By definition, the action core ψ induces the diagram

0

��

0

��
0 ,2 Ker(ξ) ,2

ker(ξ)

��

Ker(qψ)

ker(qψ)

��

,2 0

��
0 ,2 TGA

(∗)ξ

��

κA,G ,2 A+G

qψ

��

pG ,2 G ,2 0

0 ,2 A

��

lψ
,2 Qψ

��

pψ
,2 G ,2 0

0 0

of which the columns and the middle row are short exact. If now ψ is strict, then by
Proposition 3.4 the bottom row is also exact, so the top row is exact by the 3× 3 lemma.
In particular, the dotted arrow between the kernels is an isomorphism, so that κA,G◦ker(ξ)
is not only proper, but even a kernel of qψ.
Conversely, if ψ satisfies the equivalent conditions of Proposition 5.1, then ηA,G is a section
of the induced map ξ : TG(A)→ A. If moreover ξ is such that the morphism κA,G ◦ ker(ξ)
is proper in A + G, then this subobject needs to be the kernel of qψ. Indeed, since it
is proper, it suffices to show that its cokernel is qψ. But by Proposition 3.3 qψ is the
coequalizer of κA,G and iA ◦ ξ. So it suffices to show that if h : A + G → H is such
that h ◦ κA,G ◦ ker ξ = 0, then also h ◦ κA,G = h ◦ iA ◦ ξ. Since ξ has a section, it is the
cokernel of its kernel, hence there exists a unique h̄ : A → H such that h ◦ κA,G = h̄ ◦ ξ.
But then h̄ = h̄ ◦ ξ ◦ ηA,G = h ◦ κA,G ◦ ηA,G = h ◦ iA since κA,G ◦ ηA,G = iA. So
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h ◦κA,G = h ◦ iA ◦ ξ as required. Hence we know that in the previous diagram, the dotted
arrow is an isomorphism, so the diagram’s bottom row is exact by the 3 × 3 lemma. It
follows that ψ is a strict action core.

5.4. Lemma. Consider µA,G : TG(TGA) → TGA the multiplication of the monad and
jTGA,G the inclusion of TGA�G in TG(TGA). Then the composite µA,G◦jTGA,G is the restric-
tion to G of the conjugation action core of A+G on TGA (which exists by Proposition 4.1
since TGA is a proper subobject of A+G). In formal terms, µA,G ◦ jTGA,G = cTGA,A+G �G.

Proof. By Proposition 3.13, this restriction is the unique morphism c : TGA �G→ TGA
making the following diagram commute:

TGA �G
c

��

κA,G�iG ,2 (A+G) � (A+G)

c2A+G

��
TGA κA,G

,2 A+G

so we have to show that c = µA,G ◦ jTGA,G makes it commute. This follows from the
commutativity of all components of the following diagram:

TGA �G
jTGA,G

��

κA,G�iG ,2

ιTGA,G

"*

(A+G) � (A+G)

ιA+G,A+G

��
c2A+G

sz

TG(TGA)

µA,G

��

κTGA,G
,2 (TGA) +G

〈κA,G
iG

〉
&-

κA,G+iG ,2 (A+G) + (A+G)

∇2
A+G

��
TGA κA,G

,2 A+G

To appreciate the meaning of this lemma recall that for any monad T on C and an
object X of C the multiplication µX is a T-algebra over X. Hence µA,G is a G-action on
TGA, hence a strict one if C is semi-abelian; then µA,G ◦ jTGA,G is a strict action core.
Lemma 5.4 generalizes this fact to the non-exact case.

It is worth noting that cTGA,A+G �G factors through A �G:

5.5. Proposition. The morphism cTGA,A+G �G : TGA � G → TGA factors through the
inclusion jA,G of A �G in TGA.

Proof. Since jA,G is the kernel of rA ◦ κA,G by Proposition 2.7, it suffices to show that
rA ◦κA,G ◦µA,G ◦ jTGA,G = 0. But by definition of µA,G, the central square in the following
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diagram commutes, and it is easy to check that the right hand square also commutes:

TGA � A

��

jTGA,G ,2 TGTGA

µA,G

��

κTGA,G ,2 TGA+G

〈κA,G
iG

〉

��

rTGA ,2 TGA

κA,G
��

A+G

rA
��

A �G
jA,G

,2 TGA κA,G
,2 A+G rA

,2 A

so rA ◦ κA,G ◦ µA,G ◦ jTGA,G = rA ◦ κA,G ◦ rTGA ◦ κTGA,G ◦ jTGA,G = 0, since by Proposition
2.7 again rTGA ◦ κTGA,G ◦ jTGA,G = 0.

5.6. Example. In the category of groups, an element of TGA is an element of A+G of
the form (

∏
i[gi, ai]) ·a. We denote by [−,−] the commutators in A+G, and by J−,−K the

commutators in (A+G)+G. Hence a generator of TGA�G has the form Jg, (
∏

i[gi, ai]) ·aK
(with g in the second copy ofG, and gi in the first one), and cTGA,A+G �G (Jg, (

∏
i[gi, ai])·aK)

= [g, (
∏

i[gi · ai]) · a] where both commutators are considered in A + G. Proposition 5.5
is illustrated by the fact that this element is in A �G.

5.7. Proposition. A morphism ξ : TGA → A which satisfies the unit axiom of a TG-
algebra also satisfies the associativity axiom if and only if the following diagram commutes:

TGA �G
ξ�1G

��

cTGA,A+G�G ,2 TGA

ξ
��

A �G
ξ◦jA,G

,2 A

Hence if a morphism ψ : A�G→ A satisfies the conditions of Proposition 5.1, with exten-
sion ξ to TGA, then (A, ξ) is a T-algebra if and only if the following diagram commutes:

TGA �G
ξ�1G

��

cTGA,A+G�G ,2 TGA

ξ
��

A �G
ψ

,2 A

(3)

Proof. Recall that the associativity condition for ξ is commutativity of the following
diagram:

TG(TGA)

TGξ

��

µA,G ,2 TGA

ξ

��
TGA ξ

,2 A

Since the pair {jTGA,G : TGA � G → TG(TGA), ηTGA,G : TGA → TG(TGA)} is (strongly)
epimorphic this condition is equivalent to the system of two equations ξ ◦µA,G ◦ ηTGA,G =
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ξ ◦ TGξ ◦ ηTGA,G and ξ ◦ µA,G ◦ jTGA,G = ξ ◦ TGξ ◦ jTGA,G. The first one is automatically
satisfied, because ξ◦TGξ◦ηTGA,G = ξ◦ηA,G◦ξ = ξ since η is a natural transformation and ξ
satisfies the unit axiom; and ξ ◦µA,G ◦ ηTGA,G = ξ since µA,G ◦ ηTGA,G = 1TGA. Considering
that in the following diagram the left-hand square commutes, the second condition is
equivalent to the commutativity of the outer rectangle; but in view of Lemma 5.4 this
amounts to the required commutativity.

TGA �G
jTGA,G,2

ξ�1G
��

TG(TGA)

TGξ

��

µA,G ,2 TGA

ξ

��
A �G

jA,G
,2 TGA ξ

,2 A

The following result shows that in a semi-abelian category, the conditions of Proposi-
tion 5.7 are also sufficient for some ψ : A�G→ A to be a (strict) action core. This provides
an alternative proof of the fact that in any semi-abelian category, all TG-algebras are strict
actions so that the category of points is equivalent to the category of TG-algebras. We
point out that this proof is based on Proposition 5.3 and the characterization of proper
subobjects by stability under the conjugation action core in Corollary 4.12, instead of
Beck’s criterion as in [Bourn & Janelidze 1998].

5.8. Proposition. Let C be semi-abelian. Let ψ : A � G → A be a morphism satisfying
the equivalent conditions of Proposition 5.1. Then ψ is a strict action core if and only if
the diagram (3) of Proposition 5.7 commutes, i.e.

TGA �G
ξ�1G

��

cTGA,A+G�G ,2 TGA

ξ
��

A �G
ψ= ξ◦jA,G

,2 A

Proof. The condition is necessary in view of Proposition 5.7 (even if the category is
not semi-abelian), since if ψ is a strict action core then its extension ξ is an algebra by
Proposition 3.4, 3. Conversely, suppose C is semi-abelian and suppose that ψ satisfies the
conditions of Propositions 5.1 and 5.7. To show that ψ is a strict action core, it suffices
by Proposition 5.3 to show that Ker(ξ) is proper in A + G. Since C is semi-abelian, it
suffices by Corollary 4.12 to show that Ker(ξ) is stable under the conjugation action core
of A + G, i.e. that there exists a morphism c′′ : Ker(ξ) � (A + G) → Ker(ξ) making the
following diagram commute:

Ker(ξ) � (A+G)

c′′

��

(κA,G◦ker(ξ))�1A+G ,2 (A+G) � (A+G)

cA+G
2

��
Ker(ξ)

κA,G◦ker(ξ)
,2 A+G
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But since TGA is proper in A+G one has the conjugation action core cTGA,A+G of A+G
over TGA which makes the following diagram commute:

TGA � (A+G)

cTGA,A+G

��

κA,G�1A+G ,2 (A+G) � (A+G)

cA+G
2
��

TGA κA,G
,2 A+G

so that one gets the result if one can find a morphism c′′ such that

Ker(ξ) � (A+G)

c′′

��

ker(ξ)�1A+G ,2 TGA � (A+G)

cTGA,A+G

��
Ker(ξ)

ker(ξ)
,2 TGA

commutes, i.e. if ξ ◦ cTGA,A+G ◦ (ker(ξ) � 1A+G) = 0.
Now by [Hartl & Van der Linden 2013, Lemma 2.12] the morphisms 1Ker(ξ)�iA : Ker(ξ)�

A→ Ker(ξ) � (A+G), 1Ker(ξ) � iG : Ker(ξ) �G→ Ker(ξ) � (A+G) and ι′TGA,A,G;2 : Ker(ξ) �
A �G→ Ker(ξ) � (A+G) are jointly epimorphic, hence it suffices to check that the latter
identity holds after composing both sides with each of these three morphisms.

We first show that ξ ◦ cTGA,A+G ◦ (ker(ξ) � iA) = 0. Indeed,

cTGA,A+G ◦ (ker(ξ) � iA) = cTGA,A+G ◦ (1TGA � κA,G) ◦ (ker(ξ) � 1TGA) ◦ (1Ker(ξ) � ηA,G)

= cTGA,TGA ◦ (ker(ξ) � 1TGA) ◦ (1Ker(ξ) � ηA,G) by naturality of c

= ker(ξ) ◦ cKer(ξ),TGA ◦ (1Ker(ξ) � ηA,G),

whence the assertion.
Next we check that ξ ◦ cTGA,A+G ◦ (ker(ξ) � iG) = 0. Indeed,

ξ ◦ cTGA,A+G ◦ (ker(ξ) � iG) = ξ ◦ cTGA,A+G �G ◦(ker(ξ) � 1G)

= ψ ◦ (ξ � 1G) ◦ (ker(ξ) � 1G) by hypothesis

= ψ ◦ ((ξ ◦ ker(ξ)) � 1G)

= ψ ◦ (0 � 1G)

= 0 by Proposition 2.11.(2)

Finally, we show that ξ ◦ cTGA,A+G ◦ (ker(ξ)�1A+G)◦ ι′TGA,A,G;2 = 0. Consider the following
commutative diagram.
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TGA � A �G
ι′TGA,A,G;2 ,2

1TGA�ηA,G�1G

��

ιTGA,A,G

%,
TGA � (A+G)

ιTGA,A+G ,2 TGA+ A+G

〈κA,G
iA
iG

〉
��

1TGA+ηA,G+1G

s{
TGA � TGA �G

ιTGA,TGA,G ,2

S
TGA,G
2,1

��

TGA+ TGA+G

〈
κA,G
κA,G
iG

〉
,2

∇2
TGA

+1G

��

A+G

TGA �G
ιTGA,G ,2

κA,G◦cTGA,A+G�G

2:TGA+G

〈κA,G
iG

〉
,2 A+G

We deduce that

κA,G ◦ cTGA,A+G ◦ ι′TGA,A,G;2 =
〈 κA,G

1A+G

〉
◦ ιTGA,A+G ◦ ι′TGA,A,G;2

= κA,G ◦ cTGA,A+G �G ◦STGA,G2,1 ◦ (1TGA � ηA,G � 1G)

and hence

cTGA,A+G ◦ (kerξ � 1A+G) ◦ ι′Kerξ,A,G;2 = cTGA,A+G �G ◦STGA,G2,1 ◦ (kerξ � ηA,G � 1G)

by naturality of ι′. It follows that

ξ ◦ cTGA,A+G ◦ (kerξ � 1A+G) ◦ ι′Kerξ,A,G;2 = ξ ◦ cTGA,A+G �G ◦STGA,G2,1 ◦ (kerξ � ηA,G � 1G)

= ξ ◦ jA,G ◦ (ξ � 1G) ◦ STGA,G2,1 ◦ (kerξ � ηA,G � 1G)

by hypothesis

= ξ ◦ jA,G ◦ SA,A2,1 ◦ (ξ � ξ � 1G) ◦ (kerξ � ηA,G � 1G)

by naturality of S2,1

= ξ ◦ jA,G ◦ SA,A2,1 ◦ ((ξ ◦ kerξ) � (ξ ◦ ηA,G) � 1G)

= ξ ◦ jA,G ◦ SA,A2,1 ◦ (0 � 1A � 1G)

= ξ ◦ jA,G ◦ SA,A2,1 ◦ 0 by Proposition 2.11.(2).

= 0,

as desired.

We finally give a characterization of the morphisms ψ : A � G → A which are action
cores, i.e. which extend to actions, hence to strict ones if the category is semi-abelian.
Instead of the one unit and one associativity diagram which constitute the definition of
a TG-algebra, it consists of two “associativity-type” diagrams and one kind of coherence
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condition, and thus is more complicated than the former; on the other hand, our diagrams
only involve co-smash products of A and G and the morphism ψ, not its extension ξ. Note
that the second diagram (5) expresses the fact that ψ is an algebra structure over the non-
unital monad − � G, cf. Remark 2.6. While the first two diagrams involve only (nested)
binary co-smash products, the third one makes use of a ternary co-smash product. It
turns out, however, that in the category of groups the third condition may be skipped
because in this category the two first conditions happen to be sufficient for a morphism
ψ to be an action core, see Example 5.10.

5.9. Theorem. Let C be finitely cocomplete homological, and let ψ : A � G → A be a
morphism in it. Then ψ can be extended to a TG-algebra if and only if the following three
diagrams commute:

(A �G) � A
CAA,G ,2

ψ�1A
��

A �G
ψ
��

A � A
cA2

,2 A

(4)

(A �G) �G
CGA,G ,2

ψ�1G
��

A �G
ψ
��

A �G
ψ

,2 A

(5)

(A �G) � A �G
CA,GA,G ,2

ψ�1A�1G
��

A �G
ψ
��

A � A �G
SA,G2,1 ,2 A �G ψ ,2 A

(6)

Proof. Since the first diagram is (2) in Proposition 5.1 we know that it commutes iff ψ
has an extension ξ which satisfies the unit axiom for an algebra. Supposing that this holds,
it remains to show that the associativity axiom then is equivalent to the commutativity
of the two latter diagrams. But we know that under these conditions, the associativity
axiom is equivalent to the commutativity of diagram (3) in Proposition 5.7. We apply
Proposition 2.15 to Z = G, X = TGA, K = A � G, Y = A, k = jA,G, f = rA ◦ κA,G,
s = ηA,G. Then the family (

〈
jA,G
ηA,G

〉
◦ ι′A�G,A,G;1, jA,G � 1G, ηA,G � 1G) of morphisms with

codomain TGA�G is jointly epimorphic, so this diagram (3) commutes iff its compositions
with these three morphisms commute.
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First we compose diagram (3) of Proposition 5.7 with ηA,G � 1G:

A �G

(ξ◦ηA,G)�1G=1A�G

jA,G

�%
ηA,G�1G
��

TGA �G
cTGA,A+G�G ,2

ξ�1G
��

TGA

ξ
��

A �G
ψ

,2 A

If one shows that the upper triangle commutes, i.e. cTGA,A+G �G ◦ (ηA,G � 1G) = jA,G
then one may conclude that the whole outer diagram commutes, so that the resulting
condition is void here. In fact, since κA,G is a monomorphism, it suffices to show that
κA,G ◦ cTGA,A+G �G ◦ (ηA,G � 1G) = κA,G ◦ jA,G = ιA,G. But by Proposition 3.13, one has
κA,G ◦ cTGA,A+G �G = cA+G

2 ◦ (κA,G � iG), so one has:

κA,G ◦ cTGA,A+G �G ◦ (ηA,G � 1G) = cA+G
2 ◦ (κA,G � iG) ◦ (ηA,G � 1G)

= cA+G
2 ◦ ((κA,G ◦ ηA,G) � iG)

= cA+G
2 ◦ (iA � iG)

= ιA,G

because the following diagram commutes:

A �G iA�iG ,2

ιA,G

��

(A+G) � (A+G)

ιA+G,A+G

��
A+G

iA+iG ,2 (A+G) + (A+G)

∇2
A+G

��
A+G

Secondly, we compose diagram (3) of Proposition 5.7 with jA,G � 1G:

(A �G) �G

(ξ◦jA,G)�1G=ψ�1G

�&

cA�G,A+G�G ,2

jA,G�1G
��

A �G
jA,G
��

ψ

w�

TGA �G
cTGA,A+G�G ,2

ξ�1G
��

TGA

ξ
��

A �G
ψ

,2 A

All parts of this diagram except the bottom square are known to commute, so diagram
(3) composed with jA,G � 1G commutes iff diagram (5) commutes.
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Finally, we compose diagram (3) with (
〈
jA,G
ηA,G

〉
� 1G) ◦ ι′A�G,A,G;1. To compute the

composition of the latter morphism with ψ ◦ cTGA,A+G �G consider the following diagram:

(A �G) � A �G

ι′A�G,A,G;1

��

CA,GA,G ,2

ι(A�G),A,G

$,

A �G

ιA,G

��
ψ

��

jA,G

�

(A �G) + A+G〈 ιA,G
iA
iG

〉

"*〈
jA,G
ηA,G

〉
+1G

��

((A �G) + A) �G

〈
jA,G
ηA,G

〉
�1G

��

ιA�G+A,G

2:

A+G

TGA+G

〈κA,G
iG

〉 4<

TGA �G

ιTGA,G

2:

cTGA,A+G�G ,2 TGA

LR

κA,G

LR

ξ ,2 A

We deduce that cTGA,A+G �G ◦(
〈
jA,G
ηA,G

〉
� 1G) ◦ ι′A�G,A,G;1 = jA,G ◦ CA,G

A,G since jA,G is monic.

Hence the composition of the former morphism with ξ equals ψ ◦ CA,G
A,G .

On the other hand, the composition of (
〈
jA,G
ηA,G

〉
� 1G) ◦ ι′A�G,A,G;1 with ψ ◦ (ξ � 1G) is

computed by means of the following commutative diagram.

(A �G) � A �G
ι′A�G,A,G;1

rz

ιA�G,A,G

��

ψ�1A�1G ,2 A � A �G_��

ιA,A,G

�� SA,G2,1

�!

((A �G) + A) �G〈
jA,G
ηA,G

〉
�1G

s{

〈
ψ
1A

〉
�1G

��

ιA�G+A,G,2 (A �G) + A+G
ψ+1A+1G,2

〈
ψ
1A

〉
+1G

��

A+ A+G

∇2
A+1G

��
TGA �G

ξ�1G ,2 A �G � ,2
ιA,G ,2 A+G A+G A �G�lr

ιA,G
lr

Thus ψ ◦ (ξ � 1G) ◦ (
〈
jA,G
ηA,G

〉
� 1G) ◦ ι′A�G,A,G;1 = ψ ◦ SA,G2,1 ◦ (ψ � 1A � 1G). Hence diagram

(3) composed with (
〈
jA,G
ηA,G

〉
� 1G) ◦ ι′A�G,A,G;1 commutes iff diagram (6) commutes, which

achieves the proof.

5.10. Example. In the category of groups, consider a morphism ψ : A �G→ A and the
corresponding2 φ : G×A→ G. We know that the first axiom in Theorem 5.9 expresses that

2Note that if one defines φ from ψ, one can put φ(g, a) = ψ([g, a]) · a, even if [g, a] is the unit, i.e. g
is the unit of G or a is the unit of A: this insures that φ(eG, a) = a and φ(g, eA) = eA, and of course
ψ[g, a] = φ(g, a) · a−1. So there is no need for a special discussion for the case when gg1 = eG in what
follows.
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the φ(g,−) are group endomorphisms of A. We now examine the second diagram. Consid-
ering that X�Y is the subgroup of X+Y generated by the [y, x]’s (with x, y different from
the units), a generator of (A�G)�G has the form Jg,

∏n
i=1[gi, ai]

ziK, where the outer com-
mutator J. . .K is considered in (A+G)+G, while the inner one [. . .] is in A+G. Consider the
case n = 1 with z1 = 1. For a generator Jg, [g1, a1]K one has cA�G,A+G �G (Jg, [g1, a1]K) =
[g, [g1, a1]] = [gg1, a1] · [a1, g] · [a1, g1] = [gg1, a1] · [g, a1]−1 · [g1, a1]−1, the second equal-
ity arising from the formula [x, [y, z]] = [xy, z] · [z, x] · [z, y]. So one gets ψ(cA�G,A+G �G
(Jg, [g1, a1]K) = ψ([gg1, a1] · [g, a1]−1 · [g1, a1]−1) = ψ([gg1, a1]) · (ψ([g, a1])−1 ·ψ([g1, a1])−1 =
φ(gg1, a1)·a−1

1 ·(φ(g, a1)a−1
1 )−1 ·(φ(g1, a1)·a−1

1 )−1 = φ(gg1, a1)·(φ(g, a1))−1 ·a1 ·(φ(g1, a1))−1

on the one hand. On the other hand, one gets ψ((ψ|1G)(Jg, [g1, a1]K)) = ψ([g, ψ([g1, a1]))
= ψ([g, φ(g, a1) · a−1

1 ]) = φ(g, φ(g, a1) · a−1
1 ) · (φ(g, a1) · a−1

1 )−1 = φ(g, φ(g, a1) · a−1
1 ) · a1 ·

(φ(g, a1))−1. So the equation ψ(cA�G,A+G �G (Jg, [g1, a1]K) = ψ((ψ|1G)(Jg, [g1, a1]K)) is
verified if and only if so is the equation φ(gg1, a1).(φ(g, a1))−1 = φ(g, φ(g1, a1) · a−1

1 ).
Now if one assumes moreover that the first diagram commutes, i.e. that the φ(g,−)’s
are endomorphisms of A, then this amounts to the relation φ(gg1, a1) · (φ(g, a1))−1 =
φ(g, φ(g1, a1)) · (φ(g, a1))−1, i.e. φ(gg1, a1) = φ(g, φ(g1, a1)). So, assuming the commuta-
tivity of the first diagram in Theorem 5.9, the commutativity of the second one implies
that φ is a group action in the usual sense; and of course, conversely, if φ is an action in
the usual sense, then the corresponding ψ is a strict action, hence the three diagrams of
Theorem 5.9 commute.

We conclude by providing a “minimalistic” description of Beck modules in a semi-
abelian category C which might be useful in the study of cohomology with non-trivial
coefficients. Recall that a Beck module over an object G of C is an abelian group object
in the category of points PtG(C). It is well-known that if a given point admits an abelian
group structure the latter is unique. In section 6 of [Hartl & Van der Linden 2013] a

characterization of strict action cores corresponding to Beck modules Aoψ G pψ
,2 G

sψlr is

given. We combine it with Theorem 5.9 to obtain the following result.

5.11. Corollary. Suppose that the category C is semi-abelian. Let A and G be objects
in C and ψ : A�G→ A be a morphism. Then ψ is a strict action core such that the point

Aoψ G pψ
,2 G

sψlr is a Beck module iff A is abelian, the diagrams (4) and (5) commute and

the composite morphism ψ2,1 = ψ ◦ SA,G2,1 vanishes.

Proof. By Theorem 5.9 we know that ψ is a strict action core iff the diagrams (4), (5)
and (6) commute. Moreover, by [Hartl & Van der Linden 2013, Theorem 6.2] the point

Aoψ G pψ
,2 G

sψlr is a Beck module iff A is abelian and ψ2,1 = 0. So it suffices to show that

under the latter condition diagram (6) automatically commutes. To see this consider the
following commutative diagram of plain arrows where τ and τ ′ denote the flip of the first
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two summands resp. factors:

(A �G) � A �G � ,2
ι(A�G),A,G,2

ε

��

(A �G) + A+G
rA�G,A,G ,2

τ+1G

��

(A+G)× ((A �G) +G)× ((A �G) + A)

τ ′×1A�G+A

��
A+ (A �G) +G

1A+
〈 ιA,G
iG

〉
��

((A �G) +G)× (A+G)× ((A �G) + A)

〈 ιA,G
iG

〉
×1A+G×〈 0

i1 〉
��

A � A �G � ,2
ιA,A,G ,2 A+ A+G

rA,A,G ,2 (A+G)× (A+G)× (A+ A)

Exactness of the rows then implies the existence of the indicated morphism ε. Now
consider the following commutative diagram.

(A �G) � A �G
ι(A�G),A,G

��

ε ,2

CA,GA,G

"*

A � A �G
ιA,A,G

��

SA,G2,1

t}

(A �G) + A+G
τ+1G ,2〈 ιA,G

iA
iG

〉

#+

A+ (A �G) +G
1A+

〈 ιA,G
iG

〉
,2 A+ A+G

∇2
A+1G=

〈
1A

1A+G

〉
t|

A �G � ,2
ιA,G ,2 A+G A �G�lr

ιA,G
lr

It shows that ψ ◦ CA,G
A,G = ψ2,1 ◦ ε, so if ψ2,1 = 0 then diagram (6) plainly commutes since

both compositions are trivial.
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