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FINITE PRODUCTS IN PARTIAL MORPHISM CATEGORIES

Dedicated to Professor M.V. Mielke on the occasion of his seventy fifth
birthday

S.N. HOSSEINI, A.R. SHIR ALI NASAB

Abstract. In this article we give necessary and sufficient conditions for a binary
product to exist in a partial morphism category. We also give necessary and sufficient
conditions for the existence of a productive terminal in such categories.

1. Introduction and Preliminaries

Even though the category of partial morphisms is central to so many issues in mathe-
matics, such as representability, [Herrlich, 1988]; theory of computation, [Asperti, Longo,
1991]; fibred mapping spaces, [Booth, Brown, 1978]; graph transformation, [Corradini,
Heindel, Hermann, König, 2006]; embedding CONV and MET in a quasitopos, [Lowen,
Lowen, 1988]; petri nets, [Menezes, 1998]; fuzzy graphs, [Mori, Kawahara, 1997]; and
logic, [Palmgren, Vickers, 2005], to mention a few, only little has been said about limits
in such categories. Dealing with limits is more delicate than dealing with colimits.

In [Cockett, Lack, 2007], colimits and limits in the restriction context have been con-
sidered in restriction categories (an abstract formulation of partial morphism categories),
but only the product in the partial function category (where the base category is the cate-
gory of sets and functions) is given. In [Hosseini, Mielke, 2009], the universality of monos
in partial morphism categories is investigated, while in the present article, the existence
of finite products is characterized, i.e., necessary and sufficient conditions on a category
are given for the corresponding partial morphism category to have finite products. To
this end, we recall:

[Dyckhoff, Tholen, 1987], A pullback complement for the
composable pair (f, s) is a composable pair (s̄, f̄) such that
in the right diagram, the square sf = f̄ s̄ is a pullback
and for every pullback square sg = ḡt and any morphism
h : V → Q with fh = g, there is a unique h̄ : Z → P with
f̄ h̄ = ḡ and s̄h = h̄t. We then say the square sf = f̄ s̄ is a
pullback complement square.

V

g

##h //

t
��

Q
f //

s̄ p.b.c.
��

U

s
��

Z

ḡ

;;h̄
// P

f̄
// X
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If (s̄, f̄) is a pullback complement for (f, s) and (f, s) is a pullback complement for
(s̄, f̄), then we say the square sf = f̄ s̄ is a double pullback complement square.

1.1. Lemma.

1. Pullback complements are unique up to isomorphism.

2. If (s̄, f̄) is a pullback complement for (f, s) and f is mono, then so is f̄ .

Proof. Obvious.

Recalling that a partial morphism classifier in C is a morphism η : A → Ã that
represents partial morphisms into A, [Adamek, Herrlich, Strecker, 1990], we have:

1.2. Lemma.

1. λ : p→ π, where p : U → W and π : V → W , is a partial
morphism classifier in C/W if and only if for any triple
(i, f, g) with i : D � C, f : D → U, g : C → W such
that pf = gi, there exists a unique morphism f̂ such that
πf̂ = g and the square on the right is a pullback.

D

p.b.

f //
��

i
��

U

λ
��

p

  
C

g

///
;;

f̂

// V π

/// //W

In this case λ is mono.

2. For κ : V → U , the pullback functor κ∗ : C/U → C/V preserves partial morphism
classifiers.

Proof. Obvious.

Using 1.2 we get:

1.3. Examples.

1. Let ηA : A→ Ã be a partial morphism classifier and suppose the diagrams:

A A×Bpr1oo pr2 // B and Ã Ã×Bπ1oo π2 // B

are products. Then ηA × 1B : pr2 → π2 is a partial morphism classifier.

Also with ηB : B → B̃ a partial morphism classifier and A A× B̃π́1oo π́2 // B̃ a
product diagram, 1A × ηB : pr1 → π́1 is a partial morphism classifier.

2. Let C be the 2-chain category {1A : A→ A, 1B : B → B, ! : A→ B}. A is the initial
and B is the terminal object. Now ! : pr2 → 1B, where pr2 =! : A×B = A→ B, is
a partial morphism classifier; also 1A : pr1 → 1A, where pr1 = 1A : A×B = A→ A
is a partial morphism classifier. However there is no partial morphism classifier with
domain B in C.

Calling a pushout square that is preserved by pullbacks a stable pushout, and a stable
pushout that is also a pullback a stable pulation, we have:



304 S.N. HOSSEINI, A.R. SHIR ALI NASAB

1.4. Lemma.

1. Every stable pulation square in which all the morphisms are monos is a double
pullback complement.

2. If in the commutative diagram shown m, n and l are mons,
the left square is a stable pushout and the outer square is
a pullback, then the right square is a pullback.

A
f //

��

m
��

C
p //

��

n
��

E��

l
��

B g
// D q

// F

Proof.

1. Given monos j1, j2, λ1 and λ2 with the square j1λ1 = j2λ2

a stable pulation, let in the right diagram the outer square
be a pullback and the triangle be commutative.

Y
##k //

��

A
λ1 //

λ2 s.p.l.
��

B

j1
��

X

f

;;C
j2
// P

Since j−1
1 (f) = λ1k, pulling back the stable pushout square

j1λ1 = j2λ2 along f we get the square shown, which is a
pushout by stability.

α //

1

��
f−1(j2)

��
f−1(j1)

//

So f−1(j2) = 1 and α = f−1(j1). Now j2j2
−1(f)

= ff−1(j2) = f . Also j2j
−1
2 (f)f−1(j1) = ff−1(j1) =

j1j
−1
1 (f) = j1λ1k = j2λ2k, implying j−1

2 (f)f−1(j1) = λ2k.
Hence in the right diagram, the squares are pullbacks and
the triangles are commutative.

Y
##k //

��

A
λ1 //

λ2 p.b.c.
��

B

j1
��

X

f

;;
j−1
2 (f)

// C
j2
// P

Uniqueness of j2
−1(f) follows from the fact that j2 is mono. So (λ2, j2) is a pullback

complement for (λ1, j1). Similarly (λ1, j1) is a pullback complement for (λ2, j2).

2. The proof in [Lack, Sobocinski, 2006] for adhesive categories works under our hy-
pothesis too.

1.5. Lemma. If in the right diagram i1 and i2 are monos,
the inner square is a pullback and the outer square is a
stable pushout, then:

1. the outer square is a double pullback complement;
and

2. the morphism ϕ is mono, i−1
1 (ϕ) = 1, ϕ−1(i1) = j1,

i−1
2 (ϕ) = 1 and ϕ−1(i2) = j2.

A
λ1 //

λ2
��

B

i1
�� j1

��

C
i2 //

j2 //

D

P

ϕ

``
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Proof. First notice that because i1 and i2 are monos, so are j1, j2, λ1 and λ2.

1. Obviously the pushout square is a pullback and so a stable pulation. The result
follows from 1.4.

2. In the commutative diagram on the right the left square
is a stable pushout and the outer one is a pullback. 1.4,
implies the right square is also a pullback. So we have
i−1
1 (ϕ) = 1 and ϕ−1(i1) = j1. Similarly i−1

2 (ϕ) = 1 and
ϕ−1(i2) = j2.

A
λ1 //

λ2
��

B
1 //

j1
��

B

i1
��

C

i2

;;j2
// P ϕ

// D

Now suppose for mor-
phisms α and β, ϕα = ϕβ.
Pullback the outer square
of the above diagram along
ϕα = ϕβ to get the dia-
gram on the right.
Since the middle square is
a stable pushout, so is the
left square. So α = β and
therefore ϕ is mono.

Y //
~~

~~

��

��

A 1 //
~~

λ1
~~

��

λ2

��

A��

λ1
��

��

λ2

��

Y1
//

��

γ1

��

B 1 //
��

j1

��

B��

i1

��

Y2
//

~~
γ2
~~

C 1 //
��

j2
��

C��

i2
��

X
α //

β
// P ϕ // D

Calling a pushout square that is also a double pullback complement, a double pulation
complement, we have:

1.6. Lemma. If in the diagram on
the right, i1 and i2 are monos, the
bottom and the back faces are pull-
backs and the top face is a double
pulation complement, then there is
a unique morphism ϕ : D́ → D ren-
dering the front and right faces as
pullbacks.

Á

j́2
��

g

��

j́1
// B́

í1
��

l

��

Ć

k

��

í2
// D́

ϕ

��

A

j2
��

j1 // B

i1
~~

C i2 // D

Proof. Since i1 and i2 are monos, so are j1, j2, j́1 and j́2. Now 1.1 implies í1 and í2 are
monos as well. Because the top face of the above cube is a pushout and i1lj́1 = i2kj́2, there
exists a unique morphism ϕ : D́ → D making the front faces of the cube commutative.
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Now transform the bottom square under
pullback along ϕ : D́ → D to get the cube
on the right. Since the front faces of the
above cube are commutative and those in
the right cube are pullbacks, there are γ1

and γ2 such that l = i−1
1 (ϕ)γ1, í1 = î1γ1,

k = i−1
2 (ϕ)γ2 and í2 = î2γ2. Now the

equalities l = i−1
1 (ϕ)γ1, k = i−1

2 (ϕ)γ2,
l−1(j1) = j́1 and k−1(j2) = j́2 imply
γ−1

1 (ĵ1) = j́1 and γ−1
2 (ĵ2) = j́2.

Â

ĵ2
��

��

ĵ1
// B̂

î1
��

i−1
1 (ϕ)

��

Ĉ

i−1
2 (ϕ)

��

î2
// D́

ϕ

��

A

j2
��

j1 // B

i1
~~

C i2 // D

So we have the following diagram in which the right squares are pullbacks and the left
ones are formed to be pullbacks.

Á

j́1 p.b.
��

δ1 // Â
ĵ2 //

ĵ1 p.b.
��

Ĉ

î2��

B́ γ1
// B̂

î1

// D́

Á

j́2 p.b.
��

δ2 // Â
ĵ2 //

ĵ2 p.b.
��

B̂

î1��

Ć γ2
// Ĉ

î2

// D́

Because the top face of the original cube
is a double pullback complement, there
exist unique morphisms λ1 and λ2 such
that the triangles in the diagram on the
right are commutative and the squares
are pullbacks.

Á

j́2
##1 //

��

Á
j́2 //

j́1 p.b.c.
��

Ć

í2��

B̂

î1

;;λ1
// B́

í1

// D́

Á

j́1
##1 //

��

Á
j́1 //

j́2 p.b.c.
��

B́

í1��

Ĉ

î2

;;λ2
// Ć

í2

// D́

We have í1λ1γ1 = î1γ1 = í1 and í2λ2γ2 = î2γ2 = í2, yielding λ1γ1 = 1 and λ2γ2 = 1.
Since λ1 and λ2 are monos, they are isomorphisms. It follows that î1, is isomorphic to í1
and î2 is isomorphic to í2.

2. Binary Product in Partial Morphism Categories

By the partial morphism category
⇀

C is meant the category having the same objects as C
and with morphisms

⇀

f= [(if , f)] : A → B equivalence classes of pairs (if : Df → A, f :
Df → B) with if a universal mono (i.e., a mono whose pullback along every morphism
exists) and where equivalence of (if , f) and (ig, g) means that there is an isomorphism

k for which if = igk and f = gk. The composition of morphisms A
⇀
f // B

⇀
g // C is

defined by
⇀
g
⇀

f= [(if (f
−1(ig)), g(i−1

g (f)))].
Calling a category weakly adhesive if monos of the category are universal and pushouts

of monos along monos exist and are stable, we have:

2.1. Proposition. Suppose A A
⇀
× B

⇀
π1=[(i1,π1)]oo

⇀
π2=[(i2,π2)] // B is a product in

⇀

C . Then:
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1. A P
π1λ1oo π2λ2 // B is a product diagram in C,

where λ1 and λ2 are obtained by the pullback
square given on the right;

P��

λ2
��

p.b.

// λ1 // D1��

i1��

D2
//

i2
// A

⇀
× B

2. the above square is a double pullback complement;

3. assuming C is weakly adhesive, the above square is a pushout; and

4. with λn, n = 1, 2, as in part (1) and prn = πnλn, λn : prn → πn is a partial
morphism classifier (in the appropriate slice category).

Proof.

1. If A C
foo g // B is a diagram in C, then there exists a unique morphism

⇀

h=

[(ih, h)] : C → A
⇀
× B such that

⇀
π1

⇀

h= f and
⇀
π2

⇀

h= g. This implies ihh
−1(i1) =

ihh
−1(i2) = 1, π1i

−1
1 (h) = f and π2i

−1
2 (h) = g. Since ih is mono, ih = h−1(i1) =

h−1(i2) = 1 (up to isomorphism). Then i2i
−1
2 (h) = h = i1i

−1
1 (h), and so the above

pullback yields a morphism γ : C → P such that λ1γ = i−1
1 (h) and λ2γ = i−1

2 (h).
Therefore π1λ1γ = π1i

−1
1 (h) = f and π2λ2γ = π2i

−1
2 (h) = g. To show uniqueness,

suppose θ : C → P is a morphism such that π1λ1θ = f and π2λ2θ = g. Then
⇀
π1 i1λ1θ = f =

⇀
π1 i1λ1γ,

⇀
π2 i1λ1θ = g =

⇀
π2 i1λ1γ, implying i1λ1θ = i1λ1γ and so

θ = γ.

2. Consider the diagram on the right in
which both squares are pullbacks and
the triangle commutes.

Y
''k //

l−1(i1)

��

A×B λ1 //

λ2
��

D1

i1��

X

l

77D2 i2
// A

⇀
× B

By part 1, A A×Bpr1=π1λ1oo pr2=π2λ2 // B is a product in C. We have
⇀
π1 l

= [(l−1(i1), pr1k)] and
⇀
π2 l = [(l−1(i2), π2i

−1
2 (l))]. Let α = i−1

2 (l). Since i−1
1 (l)

= λ1k, we get l−1(i1) = l−1(i1λ1) = l−1(i2λ2) = l−1(i2)α−1(λ2). This in turn

yields
⇀
π1 [(l−1(i2), ll−1(i2))] = [(l−1(i1), π1i

−1
1 (l))] =

⇀
π1 l and

⇀
π2 [(l−1(i2), ll−1(i2))]

= [(l−1(i2), π2i
−1
2 (l))] =

⇀
π2 l. Uniqueness gives, l = [(l−1(i2), ll−1(i2))]. It follows

that l−1(i2) = 1 and l = ll−1(i2) = i2i
−1
2 (l). We have i2λ2k= i1λ1k = i1i

−1
1 (l)

= ll−1(i1) = i2i
−1
2 (l)l−1(i1). i2 mono yields λ2k = i−1

2 (l)l−1(i1). So i−1
2 (l) is the

required morphism. Uniqueness follows from the fact that i2 is mono. Hence (λ2, i2)
is a pullback complement for (λ1, i1). Similarly (λ1, i1) is a pullback complement for
(λ2, i2).

3. Let D1
// j1 // P D2

ooj2oo be a pushout of D1 A×Booλ1oo // λ2 // D2 . Then there

exists a unique morphism ϕ : P −→ A
⇀
× B such that i1 = ϕj1 and i2 = ϕj2. 1.5
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implies ϕ is mono and i−1
1 (ϕ) = 1, ϕ−1(i1) = j1, i−1

2 (ϕ) = 1 and ϕ−1(i2) = j2. Now
⇀
π1 [(ϕ, ϕ)] =

⇀
π1 and

⇀
π2 [(ϕ, ϕ)] =

⇀
π2 implying that ϕ is an isomorphism.

4. We show that λ2 : pr2 → π2 is a partial morphism classifier. Given (i, f, g) with
i : D � C, f : D −→ A× B and g : C −→ B such that gi = pr2f , we have partial
morphisms [(i, pr1f)] : C → A and [(1, g)] : C → B. Then there exists a unique

morphism
⇀

k= [(ik, k)] such that
⇀
π1

⇀

k= [(i, pr1f)] and
⇀
π2

⇀

k= g. This implies ik = 1,
k−1(i1) = i, π1i

−1
1 (k) = pr1f , k−1(i2) = 1 and π2i

−1
2 (k) = g.

Consider the diagram
on the right, in which
the right squares are
pullbacks and the left
squares are formed by
taking pullbacks.

X

α

��

// β // C 1 //

��

C

k��

A×B //
λ2

// D2
//

i2
// A

⇀
× B

X

α

��

// β́ // D // i //

��

C

k��

A×B //
λ1

// D1
//

i1
// A

⇀
× B

Since the square i1λ1 = i2λ2 is a pull-
back, so is the square on the right. Then
X = D, β́ = 1, β = i. These and the
previous equations imply:

X //
β́ //

��

β
��

D��

i
��

C
1
// C

pr1α = π1λ1α = π1i
−1
1 (k)β́ = π1i

−1
1 (k) = pr1f

pr2α = π2λ2α = π2i
−1
2 (k)β = gβ = gi = pr2f

It follows that α = f . So we have the di-
agram on the right, in which the square
is a pullback and π2i

−1
2 (k) = g.

D

p.b.

��

i
��

f // A×B
pr2

##

��

λ2
��

C
i−1
2 (k)

// D2 π2
// B

To show uniqueness, suppose there exists a morphism h such that in the above
diagram when i−1

2 (k) is replaced by h, the square is a pullback and π2h = g. One

can easily verify that
⇀
π1 i2h = [(i, pr1f)] =

⇀
π1

⇀

k and
⇀
π2 i2h = g =

⇀
π2

⇀

k . So i2h = k.
Because k−1(i2) = 1, we have i2h = k = i2i

−1
2 (k) and so h = i−1

2 (k). By 1.2, we are
done. Similarly λ1 : pr1 → π1 is a partial morphism classifier.
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2.2. Proposition. Suppose C is weakly adhesive. If

A A×Bpr1oo pr2 // B is a product in C, λn : prn → πn is
a partial morphism classifier for n = 1, 2, where π1 : BA → A,
π2 : AB → B and there exist morphisms i1 and i2 such that
the square on the right is a double pulation complement, then

A P
⇀
π1=[(i1,π1)]oo

⇀
π2=[(i2,π2)] // B is a product diagram in

⇀

C

A×B
d.p.l.c.

λ1 //

λ2
��

BA

i1
��

AB i2
// P

Proof. Because by 1.2, λ1, λ2 are monos, (λ1, i1) is a pullback complement for (λ2, i2)
and (λ2, i2) is a pullback complement for (λ1, i1), by 1.1, i1 and i2 are monos.

To show A P
⇀
π1oo

⇀
π2 // B is a product in

⇀

C , given A C

⇀
f =[(if ,f)]
oo

⇀
g=[(ig ,g)] // B ,

let Df Df ∩Dg
oooo // // Dg be a pullback of Df

//
if // C Dg

ooigoo . Then we have mor-

phisms A Df ∩Dg

fi−1
f (ig)

oo
gi−1

g (if )
// B , and so a unique morphism l exists such that

pr1l = fi−1
f (ig) and pr2l = gi−1

g (if ).

Also we have unique morphisms f̃ , g̃ such that π1f̃ = f , π2g̃ = g and the below squares
are pullbacks.

Df ∩Dg

p.b.

��

��

l // A×B
pr1

""

��

λ1
��

Df
f̃

// BA π1
// A

Df ∩Dg

p.b.

��

��

l // A×B
pr2

""

��

λ2
��

Dg g̃
// AB π2

// B

Let Df
//
jf // Ṕ Dg

oojgoo be a pushout of Df Df ∩Dg
oooo // // Dg .

There exists a unique morphism
k : Ṕ −→ C such that ig = kjg
and if = kjf . By 1.5, k is mono
and the pushout square is a dou-
ble pullback complement. Also
1.6, implies the existence of a
unique morphism h : Ṕ −→ P
such that the front faces in the
right diagram are pullbacks.

Df ∩Dg

{{
l

��

// Dg

jg

��
g̃

��

Df

f̃

��

jf // Ṕ

h

��

A×B
λ1

zz

λ2 // AB

i2
~~

BA i1 // P

One easily verifies that
⇀
π1 [(k, h)] =

⇀

f and
⇀
π2 [(k, h)] =

⇀
g .
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To show uniqueness, suppose

there exists a morphism
⇀

ψ such

that
⇀
π1

⇀

ψ=
⇀

f and
⇀
π2

⇀

ψ=
⇀
g . Then

iψψ
−1(i1) = if , π1i

−1
1 (ψ) = f ,

iψψ
−1(i2) = ig and π2i

−1
2 (ψ) =

g. Form the cube on the right,
where all the squares are pull-
backs.

X
m //

}}

}}

��

��

A×B{{

λ1
{{

��

λ2

��

Df i−1
1 (ψ) //

��

ψ−1(i1)

��

BA��

i1

��

Dg
i−1
2 (ψ) //

}}

ψ−1(i2)

}}

AB{{

i2

{{
Dψ ψ // P

One can see X = Df ∩Dg and that the pair of morphisms Df Xoooo // // Dg equals

Df Df ∩Dg
oo

i−1
f (ig)
oo //

i−1
g (if )

// Dg . Pushout stability now renders the left square in the above

cube a pushout.

So Dψ = Ṕ , ψ−1(i1) =
jf and ψ−1(i2) = jg and
therefore we have the
pullback squares on the
right.

Df ∩Dg

pb

//
i−1
f (ig)

//

m

��

Df

pb

//
jf //

i−1
1 (ψ)

��

Ṕ

ψ

��
A×B //

λ1
// BA

//
i1
// P

Df ∩Dg

pb

//
i−1
g (if )

//

m

��

Dg

pb

// jg //

i−1
2 (ψ)

��

Ṕ

ψ

��
A×B //

λ2
// AB // i2

// P

It follows that pr1m = π1λ1m = π1i
−1
1 (ψ)i−1

f (ig) = fi−1
f (ig) = pr1l. Similarly we get

pr2m = pr2l. Therefore m = l.

Now we have the dia-
gram on the right, in
which the squares are
pullbacks, π1i

−1
1 (ψ) = f

and π2i
−1
2 (ψ) = g.

Df ∩Dg

pb

l=m //
��

i−1
f (ig)

��

A×B��
λ1
��

pr1

""
Df

i−1
1 (ψ)

// BA π1
// A

Df ∩Dg

pb

l=m //
��

i−1
g (if )

��

A×B��
λ2
��

pr2

""
Dg

i−1
2 (ψ)

// AB π2
// B

It follows that i−1
1 (ψ) = f̃ , i−1

2 (ψ) = g̃. Now ψjf = ψψ−1(i1) = i1i
−1
1 (ψ) = i1f̃ and

similarly ψjg = i2g̃. The uniqueness of h yields h = ψ. Now we have if = iψψ
−1(i1) = iψjf

and ig = iψψ
−1(i2) = iψjg, and uniqueness of k yields iψ = k. Hence

⇀

ψ= [(k, h)].

2.3. Theorem. Suppose C is weakly adhesive. A product

A A
⇀
× B

⇀
π1oo

⇀
π2 // B exists in

⇀

C if and only if a product

A A×Bpr1oo pr2 // B , along with morphisms π1, π2 and monos
λ1, λ2, i1 and i2 exist in C such that λn : prn → πn is a par-
tial morphism classifier and the square on the right is a double
pulation complement. In this case,

⇀
πn= [(in, πn)].

A×B
d.p.l.c.

λ1 //

λ2
��

BA

i1��

AB i2
// A

⇀
× B

Proof. Follows from 2.1 and 2.2.
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2.4. Examples.

1. Let C be an adhesive category [Lack Sobocinski, 2004]. Then by 1.4, pushout of

monos along monos are double pullback complements. So if A A×Bpr1oo pr2 // B
is a product in C and λn : prn → πn is a partial morphism classifier, then with
⇀
π1= [(i1, π1)] and

⇀
π2= [(i2, π2)], A P

⇀
π1oo

⇀
π2 // B is a product diagram in

⇀

C , where

BA
i1 // P AB

i2oo is a pushout of BA A×Bλ1oo λ2 // AB .

2. Let C be an adhesive category in which the partial morphism classifiers ηA : A→ Ã

and ηB : B → B̃ and the products A A×Bpr1oo pr2 // B , A A× B̃πAoo
πB̃ // B̃

and Ã Ã×B
πÃoo πB // B exist. By 1.3, 1× ηB : pr1 → πA and ηA × 1 : pr2 → πB

are partial morphism classifiers. So A P
⇀
π1=[(iA,πA)]oo

⇀
π2=[(iB ,πB)] // B is a product in

⇀

C ,

where A× B̃ iA // P Ã×BiBoo is a pushout of A× B̃ A×B1×ηBoo ηA×1 // Ã×B .

3. Let C be a topos. Because topoi are adhesive, [Lack, Sobocinski, 2006], and all

partial maps are representable, [Johnstone, 1977], by (2),
⇀

C has all binary products.

In this case for A,B ∈ C, A
⇀
× B = Ã× B ∪ A× B̃, where ηA : A→ Ã is a partial

morphism classifier and ”∪” is the union taken as subobjects of Ã× B̃.

4. Let C be the category corresponding to a distribu-
tive prelattice (i.e., a preordered class with binary
meets and joins, in which meet is distributive over
join). One can easily verify that C is weakly adhe-
sive, but it is not generally adhesive as the diagram
on the right, in which A 6= B, suggests. Also it is
not hard to see λ : p → π, where p : A → C and
π : B → C, is a partial morphism classifier if and
only if π is an isomorphism and the only morphism
to A∧B is the identity morphism (or equivalently,
in the preordered class, B ≤ C, C ≤ B and A ∧ B
is minimal). So A

⇀
× B exists if and only if A ∧ B

is minimal. In this case, since by 1.4, the square on
the right is a double pulation complement, we get

A
⇀
× B = A ∨B.

A

��

��

// B

~~

��

A

��

// B

��

A

��

// B

~~
B // B

A ∧B
d.p.l.c.

//

��

A

��
B // A ∨B

5. Let C be a category in which all monos are isomorphisms and not all pullbacks exist
(e.g, the category generated by parallel isomorphisms f, g and a morphism h such
that hf = hg), so that C is not adhesive. It can be easily verified that C is weakly
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adhesive. Also for A,B ∈ C, the existence of A
⇀
× B is equivalent to that of A×B.

In fact A
⇀
× B = A×B. But this is also the case because

⇀

C is isomorphic to C.

6. Let C be a weakly adhesive category that is not adhesive and D be any weakly
adhesive category. Then C × D is weakly adhesive but not adhesive. The product

(A,A′)
⇀
× (B,B′) exists if and only if the pairs A,B and A′, B′ satisfy the conditions

of 2.3 in C and D, respectively.

Calling an object productive, if its product with every object exists, we have:

2.5. Lemma. Let C be a category with a terminal 1 and T be a productive object. Then

T is a terminal object in
⇀

C if and only if T → 1 is a partial morphism classifier in C.

Proof.

Assume T is a terminal object in
⇀

C . Let
[(iu, u)] : A // T be a partial morphism.
Since T is productive, the right square is a
pullback.

A× T pr2 //

pr1 p.b.
��

T

��
A // 1

Now since T is a terminal in
⇀

C , T → 1 is mono in
⇀

C , and so mono in C, [Hosseini,
Mielke, 2009].

So pr1 is a universal mono, putting

[(pr1, pr2)] in
⇀

C . It now follows that
[(iu, u)] = [(pr1, pr2)] and so the square on
the right is a pullback.

D
u //

iu
��

T

��
A // 1

Conversely assume T → 1 is a partial morphism classifier in C. Given an object A,
we have a pullback square as shown in the first square above and so a partial morphism
[(pr1, pr2)] : A // T . Uniqueness follows from the fact that any partial morphism from

A to T can be represented by T // 1 .

2.6. Examples.

1. Let C be a category with binary products. If C has a strict initial object 0 and a
terminal object 1, then 0 → 1 is a partial morphism classifier and therefore 0 is a

terminal object in
⇀

C . Also 0 is an initial object in
⇀

C . Hence
⇀

C has a zero object.

2. Let C be a topos. Then C has a strict initial object [Mac Lane, Moerdijk, 1992]. So
⇀

C has a zero object.
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