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MUTATION PAIRS AND TRIANGULATED QUOTIENTS

ZENGQIANG LIN AND MINXIONG WANG

Abstract. We introduce the notion of mutation pairs in pseudo-triangulated cate-
gories. Given such a mutation pair, we prove that the corresponding quotient category
carries a natural triangulated structure under certain conditions. This result unifies
many previous constructions of quotient triangulated categories.

1. Introduction

The notion of triangulated categories was introduced by Grothendieck and Verdier in
the sixties of last century. It is important in both geometry and algebra. One way to
construct triangulated categories is through quotient categories.

Let (B,S) be an exact category satisfying the Frobenius condition; that is, (B,S) has
enough S-injectives and enough S-projectives, and the S-injectives and the S-projectives
determine the same full subcategory I. Then, as shown by Happel [5], the quotient
category B/I carries a triangulated structure. Beligiannis obtained a similar result [2,
Theorem 7.2] by replacing B with a triangulated category C and replacing S with a
proper class of triangles E . Let C be a triangulated category with AR triangles and X
be a functorially finite subcategory with τX = X , where τ is the AR translation, then
Jørgensen [7, Theorem 2.3] showed that the quotient C/X is a triangulated category.

The notion of mutation of subcategories in a triangulated category is a generalization
of a notion of mutation of cluster tilting objects in a cluster category. Let (Z,Z) be a
D-mutation pair in a triangulated category C, and Z be an extension-closed subcategory
of C, by a result of Iyama-Yoshino [6, Theorem 4.2], the quotient Z/D is a triangulated
category. Recently Liu-Zhu introduced a notion of D-mutation pairs in right triangu-
lated categories, and then obtained a similar result [8, Theorem 3.11], which unifies the
constructions of Iyama-Yoshino and Jørgensen.

Beligiannis and Reiten [4] defined a pretriangulated category (C,Ω,Σ,�,�) to be a
category C equipped with a left triangulated structure (C,Ω,�), and a right triangulated
structure (C,Σ,�), for which (Σ,Ω) is an adjoint pair, and certain gluing conditions hold.
For example, an abelian category is a pretriangulated category with Ω = Σ = 0, and a
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triangulated category is a pretriangulated category with Ω = Σ−1. But the converses are
not true. Thus the notion of pretriangulated categories is not a good choice to generalize
simultaneously some analogous results on abelian categories and triangulated categories.
Noticing the imperfection, Nakaoka [9] introduced the notion of pseudo-triangulated cate-
gories (see Definition 2.2.1 for detail) which is a natural generalization of abelian categories
and triangulated categories. The right triangles and left triangles on pseudo-triangulated
categories behave much better than those on pretriangulated categories. To unify the
constructions of quotient triangulated structures occurring in exact categories [5] and tri-
angulated categories [6], Nakaoka defined a Frobenius condition on a pseudo-triangulated
category, which is similar to that on an exact category, and constructed a quotient tri-
angulated category [9, Theorem 6.17]. As Nakaoka pointed out, his construction cannot
cover Beligiannis’s result [2, Theorem 7.2].

The main aim of this article is to give a way to unify the existing different constructions
of quotient triangulated categories. We define mutation pairs in pseudo-triangulated cate-
gories, and show that the corresponding quotient categories carry triangulated structures
under certain reasonable conditions. As applications, our result unifies the quotient tri-
angulated category construction considered by Iyama-Yoshino [6], Happel [5], Beligiannis
[2], Jørgensen [7], and Nakaoka [9], but not that of [8].

The paper is organized as follows. In Section 2, we list some necessary preliminar-
ies. We first review the definitions and some facts on right triangulated categories and
pseudo-triangulated categories, and then define D-mutation pairs in pseudo-triangulated
categories and set some conventions throughout this paper. In Section 3, we state and
prove our main result Theorem 3.3.1. We show that under certain conditions, the quotient
category associated to a given mutation pair has a structure of a triangulated category.
At last, we give some examples to illustrate our main result.

2. Preliminaries

Let C be an additive category and D a subcategory of C. When we say D is a subcategory
of C, we always mean that D is an additive full subcategory which is closed under isomor-
phisms and direct summands. A pseudokernel of a morphism g : B → C is a morphism
f : A→ B such that gf = 0 and if h : D → B is a morphism such that gh = 0, there exists
a morphism i : D → A such that h = fi. We can define the notion of a pseudocokernel
dually. A morphism f : A→ B in C is called D-epic, if for any object D ∈ D, the sequence

C(D,A)
C(D,f)−−−−→ C(D,B)→ 0 is exact. A right D-approximation of X in C is a D-epic map

f : D → X with D ∈ D. If for any object X ∈ C, there exists a right D-approximation
f : D → X, then D is called a contravariantly finite subcategory. Dually we have the
notions of a D-monic map, a left D-approximation and a covariantly finite subcategory.
The subcategory D is called functorially finite if D is both contravariantly finite and
covariantly finite.
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2.1. Right triangulated categories. Let C be an additive category and Σ : C → C
an additive functor. A sextuple (A,B,C, f, g, h) in C is of the form A

f−→ B
g−→ C

h−→ ΣA.
A morphism of sextuples from (A,B,C, f, g, h) to (A′, B′, C ′, f ′, g′, h′) is a triple (a, b, c)
of morphisms such that the following diagram commutes:

A
f //

a
��

B
g //

b
��

C h //

c
��

ΣA

Σa
��

A′
f ′ // B′

g′ // C ′
h′ // ΣA′.

If in addition a, b, c are isomorphisms in C, then (a, b, c) is called an isomorphism of
sextuples.

2.1.1. Definition. ([3], [9]) Let C be an additive category, Σ : C → C an additive functor,
and � a class of sextuples. The triple (C,Σ,�) is called a right triangulated category,
Σ its suspension functor, and the elements of � right triangles, if the following axioms
are satisfied:

(RTR0) � is closed under isomorphisms.

(RTR1) For any object A ∈ C, the sextuple 0 −→ A
1A−→ A −→ 0 is a right triangle; and

for any morphism f : A→ B in C, there exists a right triangle A
f−→ B

g−→ C
h−→ ΣA.

(RTR2) If A
f−→ B

g−→ C
h−→ ΣA is a right triangle, then so is B

g−→ C
h−→ ΣA

−
∑
f−−−→ ΣB.

(RTR3) For any two right triangles A
f−→ B

g−→ C
h−→ ΣA and A′

f ′−→ B′
g′−→ C ′

h′−→ ΣA′,
and any two morphisms a : A → A′ and b : B → B′ such that bf = f ′a, there exists a
morphism c : C → C ′ such that (a, b, c) is a morphism of right triangles.

(RTR4) Let A
f−→ B

g−→ C
h−→ ΣA, A

l−→ M
m−→ B′

n−→ ΣA and A′
l′−→ M

m′−→ B
n′−→ ΣA′

be three right triangles with m′l = f . Then there exist two morphisms g′ : B′ → C and
h′ : C → ΣA′ such that the following diagram is commutative and the third column is a
right triangle.

A′

l′

��

A′

f ′

��
A

l //M
m //

m′

��

B′
n //

g′

��

ΣA

A
f // B

g //

n′
��

C h //

h′
��

ΣA

Σl
��

ΣA′ ΣA′
−Σl′ // ΣM

In particular, if the suspension functor Σ is an equivalence, then C is a triangulated
category. A left triangulated category (C,Ω, /) can be defined dually, with Ω : C → C
being called the loop functor, and / the class of left triangles.

2.1.2. Remark. Condition (RTR4) is slightly different from that in [3]. But the following
two lemmas are still true.
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2.1.3. Lemma. ([1, Lemma 1.3]) Let C be a right triangulated category, and A
f−→ B

g−→
C

h−→ ΣA a right triangle. Then the following are true.
(1) The morphism g is a pseudocokernel of f , and h is a pseudocokernel of g.
(2) If Σ is fully-faithful, then f is a pseudokernel of g, and g is a pseudokernel of h.

2.1.4. Lemma. ([8, Proposition 2.13]) Let C be a right triangulated category, and (a, b, c)
a morphism of right triangles:

A
f //

a
��

B
g //

b
��

C h //

c
��

ΣA

Σa
��

A′
f ′ // B′

g′ // C ′
h′ // ΣA′.

If a and b are isomorphisms, then so is c.

2.1.5. Definition. ([9, Definition 3.1]) Let C be a right triangulated category with the
suspension functor Σ, and f : A→ B a morphism in C.

(1) The morphism f is called Σ-null if it factors through some object in ΣC.
(2) The morphism f is called Σ-epic if for any morphism b : B → B′, the composition

bf = 0 implies b is Σ-null.

For a left triangulated category C with the loop functor Ω, we can define Ω-null
morphisms and Ω-monic morphisms dually.

2.2. Pseudo-triangulated categories. We recall some basics on pseudo-triang-
ulated categories from [9].

2.2.1. Definition. ([9, Definition 3.3]) The sextuple (C,Σ,Ω,�,�, ψ) is called a pseudo-
triangulated category if (C,Σ,�) is a right triangulated category, (C,Ω,�) is a left tri-
angulated category, and (Ω,Σ) is an adjoint pair with the adjugant ψ : C(ΩC,A)

∼−→
C(C,ΣA), moreover, the right triangles and left triangles satisfy the following gluing con-
ditions (G1) and (G2):

(G1) If a morphism g : B → C is Σ-epic, and ΩC
e−→ A

f−→ B
g−→ C ∈ �, then

A
f−→ B

g−→ C
−ψ(e)−−−→ ΣA ∈ ..

(G2) If a morphism f : A → B is Ω-monic, and A
f−→ B

g−→ C
h−→ ΣA ∈ �, then

ΩC
−ψ−1(h)−−−−−→ A

f−→ B
g−→ C ∈ /.

2.2.2. Remark. Gluing conditions (G1) and (G2) are slightly different from that in [9].
But it is easy to prove that they are actually the same.

2.2.3. Example. ([9, Example 3.4]) Let C be an additive category.
(1) The category C is an abelian category if and only if there exists a pseudo-triangu-

lated structure (C,Σ,Ω,�,�, ψ) such that Σ = Ω = 0.
(2) The category C is a triangulated category if and only if there exists a pseudo-

triangulated structure (C,Σ,Ω,�,�, ψ) such that Σ is the quasi-inverse of Ω.
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2.2.4. Definition. ([9, Definition 4.1]) Let (C,Σ,Ω,�,�, ψ) be a pseudo-triangulated

category. A sequence ΩC
e−→ A

f−→ B
g−→ C

h−→ ΣA in C is called an extension if A
f−→ B

g−→
C

h−→ ΣA ∈ �, ΩC
e−→ A

f−→ B
g−→ C ∈ �, and h = −ψ(e).

A morphism of extensions from ΩC
e−→ A

f−→ B
g−→ C

h−→ ΣA to ΩC ′
e′−→ A′

f ′−→ B′
g′−→

C ′
h′−→ ΣA′ is a triple (a, b, c) such that the following diagram is commutative

ΩC e //

Ωc
��

A
f //

a
��

B
g //

b
��

C
h //

c
��

ΣA

Σa
��

ΩC ′ e′ // A′
f ′ // B′

g′ // C ′ h′ // ΣA′.

Note that ae = e′ · Ωc is equivalent to Σa · h = h′c. Thus a morphism of extensions is
essentially the same as a morphism in � or in �.

2.2.5. Example. (cf. [9, Proposition 4.6]) Let C be a pseudo-triangulated category.
(1) For any objects A,B ∈ C, the sequence

ΩB
0−→ A

(
1A
0

)
−−−→ A⊕B (0,1B)−−−→ B

0−→ ΣA

is an extension.
(2) If C is abelian, then an extension is nothing other than a short exact sequence.
(3) If C is a triangulated category, then an extension is nothing other than a distin-

guished triangle.

The following lemma will be frequently used in the next section.

2.2.6. Lemma. ([9, Proposition 4.7]) Let ΩC
e−→ A

f−→ B
g−→ C

h−→ ΣA, ΩB′
k−→ A

l−→
M

m−→ B′
n−→ ΣA and ΩB

k′−→ A′
l′−→ M

m′−→ B
n′−→ ΣA′ be three extensions with m′l = f .

Then there exist two morphisms g′ : B′ → C and h′ : C → ΣA′ such that the following
diagram is commutative and the fourth column is an extension.

ΩB
Ωg //

k′
��

ΩC

−ψ−1(h′)
��

A′

l′

��

A′

f ′

��
ΩB′ k //

��

A
l //M

m //

m′

��

B′
n //

g′

��

ΣA

ΩC e // A
f // B

g //

n′
��

C h //

h′
��

ΣA

Σl
��

ΣA′ ΣA′
−Σl′ // ΣM

(2.1)
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2.2.7. Remark. In Diagram (2.1), if l′ and f are D-monic, then f ′ is also D-monic.

Proof. For any morphism a : A′ → D, where D ∈ D, we need to show that a factors
through f ′. Since l′ is D-monic, there exists a morphism b : M → D such that a = bl′.
Since f is D-monic, there exists a morphism c : B → D such that bl = cf . Thus
(b− cm′)l = bl − cf = 0. There exists a morphism d : B′ → D such that b− cm′ = dm.
Hence a = bl′ = bl′ − cm′l′ = dml′ = df ′.

Now we will give some properties of Σ-epic morphisms in a pseudo-triangulated cate-
gory C. The properties of Ω-monic morphisms are dual.

2.2.8. Lemma. Let ΩC
e−→ A

f−→ B
g−→ C be a left triangle. Then the following statements

are equivalent.
(1) The morphism g is Σ-epic.

(2) The sequence A
f−→ B

g−→ C
−ψ(e)−−−→ ΣA is a right triangle.

(3) The sequence ΩC
e−→ A

f−→ B
g−→ C

−ψ(e)−−−→ ΣA is an extension.

Proof. (1)⇒ (2) follows from gluing condition (G1). By the definition of an extension

we get (2)⇔(3). It remains to show (2)⇒ (1). Since B
g−→ C

−ψ(e)−−−→ ΣA
−Σf−−→ ΣB is a

right triangle, we get that g is Σ-epic by Lemma 2.1.3(1).

2.2.9. Lemma. Let f : A→ B be a morphism in C. Then The following statements are
equivalent.

(1) The morphism f is Σ-epic.

(2) For any right triangle A
f−→ B

g−→ C
h−→ ΣA, there exists an object C ′ ∈ C such that

C ∼= ΣC ′.

(3) There exists a right triangle A
f−→ B

g′−→ ΣC ′
h′−→ ΣA.

Proof. (1)⇒ (2). Let ΩB
d−→ C ′

e−→ A
f−→ B be a left triangle. Since f is Σ-epic, C ′

e−→
A

f−→ B
−ψ(d)−−−→ ΣC ′ is a right triangle by Lemma 2.2.8. Now A

f−→ B
−ψ(d)−−−→ ΣC ′

−Σe−−→ ΣA
is a right triangle by (RTR2). So C ∼= ΣC ′ by Lemma 2.1.4. (2)⇒ (3) and (3)⇒ (1) are
trivial.

2.2.10. Lemma. Let f : A→ B, g : B → C and h : A→ C be morphisms in C such that
h = gf .

(1) If h is Σ-epic, then so is g;
(2) If f and g are Σ-epic, then so is h.

Proof. For (1), see [9, Lemma 4.4]. Now we prove (2). Since g : B → C is Σ-epic, there

exists a right triangle L
f ′−→ B

g−→ C
h′−→ ΣL by Lemma 2.2.8. By (RTR1) and (RTR4), we
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get the following commutative diagram

L

f ′

��

L

a
��

A
f // B

g′ //

g
��

M h′′ //

b
��

ΣA

A
h // C

b′ //

h′

��

N
c′ //

c
��

ΣA

ΣL ΣL

where the third column and the middle two rows are right triangles. Since f : A→ B is
Σ-epic, there exists an isomorphism m : M

∼−→ ΣM ′ with M ′ ∈ C by Lemma 2.2.9. Note

that ma : L→ ΣM ′ is Σ-epic by definition. There exists a right triangle L
ma−→ ΣM ′ m′−→

ΣN ′
n′−→ ΣL by Lemma 2.2.9. By (RTR3) and Lemma 2.1.4 there exists an isomorphism

n : N
∼−→ ΣN ′ such that the following diagram is commutative.

L
a //M

b //

m'
��

N
c //

n'
��

ΣL

L ma // ΣM ′ m′ // ΣN ′ n′ // ΣL

By Lemma 2.2.9 again, h is Σ-epic.

2.2.11. Definition. Let C be a pseudo-triangulated category, and D ⊆ Z be two sub-
categories of C. The pair (Z,Z) is called a D-mutation pair if it satisfies:

(1) For any object X ∈ Z, there exists an extension ΩY
e−→ X

f−→ D
g−→ Y

h−→ ΣX such
that Y ∈ Z, f is a left D-approximation and g is a right D-approximation.

(2) For any object Y ∈ Z, there exists an extension ΩY
e−→ X

f−→ D
g−→ Y

h−→ ΣX such
that X ∈ Z, f is a left D-approximation and g is a right D-approximation.

2.2.12. Definition. Let C be a pseudo-triangulated category. A subcategory Z of C is
said to be extension-closed if for any extension in C

ΩZ
e−→ X

f−→ Y
g−→ Z

h−→ ΣX (2.2)

X,Z ∈ Z implies Y ∈ Z.

For an extension (2.2), if X, Y, Z ∈ Z, we simply say the extension is in Z.

Let ΩZ
e−→ X

f−→ Y
g−→ Z

h−→ ΣX be an extension in C, then h is a pseudocokernel of g
and e is a pseudokernel of f by Lemma 2.1.3 and its dual. But g may be not a pseudokernel
of h and f may be not a pseudocokernel of e. Thus we define a critical assumption below.
In the rest of this article, we will work with pseudo-triangulated categories satisfying this
particular assumption.
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2.2.13. Assumption. For ΩC
e−→ A

f−→ B
g−→ C

h−→ ΣA and ΩC ′
e′−→ A′

f ′−→ B′
g′−→

C ′
h′−→ ΣA′ any two extensions in the pseudo-triangulated category C, the following two

conditions hold.
(A1) If a morphism c : C → C ′ satisfies h′c = 0 and cg = 0, then there exists a

morphism c′ : C → B′ such that g′c′ = c.
(A2) If a morphism a : A → A′ satisfies f ′a = 0 and ae = 0, then there exists a

morphism a′ : B → A′ such that a′f = a.

2.2.14. Remark. Assumption 2.2.13 is trivially true for both triangulated category and
abelian category. In fact, if C is an abelian category, then g is epic so that cg = 0 implies
that c = 0, thus we can take c′ = 0 in (A1). Similarly we obtain that a = 0 and we can
take a′ = 0 in (A2).

3. Main results

Throughout this section we assume that C is a pseudo-triangulated category satisfying
Assumption 2.2.13 and (Z,Z) is a D-mutation pair.

3.1. Quotient categories of pseudo-triangulated categories. Consider the
quotient category Z/D, whose objects are objects of Z and given two objects X and Y ,
the set of morphisms (Z/D)(X, Y ) is defined as the quotient group Z(X, Y )/[D](X, Y ),
where [D](X, Y ) is the subgroup of morphisms from X to Y factoring through some object
in D. For any morphism f : X → Y in Z, we denote by f the image of f under the
quotient functor Z → Z/D.

3.1.1. Lemma. Let

ΩZ e //

Ωzi
��

X
f //

xi
��

Y
g //

yi
��

Z
h //

zi
��

ΣX

Σxi (i=1,2)
��

ΩZ ′ e′ // X ′
f ′ // D′

g′ // Z ′
h′ // ΣX ′

be morphisms of extensions in Z, where D′ ∈ D and f is D-monic, i = 1, 2. Then x1 = x2

implies that z1 = z2.

Proof. Since x1 = x2, there exist morphisms a1 : X → D and a2 : D → X ′ such that
x1 − x2 = a2a1, where D ∈ D. Since f is D-monic, there exists a morphism a3 : Y → D
such that a1 = a3f . Thus (x1−x2)e = a2a1e = a2a3fe = 0. Then Σ(x1−x2)·h = −Σ(x1−
x2)(ψ(e)) = −ψ((x1−x2)e) = 0. Note that (y1−y2−f ′a2a3)f = (y1−y2)f−f ′(x1−x2) = 0,
there exists a morphism d : Z → D′ such that y1−y2−f ′a2a3 = dg. Now (z1−z2−g′d)g =
g′(y1−y2)−g′(y1−y2−f ′a2a3) = 0, and h′(z1−z2−g′d) = h′(z1−z2) = Σ(x1−x2) ·h = 0.
By (A1), there exists a morphism d′ : Z → D′ such that z1 − z2 − g′d = g′d′. So
z1 − z2 = g′(d+ d′) and z1 = z2.
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3.1.2. Lemma. Let ΩY
e−→ X

f−→ D
g−→ Y

h−→ ΣX and ΩY ′
e′−→ X

f ′−→ D′
g′−→ Y ′

h′−→ ΣX
be two extensions in Z, where f and f ′ are left D-approximations. Then Y and Y ′ are
isomorphic in Z/D.

Proof. Since f and f ′ are left D-approximations, we obtain the following commutative
diagram

ΩY e //

Ωy
��

X
f // D

g //

d
��

Y h //

y
��

ΣX

ΩY ′ e′ //

Ωy′

��

X
f ′ // D′

g′ //

d′

��

Y ′ h′ //

y′

��

ΣX

ΩY e // X
f // D

g // Y
h // ΣX.

By Lemma 3.1.1, we get y′y = 1Y . Similarly, we can show that yy′ = 1Y ′ . Hence Y and
Y ′ are isomorphic in Z/D.

For any object X ∈ Z, by the definition of a D-mutation pair, there exists an extension

ΩTX
e−→ X

f−→ D
g−→ TX

h−→ ΣX (∗)

where TX ∈ Z, f is a left D-approximation and g is a right D-approximation. By Lemma
3.1.2, TX is unique up to isomorphism in the quotient category Z/D. So for any object
X ∈ Z, we fix an extension as in (∗). For any morphism x : X → X ′ in Z, since f is a
left D-approximation, we can complete the following commutative diagram:

ΩTX e //

Ωy
��

X
f //

x
��

D
g //

d
��

TX h //

y
��

ΣX

Σx
��

ΩTX ′ e′ // X ′
f ′ // D′

g′ // TX ′
h′ // ΣX ′.

We define a functor T : Z/D → Z/D by setting T (X) = TX on the objects X of Z/D
and T (x) = y on the morphisms x : X → X ′ of Z/D. By Lemma 3.1.1, T (x) is well
defined and T is an additive functor.

3.1.3. Lemma. The functor T : Z/D → Z/D is an equivalence.

Proof. For any object Y ∈ Z, we fix an extension ΩY
e−→ T ′Y

f−→ D
g−→ Y

h−→ ΣT ′Y ,
where T ′Y ∈ Z, f is a left D-approximation and g is a right D-approximation. We can
similarly define an additive functor T ′ : Z/D → Z/D by T ′(Y ) = T ′Y . It is easy to check
that T ′T ∼= id and TT ′ ∼= id. Thus T is an equivalence.
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3.2. Triangles on the quotient categories. Let ΩZ
u−→ X

v−→ Y
w−→ Z

x−→ ΣX be
an extension in Z, where v is D-monic. Then we can obtain the following commutative
diagram.

ΩZ u //

Ωz
��

X v // Y w //

y
��

Z x //

z
��

ΣX

ΩTX e // X
f // D

g // TX
h // ΣX

The sequence X
v−→ Y

w−→ Z
z−→ TX is called a standard triangle in Z/D. We define 4

to be the class of distinguished triangles which are isomorphic to standard triangles.

3.2.1. Lemma. Let v : X → Y be a morphism in Z. If Z is extension-closed, then there
exists an extension

ΩZ
u−→ X

( vf )
−−→ Y ⊕D (w,d)−−−→ Z

x−→ ΣX

in Z, which induces a distinguished triangle X
v−→ Y

w−→ Z
z−→ TX in Z/D.

Proof. Let ΩTX
e−→ X

f−→ D
g−→ TX

h−→ ΣX be the extension given by the mutation pair,
where f is a left D-approximation and g is a right D-approximation. The dual of Lemma
2.2.8 implies that f is Ω-monic. Since (0, 1D) ( vf ) = f , we get that ( vf ) is also Ω-monic by

the dual of Lemma 2.2.10(1). Thus we obtain an extension ΩZ
u−→ X

( vf )
−−→ Y ⊕D (w,d)−−−→

Z
x−→ ΣX. By Lemma 2.2.6, there exist two morphisms z : Z → TX and a : TX → ΣY

such that the following diagram is commutative and the fourth column is an extension.

ΩD
Ωg //

0
��

ΩTX

−ψ−1(a)
��

Y(
1Y
0

)
��

Y

w
��

ΩZ u //

��

X
( vf )
// Y ⊕D (w,d) //

(0,1D)
��

Z
x //

z
��

ΣX

ΩTX e // X
f // D

g //

0
��

TX h //

a

��

ΣX

Σ( vf )
��

ΣY ΣY
−Σ
(

1Y
0

)
// Σ(Y ⊕D)

(3.1)

Since Y, TX ∈ Z and Z is extension-closed, we get Z ∈ Z. The morphism f is D-monic

implies that ( vf ) is also D-monic. Thus X
( vf )
−−→ Y ⊕ D

(w,d)
−−−→ Z

z−→ TX is a standard

triangle. So X
v−→ Y

w−→ Z
z−→ TX is a distinguished triangle.
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3.2.2. Lemma. Let

ΩZ u //

Ωc
��

X v //

a
��

Y w //

b
��

Z x //

c
��

ΣX

Σa
��

ΩZ ′ u′ // X ′
v′ // Y ′

w′ // Z ′
x′ // ΣX ′

be a morphism of extensions in Z, where v and v′ are D-monic. Then we have a morphism
of standard triangles in Z/D:

X
v //

a
��

Y
w //

b
��

Z
z //

c
��

TX

Ta
��

X ′
v′ // Y ′

w′ // Z ′
z′ // TX ′.

Proof. Let Ta = p. By the definition of standard triangles and the definition of the
functor T we have the following two commutative diagrams

ΩZ u //

Ωz
��

X
v // Y

w //

y
��

Z
x //

z
��

ΣX

ΩTX e //

ΩTa
��

X
f //

a
��

D
g //

d
��

TX
h //

p

��

ΣX

Σa
��

ΩTX ′ e′ // X ′
f ′ // D′

g′ // TX ′
h′ // ΣX ′,

ΩZ u //

Ωc
��

X
v //

a
��

Y
w //

b
��

Z
x //

c
��

ΣX

Σa
��

ΩZ ′ u′ //

Ωz′

��

X ′ v′ // Y ′ w′ //

y′

��

Z ′ x′ //

z′

��

ΣX ′

ΩTX ′ e′ // X ′
f ′ // D′

g′ // TX ′
h′ // ΣX ′.

By Lemma 3.1.1, we get Ta · z = p · z = z′ · c.

3.2.3. Lemma. Let ΩZ
u−→ X

v−→ Y
w−→ Z

x−→ ΣX and ΩZ ′
u′−→ X

( vf )
−−→ Y ⊕D (w′,g)−−−→ Z ′

x′−→
ΣX be two extensions in Z, where v is D-monic and f is a left D-approximation. Then
we have an isomorphism of distinguished triangles in Z/D:

X
v // Y

w′ // Z ′
z′ //

c′

��

TX

X
v // Y

w // Z
z // TX.
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Proof. By Lemma 2.2.6, we have the following commutative diagram

ΩY Ωw //

0
��

ΩZ

−ψ−1(h)
��

D(
0

1D

)
��

D

g
��

ΩZ ′ u′ //

��

X
( vf )
// Y ⊕D(w′,g) //

(1Y ,0)
��

Z ′
x′ //

c′

��

ΣX

ΩZ u // X
v // Y

w //

0
��

Z
x //

h
��

ΣX

Σ( vf )
��

ΣD ΣD
−Σ
(

0
1D

)
// Σ(Y ⊕D)

where the fourth column is an extension. Since v is D-monic, there exists a morphism
y : Y → D such that f = yv. Thus we have the following commutative diagram

ΩZ ′ u //

Ωc
��

X
v // Y

w //(
1Y
y

)
��

Z
x //

c
��

ΣX

ΩZ u′ //

Ωc′

��

X
( vf )
// Y ⊕D(w′,g) //

(1Y ,0)
��

Z ′ x′ //

c′

��

ΣX

ΩZ ′ u // X v // Y w // Z x // ΣX.

Since (1Y , 0)
(

1Y
y

)
= 1Y , we get that c′c is an isomorphism by Lemma 2.1.4. On the

other hand, since (w′, g) is a pseudocokernel of ( vf ) and (y,−1D) ( vf ) = 0, there exists a
morphism d : Z ′ → D such that (y,−1D) = d(w′, g). Thus y = dw′ and dg = −1D. Note
that c′ is a pseudocokernel of g and (1Z′ + gd)g = g − g = 0, there exists a morphism
c′′ : Z → Z ′ such that c′′c′ = 1Z′ + gd. So c′′c′ = 1Z′ . Therefore, c′ is an isomorphism in
Z/D. The lemma holds by Lemma 3.2.2.

3.3. Main theorem. Now we can state and prove our main theorem.

3.3.1. Theorem. Let C be a pseudo-triangulated category satisfying Assumption 2.2.13.
If (Z,Z) is a D-mutation pair and Z is extension-closed, then (Z/D, T,4) is a triangu-
lated category.

Proof. We will check that the distinguished triangles in 4 satisfy the axioms of trian-
gulated categories.

(TR1) For any morphism v : X → Y , there is a distinguished triangle X
v−→ Y

w−→ Z
z−→

TX by Lemma 3.2.1. It is easy to see that Ω0 → X
1X−→ X → 0 → ΣX is an extension

and 1X is D-monic. Thus X
1X−→ X → 0→ TX ∈ ∆.
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(TR2) We only need to consider the standard triangles. By Lemma 3.2.3, we assume

that X
v−→ Y

w−→ Z
z−→ TX is a distinguished triangle induced by the extension ΩZ

u−→

X
( vf )
−−→ Y ⊕ D

(w,d)−−−→ Z
x−→ ΣX in Z, where f : X → D is a left D-approximation.

By Diagram (3.1), we get an extension ΩTX
−ψ−1(a)−−−−−→ Y

w−→ Z
z−→ TX

a−→ ΣY in Z.
Since

(
1Y
0

)
and f are D-monic, we obtain that w is D-monic by Remark 2.2.7. Let

ΩTY
eY−→ Y

fY−→ DY
gY−→ TY

hY−→ ΣY be the extension given by the mutation pair,
where fY is a left D-approximation and gY is a right D-approximation. The following
commutative diagram

ΩTX
−ψ−1(a)//

Ωz′

��

Y
w // Z

z //

y′

��

TX
a //

z′

��

ΣY

ΩTY
eY // Y

fY // DY
gY // TY

hY // ΣY

shows that Y
w−→ Z

z−→ TX
z′−→ TY is a standard triangle. It remains to show that

z′ = −Tv. The commutative Diagram (3.1) implies the following commutative diagram

ΩTX e //

−1ΩTX

��

X
f //

v
��

D
g //

−d
��

TX
h //

−1TX

��

ΣX

Σv
��

ΩTX
−ψ−1(a) // Y

w // Z
z // TX

a // ΣY.

Composing the above two commutative diagrams, we obtain the following commutative
diagram

ΩTX e //

−Ωz′

��

X
f //

v
��

D
g //

−y′d
��

TX
h //

−z′
��

ΣX

Σv
��

ΩTY
eY // Y

fY // DY
gY // TY

hY // ΣY,

which implies that Tv = −z′.
(TR3) We only need to consider the case of standard triangles. Suppose there is a

commutative diagram

X
v //

a
��

Y
w //

b
��

Z
z // TX

Ta
��

X ′
v′ // Y ′

w′ // Z ′
z′ // TX ′

with rows being standard triangles. Since bv = v′a, there exist two morphisms a1 : X → D
and a2 : D → Y ′ such that bv − v′a = a2a1, where D ∈ D. Since v is D-monic, there
exists a morphism a3 : Y → D such that a1 = a3v. Thus (b − a2a3)v = bv − a2a1 = v′a.
So by (RTR3) there exists a morphism c : Z → Z ′ such that the following diagram is
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commutative
ΩZ u //

Ωc
��

X v //

a
��

Y w //

b−a2a3
��

Z x //

c
��

ΣX

Σa
��

ΩZ ′ u′ // X ′
v′ // Y ′

w′ // Z ′
x′ // ΣX ′.

Hence (TR3) follows from Lemma 3.2.2.

(TR4) Let X
v−→ Y

w−→ Z
z−→ TX, X ′

v′−→ Y
w′−→ Z ′

z′−→ TX ′ and X
w′v−−→ Z ′

q
−→ Y ′

t−→ TX
be distinguished triangles. Let f : X → D be a left D-approximation of X. Since(
w′ 0
0 1D

)
( vf ) =

(
w′v
f

)
, for simplicity we may assume that v,v′ and w′v are D-monic by

Lemma 3.2.3. Now we may assume that the above three distinguished triangles are

induced by the following three extensions ΩZ
u−→ X

v−→ Y
w−→ Z

x−→ ΣX, ΩZ ′
u′−→ X ′

v′−→
Y ′

w′−→ Z ′
x′−→ ΣX ′ and ΩY ′

n−→ X
w′v−−→ Z ′

q−→ Y ′
r−→ ΣX. By Lemma 2.2.6, we get the

following commutative diagram

ΩZ ′
Ωq //

u′

��

ΩY ′

n′

��
X ′

v′

��

X ′

p′

��
ΩZ u //

Ωq′

��

X
v // Y

w //

w′
��

Z
x //

q′

��

ΣX

ΩY ′ n // X
w′v // Z ′

q //

x′

��

Y ′
r //

r′

��

ΣX

Σv
��

ΣX ′ ΣX ′
−Σv′ // ΣY,

where the fourth column is an extension. Since v′ and w′v are D-monic, we get that p′ is
D-monic too by Remark 2.2.7. Thus by Lemma 3.2.2 we get the following commutative
diagram:

X ′

v′

��

X ′

p′

��
X

v // Y
w //

w′

��

Z
z //

q′

��

TX

X
w′v // Z ′

q
//

z′

��

Y ′
t //

t′

��

TX

TX ′ TX ′,

with rows and columns being standard triangles. It remains to show that the following
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diagram is commutative:

Y ′
t−−−→ TX

t′
y Tv

y
TX ′

−Tv′−−−→ TY

(3.2)

We first claim that there exist morphisms of extensions

ΩY ′ n //

Ωb
��

X w′v //

v
��

Z ′
q //

a
��

Y ′ r //

b
��

ΣX

Σv
��

ΩTY e′ // Y
f ′ // D′

g′ // TY
h′ // ΣY

(3.3)

and

ΩY ′ n′ //

Ωb′

��

X ′
p′ //

v′

��

Z
q′ //

a′

��

Y ′
r′ //

b′

��

ΣX ′

Σv′

��
ΩTY e′ // Y

f ′ // D′
g′ // TY

h′ // ΣY,

(3.4)

such that f ′ = aw′ + a′w, b = Tv · t and b′ = Tv′ · t′.
In fact, since w′v is D-monic, there exists a morphism a : Z ′ → D′ such that f ′v =

aw′v. Then by (RTR3) there exists a morphism b : Y ′ → TY such that Diagram (3.3) is
commutative. Because (f ′ − aw′)v = 0, there exists a morphism a′ : Z → D′ such that
a′w = f ′ − aw′. Thus f ′ = a′w + aw′ and f ′v′ = a′wv′ + aw′v′ = a′p′. Then by (RTR3)
there exists a morphism b′ : Y ′ → TY such that Diagram (3.4) is commutative. By the
construction of a standard triangle, we have the following commutative diagram

ΩY ′ n //

Ωt
��

X w′v // Z ′
q //

s
��

Y ′ r //

t
��

ΣX

ΩTX e // X
f // D

g // TX
h // ΣX.

On the other hand, letting Tv = l, we have the following commutative diagram

ΩTX e //

Ωl
��

X
f //

v
��

D
g //

d
��

TX
h //

l
��

ΣX

Σv
��

ΩTY e′ // Y
f ′ // D′

g′ // TY h′ // ΣY.

Composing the last two diagrams, we immediately obtain the following commutative
diagram

ΩY ′ n //

Ω(lt)
��

X
w′v //

v
��

Z ′
q //

ds
��

Y ′
r //

lt
��

ΣX

Σv
��

ΩTY e′ // Y
f ′ // D′

g′ // TY
h′ // ΣY.

(3.5)
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Comparing Diagram (3.3) and Diagram (3.5), we get b = l · t = Tv · t by Lemma 3.1.1.
We can similarly show b′ = Tv′ · t′.

Now we can show Diagram (3.2) is commutative. We note that h′(b+b′) = Σv ·r+Σv′ ·
r′ = 0 and (b+ b′)q′w = bqw′+ b′q′w = g′aw′+ g′a′w = g′f ′ = 0. Since w, q′ are Σ-epic, so

is q′w by Lemma 2.2.10(2). Thus we obtain an extension ΩY ′
α−→ Y ′′

β−→ Y
q′w−−→ Y ′

γ−→ ΣY ′′

by Lemma 2.2.8. So b+ b′ factors through D′ by (A1). Then Tv · t+Tv′ · t′ = b+ b′ = 0.

3.4. Examples. Since triangulated categories and abelian categories are pseudo-triang-
ulated categories, and Assumption 2.2.13 is trivially true for both cases, we can apply
Theorem 3.3.1 to several situations.

3.4.1. Example. ([6, Theorem 4.2]) Let (Z,Z) be a D-mutation pair in a triangulated
category C. If Z is extension-closed, then the quotient Z/D is a triangulated category.
We note that our definition of mutation pair is weaker than Iyama-Yoshino’s definition
([6, Definition 2.5]), since we do not need to require D to be a rigid subcategory.

3.4.2. Example. ([5, Theorem 2.6]) Let C be an abelian category and (B,S) a Frobenius
subcategory. Then the quotient B/I is a triangulated category, where I is the subcategory
of B consisting of all S-injectives.

Proof. Note that B is an extension-closed subcategory of C, by Theorem 3.3.1 we only
need to show that (B,B) is an I-mutation pair. In fact, for any object X ∈ B, since B
has enough S-injectives, there exists a short exact sequence 0→ X

f−→ I
g−→ Y → 0 in S,

where I ∈ I. It is easy to check that f is a left I-approximation. Since the S-projectives
coincide with the S-injectives, g is a right I-approximation by definition. The second
condition can be showed similarly.

3.4.3. Example. ([2, Theorem 7.2]) Let C be a triangulated category, and E a proper
class of distinguished triangles on C (see [2, Definition 2.2]), which is closed under trans-
lations and satisfies the analogous formal properties of a proper class of short exact se-
quences in an exact category. An object I ∈ C is called an E-injective, if for any distin-
guished triangle A→ B → C → ΣA in E , the induced sequence 0→ C(C, I)→ C(B, I)→
C(A, I)→ 0 is exact. Denote by I the full subcategory of C consisting of E-injective ob-
jects. We say that C has enough E-injectives if for any object A ∈ C there exists a
distinguished triangle A → I → C → ΣA in C with I ∈ I. If C has enough E-injectives
and enough E-projectives and I = P , where P is the subcategory of E-projectives, then
it is easy to see that (C, C) is an I-mutation pair, thus C/I is a triangulated category by
Theorem 3.3.1. We remark that C(I,ΣI) is not zero because I is closed under Σ. So
(C, C) is not an I-mutation pair in the sense of Iyama-Yoshino.

3.4.4. Example. ([7, Theorem 2.3]) Let C be a triangulated category with a Serre functor
S, and X a functorially finite subcategory with τX = X , where τ is the AR translation

determined by S. Let X
f−→ D

g−→ Y
h−→ ΣX be a distinguished triangle in C, then by [7,

Lemma 2.2], f is a left X -approximation if and only if g is a right X -approximation. Thus
it is easy to see that (C, C) is a X -mutation pair. So the quotient C/X is a triangulated
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category by Theorem 3.3.1. We remark that (C, C) may be not a X -mutation pair in the
sense of Iyama-Yoshino. For example, if C is a cluster category, then C(X ,ΣX ) may be
non-zero.

3.4.5. Example. ([9, Theorem 6.17]) Let C be a pseudo-triangulated category and Z an
extension-closed subcategory. A morphism f : X → Y (resp. g : Y → Z) in Z is called an

inflation (resp. deflation) if there exists an extension ΩZ
e−→ X

f−→ Y
g−→ Z

h−→ ΣX in Z.

Let D be a subcategory of Z. An object I in D is injective if Z(Y, I)
Z(f,I)−−−→ Z(X, I)→ 0

is exact for any inflation f : X → Y . The full subcategory of D consisting of injectives is
denoted by ID. We say (C,Z,D) has enough injectives if for any object X ∈ Z, there
exists an inflation f : X → I such that I ∈ ID. We say (C,Z,D) is Frobenius if it has
enough injectives and projectives, and the injectives coincide with the projectives.

If (C,Z,D) is Frobenius and C satisfies Assumption 2.2.13, then it is easy to check
that (Z,Z) is an ID-mutation pair, thus the quotient Z/ID is a triangulated category by
Theorem 3.3.1.

Acknowledgements. The authors thank the anonymous referee for his/her helpful
comments and useful suggestions to improve this article. They also thank Professor
Xiaowu Chen for some comments and advice. They are indebted to Professor Steve Lack
for excellent suggestions to improve the English in the introduction.

References

[1] I. Assem, A. Beligiannis, N. Marmaridis. Right Triangulated Categories with Right
Semi-equivalences. Canandian Mathematical Society Conference Proceeding. Volume
24, 17-37, 1998.

[2] A. Beligiannis. Relative homological algebra and purity in triangulated categories. J.
Algebra. 227, no.1, 268-361, 2000.

[3] A. Beligiannis, N. Marmaridis. Left triangulated categories arising from contravari-
antly finite subcategories. Communications in algebra. 22(12), 5021-5036, 1994.

[4] A. Beligiannis, I. Reiten. Homological and homotopical aspects of torsion theories
(English summary), Mem. Amer. Math. Soc. 188, no. 883, 2007.

[5] D. Happel. Triangulated Categories in the Representation Theory of Finite Dimen-
sional Algebras. London Mathematical Society, LMN 119, Cambridge, 1988.

[6] O. Iyama, Y. Yoshino. Mutation in triangulated categories and rigid Cohen-Macaulay
modules. Invent. Math. 172, no. 1, 117-168, 2008.

[7] P. Jørgensen. Quotients of cluster categories. Proceedings of the Royal Society of
Edinbuigh. 140A, 65-81, 2010.



1840 ZENGQIANG LIN AND MINXIONG WANG

[8] Y. Liu, B. Zhu. Triangulated quotient categories. Comm. Algebra, 41(10), 3720-3738,
2013.

[9] H. Nakaoka, Frobenius condition on a pretriangulated category, and triangulation on
the associated stable category. arXiv: 1006.1033, 2010.

School of Mathematical sciences, Huaqiao University,
Quanzhou 362021, China

School of Mathematical sciences, Huaqiao University,
Quanzhou 362021, China

Email: lzq134@163.com
mxw@hqu.edu.cn

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.
Full text of the journal is freely available from the journal’s server at http://www.tac.mta.ca/tac/. It
is archived electronically and in printed paper format.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For in-
stitutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors The typesetting language of the journal is TEX, and LATEX2e is
required. Articles in PDF format may be submitted by e-mail directly to a Transmitting Editor. Please
obtain detailed information on submission format and style files at http://www.tac.mta.ca/tac/.

Managing editor. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor. Michael Barr, McGill University: barr@math.mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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