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TANNAKA DUALITY AND CONVOLUTION FOR DUOIDAL
CATEGORIES

THOMAS BOOKER AND ROSS STREET

Abstract. Given a horizontal monoid M in a duoidal category F , we examine the
relationship between bimonoid structures on M and monoidal structures on the category
F ∗M of right M -modules which lift the vertical monoidal structure of F . We obtain
our result using a variant of the so-called Tannaka adjunction; that is, an adjunction
inducing the equivalence which expresses Tannaka duality. The approach taken uti-
lizes hom-enriched categories rather than categories on which a monoidal category acts
(“actegories”). The requirement of enrichment in F itself demands the existence of
some internal homs, leading to the consideration of convolution for duoidal categories.
Proving that certain hom-functors are monoidal, and so take monoids to monoids, uni-
fies classical convolution in algebra and Day convolution for categories. Hopf bimonoids
are defined leading to a lifting of closed structures on F to F ∗M . We introduce the
concept of warping monoidal structures and this permits the construction of new duoidal
categories.

1. Introduction

This paper initiates the development of a general theory of duoidal categories. In addition
to providing the requisite definition of a duoidal V -category, various “classical” concepts
are reinterpreted and new notions put forth, including: produoidal V -categories, convolu-
tion structures and duoidal cocompletion, enrichment in a duoidal V -category, Tannaka
duality, lifting closed structures to a category of representations (Hopf opmonoidal mon-
ads), and discovering new duoidal categories by “warping” a given monoidal structure.

Some background references for this work are as follows. Standard categorical notions
can be obtained from Mac Lane [18] and basic enriched category theory from Kelly [15].
For treatments of Tannaka duality, see Joyal-Street [13], Street [27], and the more recent
McCurdy [19]. Promonoidal categories and monoidal convolution are due to Brian Day;
see [7].

Duoidal categories, some examples, and applications, have appeared in the Aguiar-
Mahajan book [1] (under the name “2-monoidal categories”), in the recently published
work of Batanin-Markl [2] and in a series of lectures by the second author [26]. Taken to-
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gether with this paper, the vast potential of duoidal category theory is only now becoming
apparent.

An encapsulated definition is that a duoidal V -category F is a pseudomonoid in the
2-category Mon(V -Cat) of monoidal V -categories, monoidal V -functors and monoidal
V -natural transformations. Since Mon(V -Cat) is equivalently the category of pseu-
domonoids in V -Cat we are motivated to call a pseudomonoid in a monoidal bicategory
a monoidale (i.e. a monoidal object). Thus a duoidal V -category is an object of V -Cat
equipped with two monoidal structures, one called horizontal and the other called vertical,
such that one is monoidal with respect to the other. We distinguish the structure we are
referring to by subscripts h and v respectively; in particular, Fh is the V -category F
equipped with the horizontal monoidal structure alone. We introducing the term duoidale
for objects equipped with a duoidal structure in other monoidal bicategories besides V -
Cat; in particular, in M = V -Mod. By exhibiting and using a canonical monoidal
structure on the V -Cat-valued hom of any left unit closed monoidal bicategory M (see
Section 2), where V = M (I, I), we see that a duoidale in M = V -Mod is precisely
the notion of promonoidal category lifted to the duoidal setting; that is, a produoidal
V -category.

A study of duoidal cocompletion (in light of the produoidal V -category material) leads
to Section 5 where we consider enrichment in a duoidal V -category base. We observe that
if F is a duoidal V -category then the vertical monoidal structure ◦ lifts to give a monoidal
structure on Fh-Cat. If F is then a horizontally left closed duoidal V -category then F
is in fact a monoidale (Fh, ◦̂, p1q) in Fh-Cat with multiplication ◦̂ : Fh ◦ Fh −→ Fh

defined using the evaluation of homs. That is, Fh is an Fh-category.
Section 6 revisits Tannaka duality as an equivalence obtained (as in [27]) from an

adjunction that has been called the Tannaka adjunction (see for example [19]). Our
purpose here is to adapt this adjunction to duoidal V -categories. We write Fh-Cat ↓ps Fh

for the 2-category like the slice Fh-Cat ↓ Fh except that the 1-cells are those triangles that
commute up to a given isomorphism. Post composition with the monoidale multiplication
◦̂ yields a tensor product ◦ on Fh-Cat ↓ps Fh and we write F -Cat ↓ps F for this monoidal
2-category. Let F ∗M be the Fh-category of Eilenberg-Moore algebras for the monad
−∗M . There is a monoidal functor mod : (Mon F )op −→ F -Cat ↓ps F defined by taking
a monoid M to the object UM : F ∗M −→ Fh. Here Mon F is only being considered as
a monoidal category, not a 2-category. Representable objects of F -Cat ↓ps F are closed
under the monoidal structure ◦ which motivates restricting to F -Cat ↓ps

rep F . Since
representable functors are “tractable” and the functor end : F -Cat ↓ps

rep F −→ Mon F
is strong monoidal we have the biadjunction

(Bimon Fh)
op

mod
//Monps(F -Cat ↓ps

rep F )
endoo
⊥

giving the correspondence between bimonoid structures on M and isomorphism classes
of monoidal structures on F ∗M such that the underlying functor is strong monoidal into
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the vertical structure on F . The non-duoidal version of this result is attributed to Bodo
Pareigis (see [22], [20] and [21]).

The notion of a Hopf opmonoidal monad is found in the paper of Bruguières-Lack-
Virelizier [4]. We adapt their work to the duoidal setting in order to lift closed structures
on the monoidale (monoidal Fh-category) (F , ◦̂, p1q) to the Fh-category of right modules
F ∗M for a bimonoidM . In particular, Proposition 7.7 says that the monoidal Fh-category
(F , ◦̂, p1q) is closed if and only if Fv is a closed monoidal V -category and there exists
V -natural isomorphisms X ◦ (W ∗Y ) ∼= W ∗ (X ◦Y ) ∼= (W ∗X)◦Y . In light of F being a
duoidal V -category, Proposition 7.9 gives a refinement of this result which taken together
with Proposition 7.7 yields two isomorphisms

X ∗ (J ◦ Y ) ∼= X ◦ Y ∼= Y ∗ (X ◦ J)

and
Y ◦ (W ∗ 1) ∼= W ∗ Y ∼= (W ∗ 1) ◦ Y .

This result implies that in order to know ◦ we only need to know ∗ and J ◦ − or − ◦ J .
Similarly to know ∗ we need only know ◦ and 1 ∗ − or − ∗ 1. This extreme form of
interpolation motivates the material of Section 8.

We would like a way to generate new duoidal categories. One possible method pre-
sented here is the notion of a warped monoidal structure. In its simplest presentation, a
warping for a monoidal category A = (A ,⊗) is a perturbation of A ’s tensor product by
a “suitable” endo-functor T : A −→ A such that the new tensor product is defined by

A�B = TA⊗B .

We lift this definition to the level of a monoidale A in a monoidal bicategory M . Proposi-
tion 8.4 observes that a warping for a monoidale determines another monoidale structure
on A. If F is a duoidal V -category satisfying the right-hand side of the second isomor-
phism above then a vertical warping of F by T = − ∗ 1 recovers Fh. This is precisely a
warping of the monoidale Fv in M = V -Cat. The last example given generates a duoidal
category by warping the monoidal structure of any lax braided monoidal category viewed
as a duoidal category with ∗ = ◦ = ⊗ and γ = 1⊗ c⊗ 1.

We are grateful to the referees for helping us to clarify parts of our exposition. In
particular, there was a question referring to our Proposition 6.2 and Proposition 7.7
which involve Yoneda’s Lemma and naturality for categories enriched in a base which is
not symmetric. This was quite a fair point since most publications on enriched categories,
including Kelly’s book [15], require the base to be symmetric closed monoidal. We believe
the first person to point out in print the possibility of having “covariant and contravariant
V -functors into V itself”, without V closed or symmetric, was Linton [17]. This possibility
seems strange at first since we apparently need V closed to be a V -category and symmetric
to define opposites.

However, a natural context for this phenomenon is that of V -modules (= profunctors
= distributors). Our reference for this is [25] but we could also give [3] (both of these
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references have the base a bicategory and so include the case of a non-symmetric monoidal
category when the bicategory has one object).

It is quite clear how to define a V -module M : A →X with only a monoidal structure
on V : we need objects M(X,A) of V , a left action

A (A,B)⊗M(X,A)→M(X,B)

and a right action
M(X,A)⊗X (Y,X)→M(Y,A)

satisfying the five “bimodule” conditions. A module morphism θ : M ⇒ N consists of
morphisms θX,A : M(X,A) ⇒ N(X,A) preserving the actions. If V is symmetric closed
monoidal, a module M : A →X is a V -functor

M : X op ⊗A → V ,

and a module morphism θ : M ⇒ N is a V-natural transformation. So, for V merely
monoidal, we still have modules without having the V -categories A op, A ⊗B or V .

At the beginning of Section 7, we do open the discussion of right modules. It was
clear from the referee’s question that we needed to reinforce this particularly in relation
to Proposition 7.7. The point is that, in the proof, [−, A] is a module M : J → Fh. Here
Fh is left closed and so is itself an Fh-category with hom Fh(X, Y ) = [X, Y ]. The right
action of this module M = [−, A] is the composition operation

[X,A]⊗ [Y,X]→ [Y,A]

as defined soon after Proposition 5.1.

2. The monoidality of hom

Let (V ,⊗) be a symmetric closed complete and cocomplete monoidal category. Recall
from [15] that a V -natural transformation θ between V -functors T, S : A −→X consists
of a V -natural family

θA : TA // SA, A ∈ A ,

such that the diagram

A (A,B) T //

S
��

X (TA, TB)

X (1,θB)

��
X (SA, SB)

X (θA,1)
//X (TA, SB)

commutes in the base category V .
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If (C ,�) is a monoidal V -category with tensor product � then the associativity iso-
morphisms aA,B,C : (A � B) � C −→ A � (B � C) are necessarily a V -natural family,
which amounts to the commutativity of the diagram

(C (A,A′)⊗ C (B,B′))⊗ C (C,C ′)

∼=
��

�(�⊗1) //

Nata

C ((A�B)� C, (A′ �B′)� C ′)

C (1,aA′,B′,C′ )

��

C (A,A′)⊗ (C (B,B′)⊗ C (C,C ′))

�(1⊗�)

��
C (A� (B � C), A′ � (B′ � C ′))

C (aA,B,C ,1)
// C ((A�B)� C,A′ � (B′ � C ′))

Similarly the V -naturality of the unit isomorphisms

`A : I � A // A and rA : A� I // A

amounts to the commutativity of

C (A,A′)
I�− //

Nat`

C (I � A, I � A′)

C (1,`A′ )
��

C (A,A′)
−�I //

Natr

C (A� I, A′ � I)

C (1,rA′ )
��

C (A,A′)
C (`A,1)

// C (I � A,A′) C (A,A′)
C (rA,1)

// C (A� I, A′)

2.1. Proposition. If (C ,�) is a monoidal V -category then the V -functor

C (−,−) : C op ⊗ C // V

is equipped with a canonical monoidal structure.

Proof. For C (−,−) to be monoidal we require the morphisms

� : C (W,X)⊗ C (Y, Z) // C (W � Y,X � Z)

and
jI : I // C (I, I)

to satisfy the axioms

(C (U, V )⊗ C (W,X))⊗ C (Y, Z)
�⊗1 //

∼=
��

C (U �W,V �X)⊗ C (Y, Z)

�
��

C (U, V )⊗ (C (W,X)⊗ C (Y, Z))

1⊗�
��

C ((U �W )� Y, (V �X)� Z)

C (a−1
U,W,Y ,aV,X,Z)

��
C (U, V )⊗ C (W � Y,X � Z)

�
// C (U � (W � Y ), V � (X � Z))
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and

C (I, I)⊗ C (Y, Z) � // C (I � Y, I � Z)

C (`−1
Y ,`Z)

��

C (W,X)⊗ I r //

1⊗jI
��

C (W,X)

I ⊗ C (Y, Z)
`

//

jI⊗1

OO

C (Y, Z) C (W,X)⊗ C (I, I)
�
// C (W � I,X � I)

C (r−1
W ,rX)

OO

These diagrams are simply reorganizations of the diagrams Nata, Nat `, and Natr above.

2.2. Corollary. If C is a comonoid and A is a monoid in the monoidal V -category C
then C (C,A) is canonically a monoid in V .

Proof. We observe that monoidal V -functors take monoids to monoids and (C,A) is a
monoid in C op ⊗ C .

2.3. Proposition. If C is a braided monoidal V -category then

C (−,−) : C op ⊗ C // V

is a braided monoidal V -functor.

Proof. Let cX,Y : X � Y −→ Y � X denote the braiding on C . The requirement of
V -naturality for this family of isomorphisms amounts precisely to the commutativity of

C (W,X)⊗ C (Y, Z) � //

∼=
��

C (W � Y,X � Z)

C (c−1,c)
��

C (Y, Z)⊗ C (W,X)
�
// C (Y �W,Z �X)

which is exactly the braiding condition for the monoidal functor C (−,−) of Proposi-
tion 2.1.

We now give a spiritual successor to the above by moving to the level of monoidal
bicategories.

2.4. Proposition. If M is a monoidal bicategory then the pseudofunctor

M (−,−) : M op ×M // Cat

is equipped with a canonical monoidal structure.

Proof. We avail ourselves of the coherence theorem of [11] by assuming that M is
a Gray monoid (see [8]). The definition of a monoidal pseudofunctor (called a “weak
monoidal homomorphism”) between Gray monoids is defined on pages 102 and 104 of [8].
Admittedly Cat is not a Gray monoid, but the adjustment to compensate for this is not
too challenging.

In the notation of [8], the pseudonatural transformation χ is defined at objects to be
the functor

⊗ : M (A,A′)×M (B,B′) //M (A⊗B,A′ ⊗B′)
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and at the morphisms to be the isomorphism

M (A,A′)×M (B,B′)

∼=

⊗ //

M (f,f ′)×M (g,g′)
��

M (A⊗B,A′ ⊗B′)
M (f⊗g,f ′⊗g′)
��

M (C,C ′)×M (D,D′) ⊗
//M (C ⊗D,C ′ ⊗D′)

whose component
(f ′uf)⊗ (g′vg) ∼= (f ′ ⊗ g′)(u⊗ v)(f ⊗ g)

at (u, v) ∈M (A,A′)×M (B,B′) is the canonical isomorphism associated with the pseud-
ofunctor ⊗ : M ×M −→M (see the top of page 102 of [8]). For ι, we have the functor
1 −→M (I, I) which picks out 1I . For ω, we have the natural isomorphism

M (A,A′)×M (B,B′)×M (C,C ′)
⊗×1 //

1×⊗
��

M (A⊗B,A′ ⊗B′)×M (C,C ′)

⊗
��

M (A,A′)×M (B ⊗ C,B′ ⊗ C ′) ⊗
//

ω ��

M (A⊗B ⊗ C,A′ ⊗B′ ⊗ C ′)

whose component at (u, v, w) is the canonical isomorphism

(u⊗ v)⊗ w ∼= u⊗ (v ⊗ w)

associated with ⊗ : M ×M −→M . For ξ and κ, we have the natural isomorphisms

M (A,A′)×M (I, I)
⊗

))
M (A,A′)

1×p1Iq
55

1
//

∼= ��

M (A,A′)

and
M (I, I)×M (A,A′)

⊗

))
M (A,A′)

p1Iq×1
55

1
//

∼= ��

M (A,A′)

with canonical components

u⊗ 1I ∼= u and 1I ⊗ u ∼= u .

The two required axioms are then a consequence of the coherence conditions for pseudo-
functors in the case of ⊗ : M ×M −→M .
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2.5. Corollary. ([8]; page 110, Proposition 4) If A is a pseudomonoid and C is a
pseudocomonoid in a monoidal bicategory M then the category M (C,A) is equipped with
a canonical monoidal structure.

2.6. Proposition. If M is a braided monoidal bicategory then

M (−,−) : M op ×M // Cat

is a braided monoidal pseudofunctor.

Proof. The required data of page 122, Definition 14 in [8] is provided by the invertible
modification

M (A,A′)×M (B,B′)
∼= //

⊗
��

M (B,B′)×M (A,A′)

⊗
��

=⇒
∼=

M (A⊗B,A′ ⊗B′)
M (ρ−1,ρ)

//M (B ⊗ A,B′ ⊗ A′)

whose component at (u, v) is

B ⊗ A ρ //

1 00

A⊗B
ρ

��

u⊗v // A′ ⊗B′

ρ

��
∼=

B ⊗ A
v⊗u

//

∼= ρu,v

B′ ⊗ A′

What we really want is a presentation of these results lifted to the level of enriched
monoidal bicategories.

Suppose M is a monoidal bicategory. Put V = M (I, I), regarding it as a monoidal
category under composition ◦. There is another “multiplication” on V defined by the
composite

M (I, I)×M (I, I)
⊗ //M (I ⊗ I, I ⊗ I) ∼= M (I, I)

with the same unit 1I as ◦. By Proposition 5.3 of [14], a braiding is obtained on V .
Furthermore, each hom category M (X, Y ) has an action

M (I, I)×M (X, Y )
⊗ //M (I ⊗X, I ⊗ Y ) ' M (X, Y )

by V which we abusively write as

(v,m) � // v ⊗m .

We call M left unit closed when each functor

−⊗m : V //M (X, Y )
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has a right adjoint
[m,−] : M (X, Y ) // V .

That is, we have a natural isomorphism

M (X, Y )(v ⊗m,n) ∼= V (v, [m,n]) .

In particular, this implies V is a left closed monoidal category and that each hom category
M (X, Y ) is V -enriched with V -valued hom defined by [m,n]. Furthermore, since V is
braided, the 2-category V -Cat of V -categories, V -functors and V -natural transformations
is monoidal; see Remark 5.2 of [14].

2.7. Proposition. If the monoidal bicategory M is left unit closed then the monoidal
pseudofunctor of Proposition 2.4 lifts to a monoidal pseudofunctor

M (−,−) : M op ×M // V -Cat

where V = M (I, I) as above.

Proof. We use the fact that, for tensored V -categories A and B, enrichment of a functor
F : A −→ B to a V -functor can be expressed in terms of a lax action morphism structure

χV,A : V ⊗ FA // F (V ⊗ A)

for V ∈ V , A ∈ A . Given such V -functors F,G : A −→ B, a family of morphisms

θA : FA // GA

is V -natural if and only if the diagrams

V ⊗ FA
χV,A //

1⊗θA
��

F (V ⊗ A)

θV⊗A
��

V ⊗GA
χV,A

// G(V ⊗ A)

commute. Therefore, to see that the functors

M (f, g) : M (X, Y ) //M (X ′, Y ′) ,

for f : X ′ −→ X and g : Y −→ Y ′, are V -enriched, we require 2-cells

v ⊗ (g ◦m ◦ f) // g ◦ (v ⊗m) ◦ f

which constitute a lax action morphism. As in the proof of Proposition 2.4, we assume that
M is a Gray monoid where we can take these 2-cells to be the canonical isomorphisms.
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It is then immediate that the 2-cells σ : f =⇒ f ′ and τ : g =⇒ g′ induce V -natural
transformations M (σ, τ) : M (f, g) =⇒M (f ′, g′).

For the monoidal structure on M (−,−), we need to see that the effect of the tensor
of M on homs defines a V -functor

⊗ : M (A,A′)⊗M (B,B′) //M (A⊗B,A′ ⊗B′) .

Again we make use of the coherent isomorphisms; in this case they are

v ⊗ (m⊗ n) ∼= (v ◦m)⊗ (v ◦ n)

for v : I −→ I, m : A −→ A′, n : B −→ B′. It is clear that ι can be regarded as a
V -functor ι : I −→M (I, I). The V -naturality of all the 2-cells involved in the monoidal
structure on M (−,−) now follows automatically from the naturality of the Gray monoid
constraints.

2.8. Proposition. In the situation of Proposition 2.7, if M is also symmetric then so
is M (−,−).

Proof. If M is symmetric, so too is V = M (I, I). Consequently, V -Cat is also sym-
metric. Referring to the proof of Proposition 2.6, we see that the techniques of the proof
of Proposition 2.7 apply.

2.9. Example. Let V be any braided monoidal category which is closed complete and
cocomplete. Put M = V -Mod, the bicategory of V -categories, V -modules (i.e. V -
distributors or equivalently V -profunctors), and V -module morphisms. This M is a
well-known example of a monoidal bicategory (see [8]). We can easily identify V with
V -Mod(I, I) and the action on M (A ,X ) with the functor

V × V -Mod(A ,X ) // V -Mod(A ,X )

given by the mapping
(V,M) � // V ⊗M .

This mapping is defined by (V ⊗M)(X,A) = V ⊗M(X,A) equipped with a left module
action

A (A,B)⊗ V ⊗M(X,A)
c⊗1
∼=
// V ⊗A (A,B)⊗M(X,A)

1⊗act`// V ⊗M(X,B)

and a right module action

V ⊗M(X,A)⊗X (Y,X)
1⊗r // V ⊗M(Y,A) ,

where c is the braiding of V . We have ignored associativity isomorphisms. To see that
M = V -Mod is left unit closed we easily identify [M,N ] ∈ V for M,N ∈ V -Mod(A ,X )
with the usual V -valued hom for the V -category [X op ⊗A ,V ]; namely,

[M,N ] =

∫
X,A

[M(X,A), N(X,A)] ,
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the “object of V -natural transformations”. Therefore, in this case, Proposition 2.7 is
about the pseudofunctor

V -Modop × V -Mod // V -Cat ,

given by the mapping
(A ,X ) � // [X op ⊗A ,V ] ,

asserting monoidality. When V is symmetric, Proposition 2.8 assures us the pseudofunctor
is also symmetric.

2.10. Remark. There is presumably a more general setting encompassing the results of
this section. For a monoidal bicategory K , it is possible to define a notion of K -bicategory
M by which we mean that the homs M (X, Y ) are objects of K . For Proposition 2.1 we
would take K to be V as a locally discrete bicategory and M to be C . For Proposition
2.4, K would be Cat. For Proposition 2.7, K would be V -Cat. Then, as in these cases,
we would require K to be braided in order to define the tensor product of K -bicategories
and so monoidal K -bicategories. With all this properly defined, we expect

M (−,−) : M op ⊗M //K

to be a monoidal K -pseudofunctor.

3. Duoidal V -categories

Throughout V is a symmetric monoidal closed, complete and cocomplete category. The
following definition agrees with that of Batanin and Markl in [2] and, under the name
2-monoidal category, Aguiar and Mahajan in [1].

3.1. Definition. A duoidal structure on a V -category F consists of two V -monoidal
structures

∗ : F ⊗F //F , pJq : 1 //F , (3.1)

◦ : F ⊗F //F , p1q : 1 //F , (3.2)

such that either of the following equivalent conditions holds:

(i) the V -functors ◦ and p1q of (3.2) and their coherence isomorphisms are monoidal
with respect to the monoidal V -category Fh of (3.1).

(ii) the V -functors ∗ and pJq of (3.1) and their coherence isomorphisms are opmonoidal
with respect to the monoidal V -category Fv of (3.2).

We call the monoidal V -category Fh of (3.1) horizontal and the monoidal V -category
Fv of (3.2) vertical ; this terminology comes from an example of derivation schemes due
to [2] (also see [26]).
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The extra elements of structure involved in (i) and (ii) are a V -natural middle-of-four
interchange transformation

γ : (A ◦B) ∗ (C ◦D) // (A ∗ C) ◦ (B ∗D) ,

and maps

1 ∗ 1 µ // 1 J
τoo δ // J ◦ J

such that the diagrams

((A ◦B) ∗ (C ◦D)) ∗ (E ◦ F )

γ∗1
��

∼= // (A ◦B) ∗ ((C ◦D) ∗ (E ◦ F ))

1∗γ
��

((A ∗ C) ◦ (B ∗D)) ∗ (E ◦ F )

γ

��

(A ◦B) ∗ ((C ∗ E) ◦ (D ∗ F ))

γ

��
((A ∗ C) ∗ E) ◦ ((B ∗D) ∗ F ) ∼=

// (A ∗ (C ∗ E)) ◦ (B ∗ (D ∗ F ))

(3.3)

((A ◦B) ◦ C) ∗ ((D ◦ E) ◦ F )
∼= //

γ

��

(A ◦ (B ◦ C)) ∗ (D ◦ (E ◦ F ))

γ

��
((A ◦B) ∗ (D ◦ E)) ◦ (C ∗ F )

γ◦1
��

(A ∗D) ◦ ((B ◦ C) ∗ (E ◦ F ))

1◦γ
��

((A ∗D) ◦ (B ∗ E)) ◦ (C ∗ F ) ∼=
// (A ∗D) ◦ ((B ∗ E) ◦ (C ∗ F ))

(3.4)

and

J ∗ (A ◦B) δ∗1 // (J ◦ J) ∗ (A ◦B)

γ

��

(A ◦B) ∗ J 1∗δ // (A ◦B) ∗ (J ◦ J)

γ

��
A ◦B

∼=

OO

∼=
// (J ∗ A) ◦ (J ∗B) A ◦B

∼=

OO

∼=
// (A ∗ J) ◦ (B ∗ J)

(3.5)

1 ◦ (A ∗B) (1 ∗ 1) ◦ (A ∗B)
µ◦1oo (A ∗B) ◦ 1 (A ∗B) ◦ (1 ∗ 1)

1◦µoo

A ∗B

∼=

OO

∼=
// (1 ◦ A) ∗ (1 ◦B)

γ

OO

A ∗B

∼=

OO

∼=
// (A ◦ 1) ∗ (B ◦ 1)

γ

OO
(3.6)

commute, together with the requirement that (1, µ, τ) is a monoid in Fh and (J, δ, τ) is
a comonoid in Fv.

3.2. Example. A braided monoidal category C with braid isomorphism c : A⊗B ∼= B⊗A
is an example of a duoidal category with ⊗ = ∗ = ◦ and γ, determined by 1A ⊗ c ⊗ 1D
and re-bracketing, invertible.
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3.3. Example. Let C be a monoidal V -category. An important example is the V -
category F = [C op ⊗ C ,V ] of V -modules C — // C and V -module homomorphisms.
We see that F becomes a duoidal V -category with ∗ the convolution tensor product for
C op⊗C and ◦ the tensor product “over C ”. This example can be found in the last section
of [26].

3.4. Definition. A duoidal functor F : F −→ F ′ is a functor F that is equipped with
monoidal structures Fh −→ F ′

h and Fv −→ F ′
v which are compatible with the duoidal

data γ, µ, δ, and τ .

3.5. Definition. A bimonoidal functor F : F −→ F ′ is a functor F that is equipped
with a monoidal structure Fh −→ F ′

h and an opmonoidal structure Fv −→ F ′
v both of

which are compatible with the duoidal data γ, µ, δ, and τ .

3.6. Definition. A bimonoid A in a duoidal category F is a bimonoidal functor pAq :
1 −→ F . That is, it is an object A equipped with the structure of a monoid for ∗ and a
comonoid for ◦, compatible via the axioms

A ∗ A µ //

δ∗δ
��

A
δ //

=

A ◦ A

(A ◦ A) ∗ (A ◦ A) γ
// (A ∗ A) ◦ (A ∗ A)

µ◦µ
OO (3.7)

A ∗ A µ //

ε∗ε
��

A

ε

��
=

1 ∗ 1 µ
// 1

J ◦ J
η◦η
��

J
δoo

η

��
=

A ◦ A A
δ

oo

(3.8)

J

τ

��

η

��
A=

ε
��

1 .

(3.9)

These are a lifting of the usual axioms for a bimonoid in a braided monoidal category.

4. Duoidales and produoidal V -categories

Recall the two following definitions and immediately following example from [8] where M
is a monoidal bicategory.
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4.1. Definition. A pseudomonoid A in M is an object A of M together with mul-
tiplication and unit morphisms µ : A ⊗ A −→ A, η : I −→ A, and invertible 2-cells
a : µ(µ ⊗ 1) =⇒ µ(1 ⊗ µ), ` : µ(η ⊗ 1) =⇒ 1, and r : µ(1 ⊗ η) =⇒ 1 satisfying the
coherence conditions given in [8].

4.2. Definition. A (lax-)morphism f between pseudomonoids A and B in M is a mor-
phism f : A −→ B equipped with

A⊗ A µ //

f⊗f
��

A

f

��
B ⊗B µ

//

=⇒
ϕ

B

and
I η

��

η

--

=⇒
ϕ0

A

f
��
B

subject to three axioms.

4.3. Example. If M is the cartesian closed 2-category of categories, functors, and nat-
ural transformations then a monoidal category is precisely a pseudomonoid in M .

This example motivates calling a pseudomonoid in a monoidal bicategory M a monoid-
ale (short for a monoidal object of M ). A morphism f : M → N of monoidales is then
a morphism of pseudomonoids (i.e. a monoidal morphism between monoidal objects).
We write Mon(M ) for the 2-category of monoidales in M , monoidal morphisms, and
monoidal 2-cells. If M is symmetric monoidal then so is Mon(M ).

4.4. Definition. A duoidale F in the symmetric monoidal bicategory M is an object
F together with two monoidale structures

∗ : F ⊗ F // F, J : I // F (4.1)

◦ : F ⊗ F // F, 1 : I // F (4.2)

such that ◦ and 1 are monoidal morphisms with respect to ∗ and J .

4.5. Remark. If M = V -Cat then a duoidale in M is precisely a duoidal V -category.

Let M = V -Mod be the symmetric monoidal bicategory of V -categories, V -modules,
and V -module morphisms. By Proposition 2.8, there is a symmetric monoidal pseudo-
functor

M (I ,−) : M // V -Cat

defined by taking a V -category A to the V -category [A op,V ] of V -functors and V -
natural transformations.
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4.6. Definition. A produoidal V -category is a duoidale in V -Mod.

If F is a produoidal V -category then there are V -modules

S : F ⊗F //| F , H : I //| F ,

R : F ⊗F //| F , K : I //| F ,

where R and K are monoidal with respect to S so that there are 2-cells γ, δ, and τ :

F ⊗F ⊗F ⊗F '
1⊗c⊗1

��

—R⊗R

F ⊗F ⊗F ⊗F //|
S⊗S

F ⊗F

��

— R=⇒
γ

F ⊗F //|
S

F

I '

—

H ..

I ⊗ I //|
H⊗H

F ⊗F

��

— R

I ⊗ I

��

—K⊗K

' I

��

— K=⇒
µ

F

=⇒δ

F ⊗F //|
S

F

I
%%

|
H

::
|
K

τ
��

F

compatible with the two pseudomonoid structures. By composition of V -modules these
2-cells have component morphisms∫ X,Y

R(X;A,B)⊗R(Y ;C,D)⊗ S(E;X, Y )

γ
��∫ U,V

S(U ;A,C)⊗ S(V ;B,D)⊗R(E;U, V )

H(A) δ //
∫ X,Y

H(X)⊗H(Y )⊗R(A;X, Y )∫ X,Y
K(X)⊗K(Y )⊗ S(A;X, Y )

µ // K(A)

H(A) τ // K(A)

in V .
Given any duoidal V -category F we obtain a produoidal V -category structure on F

by setting
S(A;B,C) = F (A,B ∗ C)

and
R(A;B,C) = F (A,B ◦ C)

that is, we pre-compose the V -valued hom of F with (3.1) and (3.2) of Definition 3.1.
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4.7. Proposition. If F is a produoidal V -category then M (I ,F ) = [F op,V ] is a
duoidal V -category.

Proof. By Proposition 2.8 and by using the obvious symmetric monoidal structure on I ,
we see that M (I ,−) is a symmetric monoidal pseudofunctor and so takes duoidales to
duoidales. The result follows from this. However, we spell out some details. Consider the
V -category of V -functors and V -natural transformations [F op,V ]. The two monoidale
structures on F translate to two monoidal structures on [F op,V ] by Day-convolution

(M ∗N)(A) =

∫ X,Y

S(A;X, Y )⊗M(X)⊗N(Y ) (4.3)

(M ◦N)(B) =

∫ U,V

R(B;U, V )⊗M(U)⊗N(V ) (4.4)

such that the duoidale 2-cell structure morphisms lift to give a duoidal V -category. More
specifically the maps (γ, δ, µ, τ) lift to [F op,V ] and satisfy the axioms (3.3), (3.4), (3.5)
and (3.6) in Definition 3.1. Demonstrating the lifting and commutativity of the requisite
axioms uses iterated applications of the V -enriched Yoneda lemma and Fubini’s inter-
change theorem as in [15].

Our final theorem for this section permits us to apply the theory of categories enriched
in a duoidal V -category F even if the monoidal structures on F are not closed.

4.8. Theorem. Let F be a small duoidal V -category. The Yoneda embedding y :
F −→ [F op,V ] gives [F op,V ] as the duoidal cocompletion of F with both monoidal
structures closed. The universal property is that, for any cocomplete duoidal category
X with both monoidal structures closed, there is an equivalence between the V -category
of duoidal V -functors F −→ X and the V -category of colimit-preserving duoidal V -
functors [F op,V ] −→X .

Proof. This theorem is essentially an extension of some results of Im and Kelly in [12]
which themselves are largely extensions of results in [6] and [15]. In particular, if A is a

monoidal V -category then Â = [A op,V ] is the free monoidal closed completion with the
convolution monoidal structure. If F is a duoidal V -category then, by Proposition 4.1
of [12], the monoidal structures ∗ and ◦ on F give two monoidal biclosed structures on

F̂ = [F op,V ] with the corresponding Yoneda embeddings strong monoidal functors. As
per [12] the monoidal products are given by Day convolution

P ∗̂ Q =

∫ A,B

P (A)⊗Q(B)⊗F (−, A ∗B) (4.5)

P ◦̂ Q =

∫ A,B

P (A)⊗Q(B)⊗F (−, A ◦B) (4.6)

as the left Kan-extension of y ⊗ y along the composites y∗ and y◦ respectively. Write Ĵ
and 1̂ for the tensor units y(J) = F (−, J) and y(1) = F (−,1) respectively. The duoidal
data (γ, µ, δ, τ) lifts directly to give duoidal data (γ̂, µ̂, δ̂, τ̂) for F .
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5. Enrichment in a duoidal V -category base

Let F be a duoidal V -category. There is a 2-category Fh-Cat of Fh-categories, Fh-
functors, and Fh-natural transformations in the usual Eilenberg-Kelly sense; see [15]. We
write J for the one-object Fh-category whose hom is the horizontal unit J in F .

Let A and B be Fh-categories and define A ◦B to be the Fh-category with objects
pairs (A,B) and hom-objects (A ◦ B)((A,B), (A′, B′)) = A (A,A′) ◦ B(B,B′) in Fh.
Composition is defined using the middle-of-four map γ as follows

(A ◦B)((A′, B′), (A′′, B′′)) ∗ (A ◦B)((A,B), (A′, B′))

∼=
��

(A (A′, A′′) ◦B(B′, B′′)) ∗ (A (A,A′) ◦B(B,B′))

γ

��
(A (A′, A′′) ∗A (A,A′)) ◦ (B(B′, B′′) ∗B(B,B′))

comp ◦ comp

��
A (A,A′′) ◦B(B,B′′)

∼=
��

(A ◦B)((A,B), (A′′, B′′)) .

Identities are given by the composition

J
δ // J ◦ J îdA◦îdB // A (A,A) ◦B(B,B) .

The monoidal unit is the Fh-category 1 consisting of a single object • and hom-object
1(•, •) = 1.

Checking the required coherence conditions proves the following result of [2].

5.1. Proposition. The ◦ monoidal structure on Fh lifts to a monoidal structure on the
2-category Fh-Cat.

We write F -Cat for the monoidal 2-category Fh-Cat with ◦ as the tensor product.
Let F be a duoidal V -category such that the horizontal monoidal structure ∗ is left-

closed. That is, we have
F (X ∗ Y, Z) ∼= F (X, [Y, Z])

with the “evaluation” counit ev : [Y, Z] ∗ Y −→ Z.
This gives Fh as an Fh-category in the usual way by defining the composition oper-

ation [Y, Z] ∗ [X, Y ] −→ [X,Z] as corresponding to

([Y, Z] ∗ [X, Y ]) ∗X ∼= [Y, Z] ∗ ([X, Y ] ∗X) 1∗ev // [Y, Z] ∗ Y ev // Z

and identities îdX : J −→ [X,X] as corresponding to ` : J ∗X −→ X.
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The duoidal structure of F provides a way of defining [X,X ′]◦[Y, Y ′] −→ [X◦Y,X ′◦Y ′]
using the middle-of-four interchange map:

([X,X ′] ◦ [Y, Y ′]) ∗ (X ◦ Y )

γ

��

// X ′ ◦ Y ′

([X,X ′] ∗X) ◦ ([Y, Y ′] ∗ Y )

ev ◦ ev

66 (5.1)

The above shows that F is a monoidale (pseudo-monoid) in the category of Fh-
categories with multiplication given by the Fh-functor ◦̂ : Fh ◦Fh −→ Fh as defined.

Let Mon(Fh) be the category of (horizontal) monoids (M,µ : M ∗M −→M, η : J −→
M) in Fh. Let M and N be objects of Mon(Fh) and define the monoid multiplication
map of M ◦N to be the composition

(M ◦N) ∗ (M ◦N)
γ // (M ∗M) ◦ (N ∗N)

µ◦µ //M ◦N

and the unit to be

J
δ // J ◦ J η◦η //M ◦N .

This tensor product of monoids is the restriction to one-object Fh-categories of the
tensor of F -Cat. So we have the following result which was also observed in [1].

5.2. Proposition. The monoidal structure ◦ on F lifts to a monoidal structure on the
category Mon(Fh).

We write Mon F for the monoidal category Mon(Fh) with ◦.

5.3. Remark. A monoid in (Mon F )op is precisely a bimonoid in F .

6. The Tannaka adjunction revisited

Let F be a horizontally left closed duoidal V -category. Each object M of F determines
an Fh-functor

− ∗M : Fh
//Fh

defined on objects by A 7→ A ∗M and on homs by taking

− ∗M : [A,B] // [A ∗M,B ∗M ] (6.1)

to correspond to

[A,B] ∗ (A ∗M) ∼= ([A,B] ∗ A) ∗M ev∗1 // B ∗M .

If M is a monoid in Fh then − ∗M becomes a monad in Fh-Cat in the usual way.
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We write F ∗M for the Eilenberg-Moore Fh-category of algebras for the Fh-monad
− ∗ M ; see [16] and [23]. It is the Fh-category of right M -modules in F . If F has
equalizers then F ∗M is assured to exist; the Fh-valued hom is the equalizer of the pair

[A,B]
[α,1] //

−∗M ''

[A ∗M,B]

[A ∗M,B ∗M ]
[1,β]

66
(6.2)

where α : A ∗M −→ A and β : B ∗M −→ B are the actions of A and B as objects of
F ∗M .

Let UM : F ∗M −→ Fh denote the underlying Fh-functor which forgets the action and
whose effect on homs is the equalizer of (6.2). There is an Fh-natural transformation

χ : UM ∗M // UM (6.3)

which is the universal action of the monad −∗M ; its component at A in F ∗M is precisely
the action α : A ∗M −→ A of A.

An aspect of the strong enriched Yoneda Lemma is the Fh-natural isomorphism

F ∗M(M,B) ∼= UMB. (6.4)

In this special case, the result comes from the equalizer

B
β̂ // [M,B]

[1,β](−∗M)
//

[µ,1] //
[M ∗M,B].

In other words, the Fh-functor UM is representable with M as the representing object.
Each Fh-functor U : A −→ Fh defines a functor

U ∗ − : F //Fh-Cat(A ,Fh) (6.5)

taking X ∈ F to the composite Fh-functor

A U //Fh
−∗X //Fh

and f : X −→ Y to the Fh-natural transformation U ∗ f with components

1 ∗ f : UA ∗X // UA ∗ Y.

We shall call U : A −→ Fh tractable when the functor U ∗− has a right adjoint denoted

{U,−} : Fh-Cat(A ,Fh) //F . (6.6)

This means that morphisms t : X −→ {U, V } are in natural bijection with Fh-natural
transformations θ : U ∗X −→ V .
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Let us examine what Fh-naturality of θ : U ∗X −→ V means. By definition it means
commutativity of

[V A, V B]
[θA,1]

((
A (A,B)

VA,B
88

UA,B
��

[UA ∗X, V B]

[UA,UB]
−∗X

// [UA ∗X,UB ∗X] .

[1,θB ]

OO

(6.7)

This is equivalent to the module-morphism condition

A (A,B) ∗ (UA ∗X)
1∗θA // A (A,B) ∗ V A

V A,B

��

(A (A,B) ∗ UA) ∗X

∼=
44

UA,B∗X **
UB ∗X

θB
// V B.

(6.8)

under left closedness of Fh. Notice that tractability of an object Z of F , regarded as
an Fh-functor pZq : J −→ Fh, is equivalent to the existence of a horizontal right hom
{Z,−}:

F (X, {Z, Y }) ∼= F (Z ∗X, Y ). (6.9)

Assuming all of the objects UA and A (A,B) in F are tractable, we can rewrite (6.8) in
the equivalent form

{UA, V A} {1,V̂AB} // {UA, {A (A,B), V B}}

∼=

��

X

θ̂A
99

θ̂B %%
{UB, V B} {UAB ,1} // {A (A,B) ∗ UA, V B}.

(6.10)

6.1. Proposition. If F is a complete, horizontally left and right closed, duoidal V -
category and A is a small Fh-category then every Fh-functor U : A −→ Fh is tractable.

However, some U can still be tractable even when A is not small.

6.2. Proposition. (Yoneda Lemma) If U : A −→ Fh is an Fh-functor represented by
an object K of A then U is tractable and

{U, V } ∼= V K.
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Proof. By the “weak Yoneda Lemma” (see [15]) we have

Fh-Cat(U ∗X, V ) ∼= Fh-Cat(U, [X, V ]) ∼= F (J, [X, V K]) ∼= F (X, V K).

Consider the 2-category Fh-Cat ↓ps Fh defined as follows. The objects are Fh-
functors U : A −→ Fh. The morphisms (T, τ) : U −→ V are triangles

A T //

U !!

B

V}}
∼=
τ

Fh

(6.11)

in Fh-Cat. The 2-cells θ : (T, τ) =⇒ (S, σ) are Fh-natural transformations θ : T =⇒ S
such that

A
S

//

T

  θ��

U !!

B

V}}
∼=σ

Fh

=

A

T

&&

U !!

B

V}}

∼=
τ

Fh .

(6.12)

We define a vertical tensor product ◦ on the 2-category Fh-Cat ↓ps Fh making it a
monoidal 2-category, which we denote by F -Cat ↓ps F . For Fh-functors U : A −→ Fh

and V : B −→ Fh, define U◦V : A ◦B −→ Fh to be the composite

A ◦B U◦V //Fh ◦Fh
◦̂ //Fh . (6.13)

The unit object is p1q : 1 −→ Fh. The associativity constraints are explained by the
diagram

(A ◦B) ◦ C
∼= //

(U◦V )◦W
��

A ◦ (B ◦ C )

U◦(V ◦W )
��

(Fh ◦Fh) ◦Fh

∼= //

◦̂ ◦ 1
��

Fh ◦ (Fh ◦Fh)

1 ◦ ◦̂
��∼=

a

Fh ◦Fh

◦̂ ''

Fh ◦Fh

◦̂ww
Fh

(6.14)

where a is the associativity constraint for the vertical structure on F . The unit constraints
are similar.



TANNAKA DUALITY AND CONVOLUTION FOR DUOIDAL CATEGORIES 187

6.3. Remark. We would like to emphasise that, although there are conceivable 2-cells
for Mon F as a sub-2-category of Fh-Cat (see [23]), we are only regarding Mon F as a
monoidal category, not a monoidal 2-category.

Next we specify a monoidal functor

mod : (Mon F )op //F -Cat ↓ps Fh . (6.15)

For each monoid M in Fh, we put

mod M = (UM : F ∗M // Fh).

For a monoid morphism f : N −→M , we define

F ∗M mod f //

UM ""
=

F ∗N

UN||
Fh

(6.16)

by

(mod f)(A ∗M α // A) = (A ∗N 1∗f // A ∗M α // A).

To see that mod f is an Fh-functor, we recall the equalizer of (6.2) and point to the
following diagram in which the empty regions commute.

[A ∗M,B] [1∗f,1]

''
[A,B]

[α,1] //

(6.2)

−∗M
//

−∗N ''

[A ∗M,B ∗M ]

[1,β]

OO

[1∗f,1]

))

[A ∗N,B]

[A ∗N,B ∗N ]
[1,1∗f ]

// [A ∗N,B ∗M ]
[1,β]

66

Alternatively, we could use the universal property of mod N as the universal action of
the monad − ∗N on F .

For the monoidal structure on mod, we define an Fh-functor ΦM,N making the square

F ∗M ◦F ∗N ΦM,N //

UM◦UN
��

F ∗(M◦N)

UM◦N
��

Fh ◦Fh ◦̂
//Fh

(6.17)

commute; put

ΦM,N(A ∗M α // A,B ∗N β // B) =
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((A ◦B) ∗ (M ◦N)
γ // (A ∗M) ◦ (B ∗N)

α◦β // A ◦B)

and use the universal property of mod(M ◦N) to define ΦM,N on homs.

For tractable U : A −→ Fh, we have an evaluation Fh-natural transformation

ev : U ∗ {U, V } // V,

corresponding under the adjunction (6.6), to the identity of {U, V }. We have a “compo-
sition morphism”

µ : {U, V } ∗ {V,W} // {U,W}

corresponding to the composite

U ∗ {U, V } ∗ {V,W} ev∗1 // V ∗ {V,W} ev //W.

In particular,
µ : {U,U} ∗ {U,U} // {U,U}

together with
η : J // {U,U} ,

corresponding to U ∗ J ∼= U , gives {U,U} the structure of a monoid, denoted end U , in
Fh.

6.4. Proposition. For each tractable Fh-functor U : A −→ Fh, there is an equivalence
of categories

(Mon Fh)(M, endU) ' (Fh-Cat ↓ps Fh)(U,modM)

pseudonatural in monoids M in Fh.

Proof. Morphisms t : M −→ end U in F are in natural bijection (using (6.6)) with
Fh-natural transformations θ : U ∗ M −→ U . It is easy to see that t is a monoid
morphism if and only if θ is an action of the monad − ∗M on U : A −→ Fh. By the
universal property of the Eilenberg-Moore construction [23], such actions are in natural
bijection with liftings of U to Fh-functors A −→ F ∗M . This describes a bijection between
(Mon Fh)(M, end U) and the full subcategory of (Fh-Cat ↓ps Fh)(U,mod M) consisting
of the morphisms

A T //

U !!

F ∗M

UM||
∼=
τ

Fh

for which τ is an identity. It remains to show that every general such morphism (T, τ) is
isomorphic to one for which τ is an identity. However, each (T, τ) determines an action

U ∗M ∼=
τ

UMT ∗M = (UM ∗M)T
χT // UMT ∼=

τ−1

U
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of the monad − ∗M on U . By the universal property, we induce a morphism

A T ′ //

U !!

F ∗M

UM||

=

Fh

and an invertible 2-cell (T, τ) ∼= (T ′, 1) in Fh-Cat ↓ps Fh.

In other words, we have a biadjunction

(Mon Fh)
op

mod
//Fh-Cat ↓ps

tract Fh

endoo
⊥ (6.18)

where the 2-category on the right has objects restricted to the tractable U . As a conse-
quence, notice that end takes each 2-cell to an identity (since all 2-cells in Mod Fh are
identities). Notice too from the notation that we are ignoring the monoidal structure in
(6.18). This is because tractable U are not generally closed under the monoidal structure
of F -Cat ↓ps F .

6.5. Proposition. Representable objects of F -Cat ↓ps F are closed under the monoidal
structure.

Proof.

A ◦B
A (A,−)◦B(B,−) //

(A ◦B)((A,B),−)

55∼=
Fh ◦Fh

ô //Fh .

and
p1q = 1(•,−) : 1 //Fh .

Let F -Cat ↓ps
rep F denote the monoidal full sub-2-category of F -Cat ↓ps F consisting

of the representable objects. The biadjunction (6.18) restricts to a biadjunction

(Mon Fh)
op

mod
//Fh-Cat ↓ps

rep Fh

endoo
⊥ (6.19)

and we have already pointed out that mod is monoidal; see (6.17). In fact, we shall soon
see that this is a monoidal biadjunction.

First note that, if U : A −→ Fh is represented by K then by Proposition 6.2 we have
a monoidal isomorphism

end U = {U,U} ∼=
6.2

UK ∼= A (K,K). (6.20)
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In particular, for a monoid M in Fh, using Proposition 2.4, we obtain a monoid isomor-
phism

end mod M ∼= M (6.21)

which is in fact the counit for (6.19), confirming that mod is an equivalence on homs.

6.6. Proposition. The 2-functor end in (6.19) is strong monoidal.

Proof. The isomorphism (6.20) gives

end (A ◦B)((A,B),−) ∼= (A ◦B)((A,B), (A,B))
∼= A (A,A) ◦B(B,B)
∼= end A (A,−) ◦ end B(B,−)

and
end 1(•,−) ∼= 1(•, •) ∼= 1.

As previously remarked, a monoid in (Mon Fh)
op is precisely a bimonoid in F ; see

Definition 3.6. Since Mon F has discrete homs, these monoids are the same as pseu-
domonoids. The biadjunction (6.18) determines a biadjunction

(Bimon Fh)
op

mod
//Monps(F -Cat ↓ps

rep F ).
endoo
⊥ (6.22)

A pseudomonoid in F -Cat ↓ F is a monoidal Fh-category A together with a strong
monoidal Fh-functor U : A −→ Fh (where Fh has ◦̂ as the monoidal structure).

This leads to the following lifting to the duoidal setting of a result attributed to Bodo
Pareigis (see [22], [20] and [21]).

6.7. Theorem. For a horizontal monoid M in a duoidal V -category F , bimonoid struc-
tures on M are in bijection with isomorphism classes of monoidal structures on F ∗M such
that UM : F ∗M −→ F is strong monoidal into the vertical structure on F .

Proof. For any horizontal monoid M in F we (in the order they appear) have (6.18),
Proposition 6.6 and (6.21) giving

(F -Cat ↓ps F )(mod M ◦mod M,mod M)
∼= (Mon F )(M, end (mod M ◦mod M))
∼= (Mon F )(M, end mod M ◦ end mod M))
∼= (Mon F )(M,M ◦M)

and
(F -Cat ↓ps F )(p1q,mod M) ' (Mon F )(M,1).

By Proposition 6.6, each bimonoid structure on M yields a pseudomonoid structure on
mod M ; and each pseudomonoid structure on mod M yields a bimonoid structure on end
mod M ∼= M . The above equivalences give the bijection of the Theorem.
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7. Hopf bimonoids

We have seen that a bimonoid M in a duoidal V -category F leads to a monoidal Fh-
category F ∗M of right M -modules. In this section, we are interested in when F ∗M is
closed. We lean heavily on papers [4] and [5].

A few preliminaries from [25] adapted to Fh-categories are required. For an Fh-
category A , a right A -module W : J | // A is a family of objects WA of F indexed
by the objects A of A and a family

WAB : WA ∗A (B,A) //WB

of morphisms of F indexed by pairs of objects A, B of A , satisfying the action conditions.
For modules W,W ′ : J | // A , define [W,W ′] to be the limit as below when it exists
in F .

[WA,W ′A]
−∗A (B,A) // [WA ∗A (B,A),W ′A ∗A (B,A)]

[1,W ′AB ]

��

[W,W ′]

88

&&
[WB,W ′B]

[WAB ,1]
// [WA ∗A (B,A),W ′B]

(7.1)

7.1. Example. A monoid M in Fh can be regarded as a one object Fh-category. A
right M -module A : J | //M is precisely an object of F ∗M .

7.2. Example. For any Fh-functor S : A −→ X and object X of X , we obtain a
right A -module X (S,X) : J | // A defined by the objects X (SA,X) of F and the
morphisms

X (SA,X) ∗A (B,A)
1∗SBA//X (SA,X) ∗X (SB, SA)

comp //X (SB,X) .

Recall from [25] that the colimit colim(W,S) of S : A −→X weighted by W : J | // A
is an object of X for which there is an Fh-natural isomorphism

X (colim(W,S), X) ∼= [W,X (S,X)] (7.2)

By Yoneda, such an isomorphism is induced by the module morphism

λ : W //X (S, colim(W,S)) . (7.3)

The Fh-functor S : A −→X is dense when λ = 1 : X (S, Y ) −→X (S, Y ) induces

colim(X (S, Y ), S) ∼= Y (7.4)

for all Y in X .
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7.3. Proposition. The Fh-functor pJq : J −→ Fh is dense.

Proof. The right-hand side of (7.2) becomes [[J, Y ], [J,X]] which is isomorphic to [Y,X].
So

colim([J, Y ], J) ∼= Y,

which is (7.4) in this case.

Another element of our analysis is to recast the middle-of-four interchange morphisms
as a 2-cell in Fh-Cat.

7.4. Proposition. The family of morphisms

γ : (X ◦ Y ) ∗ (C ◦D) // (X ∗ C) ◦ (Y ∗D)

defines an Fh-natural transformation

F
−∗(C◦D)

((
F ◦F

◦̂
55

(−∗C)◦(−∗D) ))

Fγ

��

F ◦F

◦̂

66

for all objects C and D of F .

Proof. Regard the commutative diagram

([X,U ] ◦ [Y, V ]) ∗ ((X ∗ C) ◦ (Y ∗D))

γ

��

([X,U ] ◦ [Y, V ]) ∗ (X ◦ Y ) ∗ (C ◦D)
1∗γoo

γ∗1
��

(3.3)

([X,U ] ∗X ∗ C) ◦ ([Y, V ] ∗ Y ∗D)

(ev∗C)◦(ev∗D)
��

(([U,X] ∗X) ◦ ([Y, V ] ∗ Y )) ∗ (C ◦D)γ
oo

(ev◦ev)∗1
��

naturality

(U ∗ C) ◦ (V ∗D) (U ◦ V ) ∗ (C ◦D)γ
oo

in which we have written as if ∗ were strict.

7.5. Proposition. Suppose θ : F =⇒ G : X −→ Y is an Fh-natural transformation
between Fh-functors F and G which preserve colimits weighted by W : J | // A . If
each θSA : FSA −→ GSA is invertible then so is

θcolim(W,S) : F colim(W,S) // G colim(W,S) .

Proof.

F colim(W,S)
θcolim(W,S) //

∼=
��

G colim(W,S)

∼=
��

colim(W,FS)
θcolim(1,θS)

// colim(W,GS).
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7.6. Definition. For a bimonoid M in a duoidal category F , the composite v`:

(J ◦M) ∗M 1∗δ // (J ◦M) ∗ (M ◦M)
γ // (J ∗M) ◦ (M ∗M)

`◦µ //M ◦M

is called the left fusion morphism. The composite vr:

(M ◦ J) ∗M 1∗δ // (M ◦ J) ∗ (M ◦M)
γ // (M ∗M) ◦ (J ∗M)

µ◦` //M ◦M

is called the right fusion morphism. We call M left Hopf when v` is invertible and right
Hopf when vr is invertible. We call M Hopf when both v` and vr are invertible.

Suppose A and X are monoidal Fh-categories and U : A −→ X is a monoidal
Fh-functor. Writing ◦ for the tensor and 1 for the tensor unit, we must have morphisms

ϕ : UA ◦ UB // U(A ◦B) and ϕ0 : 1 // U1

satisfying the usual Eilenberg-Kelly [10] conditions. Suppose A and X are left closed
and write `om(A,B) and `om(X, Y ) for the left homs. As pointed out by Eilenberg-Kelly,
the monoidal structure ϕ, ϕ0 is in bijection with left closed structure

ϕ` : U`om(A,B) ◦ UB // U`om(UA,UB) and ϕ0 : 1 // U1,

where ϕ` corresponds under the adjunction to the composite

U hom(A,B) ◦ UA ϕ // U(hom(A,B) ◦ A)
Uev // UB

Following [9], we say U is strong left closed when both ϕ` and ϕ0 are invertible.
Recall from [4] (and [5] for the enriched situation) that the Eilenberg-Moore (enriched)

category for an opmonoidal monad T on X is left closed and the forgetful UT : X T −→
X is strong left closed if and only if T is “left Hopf”. The monad T is left Hopf when
the left fusion morphism

v`(X, Y ) : T (X ◦ TY )
ϕ // TX ◦ T 2Y

1◦µ // TX ◦ TY (7.5)

is invertible for all X and Y . It is right Hopf when the right fusion morphism

vr(X, Y ) : T (TX ◦ Y )
ϕ // T 2X ◦ TY µ◦1 // TX ◦ TY (7.6)

is invertible.
In particular, for a bimonoid M in F , taking T = − ∗M , we see that v`(X, Y ) is the

composite

(X ◦ (Y ∗M)) ∗M

v`(X,Y )

��

1∗δ // (X ◦ (Y ∗M)) ∗ (M ◦M)

γ

��
(X ∗M) ◦ ((Y ∗M) ∗M)

1◦a∼=
��

(X ∗M) ◦ (Y ∗M) (X ∗M) ◦ (Y ∗ (M ∗M))
1◦(1∗µ)

oo

(7.7)
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and that vr(X, Y ) is

((X ∗M) ◦ Y ) ∗M

vr(X,Y )

��

1∗δ // ((X ∗M) ◦ Y ) ∗ (M ◦M)

γ

��
((X ∗M) ∗M) ◦ (Y ∗M)

a◦1∼=
��

(X ∗M) ◦ (Y ∗M) (X ∗ (M ∗M)) ◦ (Y ∗M).
(1∗µ)◦1

oo

(7.8)

Recall from Section 5 that, when F is horizontally left closed, not only does it become
an Fh-category, it becomes a pseudomonoid in Fh-Cat using the tensor ◦̂. That is,
(F , ◦̂, p1q) is a monoidal Fh-category.

We are interested in when (F , ◦̂, p1q) is closed and when the closed structure lifts to
F ∗M for a bimonoid M in F .

7.7. Proposition. The monoidal Fh-category (F , ◦̂, p1q) is closed if and only if

(i) Fv is a closed monoidal V -category, and

(ii) there exist V -natural isomorphisms

X ◦ (W ∗ Y ) ∼= W ∗ (X ◦ Y ) ∼= (W ∗X) ◦ Y.

Proof. To say (F , ◦̂, p1q) is left closed is to say we have a “left hom” `om(X, Y ) and
an Fh-natural isomorphism

[X ◦ Y, Z] ∼= [X, `om(Y, Z)].

By Yoneda, this amounts to a V -natural isomorphism

F (W, [X ◦ Y, Z]) ∼= F (W, [X, `om(Y, Z)]).

Since [·, ·] is the horizontal left hom for F , this amounts to

F (W ∗ (X ◦ Y ), Z) ∼= F (W ∗X, `om(Y, Z)). (7.9)

Taking W = J , we obtain

F (X ◦ Y, Z) ∼= F (X, `om(Y, Z)),

showing that `om is a left hom for Fv as a monoidal V -category. So (i) is implied. Now
we have this, we can rewrite (7.9) as

F (W ∗ (X ◦ Y ), Z) ∼= F ((W ∗X) ◦ Y, Z)
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which, again by Yoneda, is equivalent to

W ∗ (X ◦ Y ) ∼= (W ∗X) ◦ Y. (7.10)

Similarly, to say (F , ◦̂,1) is right closed means

[X ◦ Y, Z] ∼= [Y, rom(X,Z)],

which means
F (W ∗ (X ◦ Y ), Z) ∼= F (W ∗ Y, rom(X,Z)).

Taking W = J , we see that rom is a right hom for Fv, and this leads to

W ∗ (X ◦ Y ) ∼= X ◦ (W ∗ Y ). (7.11)

This completes the proof.

7.8. Remark. Under the condition of Proposition 7.7, it follows that the Fh-functors

− ∗X, − ◦X, X ◦ − : Fh
//Fh

all preserve weighted colimits.

7.9. Proposition. For any duoidal V -category F , condition (ii) of Proposition 7.7 is
equivalent to

(ii)′ there exist V -natural isomorphisms

X ∗ (J ◦ Y ) ∼= X ◦ Y ∼= Y ∗ (X ◦ J). (7.12)

Proof. (ii)=⇒(ii)′ The second isomorphism of (ii)′ comes from the first isomorphism of
(ii) with Y = J and W replaced by Y . The first isomorphism of (ii)′ comes from the
second isomorphism of (ii) with X = J and W replaced by X.
(ii)′ =⇒ (ii) Using (ii)′, we have

X ◦ (W ∗ Y ) ∼= (W ∗ Y ) ∗ (X ◦ J)
∼= W ∗ (Y ∗ (X ◦ J))
∼= W ∗ (X ◦ Y ), and

(W ∗X) ◦ Y ∼= (W ∗X) ∗ (J ◦ Y )
∼= W ∗ (X ∗ (J ◦ Y ))
∼= W ∗ (X ◦ Y ).
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7.10. Theorem. Suppose F is a duoidal V -category which is horizontally left closed,
has equalizers, and satisfies condition (ii)′ of Proposition 7.9. Suppose M is a bimonoid
in F and regard F ∗M as a monoidal Fh-category as in Theorem 6.7. The following
conditions are equivalent:

(i) M is a (left, right) Hopf bimonoid;

(ii) − ∗M is a (left, right) Hopf opmonoidal monad on Fh.

If Fv is a closed monoidal V -category then these conditions are also equivalent to

(iii) F ∗M is (left, right) closed and UM : F ∗M −→ Fh is strong (left, right) closed.

Proof. (ii) ⇐⇒ (iii) under the extra condition on Fv by [4] as extended by [5].
(ii) =⇒ (i) by taking X = Y = J in (7.7), we see that v`(X, Y ) = v`.
(i) =⇒ (ii) Proposition 7.9 (ii)′ and associativity of ∗ yield the isomorphisms

X ◦ (Y ∗ J) ∼= Y ∗ (X ◦ J),

(Y ∗ J) ◦X ∼= Y ∗ (J ◦X), and

(Y ∗ J) ∗X ∼= Y ∗ (J ∗X),

showing that X◦−, −◦X and −∗X preserve the canonical weighted colimit of Proposition
7.3 (since colim(W,S) ∼= W ∗ S when S : J −→ Fh).

Using Proposition 7.4, we see that v`(X, Y ) is an Fh-natural transformation, in the
variables X and Y , between two Fh-functors that preserve weighted colimits of the form

colim(Z, J) ∼= Z ∗ J ∼= Z.

By Proposition 7.5, v`(X, Y ) is invertible if v`(J, J) = v` is.

7.11. Example. Any braided closed monoidal V -category F , regarded as duoidal by
taking both ∗ and ◦ to be the monoidal structure given on F , is an example satisfying
the conditions of Proposition 7.7.

7.12. Remark. One reading of Proposition 7.9 (ii)′ is that, to know ◦ we only need to
know ∗ and either J ◦ − or − ◦ J . Proposition 7.7 (ii) also yields

Y ◦ (W ∗ 1) ∼= W ∗ Y ∼= (W ∗ 1) ◦ Y (7.13)

showing that to know ∗ we only need to know ◦ and − ∗ 1. From (7.12) we deduce

1 ∗ (J ◦X) ∼= X ∼= 1 ∗ (X ◦ J) (7.14)

and from (7.13) we deduce

J ◦ (X ∗ 1) ∼= X ∼= (X ∗ 1) ◦ J (7.15)
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showing each of the composites

F
−◦J //F

1∗− //F , F
J◦− //F

1∗− //F ,

F
−∗1 //F

J◦− //F , F
−∗1 //F

−◦J //F

(7.16)

to be isomorphic to the identity V -functor of F . From the first and last of these we see
that − ◦ J is an equivalence and

1 ∗ − ∼= − ∗ 1 (7.17)

both sides being inverse equivalences for − ◦ J . From the second of (7.16) it then follows
that 1 ∗ − is an inverse equivalence for J ◦ −. Consequently

J ◦ − ∼= − ◦ J. (7.18)

8. Warped monoidal structures

Let A = (A ,⊗, I) be a monoidal category. The considerations at the end of Section 7
suggest the possibility of defining a tensor product on A of the form

A�B = TA⊗B

for some suitable functor T : A −→ A . In the case of Section 7, the functor T was
actually an equivalence but we will not assume that here in the first instance.

A warping of A consists of the following data:

(a) a functor T : A −→ A ;

(b) an object K of A ;

(c) a natural isomorphism

vA,B : T (TA⊗B) // TA⊗ TB ;

(d) an isomorphism
v0 : TK // I ; and

(e) a natural isomorphism
kA : TA⊗K // A ;
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such that the following diagrams commute.

T (TA⊗B)⊗ TC
vA,B⊗1

// (TA⊗ TB)⊗ TC
aTA,TB,TC

��
T (T (TA⊗B)⊗ C)

vTA⊗B,C

OO

T (vA,B⊗1)

��

TA⊗ (TB ⊗ TC)

T ((TA⊗ TB)⊗ C)

TaTA,TB,C **

TA⊗ T (TB ⊗ C)

1⊗vB,C

OO

T (TA⊗ (TB ⊗ C))

vA,TB⊗C

44

(8.1)

T (TA⊗K)

TkA
��

v // TA⊗ TK
1⊗v0
��

TA TA⊗ IrTA
oo

(8.2)

8.1. Remark. Diagram (8.1) is a generalized fusion equation in the sense of [24].

8.2. Remark. If T : A −→ A is essentially surjective on objects and fully-faithful on
isomorphisms then all we need to build it up to a warping is vA,B as in (c) satisfying (8.1).
For K and v0 exist by essential surjectivity and kA is defined by (8.2).

8.3. Proposition. A warping of A determines a monoidal structure on A defined by
the tensor product

A�B = TA⊗B

with unit object K and coherence isomorphisms

α : T (TA⊗B)⊗ C v⊗1 // (TA⊗ TB)⊗ C a // TA⊗ (TB ⊗ C)

` : TK
v0⊗1 // I ⊗B ` // TK ⊗B

r : TA⊗K k // A .

Proof. The pentagon condition for � is obtained from (8.1) by applying −⊗D. Simi-
larly, the unit triangle is obtained from (8.2) by applying −⊗B.
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In investigating when ⊗ and � together formed a duoidal structure on A , we realized
we could use a lifting of Proposition 8.3 to a monoidal bicategory M . We now describe
this lifted version. The duoidal structure formed by ⊗ and � will be explained in an
example.

A warping of a monoidale A = (A,m, i) in a monoidal bicategory M consists of

(a) a morphism t : A −→ A;

(b) a morphism k : I −→ A;

(c) an invertible 2-cell

A⊗ A m // A
t

  
A⊗ A

t⊗1
99

t⊗t
//

v
��

A⊗ A m
// A ;

(d) an invertible 2-cell
A

t

&&
I

k

88

i
//

v0

�

A ;

(e) an invertible 2-cell
A⊗ A

m

''
A

t⊗k
77

1
//

κ
��

A ;

satisfying
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A⊗3 m⊗1 // A⊗2

t⊗1

��

t⊗1

��
t⊗t

��

A⊗3

t⊗1⊗1

99

t⊗t⊗t

∼=

%%

t⊗t⊗1
// A⊗3 m⊗1 //

v⊗1
��

1⊗1⊗t

��

A⊗2

1⊗t

��

∼= A⊗2

m

��
v
lt

A⊗3

1⊗m

��

m⊗1
//

∼=

A⊗2

m

��

∼=
α

A

t

xx
A⊗2

m
// A

(8.3)

=

A⊗3 m⊗1 // A⊗2 t⊗1 // A⊗2

m

!!

∼= α

A⊗3

m⊗1

==

1⊗m //

∼=

A⊗2 m // A

t

��
A⊗3

t⊗1⊗1

OO

t⊗t⊗1

==

v⊗1 ��

t⊗t⊗t ∼=

��

1⊗t⊗1 //

t⊗1⊗1

��

A⊗3 1⊗m //

t⊗1⊗1∼=

��

A⊗2

t⊗1

OO

t⊗t

!!

∼=

v
��

A

A⊗3
1⊗t⊗1

//

1⊗t⊗t

��

A⊗3
1⊗m

// A⊗2
1⊗t

// A⊗2

m

OO

A⊗3

1⊗m

88

1⊗v
��
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and

A

t

��

1⊗k
//

t⊗k

∼= ))

A⊗2

t⊗t

��

∼=

t⊗1
// A⊗2

m

��
A

1⊗k //

1 11

1⊗i

;;
1⊗v0
��

A⊗2 1⊗t // A⊗2

m

!!

∼=
ρ

v
��

A

t

��
A

(8.4)

=

A⊗2

m

  
A

t⊗k

>>

t

��

1
//

κ
��

A

t

��

∼=

A
1

// A

8.4. Proposition. A warping of a monoidale A determines a monoidale structure on A
defined by

tm : A⊗ A t⊗1 // A⊗ A m // A

I
k // A
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A⊗3

1⊗t⊗1

��

t⊗t⊗1

&&

t⊗1⊗1 // A⊗3 m⊗1 // A⊗2 t⊗1 // A⊗2

m

��

A⊗3

m⊗1

88

v⊗1
��

1⊗m

��
A⊗3

1⊗m
// A⊗2

t⊗1
//

∼=

A⊗2
m

//

∼=
α

A

A⊗2 t⊗1 // A⊗2

m

''
A

k⊗1

77

i⊗1

<<

v0⊗1
��

1

33

∼=
λ A

A
t⊗k //

1

99
κ
��

A⊗2 m // A

Proof. Conditions (8.3) and (8.4) yield the two axioms for a monoidale (A, tm, k).

8.5. Example. Suppose F is a duoidal V -category satisfying the second isomorphism
of (7.13). Define a V -functor T : F −→ F by

T = − ∗ 1 .

The horizontal right unit isomorphism gives

T (J) = J ∗ 1 ∼= 1

and (7.13) gives

T (TA ◦B) = ((A ∗ 1) ◦B) ∗ 1
∼= (A ∗B) ∗ 1
∼= A ∗ (B ∗ 1)
∼= (A ∗ 1) ◦ (B ∗ 1)

= TA ◦ TB .

Finally, we have

TA ◦ J = (A ∗ 1) ◦ J
∼= A ∗ J
∼= A .
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This gives an example of a warping in M = V -Cat of the monoidale (= monoidal V -
category) Fv. Proposition 8.4 gives back Fh.

8.6. Example. Consider the case of M = Mon(V -Cat). A monoidale is a duoidal
V -category (Fh, ◦,1). A warping of this monoidale consists of a monoidal V -functor
T : Fh −→ Fh, a monoid K in Fh, a horizontally monoidal V -natural isomorphism
v : T (TA ◦ B) ∼= TA ◦ TB, a horizontal monoid isomorphism v0 : TK ∼= 1, and a hori-
zontally monoidal V -natural isomorphism k : TA◦K ∼= A, subject to the two conditions.
Proposition 8.4 gives the recipe for obtaining a duoidal V -category (Fh, (T−)◦−, K). In
particular, take V = Set and consider a lax braided monoidal category A = (A ,⊗, I, c)
as a duoidal category; the lax braiding gives the monoidal structure on ⊗ : A ×A −→ A .
A warping consists of a monoidal functor T : A −→ A , a monoid K in A , a monoidal
natural v : T (TA⊗B) ∼= TA⊗ TB, a monoid isomorphism v0 : TK ∼= I, and a monoidal
natural k : TA ⊗K ∼= A, satisfying the conditions (8.1) and (8.2). Proposition 8.4 then
shows that the recipe of Proposition 8.3 yields a duoidal category (A ,⊗, I, � , K).
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