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LIMIT CLOSURES OF CLASSES OF COMMUTATIVE RINGS

MICHAEL BARR, JOHN F. KENNISON, R. RAPHAEL

Abstract. We study and, in a number of cases, classify completely the limit closures
in the category of commutative rings of subcategories of integral domains.

1. Introduction.

In a paper to appear [Barr et al. (2015)], we have studied the following general question:
Given a complete (respectively, cocomplete) category C and a full subcategory A , what
is the smallest limit closed (respectively, colimit closed) subcategory of C that contains
A?

This paper studies the question for several categories of integral domains as subcate-
gories of commutative rings, which leads to interesting problems. Section 2 contains some
general results. Section 3 gives conditions that the limit closure be the ring of global
sections of a sheaf with stalks that are domains in the limit closure of A . The base of the
sheaf is the spectrum of all prime ideals, with a topology between the domain topology
and the patch topology, as defined in 2.2.20. This is analogous to the known fact that
commutative von Neumann regular rings are characterized as the global sections of a sheaf
of fields. Section 4 characterizes rings that are in the limit closure of the subcategory of all
domains, thereby clarifying an earlier paper on this subject, see [Kennison 1976]. Section
5 gives a simple necessary and sufficient condition for a ring to be in the limit closure
of the subcategory of domains that are integrally closed (in their field of fractions). The
same condition characterizes rings that are in the limit closure of GCD domains (ones
in which every pair of elements has a greatest common divisor) and also rings in the
limit closure of Bézout domains (ones in which every finitely generated ideal is principal).
Section 6 defines perfect domains and characterizes their limit closure. Section 7 explores
the limit closure of UFDs finding two necessary conditions for a ring to be in this limit
closure, but no sufficient conditions. We show that the limit closure of UFDs is not closed
under ultraproducts and therefore cannot be characterized by first-order conditions, see
2.4. We do show that every quadratic extension of the ring Z of integers is in the limit
closure of UFDs. The final section summarizes the results of the paper and mentions
some open problems.
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In this paper, C is usually the category CR of commutative rings and A is a full
subcategory of integral domains. A commutative ring is called semiprime or reduced
if it has no non-zero nilpotents.

2. Domain induced subcategories.

2.1. Preliminaries. The rest of this paper is concerned with subcategories of commuta-
tive rings generated by a full subcategory of domains. It is well known (and easily proved)
that the set of nilpotents in a commutative ring is just the intersection of all the prime
ideals, so that a ring is semiprime if and only if the intersection all the prime ideals is 0.
Since every domain is semiprime, so is any ring in the limit closure of any class of domains.
The semiprime rings are clearly reflective (factor out the ideal of nilpotent elements), so it
will be convenient to assume that all our rings are semiprime, unless otherwise specified.

An ideal I of a commutative ringR is called radical or semiprime ifR/I is semiprime.
An ideal of a commutative ring is radical if and only if it is an intersection of primes. This
is equivalent to saying that if a power of an element lies in the ideal then the element
does. If I ⊆ R is any ideal, we denote by

√
I the set of all elements of R for which some

power lies in A. This is the same as the meet of all prime ideals that contain it and is
also the least radical ideal containing I.

We say that a category K of semiprime rings is domain induced if K is the limit
closure of a subcategory of domains A such that every domain (not just those of A) can
be embedded into a field in A .

Since every semiprime ring can be embedded into a product of fields and every field
can be embedded into a field in A , it follows that A cogenerates SPR .

2.1.1. Examples. Here are the main examples of the subcategories of domains we will be
studying in this paper. In most, although not all, of these cases we will characterize the
limit closure of these subcategories.

1. Adom, the category of domains;

2. Afld, the category of fields;

3. Apfld, the category of perfect fields;

4. Aic, the category of domains integrally closed in their field of fractions;

5. Abez, the category of Bézout domains;

6. Aica, the category of domains integrally closed in the algebraic closure of their field
of fractions;

7. Aicp, the category of domains integrally closed in the perfect closure of their field of
fractions;
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8. Aper, the category of perfect domains: those that are either of characteristic 0 or
are characteristic p and every element has a pth root;

9. Aqrat, the category of domains in which every integer has a quasi-inverse, that is,
for each integer d, there is an element d′, such that d2d′ = d;

10. Anoe, the category of Noetherian domains;

11. Aufd, the unique factorization domains.

There are some relations among these subcategories as shown in the following poset
of inclusions. The red spine marks the Dom-invariant categories which will be defined
in the sentence preceding Theorem 2.3.1.

Afld ∩ Aper = Apfld = Afld ∩ Aicp

Aicp=Aic ∩ Aperllllllllllllllllll

Afld

AufdAufd

Abezlllllll

Afld ∩ Aper = Apfld = Afld ∩ Aicp

Aper
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Afld ∩ Aper = Apfld = Afld ∩ Aicp

Afld

Aqrat

Adomllllllllllllllllllllllllllllllll
Aper

Afld ∩ Aper = Apfld = Afld ∩ Aicp

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
Aqrat

Afld

::::::::::::::

Aica

Aicp=Aic ∩ Aper

Abez

Aicllllllll

Aicp=Aic ∩ Aper

Aper
������������

Aper

Adom,,,,,,,,,,,,

Aicp=Aic ∩ Aper

AicAic

Adom

When we form the limit completions of these categories, we get a somewhat different
diagram (in which Kxx is the limit completion of Axx).

Kfld ∩Kper = Kpfld = Kfld ∩Kicp

Kica =Kicp 6=Kic ∩Kperiiiiiiiiiiiiiiiiiiiiiiii

Kfld

KufdKufd

Kbez = Kicllllllllllllllllll

Kfld ∩Kper = Kpfld = Kfld ∩Kicp

Kper
tttttttttttttttttttttttttttttttttttt

Kfld ∩Kper = Kpfld = Kfld ∩Kicp

Kfld

Kqrat

Kdomlllllllllllllllllllllllllllllll
Kper

Kfld ∩Kper = Kpfld = Kfld ∩Kicp

tttttttttttttttttttttttttttttttttttt
Kqrat

Kfld

::::::::::::::

Kica =Kicp 6=Kic ∩Kper

Kper
������������

Kper

Kdom:::::::::::::::

Kica =Kicp 6=Kic ∩Kper

Kbez = Kic+++++++++++++++++

Kbez = Kic

Kdom
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2.2. Preliminary results: G and K. We will let A denote a category of domains
that satisfy the conditions in 2.1 and let K be its limit closure. If D is a domain, we
denote by Q(D) its field of fractions.

2.2.1. Proposition. Suppose D ⊆ D1 and D ⊆ D2 are domains. Then there is a com-
mutative square

D2 F� � //

D

D2

� _

��

D D1
� � // D1

F

� _

��

in which F ∈ A is a field.

Proof. We can assume without loss of generality that D1 and D2 are fields, in which case
they both contain copies of Q(D). Then D1⊗Q(D)D2 6= 0 since both factors are non-zero
vector spaces over Q(D). Let M be a maximal ideal of D1 ⊗Q(D) D2 and let F ∈ A be a
field containing (D1 ⊗Q(D) D2)/M .

2.2.2. Notation. Let D be a domain and let D �
� //F be an embedding into a field F ∈ A .

Let G(D) denote the meet of all K -subobjects of F that contain D. For each domain
D, we let αD : D �

� // G(D) denote the embedding. The operation G is not generally a
functor. If it is, we will see later that it is actually the reflector on domains. In general,
we have:

2.2.3. Proposition. The domain G(D) is independent of the choice of F . Furthermore,
if D ⊆ B where B is a domain in K , then G(D) is isomorphic to the meet of all K -
subobjects of B which contain D.

Proof. Suppose F1, F2 are two fields containing D and belonging to A and G1(D) and
G2(D) are the corresponding subobjects of F1 and F2 as above. By the previous propo-
sition, up to isomorphism, both F1 and F2 are subfields of a field F ∈ A that contain
D and hence so is F1 ∩ F2. But G1(D) ∩ G2(D) is a K -subobject of F1 and of F2 that
contains D and, by minimality, they are equal. Since every B ∈ B is contained in some
field in A the second conclusion follows.

2.2.4. Notation. We denote by Q(D) the perfect closure of the field Q(D) of fractions of
D. If D has characteristic 0, this means that Q(D) = Q(D), while if D has characteristic
p > 0, it consists of all the elements of the algebraic closure for which a peth power lies
in Q(D) for some positive integer e.

2.2.5. Lemma. The map αD : D //G(D) is epic in SPR .

Proof. If not, then there exist maps g, h : G(D) //F where F is a field and gαD = hαD
but g 6= h. We may assume that F ∈ A , otherwise we can embed F in such a field. It
follows that the equalizer of g and h is in K and is also a proper subring of G(D) which
contains D. But this contradicts the definition of G(D).
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2.2.6. Proposition. Suppose D ⊆ D′ are domains such that D′ ⊆ G(D). Then G(D′) =
G(D).

Proof. Embed D′ into a field F ∈ A . By definition G(D) is the meet of all K -subobjects
of F that contain D and similarly for D′. Clearly any K -subobject of F that contains
D′ also contains D, while any K -subobject of F that contains D also contains G(D) and
therefore contains D′.

2.2.7. Lemma.

1. Let F be a field and D a domain. A map F // D is epic in SPR if and only if
D ⊆ Q(F ).

2. Every perfect field is in K .

3. For each domain D, we have D ⊆ G(D) ⊆ Q(D).

Proof.

1. Since D // Q(D) is epic, it suffices to show that a map F // E between fields is
epic in SPR if and only if E is a purely inseparable extension of F . One direction is
trivial in SPR . So suppose F //E is epic. Factor the map as F //F1

//F2
//E

so that F1 is an extension of F by a transcendence basis for E over F , F2 is a purely
inseparable extension of F1 and E is a separable extension of F2. Since epics are
left cancellable, we have the F2

//E is also epic. But F2 is the equalizer of all the
maps of E into its algebraic closure that fix F2, so that we have F2 = E. Since the
map from F2 to its perfect closure is purely inseparable and epic, we can reduce to
the case that F2 is perfect. If T is a transcendence basis of F1, the automorphism
σ : F1

//F1 defined by σ(t) = t+1 for each t ∈ T can have no fixed point outside of
F since σ(a) = a, with a /∈ F would give a polynomial relation on T . Thus F is the
equalizer of σ and id. For a ∈ F2, there is some positive integer k such that ap

k ∈ F1.
Since F2 is perfect, the element σ(ap

k
) has a unique pkth root in F2 which we call

σ(a). If we do this for each element of F2, this results in an endofunction σ of F2,
which is easily seen to be an automorphism. Thus if F 6= F1, there are non-trivial
automorphisms of F2 over F which contradicts the map’s being epic. Thus F = F1

and E is a purely inseparable extension.

2. We know from 2.2.5 that if F is a field, F // G(F ) is epic in SPR . But a perfect
field has no proper epic extension.

3. This is now immediate from Proposition 2.2.3.

2.2.8. Corollary. If C ⊆ D is an inclusion of domains that is epic in SPR , then D is
contained in the perfect closure of the field of fractions of C.
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2.2.9. Definition. Given an element d in a domain D, we say that d` is a characteristic
power of d if ` = 1 or the characteristic p of D is positive and ` = pe for some e > 0.

2.2.10. Corollary. Let D be a domain. If z ∈ G(D) then there exist w, v ∈ D, with
w 6= 0 such that wz` − v = 0 where z` is a characteristic power of z.

Proof. If z ∈ G(D) then z ∈ Q(D) and hence some characteristic power, z` ∈ Q(D).
Thus z` = v/w for some fraction v/w ∈ G(D), the result follows.

2.2.11. Proposition. The set of all G(R/P ) taken over all the prime ideals P ⊆ R is a
solution set for maps R // A where A ∈ A.

Proof. Suppose that f : R //A is a homomorphism with A ∈ A . Let P = ker(f). Since
all objects of A are domains, P is prime. Clearly f factors through R/P . By Proposition
2.2.1 we have a commutative square

A F� � //

R/P

A

� _

��

R/P G(R/P )� � // G(R/P )

F

� _

��

with F ∈ A . But then the pullback A ×F G(R/P ) is a K -subobject of G(R/P ) that
contains R/P . But then the pullback is G(R/P ) which gives the required map.

It is well known that this implies:

2.2.12. Theorem. The inclusion K � � // SPR has a left adjoint.

We will denote the left adjoint by K and the inner adjunction by η : Id //K.

2.2.13. Proposition. A map g : R // S is the reflection of R into K if and only if
S ∈ K and g has the unique extension property with respect to every A ∈ A.

Proof. The subcategory of objects with respect to which that property holds includes
A by hypothesis and is clearly closed under limits and therefore includes the limit closure
of A .

2.2.14. Proposition. For every semiprime ring R, ηR is an epimorphic embedding in
SPR .

Proof. Suppose we have R
ηR //K(R)

f //
g
// S with S ∈ SPR and f.ηR = g.ηR. Since

S can be embedded in a product of fields in A , we can easily reduce to the case that S is
a field in A and then the uniqueness of the map K(R) // S that extends f.ηR = g.ηR
implies that f = g.
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Clearly ηR is an embedding when R is a field. More generally, let R ⊆
∏
Fi, a product

of fields. From the commutativity of

K(R)
∏
K(Fi)//

R

K(R)
��

R
∏
Fi

� � //
∏
Fi

∏
K(Fi)

� _

��

we see that ηR : R �
� //K(R).

2.2.15. Proposition. Suppose f : R //S is an epimorphism in SPR . Then the induced
map Spec(S) // Spec(R) is injective.

Proof. Suppose that Q1, Q2 ⊆ S were distinct prime ideals of S lying above P . From
Proposition 2.2.1, we have a commutative diagram

S/Q2 F� � //

R/P

S/Q2

� _

��

R/P S/Q1
� � // S/Q1

F

� _

��

with F ∈ A . But this gives two distinct maps—since they have different kernels—from S
to an object of A that agree on R, which is not possible.

2.2.16. Proposition. For any semiprime ring R, the map ηR : R // K(R) induces a
bijection Spec(K(R)) // Spec(R).

Proof. Injectivity follows from the preceding proposition. To see that it is surjective, let
P ∈ R be prime. From the diagram

R/P G(R/P )� � //

R

R/P
��

R K(R)� � // K(R)

G(R/P )

K(R)

K(R/P )
��

K(R/P )

G(R/P )
��

and the fact that G(R/P ) is a domain, we see that the kernel of K(R) // G(R/P ) is a
prime of K(R) lying above P .
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Note that this bijection does not, in general, preserve order. The case that it does is
special, see Theorem 2.3.1.7.

In the following P ⊆ R is a prime and P@ = ker(K(R) //K(R/P )). Since K(R/P )
is not always a domain (see Theorem 2.3.1 below), it is not always the case that P@ is
prime, but we do have:

2.2.17. Proposition. If P ⊆ Q are primes of R, then P@ ⊆ Q@.

Proof. This follows since we can fill in the diagonal map in the diagram

K(R)/Q@ K(R/Q)� � //

K(R)

K(R)/Q@
��

K(R) K(R)/P@// // K(R)/P@

K(R/Q)

K(R)/P@

K(R/P )
��

K(R/P )

K(R/Q)
��

since the top arrow is surjective and the bottom arrow is injective.

2.2.18. Proposition. Suppose R �
� f // S

g // K(R) factors ηR with S ∈ K . Then the
meet of all K -subobjects of S that contain R is isomorphic to K(R).

Proof. We can suppose without loss of generality that S has no proper K -subobject
that contains R. Given h : R //A with A ∈ A , there is a map ĥ : K(R) //A such that

ĥgf = h. Then ĥg : S // A is a map such that ĥgf = h. If there were more that one
map S //A with that property, then their equalizer would be a proper K -subobject of
S containing R, a contradiction. Thus S has the universal mapping property that defines
K(R).

If f : R �
� // S is a ring homomorphism, we say that f is an essential ring homo-

morphism if, for every homomorphism g : S // T , gf injective implies g is injective.
Clearly this is the same as saying that when I ⊆ S is a non-zero ideal, then I ∩R 6= 0.

2.2.19. Corollary. Suppose ηS is essential. Then whenever R ⊆ S ⊆ K(R), we have
K(S) = K(R).

Proof. By adjunction we have a map K(S) //K(R) such that

S

K(S)

� o

��????????????S K(R)� � // K(R)

K(S)

??

������������

commutes. Essentiality implies that K(S) //K(R) is injective. If K(S) �
� //K(R) were

a proper inclusion, this would contradict the proposition since R �
� // S �

� //K(R) factors
ηR.
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2.2.20. Definition. If R is a ring, we will be considering four topologies on Spec(R).
One is the familiar Zariski topology that has a base consisting of the sets Z(r) = {P ∈
Spec(R) | r /∈ P} for r ∈ R. The second we will call the domain topology and has as a
subbase the sets N(r) = {P ∈ Spec(R) | r ∈ P} for r ∈ R. The third, usually called the
patch topology, takes all the sets Z(r) and N(r) as a subbase This topology is known
to be compact and Hausdorff (see [Hochster 1969]; see also [Barr et al. (2011), Proof of
Theorem 2.4] where Hochster’s argument is given in greater detail) and it follows that the
other two are compact (but not usually Hausdorff). The fourth topology will be defined in
3.2.1 and lies between the domain and patch topologies and therefore is also compact.

2.2.21. Lemma. A subset of W ∈ Spec(R) is open in the domain topology if and only if it
is open in the patch topology and up-closed in the subset ordering (meaning that P ∈ W
and P ⊆ Q implies Q ∈ W ).

Proof. A base for the domain topology is given by the sets of the form N(r1, . . . , rn) =
N(r1)∩. . .∩N(rn) for r1, . . . , rn ∈ R. Since all of these sets are open in the patch topology
and up-closed in the subset ordering, it follows that if W is open in the domain topology,
then W, being a union of basic subsets, is patch-open and up-closed in the subset ordering.

Conversely, assume that W is patch-open and up-closed in the subset ordering, but not
open in the domain topology. Then there exists P ∈ W such that there is no basic set with
P ∈ N(r1, . . . , rn) ⊆ W . So whenever r1, . . . , rn ∈ P we have N(r1, . . . , rn) −W is non-
empty. It follows that there exists an ultrafilter u on Spec(R) such that N(r1, . . . , rn) −
W ∈ u whenever r1, . . . , rn ∈ P . Let Q be the limit of u in the patch topology. Then
whenever r ∈ P we see that N(r) ∈ u so r ∈ Q (otherwise Z(r) is a patch-neighbourhood
of Q which is not in u). This implies that P ⊆ Q, so, by hypothesis, Q ∈ W . This leads to
a contradiction because u converges to Q in the patch topology, while u does not contain
W which is a neighbourhood of Q.

2.2.22. Proposition. Let Q be a prime ideal of R and U be a subset of Spec(R) that is
compact in any topology in which sets N(r) are open for all r ∈ R. If

⋂
P∈U P ⊆ Q, then

there is a P ∈ U with P ⊆ Q.

This applies, in particular, to the domain topology and the patch topology.

Proof. If not, let rP ∈ P −Q for each P ∈ U . The open sets N(rP ) cover U and hence
there is a finite set P1, . . . , Pm such that every P ∈ U contains at least one of rP1 , . . . , rPm

and then r = rP1 · · · rPm ∈
⋂
P∈U P , while the fact that Q is prime implies that r /∈ Q.

In the next part of this section, we will need what is described on the first page of
[Dobbs (1981)] as a “Folk theorem”.

2.2.23. Theorem. For rings R ⊆ T , we have that T is an integral extension of R if and
only if whenever R ⊆ S1 ⊆ S2 ⊆ T ,

1. Spec(S2) // Spec(S1) is surjective; and

2. If P ⊆ Q are primes of S2 with P ∩ S1 = Q ∩ S1, then P = Q.
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2.2.24. Corollary. Assume R ⊆ T . If R ⊆ S1 ⊆ S2 ⊆ T implies Spec(S2) // Spec(S1)
is bijective, then T is an integral extension of R.

2.2.25. Proposition. Suppose R �
� // S is epic and integral. Then Spec(S) // Spec(R)

is an order isomorphism.

Proof. We know it is injective from Proposition 2.2.15, while surjectivity follows from
[Zariski & Samuel (1958), Vol. I, Theorem V.3]. The corollary to the same theorem
implies that given any primes P ⊆ Q of R and a prime P ] of S lying above P there is
at least one prime Q] of S lying above Q and such that P ] ⊆ Q]. But since Q] is the
only prime lying above Q, we see that the induced map on Specs reflects order while it
obviously preserves it.

2.2.26. Notation. We will use the following convention. If a category of domains is
denoted Axx, we will systematically denote its limit closure by Kxx, the reflector by Kxx

and the construction introduced in 2.2.2 by Gxx. For future reference, we also denote by
Bxx the full subcategory consisting of the domains in Kxx.

2.3. When does G = K? The main theorem of this section classifies domain induced
subcategories that are characterized by G = K on domains. We call them Dom-invariant
for reasons that will become clear from the theorem below.

2.3.1. Theorem. Let G be as in 2.2.2 and K be the reflector. Then the following are
equivalent:

1. G(D) = K(D) for all domains D.

2. For any domain D and any prime P ⊆ D, there is a map G(D) // G(D/P ) such
that

D/P G(D/P )� � //

D

D/P
��

D G(D)� � // G(D)

G(D/P )
��

commutes.

3. The map Spec(G(D)) // Spec(D) is surjective for all domains D.

4. G is a functor on domains in such a way that for D //D′

D′ G(D′)� � //

D

D′
��

D G(D)� � // G(D)

G(D′)
��

commutes.
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5. K(D) is a domain for all domains D.

6. For any semiprime ring R and any prime P ⊆ R, the kernel P@ of K(R) //K(R/P )
is prime.

7. For every semiprime ring R, the map Spec(K(R)) // Spec(R) is an order isomor-
phism and therefore a homeomorphism in the domain topology.

8. For every semiprime ring R, the adjunction map R //K(R) is essential.

9. If f : R // S is injective, so is K(f) : K(R) //K(S).

10. The canonical map K(D) //G(D) is injective for all domains D.

11. For all semiprime rings R and S, whenever R ⊆ S ⊆ K(R), then K(S) = K(R).

12. For all semiprime rings R and S, if R ⊆ S ⊆ K(R), the inclusion R �
� // S is epic.

13. For every semiprime ring R, we have that K(R) is an integral extension of R.

14. For every domain D, we have that G(D) is an integral extension of D.

15. Aica ⊆ K .

16. Aicp ⊆ K .

Proof. Here is a diagram of the logical inferences we will prove:

5

66>tttttt
tttttt

6 7+3 7

8
 (JJJJJJ

JJJJJJ

1 2+3 2

3
��
34 ks4

1KS1

5KS

15 16ks +314 15ks +3

13

14
��

8

11
��

1211 +3ks1113 ks

143 ks 1514 ks

10

5 dl QQQQQQQQ

QQQQQQQQ

8

10
rz mmmmmmmm

mmmmmmmm95 ks 89 ks

1 +3 2 +3 3: Both are obvious.

3 +3 4: Suppose D //D′ is a morphism of domains with kernel P . Let P ] be a prime of
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G(D) lying above P . We construct a diagram

D/P G(D)/P ]

D

D/P
��

D G(D)� � // G(D)

G(D)/P ]
��

G(D′) F� � //

D/P

G(D′)

D/P G(D)/P ]� � // G(D)/P ]

F

� _

��

D/P

D′

� _

��
D′

G(D′)

� _

��

by observing that the domain D/P is included in both domains G(D)/P ] and G(D′)
and applying Proposition 2.2.1 to find F . We can further suppose that F ∈ K . Then
G(D′) ×F G(D) is a K -subobject of G(D) and, by minimality, the pullback must be
G(D), which gives a map G(D) //G(D′). The uniqueness follows by another application
of minimality and the functoriality is then easy. The required commutation follows from
the commutation of the square above together with the fact that G(D′) // F is monic.

4 +3 1: If we have a map D //D′ with D′ ∈ A , we get G(D) //G(D′) = D′ such that

D

D′
��?????????????D G(D)// G(D)

D′
��������������

commutes. The uniqueness follows from 2.2.5. This shows that G has the adjunction
property with respect to maps to objects in A .

1 ks +3 5: Immediate.

5 +3 6: Since K(R/P ) is a domain, P@ is a prime. From the diagram

R/P K(R/P )� � //

R

R/P
��

R K(R)� � // K(R)

K(R/P )
��

we readily infer that P@ ∩R = P .

6 +3 7: We know from 2.2.16 that it is a bijection. The direct map preserves inclusion
while it follows from 2.2.17 that the inverse map, which takes P to P@ also does.
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7 +3 8: If P ⊆ R is prime, let P ] ⊆ K(R) denote the unique prime lying above P . We
have to show that if I ⊆ K(R) is an ideal such that I ∩R = 0, then I = 0. First consider
the case that I is a radical ideal of K(R), so that I =

⋂
P ], taken over all the primes

P ⊆ R for which I ⊆ P ]. Hence 0 = I ∩ R =
⋂
P , again over all primes P such that

I ⊆ P ]. The set U = {P ] ∈ Spec(K(R)) | I ⊆ P ]} is the meet of all the N(a), for a ∈ I.
It is therefore compact in the patch topology and hence in the domain topology. From
7 we conclude that the set V = {P ∈ Spec(R) | I ⊆ P ]} is also compact in the domain
topology on Spec(R). But we have just seen that

⋂
P∈V P = 0 and hence is contained

in every prime Q ⊆ R. But since V is compact it follows from Proposition 2.2.22 that
P ⊆ Q for some P ∈ V . But then I ⊆ P ] ⊆ Q] so that I lies in every prime of K(R) and
is then 0.

For a general ideal I, let J be the radical of I. Every element of J has a power that
lies in I. Therefore every element of J ∩ R has a power that lies in I ∩ R = 0. Since R
is semiprime, it follows that such an element is 0. Thus J ∩ R = 0 and therefore J = 0,
whence I = 0.

8 +3 9: From the diagram

S K(S)� � //

R

S

� _

��

R K(R)� � // K(R)

K(S)
��

we see that the composite R �
� //K(R) //K(S) is injective and it follows from essentiality

that K(R) //K(S) is.

9 +3 5: A domain D can be embedded D �
� // F where F is a field in A . If K preserves

injectivity, we get K(D) �
� //K(F ) = F , whence K(D) is a domain.

8 +3 10 +3 5: Both are trivial.

8 +3 11: Since 8 holds for S, corollary 2.2.19 gives the result.

11 +3 12: It suffices to show that it is epic with respect to maps into fields. Suppose
f, g : S //// F agree on R with F a field, which can be assumed to lie in A . But since
K(S) = K(R), each of the maps f and g extends to K(R). But they agree on R and the
uniqueness of the maps from the reflector imply they are equal.

12 +3 11: Suppose f : S // A is given with A ∈ A . Then g = f |R has an extension
to ĝ : K(R) // A. Then ĝ|S and f have the same restriction g to R. But if R // S is
epic, we must have that ĝ extends f . The uniqueness follows since the equalizer of two
extensions of f would be a proper K -subobject of K(R) that contains R, contradicting
Proposition 2.2.18.

11 +313: Proposition 2.2.16 applied to any intermediate ring, say R ⊆ S ⊆ K(R) = K(S)
implies that both maps in Spec(K(R)) //Spec(S) //Spec(R) are bijections. In particu-
lar, for any pair of intermediate rings R ⊆ S1 ⊆ S2 ⊆ K(R), we have Spec(S2) //Spec(S1)



242 MICHAEL BARR, JOHN F. KENNISON, R. RAPHAEL

is a bijection. Then the corollary to Theorem 2.2.23 implies the result.

13 +3 14: We begin by showing that 13 +3 5. We already know that this implies 1 which,
together with 13 will obviously imply 14. It follows from 2.2.16 that there is a unique
prime P ⊆ K(D) such that P ∩D = 0. Since 0 is contained in every prime of D, it follows
from 2.2.25 that P is contained in every prime of K(D). But K(D) is semiprime so the
intersection of all the primes is 0, whence K(D) is a domain.

14 +3 3: This is a standard property of integral extensions.

14 +3 15: Suppose D ∈ Aica. Let F be the algebraic closure of the field of fractions of
D. From Lemma 2.2.7.2 we know that F ∈ K . From Proposition 2.2.3, we know that
G(D) ⊆ F . But G(D) is an integral extension of D and D is integrally closed in F so
we conclude that G(D) = D. Since G(D) was constructed to be in K , it follows that
D ∈ K .

15 +3 14: From Aica ⊆ K , it obviously follows that Kica ⊆ K and we see that for any
domain D, G(D) ⊆ Gica(D) and since Gica(D) is integral over D, so is G(D).

15 +3 16: If we show that Aicp ⊆ Kica it obviously follows that Kicp ⊆ Kica while the
reverse inclusion is obvious. Suppose that D ∈ Aicp. Let F ⊆ F be the perfect closure
and algebraic closure, respectively, of the field of fractions of D. Then F is a separable
algebraic extension of F so that F is the equalizer of all the F -automorphisms of F and
hence F lies in Kica. Let D be the integral closure of D in F . Since being integral is
transitive, D can have no proper integral extension in F and hence is integrally closed
in its algebraic closure which implies that D ∈ Aica. An element of D ∩ F satisfies an
integral equation with coefficients in D and belongs to F , hence is in D. It follows that
D = D ∩ F ∈ Kica.

16 +3 15: It follows since Aica ⊆ Aicp.

2.3.2. Examples. We refer to 2.1.1 for the definitions of the subcategories mentioned here.

1. Kfld (2.1.1.2) is not Dom-invariant. The limit closure can be shown to be just the
von Neumann regular rings. The reflection of Z is not a domain, but is a subring
of
∏

Qp, the product of all prime fields. It is called the Fuchs-Halperin ring [Fuchs
& Halperin (1964)].

2. From Theorem 2.3.1.15 we have that Kica (2.1.16) is Dom-invariant and, in fact, the
smallest Dom-invariant subcategory. The injectivity property for totally integrally
closed rings from [Enochs (1968)] implies that a totally integrally closed ring is in
Kica. But the converse is not true: the ring of eventually constant sequences of
complex numbers is in Kica, but is not totally integrally closed. What is clear is
that Kica is the limit closure of the category of totally integrally closed rings. One
sees easily from 9 and 13 that for Kica, or any Dom-invariant category K , that an
integrally closed subring of a ring in K is also in K . This holds for example for
the integral closure of any R in K(R).
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3. Theorem 2.3.1.16 says Kicp = Kica is also Dom-invariant. We note that Kic (2.1.1.4)
is domain invariant since Aicp ⊆ Aic.

It is evident that no non-perfect field can be in the limit closure Kicp, so Kicp is
strictly smaller than Kic which implies that Kic(R) ⊆ Kicp(R) for any ring R. But
for any domain D with F the perfect closure of its field of fractions, the meet of
all the Kicp-subobjects of F that contain D is still an integral extension of D and
thus in Kicp(D). We do not know what the limit closure is in this case, but one
thing such rings satisfy is the essentially equational condition that for every prime
number p, there is a pth root operation, see 3.8.1 whose domain is {r | pr = 0}
and whose value is the provably unique pth root of that element. We can say that
Kicp ⊆ Kic ∩Kper, but 6.3.1 gives an example of a ring in Kic ∩Kper which is not
in Kicp.

4. Kdom (2.1.1.1) is Dom-invariant since clearly Kdom(D) = D for every domain D. In
Section 4, we will characterize the rings that lie in Kdom.

5. Knoe (2.1.1.10) is not Dom-invariant. This will be shown in Corollary 2.4.2 below.

6. For the next examples, see Theorem 2.3.3 below. They are suggestions due to David
Dobbs. The general reference is the multiplicative ideal theory found in [Gilmer
1992], see especially Theorem 19.8.

In Section 7, we will be looking at certain rings in Kufd, although we do not char-
acterize the category. We will see in Corollary 2.4.2 below that Kufd is neither
Dom-invariant nor given as models of a first-order theory.

There is a related class, that of GCD domains, defined as ones in which every pair of
elements has a greatest common divisor. Obviously Bézout domains are also GCD
domains and models of either theory are UFDs if Noetherian. But not only if since,
for example, a polynomial ring in infinitely many variables over a field is a UFD,
but not Noetherian.

Another related class is that of valuation domains. A domain D with field F of
fractions is a valuation domain if for each x ∈ F , at least one of x or 1/x lies in D.
The relevant facts are

2.3.3. Theorem.

1. Valuation domains are Bézout (and therefore GCD) domains.

2. Every valuation domain, every Bézout domain, and every GCD domain is integrally
closed [Gilmer 1992, Corollary 9.8].

3. Every integrally closed domain is the meet of all the valuation rings, as well as the
meet of all the Bézout domains, as well as the meet of all the GCD domains between
it and its field of fractions, [Gilmer 1992, Theorem 19.8].



244 MICHAEL BARR, JOHN F. KENNISON, R. RAPHAEL

4. It follows that the limit closures of the valuation domains, the GCD domains, and
the Bézout domains are the same. See Section 5.

The corollary to the next proposition shows that neither limit closure Kufd nor
Knoe contains Kica. Then we may invoke Theorem 2.3.1 to show that neither is Dom-
invariant.15.

2.4. Special rings. Let us temporarily say that a commutative ring is special if it has
the property that any element with an nth root for all n also has a quasi-inverse. We
make the following claims:

2.4.1. Proposition.

1. The full subcategory of CR consisting of special rings is limit closed.

2. Every UFD is special.

3. Every Noetherian ring is special.

4. A non-principal ultrapower of Z is not special.

5. The domain A of algebraic integers is not special but is in Kica.

Proof.

1. We use the familiar fact that quasi-inverses, when they exist, can be chosen uniquely
as mutual quasi-inverses. An element of a cartesian product of rings has an nth root
(respectively, quasi-inverse) if and only if each coordinate does, so the category of

special rings has products. If R
f // S

g //
h
// T is an equalizer in which S and T are

special, let r ∈ R have all nth roots. Then s = f(r) obviously has all nth roots and
hence has a unique mutual quasi-inverse s′. Since g(s) = h(s) we easily see that
both g(s′) and h(s′) are mutual quasi-inverses for g(s) and, from uniqueness, we see
that g(s′) = h(s′) and so there is an r′ ∈ R with f(r′) = s′. But then it follows,
since f is an injection, that r′ is a quasi-inverse for r.

2. In a UFD no non-zero, non-invertible element (hence no non-quasi-invertible ele-
ment) can have arbitrary nth roots, so it is clear that UFDs are special.

3. In a Noetherian ring, if a non-zero element x has nth roots for all n, we get an infinite
descending divisor chain · · ·x1/2n | x1/2n−1 | · · · | x1/2 | x which, in a Noetherian
ring, is possible only if for some n, we have x1/2

n−1 | x1/2n . Then x1/2
n−1
y = x1/2

n

for some y. Raising both sides to the 2n power gives x2y2
n

= x so that y2
n

is a
quasi-inverse for x.

4. The class of the element (2, 22, 23!, . . . , 2n!, . . .) clearly has arbitrary nth roots, but
the ring is a domain and the only non-zero elements of a domain that have quasi-
inverses are invertible elements while this element is clearly not invertible.
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5. Every element of A has roots of all order. But roots of integers > 1 cannot be
invertible. In a domain only invertible elements and 0 have quasi-inverses.

2.4.2. Corollary. Neither Kufd nor Knoe is a category of models of a first-order theory
and neither category is Dom-invariant.

Proof. The conclusions are immediate from points 4 and 5 above.

3. The sheaf representation in the first-order case.

3.1. First-order conditions. In this section, we show that if K is a reflective subcat-
egory of commutative rings, as in the previous section, then, under a reasonable additional
assumption (given below), there is, for every semiprime ring R, a topology on Spec(R)
that lies between the domain and the patch topology and a sheaf of rings, given by a local
homeomorphism πR : ER // Spec(R) whose stalks are domains in K . We will show that
Γ(ER), the ring of global sections, is also in K . Under various further conditions, Γ(ER)
is the reflection of R into K , see 3.5.3.

We use the concept of first-order conditions, which we briefly (and sketchily) review.
First-order conditions for commutative rings are built up from basic conditions of the
form p(x1, x2, . . . , xn) = 0 where each xi is a variable and p is a polynomial with integer
coefficients. Further conditions can be obtained by using the connectives or and not.
These are treated classically, so we can make conditions such as If p then q, which is
equivalent to Not p or q. We can also quantify variables (but not the constants, such as
the integer coefficients of the polynomials).

A ring R satisfies a first-order condition C if and only if whenever each free vari-
able (that is, each unquantified variable) of C is replaced by an element of R, then the
statement becomes true.

We say that a full subcategory B of commutative rings is first order if there is a set
S (possibly infinite) of first-order conditions such that R ∈ B if and only if R satisfies
each condition in S. It is well known that if B is first order, then B is closed under the
formation of ultraproducts.

The converse is also true when B is the class of domains in K where the conditions
of 2.1 are satisfied, see Theorem 3.8.25. We thank Michael Makkai for his suggestions and
help.

As an example, a ring is semiprime if and only if it satisfies the first-order condition
that x2 = 0 implies x = 0 (more precisely, the condition If x2 = 0 then x = 0, but we
often use p implies q to mean If p then q). A ring has characteristic 0 if it satisfies each of
the infinitely many conditions that nx = 0 implies x = 0 for n = 2, 3, 4, . . .. As another
example, we mention that being a domain is first order. But the condition of having finite
characteristic is not first order. Note that the infinite disjunction 2 = 0 or 3 = 0 or 5 = 0
or . . . is not a first-order condition. For example a non-principal ultraproduct of fields
of finite characteristic will have characteristic 0 provided no one characteristic is present
infinitely often.
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3.1.1. Notation and Blanket Assumptions. Throughout this section we consider subcate-
gories A , meeting the conditions in 2.1 plus the further condition that B is first order,
where B is the category of domains in K . (As before, K denotes the limit closure of
A .) So: In this section, we always suppose that B is first order.

We will, of course, use notation and results from the previous section. The following
result gives us one criterion that B be first order.

3.1.2. Proposition. If K is Dom-invariant (see Theorem 2.3.1) and if A is first order,
then B is also first order.

We postpone this proof until 3.8 at the end of this section.

3.2. Heuristics for constructing the sheaf. Our goal (which is realized in all
cases we know of) is to construct, for each semiprime ring R, a sheaf ER = E whose
stalks are integral domains in B such that the ring of global sections, Γ(E), is canonically
isomorphic to the reflection of R into K .

We will start by considering a very rough approximation to the sheaf. As shown in
Proposition 2.2.11, the set {G(R/P ) | P ∈ Spec(R)} forms a solution set for maps from
R to objects in K . So a crude version of the sheaf would be to give Spec(R) the discrete
topology and erect a stalk G(R/P ) at each P ∈ Spec(R). The ring of global sections for
this sheaf is clearly the product

∏
{G(R/P )}. For each prime ideal P , we have a map

R //R/P //G(R/P ) and so there is an obvious injection R // //
∏
{G(R/P )}.

We claim that any map f : R // B, with B ∈ B factors through this injection. If
P = ker(f) then f factors through R // R/P // G(R/P ) // B and therefore through
R // //

∏
{G(R/P )} //G(R/P ). However, this factorization is generally not unique. For

example, suppose that Q ⊆ P are prime ideals of R and that there is a homomorphism
G(R/Q) // G(R/P ) which makes the obvious diagram commute (as in the Definition
below). Then there are two maps from the product to G(R/P ); one is the projection onto
G(R/P ), the other map is the projection onto G(R/Q) followed by G(R/Q) //G(R/P ).

Thus we need to tighten up the topology on Spec(R). As we will see, correcting for
this possibility involves requiring that every open subset of Spec(R) be up-closed in the
following order on Spec(R):

3.2.1. Definition. We define a partial order relation v on Spec(R), called the A-
ordering on Spec(R), by saying that Q v P in this ordering if Q ⊆ P and there is a
map G(R/Q) //G(R/P ) such that

R/P G(R/P )� � //

R/Q

R/P
��

R/Q G(R/Q)� � // G(R/Q)

G(R/P )
��

commutes.
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But there is another potential difficulty. Suppose that u is an ultrafilter on Spec(R).
Since the set {G(R/P )} is indexed by P ∈ Spec(R) there is an ultraproduct, which we will
temporarily denote by Gu, which is obtained as a quotient qu :

∏
P∈Spec(R)G(R/P ) //Gu.

Now we have one map R // //
∏
G(R/P ) //Gu which uses qu:

R // //
∏

P∈Spec(R)

G(R/P ) //Gu

There is another map (where Pu is the kernel of the above map and
∏
G(R/P ) //G(R/Pu)

is the projection associated with the product):

R // //
∏

P∈Spec(R)

G(R/P ) //G(R/Pu) //Gu

As we will see, correcting for this possibility involves requiring that every open subset
of Spec(R) be open in the patch topology. It can be shown that r ∈ Pu if and only if
{P | r ∈ P} ∈ u and Pu is the limit (in the patch topology) of the ultrafilter u.

To correct for both of the problems mentioned above we need the following topology
on Spec(R).

3.2.2. Definition. The A-topology on Spec(R) is defined so that a set is A-open if it
is patch-open and up-closed in the A-ordering.

We note that the A-topology, which lies between the domain and the patch topologies
is compact, but unlikely to be Hausdorff. Note that in the Dom-invariant case v is the
same as ⊆, and the A-topology is the domain topology by Lemma 2.2.21. The converse
is also true, see Example 3.7.1.

As before we let ER = E be the space over Spec(R) with stalk G(R/P ) over P ∈
Spec(R). We give Spec(R) the above topology. It remains to define a sheaf topology on E.
In effect, this means saying when z ∈ G(R/P ) is “close to” z′ ∈ G(R/P ′). Conceptually,
there are two basic ways of being close:

(1) We say that z and z′ are close if there exist r, s ∈ R such that z = r/s (in G(R/P ))
and z′ = r/s (in G(R/P ′))

(2) We also say that z ∈ G(R/P ) is close to z′ ∈ G(R/P ′) if P v P ′ and the associated
map G(R/P ) //G(R/P ′) takes z to z′.

Conceptually, we could use these notions to define a Section σ : U // π−1(U) to be
continuous if :

(1) Whenever σ(P ) = r/s (in G(R/P )) then there is a patch-open neighbourhood of
P such that if P ′ is in the neighbourhood, then σ(P ′) = r/s (in G(R/P ′)).

(2) Whenever P v P ′, then σ(P ′) has to be the image of σ(P ) under the canonical
map G(R/P ) //G(R/P ′).

But a definition along these lines would be awkward to work with. (Among other
things, we would also have to deal with the case when σ(P ) is not of the form r/s but is
a characteristic root of such a fraction.) We will instead use a less conceptual definition
that is technically convenient and prove that the continuous sections are characterized by
properties similar to the ones given above. See Proposition 3.4.5.
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3.3. Technical results needed to construct the sheaf. We assume that the
semiprime ring R is given. Since we will be talking about maps from R to another
semiprime ring, it is convenient to use the language of an R-algebra, as established by:

3.3.1. Notation.

1. An R-algebra consists of a ring S, together with a structure map R // S.

2. In this paper, the term “R-algebra” always refers to a semiprime ring over R.

3. If S and T are R-algebras, then a map S // T is an R-algebra homomorphism if
and only if the following triangle commutes (where the maps from R are assumed
to be the structure maps):

R

T
��?????????????R S// S

T
���������������

4. If we are given a map R //S and we subsequently refer to the R-algebra structure
on S, then, unless the contrary is explicitly stated, we assume the given map R //S.
is the structure map.

5. We will use Isbell’s term dominion as interpreted in the category SPR . This means
that s ∈ S is in the dominion of e : R //S if whenever g, h : S //T satisfy ge = he,
then g(s) = h(s). Note that if S ′ ⊆ S is an R-subalgebra containing s, it is possible
that s be in the dominion of R // S and not of R // S ′.

6. If S is an R-algebra and there is no danger of confusion, we will say that an element
of s ∈ S is in the dominion of R if it is in the dominion of the structure map
R // S.

7. The R-algebra S is a finitely generated R-algebra if it is generated as an R-
algebra by a finite number of elements. This is equivalent to S being isomorphic
as an R-algebra to R[x1, . . . , xk]/J for some ideal J ⊆ R[x1, . . . , xk]. The structure
map R //S in that case will be an injection if and only if R∩J = 0. The R-algebra
S will be semiprime if and only if J is a radical ideal (that is, an intersection of
prime ideals).

8. If R is a ring and A ⊆ R we denote by (A) the ideal generated by A and by 〈A〉 the
radical

√
(A), the least radical ideal containing A. Note that a ring homomorphism

vanishes on A if and only it vanishes on (A) and, if the codomain is semiprime, this
is also if and only if it vanishes on 〈A〉.

9. The R-algebra S is finitely presented as a semiprime ring (or just “finitely
presented”) if it is isomorphic to R[x1, . . . , xk]/〈J〉 where J is finite.
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3.3.2. Definition. Let R ∈ SPR be given. Then (H, h) is an R-dominator if H is a
finitely presented R-algebra and h ∈ H is in the dominion of R.

3.3.3. Lemma. If S and T are R-algebras and if f : S // T is an R-homomorphism and
if s ∈ S is in the dominion of R, then t = f(s) is also in the dominion of R.

Proof. Obvious.

3.3.4. Definition. Let R // S be a map in semiprime rings. The cokernel pair of a
map R //S (in semiprime rings) is a semiprime ring C together with maps c1, c2 : S //C
such that the following is a pushout diagram (in semiprime rings):

S Cc2
//

R

S
��

R S// S

C

c1

��

If we regard R //S as a structure map, then the cokernel pair is the coproduct of S with
itself in the category of (semiprime) R-algebras.

3.3.5. Lemma. Let R // S be given and let C together with c1, c2 : S // C denote the
cokernel pair. Then s ∈ S is in the dominion of R if and only if c1(s) = c2(s).

Proof. This was shown by Isbell and follows from the definition of a pushout.

3.3.6. Notation. Suppose S is an R-algebra. We can write S = R[X]/I, where X is a set
of indeterminates and I is a radical ideal. The R-structure map is the obvious composite
R //R[X] //R[X]/I = S. For any s ∈ S, we can choose a set X and an element x ∈ X
so that this composite takes x to s.

Let X ′ be a disjoint copy of X so that each element x ∈ X corresponds to an element
x′ ∈ X ′. By extension, each polynomial f ∈ R[X] corresponds to a polynomial f ′ ∈ R[X ′].
(Note that if r ∈ R then r′ = r.) A subset J ⊆ R[X] then corresponds to a subset
J ′ ⊆ R[X ′].

We regard R[X] and R[X ′] as subrings of R[X ∪X ′]. Given J ⊆ R[X] we let J denote
the radical ideal 〈J ∪ J ′〉 ⊆ R[X ∪X ′].

3.3.7. Lemma. Suppose S = R[X]/I as above. Let q : R[X] // S be the quotient map.
Then:

1. The cokernel pair for R //S corresponds to R[X∪X ′]/I (where, as indicated above,
I = 〈I ∪ I ′〉).

2. Suppose that q(x) = s for some x ∈ X. Then s is in the dominion of R if and only
if x ≡ x′ modulo I.

3. Suppose that q(x) = s for some x ∈ X. Then s is in the dominion of R if and only
if there exists a finite subset J ⊆ I such that x ≡ x′ modulo J .
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Proof.

1. is obvious.

2. This follows from the above lemma.

3. This follows as I is clearly the filtered union of {J} as J varies over the set of all
finite subsets of I.

3.3.8. Proposition. Let R // S and s ∈ S be given. Then s is in the dominion of R if
and only if there exists an R-dominator (H, h) and an R-homomorphism H // S which
sends h to s.

Proof. Suppose there is an R-dominator (H, h) together with an R-homomorphism
H // S which maps h to s. Then s is in the dominion of R by Lemma 3.3.3.

Conversely, suppose s ∈ S is in the dominion of R. Write S = R[X]/I where the set
X of indeterminates is in bijective correspondence with the elements of S. Let z ∈ X
correspond to s. By the above lemma, we have that z−z′ ∈ I and, moreover, there exists
a finite set J ⊆ I such that z − z′ ∈ J . Let X0 be the subset of all members of X which
includes z and all indeterminates, which appear in the elements of J ⊆ R[X]. Then we
can choose H = R[X0]/〈J〉 and let h be the image of z.

3.3.9. Proposition. Let R ∈ SPR be given and let f(x1, . . . , xk) ∈ R[x1, . . . , xk] be a
polynomial in k indeterminates with coefficients in R. Then the set S of all prime ideals
P ∈ Spec(R) such that f = 0 has a solution in G(R/P ) is open in the A-topology on
Spec(R).

Proof. Since S is obviously up-closed in the A-order, it suffices to show that S is open in
the patch topology. We will actually show that T = Spec(R)− S is patch-closed. If T is
not closed, then there exists an ultrafilter u on T which converges, in the patch topology,
to P ∈ S. For each Q ∈ T , we see that G(R/Q) ∈ B and we let Bu be the corresponding
ultraproduct and let qu :

∏
{G(R/Q)|Q ∈ T} // Bu be the corresponding quotient map.

Since B is the category of models of a first-order theory, it is closed under ultraproducts
so that Bu ∈ B. For each Q ∈ T , there is a map hQ : R // R/Q // G(R/Q) hence a
map h : R //

∏
G(R/Q). Let hu : R //Bu be defined by hu = quh.

We claim that ker(hu) = P . If a ∈ P , then N(a) = {Q | a ∈ Q} is a neighbourhood of
P in the patch topology and hence belongs to u. Since hQ(a) = 0 for all Q ∈ N(a) ∈ u,
it follows that hu(a) = 0. Similarly, if a /∈ P , then Z(a) is a neighbourhood of P in the
patch topology and a similar argument shows that hu(a) 6= 0.

Thus we can regard R/P ⊆ Bu. Since Bu is a subdomain of some field in A that
contains R/P , we see that G(R/P ) ⊆ Bu. Since P ∈ S, the equation f = 0 has a
solution in G(R/P ) which is a solution of f in Bu. Thus we have t1, . . . , tk ∈ Bu such
that f(t1, . . . , tk) = 0. For each prime Q and i = 1, . . . , k, let tiQ ∈ G(R/Q) be elements
such that (tiQ) ∈

∏
G(R/Q) lies above ti. Then f(t1, . . . , tk) = 0 implies that U = {Q |

f(t1Q, . . . , tkQ) = 0} ∈ u. But then U 6= ∅ and Q ∈ T ∈ U contradicts the definition of
T .
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By making an obvious modification of this argument, we can show:

3.3.10. Proposition. Suppose f1, . . . , fn is a finite set of polynomials in R[x1, . . . , xk].
Then the set of all primes Q ⊆ R for which f1 = · · · = fn = 0 has a simultaneous solution
in G(R/Q) is open in the A-topology on Spec(R).

3.3.11. Lemma. Let S be a finitely presented semiprime R-algebra. The set of all primes
P ⊆ R for which there is an R-algebra homomorphism S // G(R/P ) is open in the
A-topology.

Proof. Let S = R[x1, . . . , xk]/J . Let J0 ⊆ J be a finite set such that J = 〈J0〉. The
existence of an R-algebra homomorphism S //G(R/P ) is equivalent to the existence of
simultaneous solutions in G(R/P ) to the equations f = 0 for every f ∈ J0. By the above
proposition, the set of primes for which this happens is open in the A-topology.

3.3.12. Corollary. Let R be a semiprime ring, P ⊆ R be a prime ideal, and z ∈
G(R/P ). Then there exists an R-dominator (H, h), and an R-algebra homomorphism
H //G(R/P ) for which the image of h is z.

Proof. R //R/P //G(R/P ) is epic, so every z ∈ G(R/P ) is in the dominion of R.

3.4. Construction of the Canonical A-Sheaf. Let A be as above and let R ∈
SPR . In this subsection, we will construct the canonical A-sheaf for R as a local
homeomorphism π : ER // Spec(R) whose stalks are domains in B.

3.4.1. Notation. Let A satisfy the blanket assumptions of 3.1.1 and let R ∈ SPR be
given. Then:

1. We let ER = E be the disjoint union
⋃
{G(R/P ) | P ∈ Spec(R)}.

2. πR = π : E // Spec(R) denotes the map for which π−1(P ) = G(R/P ) for all
P ∈ Spec(R).

3. For each R-dominator (H, h) we let W (H) ⊆ Spec(R) denote the set of all P ∈
Spec(R) for which there exists an R-homomorphism h : H //G(R/P ).

4. Given an R-dominator (H, h), we let ζ(H,h) : W (H) // E denote the function for
which ζ(H,h)(P ) = f(h) where f : H //G(R/P ) is an R-homomorphism. Note that
f need not be uniquely determined but f(h) is uniquely determined as h is in the
dominion of R.

3.4.2. Definition. Let A, R and E = ER and π = πR, etc. be as above. We give
Spec(R) the A-topology and for each R-dominator (H, h) give W (H) ⊆ Spec(R) the
relative topology. We then give E the largest topology for which ζ(H,h) is continuous for
every R-dominator (H, h).

We will call the maps ζ(H,h) the canonical local sections.

We will prove that π : E // Spec(R) is a local homeomorphism and therefore defines
a sheaf which we will call the canonical A-sheaf for R.
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The tensor products used in the following argument should be understood as taking
place in the category SPR . This means take the ordinary tensor product and factor out
by the ideal of nilpotents. This tensor product is then a coproduct in the category of
semiprime R-algebras.

3.4.3. Theorem. Let R ∈ SPR be given and let E = ER and π = πR : E // Spec(R) be
as defined in 3.4.1 and 3.4.2. Then π is a local homeomorphism that defines a sheaf of
R-algebras all of whose stalks are in B.

The theorem readily follows from the steps below.

Step 1: For each z ∈ E, there is an R-dominator (H, h) such that ζ(H,h)(π(z)) = z.

Proof. Given z ∈ E, let P = π(z). Then z ∈ G(R/P ). By Corollary 3.3.12, there is an
R-dominator (H, h) and a map H //G(R/P ) for which the image of h is z. It is readily
shown that (H, h) has the required property.

Step 2: The canonical local sections, {ζ(H,h)} defined in Definition 3.4.2 agree on open
sets.

Proof. Let (H1, h1) and (H2, h2) be R-dominators. Let ζ1 = ζ(H1,h1) and ζ2 = ζ(H2,h2). Let
R[x] //Hi be the R-homomorphism which sends x to hi (for i = 1, 2). Let H = H1⊗R[x]H2

and let h = h1 ⊗ 1 = 1 ⊗ h2 ∈ H. Clearly H is finitely presented. An R-algebra map
g : H //T is a pair of R-algebra maps (g1, g2) of maps g1 : H1

//T and g2 : H2
//T for

which g1(h1) = g2(h2). From this it readily follows that (H, h) is an R-dominator and that
there is an R-algebra map f : H //G(R/P ) whose components are f1 : H1

//G(R/P )
and f2 : H2

//G(R/P ). Let ζ = ζ(H, h). Clearly, ζ = ζ1 and ζ = ζ2 on the intersection
of their domains. Moreover, it follows that whenever ζ1(Q) = ζ2(Q) then Q is in the
domain of ζ. So ζ is a canonical local section on which ζ1 and ζ2 agree.

Note: The above two steps show that π : E // Spec(R) is a sheaf (that is, a local
homeomorphism). The next two steps will show that π is a sheaf of R-algebras.

Step 3: The sum and product of any two sections are continuous.

Proof. Let (H1, h1) and (H2, h2) be R-dominators and let ζ1 = ζ(H1,h1), and ζ2 = ζ(H2,h2).
The intersection of the two domains is open and we will define a section representing the
sum on that intersection. Let H = (H1 ⊗R H2). By Let h = (h1 ⊗ 1) + (1 ⊗ h2). By
Lemma 3.3.3, we see that h1 ⊗ 1 and 1⊗ h2 are in the dominion of R and it follows that
h is also in the dominion of R. Moreover, H is clearly finitely presented as an R-algebra.
Let ζ = ζ(H,h). It is readily shown that ζ is well defined and the domain of ζ includes the
intersection of the domains of ζ1 and ζ2. Furthermore, on that intersection, ζ is the sum
of ζ1 and ζ2. A similar proof works for the product.

Step 4: The constant sections are continuous.

Proof. We have to show that for each r ∈ R the section r for which r(P ) is the image
of r in G(P/R) is continuous. Let H = R and h = r. Then r = ζ(H,h).
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3.4.4. Definition. We let ν : R // Γ(E) denote the canonical injection such that ν(r)
is, for each r ∈ R, the constant section r defined at the end of the above proof. If there
is no danger of confusion, we will sometimes write r for ν(r) or r.

3.4.5. Proposition. Let R be a semiprime ring and let π : E //Spec(R) be the canonical
A-sheaf. Let U ⊆ Spec(R) be open in the A-topology. Then a function f : U // E, with
f(P ) ∈ π−1(P ) = G(R/P ) for all P ∈ U is a continuous section if and only if the
following two conditions are met:

1. Whenever there exist r, s ∈ R with sf(P )` = r where ` is a characteristic power in
the domain G(R/P ), then there is a patch-open neighbourhood W of P such that
for all P ′ ∈ W , we have sf ` = r (in G(R/P ′)).

2. Whenever Q v P for Q,P ∈ U then f(P ) = q(f(Q)) where q : G(R/Q) //G(R/P )
is the unique R-homomorphism.

Proof. Assume that f is a continuous section on U . Suppose sf(P )` = r. Then the
local sections sf ` and r agree at P so must agree on an A-open set, and therefore on a
patch-open set. Similarly, given Q v P , we have that f must agree with a local section
σ (as defined in the above proof) on a neighbourhood (in the A-topology) of Q. But
every such neighbourhood is up-closed in the v-order and therefore must contain P . A
straightforward verification shows that every local section σ satisfies σ(P ) = q(σ(Q)) so
the same must be true of f .

Conversely, assume that f : U // E is such that f(P ) ∈ π−1(P ) for all P ∈ U and
that the above two conditions are satisfied. We will show that f is continuous at Q for
an arbitrary Q ∈ U . Let σ be a local section, defined on an A-open neighbourhood W
of Q with f(Q) = σ(Q). It suffices to show that f and σ agree on an A-open set. Let
V = {P ′ ∈ U ∩ W | f(P ′) = σ(P ′)}. Since both f and σ satisfy condition (2), it is
clear that V is up-closed in the v-order. It remains to show that V is open in the patch
topology. Let P ′ ∈ V be given.

We first consider the case when char(R/P ) = p > 0 (so p ∈ P ′). Then there exists
`, a power of p, and r, s ∈ R such that f(P ′)` = r/s (in G(R/P ′)) and s /∈ P ′. Clearly,
we have sf(P ′)` = r. Since P ′ ∈ V we see that σ(P ′) = f(P ′) so sσ(P ′)` = r. By
hypothesis, we see that sf(P ′)` = r for all P ′ in a patch-neighbourhood of P and, by
the above argument, sσ(P ′)` = r for all P ′ in a patch-neighbourhood of P . So there is a
patch-open neighbourhood W0 with P ∈ W0 and on which both f and σ are defined and
such that for all P ′ ∈ W0 we have both sf(P ′)` = r and sσ(P ′)` = r. Since p ∈ P , we
have N(p) is a patch-neighbourhood of P . Since s is non-zero mod P , we have that Z(s)
is also a patch-neighbourhood of P . It follows that sf ` = r = sσ` on the patch-open set
W1 = W0 ∩N(p) ∩ Z(s). Since s 6= 0 in G(R/P ′′) for all P ′′ ∈ Z(s), we see that f ` = σ`

on W0. Since ` is a power of p, and since char(R/P ′′) = p for all P ′′ ∈ N(p), we see that
pth roots are unique for all P ′′ ∈ W1. It follows that f(P ′′) = σ(P ′′) for all P ′′ ∈ W1. So
W1 is the required neighbourhood where f = σ,
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Finally we consider the case where char(R/P ′) = 0. A simpler version of the above
argument now applies, as we must have ` = 1. In both cases, f and σ agree on an A-open
subset of U so f is continuous.

3.4.6. Remark. As shown in the above proof, we may assume that all prime ideals P ′′

in the patch-open neighbourhood mentioned in condition 1 satisfy s 6= 0 modulo P ′′ ,
and further assume that either ` = 1 or that ` is a power of a prime number p and the
patch-open set in condition 1 contains only prime ideals for which char(R/P ′) = p.

3.5. The canonical sheaf representation property: when is Γ(ER) = K(R)?
Let R ∈ SPR be given. We want to know when the canonical map ν : R // Γ(ER) is
the adjunction map of the reflection of R into K . We will show there are several cases
in which Γ(ER) is the reflection, but the general question of whether this is always true
remains open.

3.5.1. Definition. We say that R ∈ SPR has the canonical sheaf representation
property with respect to A, if νR : R // Γ(ER) is the reflection of R into K .

We say that A has the canonical sheaf representation property if every R ∈ SPR
has this property with respect to A.

3.5.2. Notation.

1. In what follows, we assume that R ∈ SPR is given and use E for ER and π for πR.

2. We identify r ∈ R with the corresponding constant section in Γ(E), so ν denotes
the canonical embedding R �

� // Γ(E).

3. Let P ∈ Spec(R) be given. Define P ∗ ∈ Spec(Γ(E)) by P ∗ = {ψ ∈ Γ(E) | ψ(P ) =
0}. Clearly P ∗ is a prime ideal of Γ(E) and lies over P .

Our objective is to find and prove several conditions which are equivalent to the
canonical sheaf representation property. We first show that Γ(E) lies in the limit closure
K . We actually prove the following more general result:

3.5.3. Theorem. Let R be any class of rings that is closed under ultraproducts. Let the
local homeomorphism π : F //X be a sheaf of rings such that, for each x ∈ X, the stalk
Fx = π−1(x) is in R. Then the ring of global sections of the sheaf is in the limit closure
of R.

Proof. If u is an ultrafilter on X, we denote by Fu the corresponding ultraproduct of
the {Fx}. Thus there is a quotient map qu :

∏
Fx //Fu. If u is an ultrafilter, let cnv (u)

denote the set of limits of u.
We find it convenient to use the definition of an ultraproduct as a colimit of products

taken over members of the ultrafilter: Fu = colimU∈u
(∏

x∈U Fx
)
, taking the colimit over

inclusions. We use this to define a map mu,y : Fy // Fu whenever u converges to y. For
z ∈ Fy, choose a local section ψ : U // F defined on a neighbourhood U of y such that
ψ(y) = z. Then we let mu,y(z) = (ψ(x))x∈U . This is an element of

∏
x∈U Fx which is one
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of the components of Fu since U is a neighbourhood of x. If ψ′ is another local section
defined on a neighbourhood U ′ of y such that ψ′(y) = z, then ψ = ψ′ on a neighbourhood
of y which is also in u and so gives the same element of the ultrafilter.

Now let H =
∏

x∈X Fx and K =
∏

u(Fu)
cnv(u). For x ∈ X, let px : H // Fx be the

product projection. For an ultrafilter u and y ∈ cnv(u), we let pu,y : K // Fu be that
product projection. We define two maps β, γ : H //K whose equalizer is, we claim, the
set of global sections. Define β so that pu,yβ = mu,ypy and define γ so that pu,yγ = qu.
Clearly the equalizer L of β and γ is in the limit closure of R. We now show that L is
isomorphic to the ring of global sections of the sheaf. Note that each element of H can
be thought of as a map ψ : X // F for which πψ = 1X . Moreover ψ ∈ L if and only
if qu(ψ) = mu,y(ψ(y)) whenever u converges to y. But this is equivalent to saying that
ψ preserves the convergence of the ultrafilter u and ψ preserves the convergence of all
ultrafilters if and only if ψ is continuous, or is a global section.

3.5.4. Remark. The above theorem can clearly be generalized further, for example to
algebras other than rings. See [Kennison 1976, Lemma 2.5].

3.5.5. Definition. We say that R has the unique prime-lifting property if for every
P ∈ Spec(R), the ideal P ∗ is the unique prime ideal of Γ(E) that lies over P .

3.5.6. Definition. R has the fractional root property if for every global section φ ∈
Γ(ER), every P ∈ Spec(R), and every P1 ∈ Spec(Γ(ER)) lying over P , there exist w, v ∈ R
and a characteristic power ` ∈ N such that:

1. w /∈ P .

2. wφ` − v ∈ P1

3. If φ /∈ P ∗, then v /∈ P .

Note that these conditions say that, modulo P1, the section φ is the `-th root of the
fraction v/w with v /∈ P unless φ ∈ P ∗.

3.5.7. Theorem. Let R ∈ SPR be given. Then the following conditions are equivalent:

1. R has the canonical sheaf representation property (that is, the ring of global sections
of the canonical sheaf is K(R), the reflection of R into K ).

2. The natural map ν : R // Γ(E) is epic in SPR .

3. The map ν : R // Γ(E) has the unique prime lifting property.

4. R has the fractional root property.
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Proof. 1 +3 2 : Trivial since R //K(R) is epic.

2 +3 1 : As noted earlier, every map f : R // A with A ∈ A factors through ν (as
Γ(E) ⊆

∏
{G(R/P}, see the discussion in 3.2). By hypothesis, ν is epic, so ν has the

unique extension property with respect to every object in A . Since Γ(E) ∈ K , by 3.5.3
and 2.2.13, we conclude that ν is the reflection map.

2 +3 3 : Assume ν : R // Γ(E) is epic in SPR . Let P1, P2 ∈ Spec(Γ(E)) be two ideals
lying over P ∈ Spec(R). Then, by Proposition 2.2.1, there is a field F and a commutative
diagram

Γ(E)/P2 F� � //

R/P

Γ(E)/P2

� _

��

R/P Γ(E)/P1
� � // Γ(E)/P1

F

� _

��

Since ν is epic, we have that

Γ(E) // Γ(E)/P1
� � // F = Γ(E) // Γ(E)/P2

� � // F

and this implies that P1 = P2.

3 +34 : Suppose φ ∈ Γ(E), P ⊆ R is prime and P ∗ is the unique prime ideal of Γ(E) lying
above P . Then φ(P ) ∈ G(R/P ) which, by 2.2.10, means that there is a characteristic
power φ(P )` such that wφ(P )` − v = 0 in G(R/P ), which implies that wφ(P )` − v ∈ P ∗.
The remaining details are straightforward.

4 +3 2 : We first prove that 4 +3 3 and then show that 4 + 3 +3 2. Assume the fractional
root property and let P1 be a prime ideal of Γ(E) lying over P ∈ Spec(R). We claim that
P1 ⊆ P ∗. If not, there exists φ ∈ P1− P ∗. By 4, there exist w, v ∈ R and a characteristic
power ` such that w /∈ P and wφ`− v ∈ P1 and, since φ /∈ P ∗, we also have v /∈ P . Then,
since φ ∈ P1 and wφ` − v ∈ P1, we see that v ∈ P1 so v ∈ R ∩ P1 = P , a contradiction.

We next claim that P ∗ ⊆ P1. Assume φ ∈ P ∗ is given. By 4, there exist w, v ∈ R and
a characteristic power ` such that w /∈ P and wφ`−v ∈ P1. But, as shown above, P1 ⊆ P ∗

so wφ`− v ∈ P ∗. Since φ ∈ P ∗ and wφ`− v ∈ P ∗, we see that v ∈ P ∗ so v ∈ R∩P ∗ = P .
From wφ` − v ∈ P1 and v ∈ P ⊆ P1, we get wφ` ∈ P1 and, since w /∈ P1 (as this would
imply w ∈ P ) we get φ ∈ P1.

Therefore ν : R //Γ(E) has the unique prime lifting property and it remains to show
that ν is epic. Let g1, g2 : Γ(E) // F be maps in SPR for which g1ν = g2ν. Since every
semiprime ring is a subring of a product of fields, we may assume that F is a field. Let
Pi = ker(gi) for i = 1, 2. Let P = ker(g1ν) = ker(g2ν). Then, by the unique prime lifting,
we see that P1 = P2 = P ∗.

Let φ ∈ Γ(E) be given. By the fractional root property, we see that there are w, v ∈ R,
with w /∈ P and a characteristic power ` ∈ N such that wφ` − v ∈ P ∗. But this clearly
implies that any R-homomorphism R // F takes φ to the unique root of wx` − v as
w /∈ ker(gi).
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3.6. When is Q v P? Assume we are given A , a class of domains satisfying the assump-
tions of 3.1.1. Let R be a semiprime ring and let Q,P be prime ideals of R with Q ⊆ P .
In this subsection, we will find conditions under which Q v P , then use these and related
conditions to show that certain classes of reflections have the fractional root property.

3.6.1. Lemma. Let Q,P ⊆ R be prime ideals of the semiprime ring R with Q ⊆ P . Then
Q v P if and only if G(R/Q) has a prime ideal P ′ which lies over P .

Proof. If Q v P then we can let P ′ be the kernel of G(R/Q) //G(R/P ). Conversely,
suppose that P ′ is a prime ideal of G(R/Q) lying over P . Let C = G(R/Q)/P ′. Then the
map R/Q �

� //G(R/Q) //C clearly factors through an injection R/P // //C. By Proposition
2.2.1, there exists a field F ∈ A together with maps C // // F and G(R/P ) // // F such
that the diagram formed by these maps and the maps from R/P to C and to G(R/P )
commutes. Define B so that the following diagram is a pullback:

G(R/P ) F// //

B

G(R/P )
��

B G(R/Q)// // G(R/Q)

F

G(R/Q)

C
��
C

F

��

��

We see that B ∈ K , as K is limit closed. By the pullback property, there exists a
map R/Q // // B making everything commute. By definition of G(R/Q), and the fact
that B ∈ K , we see that the map B // // G(R/Q) is invertible and we may assume that
B = G(R/Q). The map B // G(R/P ) is then the required R-homomorphism which
shows that Q v P .

3.6.2. Lemma. Let Q,P ⊆ R be prime ideals of the semiprime ring R with Q ⊆ P . Then
there exists at most one prime ideal P ′ of G(R/Q) satisfying the above conditions.

Proof. Suppose that P ′ and P ′′ are two such prime ideals. Let C ′ = G(R/Q)/P ′

and C ′′ = G(R/Q)/C ′′. The map R // R/Q // G(R/Q) // C ′ is clearly epic (as
R/Q //G(R/Q) is epic, etc.) and has kernel P so it factors as R //R/P // C ′ where
R/P // C ′ is epic. Similarly, there is an epic map R/P // C ′′. By the corollary to
Lemma 2.2.7, this implies that the inclusion R/P �

� //Q(R/P ) factors through R/P //C ′

by a map C ′ //Q(R/P ). Similarly, there is a map C ′′ //Q(R/P ). Since R //G(R/Q)
is epic and since R // G(R/Q) // C ′ // Q(R/P ) is the canonical embedding as is
R //G(R/Q) //C ′′ //Q(R/P ) it follows that the map from G(R/Q) //C ′ //Q(R/P )
is the same as G(R/Q) // C ′′ //Q(R/P ), which obviously implies that P ′ = P ′′.

3.6.3. Definition. Let Q,P ⊆ R be prime ideals of the semiprime ring R with Q ⊆ P .
Then (p1, . . . , pn; z1, . . . , zn) is a (Q,P )-obstacle if each pi ∈ P and each zi ∈ G(R/Q)
and p1z1 + · · ·+ pnzn is in the image of R− P under the map R //R/Q //G(R/Q).



258 MICHAEL BARR, JOHN F. KENNISON, R. RAPHAEL

3.6.4. Proposition. Let Q,P ⊆ R be prime ideals of the semiprime ring R. Then
Q v P if and only if Q ⊆ P and no (Q,P )-obstacle exists. Moreover, y ∈ G(R/Q) is in
the kernel of the unique R-homomorphism G(R/Q) //G(R/P ) if and only if there exists
r ∈ R− P and a positive integer m and (p1, . . . , pn; z1, . . . , zn) with each pi ∈ P and each
zi ∈ G(R/Q) such that rym = p1z1 + · · ·+ pnzn.

Proof. Suppose (p1, . . . , pn; z1, . . . , zn) is a (Q,P )-obstacle. Then we claim that Q 6v P .
Assume h : G(R/Q) //G(R/P ) is an R-homomorphism. Let s = p1z1 + · · ·+ pnzn be in
the image of R−P . Since s ∈ R−P , we see that h(s) 6= 0. But, clearly, h(pi) = 0 for all
i so h(s) = 0 which is a contradiction.

Conversely, assume that no (Q,P )-obstacle exists. Then regard P as an ideal of

R/Q, which is clearly possible as Q ⊆ P . Let P̂ be the ideal of G(R/Q) generated by

P ⊆ R/Q ⊆ G(R/Q). (Note that P̂ need not be a prime ideal of G(R/Q), just an ideal.)
Then:

P̂ = {p1z1 + · · ·+ pnzn | pi ∈ P and zi ∈ G(R/Q) for all i}

Let M be the image of R−P in G(R/Q). Clearly, M is a multiplicative subset of G(R/Q).

Since no (Q,P )-obstacle exists, we see that the ideal P̂ is disjoint from M . Let P ′ be an

ideal which is maximal among the ideals of G(R/Q) that contain P̂ and are disjoint from
the multiplicative set M . It is well known (and readily proven) that P ′ is a prime ideal
of G(R/Q) and it obviously satisfies the conditions of Lemma 3.6.1.

If there are elements r,m, p1, . . . , pn, z1, . . . zn ∈ R with pi ∈ P , r /∈ P and rym =
p1z1 + · · · + pnzn, then clearly y ∈ P ′. But if there exists no such expression, then the
multiplicative system My generated by R − P and y, which consists of all elements of

the form rym, does not meet P̂ , so we can choose P ′ disjoint from My and so y /∈ P ′.
Since P ′ is unique by 3.6.2, it clearly follows that P ′ consists precisely of those elements
y satisfying rym = p1z1 + · · ·+ pnzn as required.

3.6.5. Definition. Let R be semiprime ring and assume R ⊆ S ⊆ Γ(E). For each prime
ideal P of R let P# = P ∗ ∩ S. Note that for every prime ideal Q of R we can regard
R/Q ⊆ S/Q# ⊆ G(R/Q). We then say that R ⊆ S ⊆ Γ(E) is admissible if:

1. For all Q, the map R/Q // S/Q# is epic.

2. Whenever Q ⊆ P are prime ideals of R then Q v P if there exists a prime ideal P ′

of S/Q# such that P ′ ∩R/Q is P (where P is regarded as a prime ideal of R/Q).

3.6.6. Definition. If R ⊆ S ⊆ Γ(E) is admissible, we will say that (p1, . . . , pn; z1, . . . , zn)
is an S-obstacle from Q to P if each pi ∈ P and each zi ∈ S/Q# and p1z1 + · · ·+ pnzn
is in the image of R− P under the map R //R/Q // S/Q#.

3.6.7. Lemma. Let R ⊆ S ⊆ Γ(E) be admissible. Then the following three conditions are
equivalent:

1. Q v P .
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2. There is no S-obstacle from Q to P .

3. There is an R-homomorphism S/Q# // S/P#.

Moreover, if the above equivalent conditions hold, then P ′, the kernel of the R-
homomorphism S/Q# //S/P# is the set of y ∈ S/Q# such that rym = p1z1 + · · ·+ pnzn
for some zi ∈ S/Q# and pi ∈ P .

Proof. Assume Q v P then clearly Q∗ ⊆ P ∗ and Q# ⊆ P# so 3 follows. The arguments
given in the proofs of Lemma 3.6.2 and Proposition 3.6.4 can now be modified slightly to
complete the proof of the equivalence of 1,2 and 3.

The proof about the characterization of the kernel of S/Q# // S/P# also follows by
adapting the arguments in 3.6.2 and 3.6.4.

3.6.8. Definition. Let R be a semiprime ring and let Γ(E) be the ring of global sections of
its canonical sheaf. We say that R satisfies the fractional root property at φ ∈ Γ(E),
if whenever P1 is a prime ideal of Γ(E) lying over some prime P of R there exist w, v ∈ R
and a characteristic power ` such that w /∈ P , wφ` − v ∈ P1 and if φ /∈ P ∗ then v /∈ P .

3.6.9. Proposition. If R ⊆ S ⊆ Γ(E) is admissible, then R has the fractional root
property with respect to φ whenever φ ∈ S.

Proof. Let φ ∈ S and let P1 ∈ Spec(Γ(E)) be a prime lying over P ∈ Spec(R). We must
find w, v ∈ R and a characteristic power φ` such that the conditions in Definition 3.5.6
are satisfied. Our approach will be to find, for each Q ∈ Spec(R), an element ζQ ∈ Γ(E)
such that ζQ(Q) = 0 and, if ζQ ∈ P1, then the desired elements w, v can readily be found.
So let Q ∈ Spec(R) be given. We consider the following cases:

Case 1: Q 6⊆ P . In this case, we can choose r ∈ Q − P . We can choose w, v, ` so that
φ(Q) is determined by the equation φ(Q)` = v/w with w /∈ Q. We can further assume
that w /∈ P and v /∈ P . For if w ∈ P , we can replace w by w + r and similarly v can be
replaced by v + r, if necessary. Let ζQ = wφ` − v.

Case 2: Q ⊆ P . Let eQ : S // G(R/Q) be defined by evaluation at Q, so that eQ(φ) =
φ(Q). Since Q# = ker(eQ), we can regard it as a map S // S/Q# � � // G(R/Q) where
S/Q# is identified with a subring of G(R/Q).

Subcase 2a: Q v P . Note that φ(Q) ∈ S/Q#. Let α be the image of φ(Q) in S/P#.
Then α is determined by a condition of the form wα` − v = 0. It follows that for some
r ∈ R − P we can write r(wφ(Q)` − v)m = p1d1 + · · · + pndn. For each i, let δi ∈ S be
such that δi(Q) = di. Let ζQ = r(wφ`− v)m− (p1δ1 + · · ·+ pnδn). Note that if v ∈ P then
α = 0 and since Q v P , we see that φ(P ) = 0 so φ ∈ P ∗

Subcase 2b Q 6v P : Then there must exist an obstacle given by r = p1d1 + · · · + pndn
with r ∈ R − P and each pi ∈ P . Again, we let δi ∈ S be such that δi(Q) = di. Let
ζQ = r − (p1δ1 + · · · + pnδn). Then ζQ(Q) = 0 and we cannot possibly have ζQ ∈ P1. So
it follows trivially that if ζQ ∈ P1, then R has the fractional root property at φ. We call
this the “impossible case”.
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For each Q ∈ Spec(R), let WQ be the open set (in the A-topology on Spec(R)) where
ζQ = 0. This is clearly an open neighbourhood of Q. So the neighbourhoods {WQ} cover
Spec(R). Compactness implies that there is a finite subcover WQ1 , . . . ,WQk

. It follows
that the finite product ζQ1 · · · ζQk

= 0. Since P1 is prime, there exists i with ζQi
∈ P1 (so

Qi cannot be in the impossible case) and this readily implies that we have the required
global section of the form wφ` − v ∈ P1.

3.6.10. Corollary. If Γ(E) // G(R/Q) is always surjective then R has the fractional
root property.

Proof. Clearly, S = Γ(E) is admissible, so the result follows from the above proposition.

3.6.11. Corollary. In the Dom-invariant case, every R has the fractional root property.

Proof. Let φ ∈ Γ(E) and let S = R[φ] ⊆ Γ(E). Then R ⊆ S ⊆ Γ(E) is admissible
because R/Q // S# is always epic by Theorem 2.3.1.12 and, because Q v P whenever
Q ⊆ P . The proposition now implies that R has the fractional root property with respect
to φ and the result follows as φ is arbitrary.

Putting this together with Theorem 3.5.7 we conclude:

3.6.12. Theorem. In the Dom-invariant case, every ring R has the canonical sheaf rep-
resentation property, that is ν : R // Γ(E) is the reflection of R into K .

3.7. Examples. Our examples for this section illustrate several ways of proving the
canonical sheaf representation property. We do not have any example where it fails and
the question of whether it always holds remains open as far as we know.

Recall the convention of 2.2.26 that if Axx denotes a category of domains, then Kxx

denotes its limit closure and Bxx denotes the domains in Kxx.

3.7.1. Example. Suppose that for every R ∈ SPR , the A-topology on Spec(R) coincides
with the domain topology. We will then prove that we are in the Dom-invariant case,
so, as noted above, the canonical sheaf representation property holds. We first claim
that whenever Q,P are prime ideals of R with Q ⊆ P , there is an R-homomorphism
h : G(R/Q) //G(R/P ). To prove this claim, let z ∈ G(R/Q) be given. Let E //Spec(R)
be the canonical sheaf. Then there is a local section ζ : U // E with ζ(Q) = z, where
U is a neighbourhood of Q. But in the domain topology, every neighbourhood of Q is
up-closed, so P ∈ U . Define h(z) = ζ(P ). Since local sections must agree on open sets, we
see that h(z) is uniquely defined. Since sums and products of local sections are sections,
we see that h preserves addition and multiplication. Similarly, h preserves the elements
of R as for each r ∈ R, there is a “constant” section ν(r). Applying this map h to the
case where R = D, a domain and Q is the zero ideal, we get a proof of Theorem 2.3.1.2,
so we are in the Dom-invariant case.
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3.7.2. Example. Let R ∈ SPR be given and suppose the A-topology on Spec(R) coin-
cides with the patch topology. We claim that in this case Γ(E) //G(R/P ) is surjective
for all prime ideals P , which, by Corollary 3.6.10, proves the canonical representation
property. To prove the claim, let z ∈ G(R/P ) be given. There is a neighbourhood U of
z and a local section ζ0 ∈ Γ(U) with ζ0(P ) = z. Since the patch topology has a base
of clopen sets, we can choose U to be clopen. We can then define ζ ∈ Γ(E) so that
ζ(Q) = ζ0(Q) whenever Q ∈ U and define ζ(Q) = 0 whenever Q /∈ U .

For example, this happens for all R if A is the category of fields or the category of
perfect fields.

3.7.3. Example. If R ∈ SPR , then there is clearly a unique morphism Z //R where Z
is the ring of integers. For each n ∈ Z, we let nR denote the image of n in R. If there is
no danger on confusion, we simply write n for nR. We call the elements of the form nR
the integers of R.

We say that R ∈ SPR is quasi-rational if every integer of R has a quasi-inverse.
We let Aqrat be the class of quasi-rational domains. It is clear that the class of all quasi-
rational rings is closed under limits, hence Kqrat is contained in the class of quasi-rational
rings. But there are quasi-rational rings which are not in Kqrat, see 4.4.5 for a quasi-
rational ring that is not in the limit closure of any class of domains. A description of
Kqrat is given in 4.4.3.

If D is a domain, then G(D) is obtained by adjoining inverses for each non-zero integer
of D. If E = ER for some R ∈ SPR then Γ(E) ∈ Kqrat and hence is rational and the
evaluation map Γ(E) //G(R/P ) sends integers to integers and therefore sends the quasi-
inverses of integers in Γ(E) to the quasi-inverses of integers in G(R/P ). Since G(R/P ) is
generated by these quasi-inverses, it follows that Γ(E) //G(R/P ) is surjective for all P
and so Aqrat has the canonical sheaf representation property by Corollary 3.6.10.

3.7.4. Example. Recall that Aper denotes the full subcategory of all perfect domains. A
description of Kper is given in section 6 and it is clearly first order. Since Aicp ⊆ Aper,
it follows from Theorem 2.3.1.15 that the limit closure of Aper is Dom-invariant and by
Corollary 3.6.11 it has the canonical sheaf representation property.

3.8. polynomial operations. As in Section 2 we assume that K is the limit closure
of a full subcategory, A , of domains such that the conditions in 2.1 are satisfied.

Many of our examples involve essentially algebraic operations (see 3.8.1) such as the
polynomial operations, see 3.8.4. In this subsection we will show that such operations
often arise, particularly in the Dom-invariant case and when A is first order.

3.8.1. Remark. An essentially algebraic theory consists of an equational theory in
the usual sense, with operations and equations, which may be infinitary, augmented by
partial operations whose domains are given by equational conditions in the operations,
both in the total operations and in the other partial operations as well as equations that
may involve both the operations and partial operations. If all operations and partial
operations depend on only finitely many variables, then the essentially algebraic theory
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is called finitary. But even a finitary theory might have infinitely many operations and
partial operations.

Morphisms of the algebras for such a theory are required to preserve all operations and
partial operations. However, in all the examples in this article, the values of the partial
operations are uniquely determined by the equations they satisfy. Thus the algebras for
the theory form a full subcategory of the algebras for the subtheory consisting of the total
operations and all the equations they satisfy.

As an example, we look at the theory whose operations and equations are those of
commutative rings. Add a partial operation ω whose domain is {x | x2 = 0} that satisfies
the equations ω(x) = x and ω(x) = 0. The algebras for this theory is the category of
semiprime rings. The value of this operation is uniquely determined by being 0.

For an example of a non-finitary theory, consider the following infinitary partial oper-
ation ω. The domain is described as {x, y2, y3, . . . , yn, . . . | y22 = x, y33 = x, . . . , ynn = x, . . .}
and subject to the equations that for z = ω(x, y2, . . .), then x2z = x and xz2 = z. It is
well known that x and z uniquely determine each other. A UFD satisfies this, since an
element with all nth roots is either 0 or invertible. The limit closure of UFDs is not closed
under ultraproducts (see 2.4), which illustrates the results of the following proposition,
whose proof we leave to the reader. (We use, and prove, a more detailed version of this
proposition.)

3.8.2. Proposition. The algebras for an essentially algebraic theory are limit closed in
the category of algebras for the total operations and equations. If the theory is finitary, it
is also closed under filtered colimits and, in particular, ultraproducts.

3.8.3. Notation.

1. For any ring R, we let |R| denote its underlying set. So a function h from R to S,
which is not necessarily a homomorphism, will usually be denoted by h : |R| // |S|.

2. In this subsection we assume that X is a set, possibly infinite, whose elements will
be called independent variables.

3. We assume that y denotes any entity which is not in X and which will be called the
dependent variable.

4. As usual, Z[X] is the ring of polynomials in the variables X with integer coefficients,
and Z[X ∪ {y}] is the ring of polynomials in X ∪ {y}.

5. If R is a ring and i : X // |R| is a function, and if f ∈ Z[X], then f(i) ∈ R is
obtained by replacing each variable x ∈ X with i(x) ∈ R and evaluating in the
usual way.

6. Similarly if i is as above and if g ∈ Z[X ∪ {y}] and r ∈ R, then g(i, r) ∈ R is
obtained by replacing each variable x ∈ X with i(x) and replacing y with r and
evaluating.

We then say that (i, r) is an extension of i.
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7. If F ⊆ Z[X], then an interpretation of (X,F ) in R is a function i : X // |R|
such that for f(i) = 0 for all f ∈ F .

8. Similarly, if G ⊆ Z[X ∪ {y}], then an interpretation of (X ∪ {y}, G) in R is a
function i : X // |R| together with an element r ∈ R such that for g(i, r) = 0 for
all g ∈ G.

3.8.4. Definition. Let X and X ∪ {y} be as in the above notation. A polynomial
operation is determined by sets F ⊆ Z[X] and G ⊆ Z[X ∪ {y}] such that for every
semiprime ring R and every interpretation i : X // |R| there exists at most one r ∈ R
such that (i, r) is an interpretation of (X ∪ {y}, G) in R.

We say that R is a model of (F,G) if for every interpretation i of (X,F ) in R there
exists r ∈ R (necessarily unique) such that (i, r) is an interpretation of (X ∪ {y}, G) in
R. A polynomial theory is given by a possibly infinite set Ω of polynomial operations. The
semiprime ring R is a model of the theory Ω if and only if R is a model of each operation
ω ∈ Ω.

3.8.5. Definition. The polynomial operation (F,G) will be called finitistic if F and G
are finite.

We can always assume that X is the set of indeterminates that actually appear in F
and G, so we may assume that X is finite in the finitistic case.

3.8.6. Proposition. Let A be a first-order class of domains such that K , the limit
closure of A, is in the Dom-invariant case. Then there is a finitistic polynomial theory Ω
such that K is the class of all models of Ω.

Before proving this Proposition, we introduce some definitions and lemmas.

3.8.7. Definition. Let A, K , and the reflector K be as in section 2. We say that the
polynomial operation (F,G) is a polynomial operation on A if every A ∈ A is a model
of (F,G).

3.8.8. Lemma. If (F,G) is a polynomial operation on A, then every ring in K is a model
of (F,G).

Proof. It is easily shown that the class of all rings which are models of (F,G) is closed
under products and equalizers.

3.8.9. Lemma. If (F,G) is a polynomial operation on A, then, using the above notation,
the map k : Z[X]/〈F 〉 // Z[X ∪ {y}]/〈F ∪G〉 is epic in SPR .

Proof. Suppose that m,n : Z[X ∪ {y}]/〈F ∪ G〉 // R are given with mk = nk. Since
we can embed R into K(R) it suffices to prove this for R ∈ K . But, in view of the above
lemma, we must have m(y) = n(y) but this clearly implies that m = n.
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3.8.10. Lemma. There exists a finite set H1 ⊆ F ∪ G such that the homomorphism
Z[X]/〈F 〉 // Z[X ∪ {y}]/〈H1〉 is epic.

Proof. The map k : Z[X]/〈F 〉 //Z[X ∪{y}]/〈F ∪G〉 was shown to be epic in the above
lemma. Clearly, for any H ⊆ F ∪ G, the map k : Z[X]/〈F 〉 // Z[X ∪ {y}]/〈H〉, will be
epic if and only if y is in the dominion of Z[X]/〈F 〉. Now, by Lemma 3.3.7 there is a
finite set H1 ⊆ F ∪G for which y ∈ Z[X ∪ {y}]/〈H1〉 is in the dominion of Z[X]/〈F 〉.

3.8.11. Lemma. Let U be a collection of subsets of a set S. Recall that U has the bf
finite intersection property (f.i.p.) if every finite set {U1, U−2, . . . , Un} ⊆ U has non-
empty intersection. Then there exists an ultrafilter u on S with U ⊆ u if and only if U
has f.i.p.

Proof. If U is contained in an ultrafilter it is immediate that U has f.i.p. Conversely,
suppose that U has f.i.p. Then let F be the family of all subsets of S that contain a
finite intersection of sets from U . Clearly, F is a filter of subsets and therefore it can be
extended to an ultrafilter.

3.8.12. Lemma. Assume that A is closed under ultraproducts and let (F,G) be a polyno-
mial operation on A. Then there are finite subsets F0 ⊆ F and G0 ⊆ G such that (F0, G0)
is a polynomial operation on A.

Moreover, whenever a semiprime ring R is a model of (F0, G0) then it is also a model
of (F,G).

Proof. Let H1 ⊆ F ∪G be as in the above lemma. Let F1 = H1 ∩ F and G0 = H1 ∩G.
Now say that a subset S ⊆ F is adequate if F1 ⊆ S and every map Z[X]/〈S〉 //A with
A ∈ A has an extension (necessarily unique) to a map Z[X ∪ {y}]/〈S ∪ G0〉 // A. It
follows that S, with F1 ⊆ S ⊆ F is adequate if and only if for every map Z[X]/〈S〉 //A
with A ∈ A , there exists a unique a ∈ A such that g(a) = 0 for all g ∈ G0, as we can then
map Z[X ∪ {y}] //A by sending y to a. (Our notation suppresses the variables from X
that might appear in g as these variables have already been assigned to values in A by
the given map Z[X]/〈S〉 // A.)

For example, S = F is clearly adequate as every map Z[X]/〈F 〉 //A has an extension
to a map Z[X ∪ {y}]/〈F ∪ G〉 // A because A is a model of the polynomial operation
(F,G). We claim that F has a finite adequate subset. Assume the claim is false. Let E
be the set of all finite subsets E with F1 ⊆ E ⊆ F . Since the claim is false, it follows that
for every E ∈ E there is a map mE : Z[X]/〈E〉 // AE with AE ∈ A such that there is
no element a ∈ AE which satisfies g(a) = 0 for every g ∈ G0.

For each f ∈ F let Uf = {E ∈ E | f ∈ E}. It is clear that this family of subsets of
E has the finite intersection property because if C ⊆ F is a finite subset, then F1 ∪ C ∈⋂
{Uf | f ∈ C}. Therefore, by Lemma 3.8.11, there exists an ultrafilter u on E such that

Uf ∈ u for all f ∈ F . Let Au be the ultraproduct of the family {AE | E ∈ E }. We
can regard each map mE as a function from Z[X]/〈F1〉 // AE hence there is an obvious
induced map m : Z[X]/〈F 〉 //

∏
{AE | E ∈ E }. Let mu be qum where qu :

∏
{AE} //Au

is the quotient map associated with the ultraproduct. But then mu(f) = 0 for all f ∈ F
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because this condition is true on Uf ∈ u. So we can regard mu : Z[X]/〈F 〉 // Au. But
Au ∈ A and, since (F,G) is a polynomial operation on A , it follows that there exists
a ∈ Au such that g(a) = 0 for all g ∈ G0 (in fact, for all g ∈ G).

Since a ∈ Au we can write a = qu(a
′) where a′ ∈

∏
{AE}. For each E ∈ F , let

aE be the projection of a′ onto AE. Since g(mu, a) = 0, there must exist Vg ∈ u such
that g(mE, aE) = 0 for all E ∈ Vg. Let V =

⋂
{Vg | g ∈ G0}. Since V ∈ u, we see

that V is non-empty. If we choose E ∈ V , then aE satisfies g(aE) = 0 for all g ∈ G0,
which contradicts the assumption that no such element of AE exists. By the claim we
just proved, there is a finite adequate subset E ∈ E . Letting F0 = E, it easily follows
that (F0, G0) is a polynomial operation on A

Finally, suppose R is a model of (F0, G0). Let i be an interpretation in R of (X,F ).
Then i is an interpretation of (X,F0), so there is a unique r0 ∈ R such that (i, r0) is
an interpretation of (X ∪ {y}, G0). There is also a unique r1 ∈ K(R) such that (i, r1)
is an interpretation of (X ∪ {y}, G). Therefore both r0 and r1 are interpretations of
(X ∪ {y}, G0) in K(R) and, by the choice of G0 there is only one such interpretation in
K(R), so r1 = r0. But this shows that r1 ∈ R is such that (i, r1) is an interpretation of
(X ∪ {y}, G).

The following proposition is clearly equivalent to Proposition 3.8.6.

3.8.13. Proposition. Assume that A is closed under ultraproducts and that K is Dom-
invariant. Then a semiprime ring is in K if and only if it is a model of every finitistic
polynomial operation on A.

Proof. By Lemma 3.8.8 every ring in K is a model for every finitistic polynomial
operation on A . Conversely, assume that R is a model of every such polynomial operation.
We claim that R ∈ K . Assume the contrary. Then there exists ζ ∈ K(R) − R. Let
R[ζ] be the subring of K(R) generated by R and ζ. By Theorem 2.3.1.12, we see that
R // R[ζ] is epic. Suppose A ∈ A . By adjointness, every homomorphism h : R // A
has a unique extension to K(R) //A. By restricting that extension to R[ζ], we see that
every homomorphism h : R // A extends uniquely to a homomorphism h : R[ζ] // A.

We proceed to restate this as a polynomial operation on A . For each r ∈ R, we
introduce a variable xr and let X = {xr | r ∈ R}. We next define a set F ⊆ Z[X] such
that a function h : |R| // |A| interprets (X,F ) if and only if h is a homomorphism.
Define F to consist of x1 − 1, and, for every pair of elements r, s ∈ R, the polynomials
xr−s− xr + xs and xrs− xrxs. Clearly h interprets F if and only if h is a homomorphism.

Next given a homomorphism h : R // A, we consider what it means to have an
extension of h to h : R[ζ] // A. Since ζ generates R[ζ] as an R-algebra, we can write
R[ζ] = R[y]/I where y is an indeterminate and I is an ideal. For each polynomial g(y) ∈ I,
we let g′(y) ∈ Z[Y ] be the polynomial obtained from g by replacing each coefficient r of
g by the corresponding variable xr. Let G = {g′ | g ∈ I}. It is readily shown that if
h : R // A is a homomorphism, then h extends to h : R[ζ] // A for which h(ζ) = r0 if
and only if (h, r0) is an interpretation of (X,G). It follows that (F,G) is a polynomial
operation on A . By Lemma 3.8.12, there exists a finitistic polynomial operation (F0, G0)
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on A such that any semiprime ring which is a model of (F0, G0) is a model of (F,G). But
this implies that R is a model of (F,G). Consider the interpretation i : X //R for which
i(xr) = r. Clearly this is an interpretation of (X,F ) so there exists a unique r0 ∈ R such
that (i, r0) is an interpretation of (X ∪ {y}, G). But (i, ζ) is the unique such extension of
i in the ring K(R), so r0 = ζ. This implies ζ ∈ R, which contradicts the choice of ζ.

3.8.14. Corollary. If we are in the Dom-invariant case and if A is closed under ultra-
products, then K (and therefore B) are both first order.

Proof. Given a finitistic polynomial operation (F,G), there clearly exists a first-order
condition which R satisfies if and only if R is a model of (F,G).

3.8.15. B is first order if it is ultraproduct closed. In what follows, we assume that B
is closed under ultraproducts and we assume that D is a domain which is not in B, but
which satisfies every first-order condition that is satisfied by every B ∈ B. We will show
that these assumptions lead to a contradiction.

3.8.16. Lemma. Let B and D /∈ B be as above. Then there exist z ∈ G(D) − D and
c, d ∈ D, with d 6= 0 and a characteristic power `, (a power of char(D)) such that dz` = c.

Proof. We may as well assume that D ⊆ G(D) ⊆ Q(D) where Q(D) is the perfect
closure of the field of fractions of D. Since D /∈ B, there exists z ∈ G(D) − D. By
definition of Q(D) there exists `, a power of char(D) together with c, d ∈ D, with d 6= 0
such that z` = c/d.

3.8.17. Lemma. If h : D // B is an injection and B ∈ B then there exists b ∈ B such
that h(d)b` = h(c).

Proof. We can define G(D) by first embedding D in any field in A then taking the meet
of all domains in B that contain D. It follows that we could also start by embedding D
in any B ∈ B as any such B can be embedded in a field in A . Since h : D // B is such
an embedding, it follows that we can assume that (up to isomorphism) G(D) ⊆ B and
the result follows.

3.8.18. Notation. Let X be any set of indeterminates that is in bijective correspondence
with |D|. To be specific, let us say that for every r ∈ D we have xr ∈ X. There is an
isomorphism i : Z[X]/I //D which takes xr ∈ X to r ∈ D for every r ∈ D, and where
I is a semiprime ideal. In what follows, we will identify D with Z[X]/I.

3.8.19. Definition. Given the above notation, we say that a function h : X //B, with
B ∈ B, is admissible if the extension of h to a homomorphism h : Z[X] // B is such
that ker(h) = I.

3.8.20. Notation. Let h : X // B with B ∈ B be a function. For every polynomial
f ∈ I, we let f(h) ∈ B be the element defined by replacing each indeterminate x ∈ X with
h(x) ∈ B. Equivalently, f(h) = h(f) where h is the extension of h to a homomorphism
from Z[X] //B.
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3.8.21. Lemma. The function h : X // B with B ∈ B is admissible if and only if for
every f ∈ I we have f(h) = 0 and for every xs ∈ X, with s a non-zero member of D,
we have h(xs) 6= 0.

Proof. The first condition implies that the kernel of h contains all of I, where I is the
above radical ideal for which D = Z[X]/I. We claim that the second condition implies
that h contains nothing which is not in I. For if w /∈ I then, w is equivalent, modulo I,
to a non-zero element s ∈ D which in turn, is equivalent to xs.

3.8.22. Corollary. If h : X // B with B ∈ B satisfies the above conditions for being
admissible, then there exists b ∈ B with h(xd)b

` = h(xc).

Proof. By the above results, if h is admissible, then h : D //B is an injection and the
conclusion follows from Lemma 3.8.17.

3.8.23. Notation. Let X and I, with D = Z[X]/I be as above. Given I0 ⊆ D and
S0 ⊆ D, we say that the function h : D //B, with B ∈ B, is an (I0, S0)-function if;

1. f(h) = 0 for all f ∈ I0

2. h(xs) 6= 0 for all non-zero s ∈ S0.

3.8.24. Proposition. With the above notation, there is a finite set I0 ⊆ I and a finite
set S0 ⊆ D such that whenever h : X // B, with B ∈ B, is an (I0, S0)-function, there
exists b ∈ B with h(xd)b

` = h(xc).

Proof. Regard I and D as disjoint sets. We say that W ⊆ I ∪D is adequate if, letting
I0 = W ∩ I and S0 = W ∩D, it is the case that whenever h : X //B, with B ∈ B, is an
(I0, S0) function, there exists y ∈ B with h(xd)y

` = h(xc). We observe that W = I ∪D is
adequate.In this case, W ∩ I = I and W ∩D = D and we can apply 3.8.22.

We claim that there exists a finite adequate set W0. Assume the contrary that no finite
adequate set exists. Let F be the family of all finite subsets of I ∪ D. Then, for each
F ∈ F , we let IF = F ∩ I and SF = F ∩D. By assumption there must be an (IF , SF )-
function hF : X //BF with B ∈ B such that there is no b ∈ B for which hF (d)b` = hF (c).
For each w ∈ I ∪D, let Uw = {F ∈ F | w ∈ F}. Then the family {Uw | w ∈ I ∪D} has
the finite intersection property because, if C ⊆ I ∪ D is finite, then

⋂
{Uw | w ∈ C} is

non-empty, as it contains C. By Lemma 3.8.11 there is an ultrafilter u on F such that
Uw ∈ u for all w ∈ I ∪D. Let Bu be the associated ultraproduct of {BF | F ∈ F}. Let
qu :

∏
{Bβ | β < α} be the canonical quotient map. Let h : X //

∏
{Bβ} be the function

whose projections are the above functions, hF : X //BF . Also let hu : X //Bu be given
by hu = hqu. Since the condition associated with each w ∈ I ∪ D is true on Uw, we see
that hu satisfies all the conditions in 3.8.22. Thus there exists b ∈

∏
BF such that qu(b)

satisfies h(d)qu(b)
` = h(c). But, letting bF be the projection of b onto BF , we have that

bF satisfies hF (d)b` = hF (c) for all F in some V ∈ u. But, choosing F ∈ V we find that
the element bF contradicts the assumption that there is no b ∈ BF with hF (d)b` = hF (c).

Therefore we have proven the claim that a finite adequate subset W0 exists and if we
let I0 = W0 ∩ I and S0 = W ∩D the result follows.
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3.8.25. Theorem. B is closed under ultraproducts if and only if it is first order.

Proof. If B is first order, it is well known that it is closed under ultraproducts. Con-
versely, assume that B is closed under ultraproducts. Let D be a domain which satisfies
all first-order conditions that are satisfied by every B ∈ B. It suffices to prove that
D ∈ B. If not, then, by the above discussion, there exists c, d ∈ D, with d 6= 0 such that
whenever B ∈ B and h : X // B is an (I0, S0)-function, then there exists b ∈ B with
h(xd)b

` = h(xc). But by the above proposition, we can assume that I0 and S0 are finite
sets. If we let X0 be the set of indeterminate of X involved in the polynomials g ∈ I0 and
the non-zero elements of D in S0, then this is a first-order condition involving the elements
of X0 as variables, which is satisfied by every B ∈ B. It follows that it is satisfied by
D. But consider the function h : X // D for which h(xt) = t for all t ∈ D. It easily
follows that h satisfies all the conditions in 3.8.22 so h certainly is an (I0, S0)-function.
This implies that there exists e ∈ D with de` = c. But, regarding D ⊆ G(D), the element
z ∈ G(D) is determined by the fact that dz` = c. Thus z = e ∈ D contradicting the
assumption that z ∈ G(D)−D.

3.9. Local representations of sections. Until the end of this section, we let E
denote the sheaf on Spec(R), when the latter is equipped with the domain topology.

Assumptions and Notation. Throughout this subsection, we assume that:

1. We are in the Dom-invariant case which implies that the A-topology is the same
as the domain topology (see 3.2.1).

2. We further assume that B is first order, so, for every semiprime ring R, we can
assume that its reflection, K(R) is Γ(E), see Theorem 3.6.12.

3. We regard R ⊆ Γ(E) by identifying R with its image, under ν : R // Γ(E).

4. Unless otherwise specified, a reference to the topology on Spec(R) refers to the
domain topology.

3.9.1. Definition. Let ζ in Γ(E) and r ∈ R and P ∈ Spec(R) be given. We will abuse
notation by saying that ζ(P ) = r when ζ(P ) = r + P (the image of r in the stalk R/P ).

Let U ⊆ Spec(R) be closed in the patch topology. We say that ζ ∈ Γ(E) is grounded
on U if for every P ∈ U , there exists r ∈ R such that ζ(P ) = r.

We further say that ζ is uniformly grounded on U if there exists r ∈ R such that
ζ(P ) = r for all P ∈ U . Note that ζ is uniformly grounded on Spec(R) if and only if
ζ ∈ R. In view of our identification of R with a subring of Γ(E), this means that ζ = ν(r)
for some r ∈ R.

3.9.2. Definition. Let ζ ∈ Γ(E) be given. We say that U = {U1, . . . , Un} is a grounded
representation of ζ on U = U1 ∪ · · · ∪ Un if each Ui is a patch-closed subset on which
ζ is uniformly grounded.
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3.9.3. Proposition. ζ ∈ Γ(E) has a grounded representation on the patch-closed set
U ⊆ Spec(R) if and only if ζ is grounded on U .

Proof. Assume the ζ is grounded on U . Then, for each P ∈ U , there exists rP ∈ R
such that ζ and the constant section ν(rP ) agree at P . Since global sections agree on
open sets, there is a neighbourhood UP of P on which ζ and ν(rP ) agree. Moreover, since
the domain topology has a base of patch-clopen subsets, we can assume that each UP is
patch-clopen. Letting {U1, . . . , Un} be a finite subcover of {UP ∩U | P ∈ U} gives us the
desired grounded representation.

The converse implication is immediate.

3.9.4. Proposition. Suppose ζ, τ ∈ Γ(E). If P ⊆ Q in Spec(R) and ζ(P ) = τ(P ), then
ζ(Q) = τ(Q).

Proof. Two sections agree on an open set, Theorem 3.4.3, Step 2. But every open set
in the domain topology is up-closed.

3.9.5. Theorem. Let ζ ∈ Γ(E) be given and let U = {U1, U2, . . . , Un}, with n ≥ 2, be a
grounded representation of ζ on U = U1 ∪ U2 ∪ · · · ∪ Un. Then there exists r ∈ R such
that for all sufficiently large w, U ′ = {U1 ∪ U2, U3, . . . , Un} is a grounded representation
of (ζ − r)w. Note that U ′ has cardinality one less than U .

Proof. Choose ri ∈ R such that ζ(P ) = ri for all P ∈ Ui. We may assume that r1 = 0;
otherwise we can replace ζ by ζ − r1. We will then prove that for all sufficiently large w
there is an aw ∈ R such that ζw(P ) = aw for all P ∈ U1 ∪ U2 from which it will easily
follow that U ′ is a grounded representation of ζw on U .

For i = 1, 2, let Ji =
⋂
{P | P ∈ Ui}. We claim that rw2 ∈ J1 + J2 for all sufficiently

large w. This is equivalent to showing that the image of r2 belongs to every prime of
R/(J1 + J2) or equivalently, that r2 belongs to every prime of R that contains both J1
and J2.

So suppose that Q is such a prime. By Proposition 2.2.22, there exist P1 ∈ U1 and
P2 ∈ U2 with P1 ⊆ Q and P2 ⊆ Q. But ζ(P1) = r1 = 0 which implies that ζ(Q) = 0 by
the preceding proposition. Similarly ζ(P2) = r2 which implies that ζ(Q) = r2 = 0 and
thus r2 ∈ Q, as claimed. For sufficiently large w, we can write rw2 = aw + bw with aw ∈ J1
and bw ∈ J2.

If P ∈ U1, we have that 0 = ζw(P ) = aw since aw ∈ J1 ⊆ P . If P ∈ U2, then
ζw(P ) = aw + bw = aw since bw ∈ J2 ⊆ P and so we see that ζw = aw on all of U1 ∪U2 as
required.

3.9.6. Corollary. Suppose that ζ ∈ Γ(E) is grounded on all of Spec(R). Suppose also
that R has the property that ζk, ζk+1 ∈ R implies ζ ∈ R. Then ζ ∈ R.

Proof. By Proposition 3.9.3, there exists U = {U1, U2, . . . , Un} which is a grounded
representation of ζ on Spec(R). We proceed by induction on n, the cardinality of U . If
n = 1 then it is immediate that ζ ∈ R. Assume that the result holds whenever ζ has a
grounded representation on Spec(R) of cardinality n. Let U be a grounded representation
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of ζ on Spec(R) of cardinality n+ 1. Then by the above theorem, we see that there exists
r ∈ R such that (ζ − r)w, for sufficiently large w, has a grounded representation of
cardinality n. By our induction hypothesis, (ζ − r)w ∈ R for large enough w, which
implies, for large k, that (ζ − r)k, (ζ − r)k+1 ∈ R which implies ζ − r ∈ R, which implies
ζ ∈ R.

3.9.7. Proposition. Let n > 1 and k > 1 be relatively prime integers. Suppose that ζ
is a global section such that ζ(P ) ∈ R for all primes P . Assume that ζn, ζk ∈ R implies
ζ ∈ R. Then ζw ∈ R for all sufficiently large w also implies ζ ∈ R.

Proof. Let w0 be the least integer such that ζw ∈ R for all w > w0, while ζw0 /∈ R and
so w0 > 0. But then ζnw0 , ζkw0 ∈ R and it follows from our hypothesis that ζw0 ∈ R,
which contradicts the choice of w0.

3.9.8. Corollary. Let n > 1 and k > 1 be relatively prime integers. Suppose that ζ is
a global section such that ζ(P ) ∈ R for all primes P . Assume that ζn, ζk ∈ R implies
ζ ∈ R. Then ζ ∈ R.

4. Limit closure of domains.

4.1. The background. In this section, we will characterize the limit closure of integral
domains in the category of commutative rings. An early version was done in [Kennison
1976] but the treatment in that paper suffers from being somewhat opaque and having
made a needless detour into ordered rings. Sifting out the proof for the case of integral
domains is difficult as some of it is in a general section and the rest in a special section
on domains. Here is a more direct approach, which expands on and corrects the brief
treatment of this material at the end of [Kennison & Ledbetter 1979].

In this section, we denote the limit closure of domains by Kdom and denote the reflector
by Kdom : SPR //Kdom. We briefly discussed this example in 2.3.2.4, in which we showed
that Kdom was Dom-invariant. Thus all the consequences of Theorems 2.3.1 and 3.6.12
are available. In particular, when R ⊆ S ⊆ K(R) then R // S is epic and essential, and
Kdom(S) = Kdom(R).

The purpose of this section is to characterize the category Kdom. We begin with some
things that will be needed in this section and the next.

4.1.1. Definition.

1. If R ∈ SPR , we will say that R is (2,3)-closed if whenever a3 = b2 ∈ R there is a
c ∈ R with c2 = a and c3 = b. The uniqueness of c follows from Proposition 4.1.6.

2. If R ∈ SPR , we will say that R is DL-closed if whenever a3 = b2 and if, moreover,
a is square mod every prime P ⊆ R, then there is a (unique) c ∈ R with c2 = a and
c3 = b.

After reading an earlier draft of this article David Dobbs pointed out that the notion
of being (2,3)-closed is known in the literature as seminormality.
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4.1.2. Notation. As in the previous section, we use ER (or just E if R is understood)
to denote the canonical sheaf. Note that the stalk of ER lying over P ∈ Spec(R) is R/P
as G(R/P ) = R/P . This implies that the results of 3.9 are valid for all sections ζ on a
Spec(R) or on any subset.

Here is the main result of this section:

4.1.3. Theorem. Let R be a commutative semiprime ring. Then the following are equiv-
alent:

DL-1. R is DL-closed.

DL-2. R is isomorphic, under the canonical map, to the ring of global sections of the
sheaf ER.

DL-3. R is isomorphic to a ring of global sections of sheaf whose stalks are domains.

DL-4. R is in the limit closure of the domains.

Proof. DL-1 +3 DL-2 : It is easily proven, when R is DL-closed, that if ζ ∈ K(R) then
ζ2, ζ3 ∈ R implies ζ ∈ R. It is immediate, using Corollary 3.9.8, that R = Kdom(R) in
light of the fact that for every prime P and every global section ζ, we have that ζ(P ) ∈ R.

DL-2 +3DL-1 : Assume that a, b ∈ R are such that a has a square root mod every prime
ideal and that a3 = b2. Then mod every prime ideal P , there exists a unique cP such that
mod P , we have c2P = a and c3P = b. Since N(c2P − a) ∩N(c3P − b) is open in the domain
topology, these equations hold in a neighbourhood of P and the elements c must agree
on overlaps by uniqueness. So they determine a section ζ. But by DL-2, ζ ∈ R and so R
satisfies DL-1.

DL-2 +3 DL-3 : Obvious.

DL-3 +3 DL-4 : This follows from 3.5.3.

DL-4 +3 DL-2 : This is 3.6.12.

4.1.4. Remark. For further conditions equivalent to being DL-closed, and involving kth
powers instead of squares, see Definition 6.1.9 and Lemma 6.1.10.

4.1.5. Proposition. An element a in a semiprime ring R is a square mod every prime
if and only if there are elements r1, . . . , rn ∈ R such that (a− r21) · · · (a− r2n) = 0.

Proof. One direction is obvious. To go the other way, suppose that a is a square mod
every prime. For each prime P , let rP ∈ R be such that a− r2P ∈ P . The sets N(a− r2P )
are open and cover Spec(R) so that Spec(R) is covered by finitely many of them, say
N(a−r2P1

), . . . , N(a−r2Pn
) whence (a−r2P1

) · · · (a−r2Pn
) lies in every prime. In a semiprime

ring, the only element that lies in every prime is 0.
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4.1.6. Proposition. If s2 = t2 and s3 = t3 in a semiprime ring R, then s = t.

Proof. This is immediate by cubing s − t. Alternatively, Proposition 5.1.2 in the next
section says that in a semiprime ring R if sn = tn and sk = tk for relatively prime k, n
then s = t.

4.1.7. Proposition. The limit closure of domains is an essentially algebraic category.

Proof. We adjoin to the equational theory of commutative rings a countable family of
partial operations whose domain is given equationally. We begin with a unary partial
operation ω whose domain is the set of all a such that a2 = 0, subject to the equations
ω(a) = a and ω(a) = 0. The commutative ring models of this partial operation are just
the semiprime rings. For each n > 0, define an (n + 2)-ary operation ωn whose domain
consists of all a, b, r1, . . . , rn such that (a − r21)(a − r22) · · · (a − r2n) = a3 − b2 = 0. The
operation ωn must satisfy the equations

ωn(a, b, r1, . . . , rn)2 = a and ωn(a, b, r1, . . . , rn)3 = b

It is clear from the preceding development that the models of this theory are the rings in
the limit closure of domains.

4.2. DL-extensions and a step-by-step construction of Kdom.

4.2.1. Definition.

1. If R ⊆ S in SPR , we will say that S is a simple (2,3)-extension of R if there is
an s ∈ S such that S = R[s] and s2, s3 ∈ R. We say that S is a (2,3)-extension
of R if for some ordinal α there is an ordinal-indexed sequence S0 ⊆ S1 ⊆ S2 · · · ⊆
· · ·Sω ⊆ · · · ⊆ Sα such that:

(a) R = S0;

(b) Sβ+1 is a simple (2,3)-extension of Sβ for each β < α;

(c) if β ≤ α is limit ordinal, then Sβ =
⋃
γ<β Sγ; and

(d) S = Sα.

A field is (2,3)-closed—just let c = b/a except when a = b = 0—and then a product
of fields is also (2,3)-closed. Since a semiprime ring is embedded in a product of
fields, it is easy to see that R is (2,3)-closed if and only if it has no proper (2,3)-
extension.

2. If R ⊆ S in SPR , we will say that S is a simple DL-extension of R if it is a
simple (2,3)-extension by the element s ∈ S and if, moreover, s is a square mod P
for every prime ideal P ⊆ R. We say that S is a DL-extension of R if there is an
ordinal-indexed sequence of simple DL-extensions from R to S, as above. Similarly
to the (2,3) case, an SPR is DL-closed if it has no proper DL-extension.
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4.2.2. Proposition. If S is a (2,3)-extension of R, then the first four of the statements
below hold and if it is a DL-extension, then all five do.

1. The inclusion R �
� // S is integral.

2. The inclusion R �
� // S is an epimorphism in SPR .

3. The induced map Spec(S) // Spec(R) is an order isomorphism.

4. The induced map Spec(S) // Spec(R) is a homeomorphism in the patch topology
and the domain topology.

5. If P ⊆ R is prime and P ] ⊆ S is the unique prime lying above P , then the canonical
map R/P // S/P ] is an isomorphism.

Proof. Since a DL-extension is also a (2,3)-extension we may prove the first four for
(2,3)-extensions.

1. A simple (2,3)-extension is obviously integral and the end of an ordinal sequence of
integral extensions is integral.

2. For a simple (2,3)-extension, it follows from the uniqueness of s that the inclusion
is an epimorphism and the general case follows by transfinite induction.

3. Since a (2,3)-extension is integral Proposition 2.2.25 applies here.

4. For the patch topology, which is compact and Hausdorff, this is clear. For the
domain topology it follows from 2.2.21.

5. If S = R[s] is a simple DL-extension, then S/P ] is generated by R/P and the image
of s. But since s has a square root in R/P , that image is already there. The case
of a general DL-extension follows by transfinite induction.

4.2.3. Theorem. Let R be a commutative semiprime ring and R �
� // Γ(ER) be the ad-

junction homomorphism.

1. The rings R and Γ(ER) have the same Krull dimension.

2. The inclusion R ⊆ Γ(ER) induces an isomorphism on the set of idempotents.

3. The inclusion R ⊆ Γ(ER) is the inclusion into a ring of quotients in the sense of
[Lambek (1986)] and is therefore an essential extension of rings.

4. Every artinian ring is DL-closed.
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Proof.

1. This is immediate since, by Proposition 4.2.2.3, they have isomorphic prime ideal
lattices.

2. This will follow if we show that there is a 1-1 correspondence between idempotents in
R and clopens in the domain topology on Spec(R). In fact, if e ∈ R is idempotent,
then Spec(R) = N(e) ∪ N(1 − e) is a disjoint union of open sets. Conversely, if
Spec(R) = Y ∪Z is a disjoint union of open sets, let I =

⋂
P∈Y P and J =

⋂
Q∈Z Q.

Then I ∩ J = 0 since it is the intersection of all the primes of the semiprime ring
R. If M were a prime ideal of R that contains I + J , then it would follow from
2.2.22 that some prime P ∈ Y is contained in M and some prime Q ∈ Z. Since
open sets in the domain topology are up-closed, this implies that M ∈ Y ∩Z which
contradicts the disjointness of Y and Z. Thus R = I + J . Write 1 = e + d with
e ∈ I and d ∈ J . Then e = e2 + ed = e2 since ed ∈ I ∩ J and similarly d2 = d.

3. A little background is needed here. See [Lambek (1986), Chapter 2] for details. An
ideal D ⊆ R is called dense if its annihilator, denoted ann(D) = annR(D), is 0.
Clearly, any ideal containing a dense ideal is dense. If R ⊆ S and s ∈ S, we denote
by s−1R = {r ∈ R | sr ∈ R}. Proposition 2.6 of [Lambek (1986)] shows that the
embedding R �

� // S is an embedding into a complete ring of quotients if and only
if for all 0 6= s ∈ S, the ideal s−1R is a dense ideal of R and s(s−1R) 6= 0. This
condition clearly implies that S is an essential ring extension of R.

In section [Lambek (1986), Proposition 1 of Section 2.4], it is shown that if R is
semiprime, the complete ring of quotients Q(R) is regular. By 2.3.1.8, Kdom(R) is
a subring of Q(R), which means that Γ(ER) is a ring of quotients of R and hence
an essential ring extension.

The same considerations show that Kdom(R) is a subring of the epimorphic hull of
R, the (regular) intersection of all the regular subrings of Q(R) that contain R (see
[Storrer 1968]).

4. By Wedderburn’s structure theorem on artinian rings, a commutative semiprime
artinian ring is a product of fields.

4.3. Permanence properties of DL-closed rings. The class of rings which are DL-
closed is closed under products and equalizers because they are a reflective subcategory
of C . They are evidently not closed under homomorphic images or even semiprime homo-
morphic images since free commutative rings are, by the following theorem, DL-closed.
DL-closed rings do have some other permanence properties however.

4.3.1. Theorem. The ring of polynomials in any set of variables over a DL-closed ring
is again DL-closed.
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Proof. Let E //Spec(R) be the canonical sheaf for R associated with Adom, so that the
stalk over each prime ideal P of R is R/P . We will construct a sheaf E[x] // Spec(R)
whose stalk over P is R/P [x]. Given a polynomial a(x) ∈ R[x] and U ⊆ Spec(R), which
is open in the domain topology, we define a basic open subset (a(x), U) of E[x] to consist
of all polynomials aP (x) ∈ R/P [x] where P ∈ U and aP (x) is the image of a(x) under the
obvious map R[x] // (R/P )[x].

We claim that this defines a base for a topology on E[x] and, moreover, that the
resulting map E[x] // Spec(R) is a sheaf map (that is, a local homeomorphism). The
main step in proving this claim is to show that given a(x), b(x) ∈ R[x] and open subsets
U, V ⊆ Spec(R), there exist c(x) ∈ R[x] and an open set W ⊆ Spec(R) such that
(a(x), U) ∩ (b(x), V ) = (c(x),W ). Choose n so that a(x), b(x) both have degrees no
bigger than n (for this purpose, we may suppose that the degree of the zero polynomial
is −1). Write a(x) =

∑
0≤i≤n αix

i and b(x) =
∑

0≤i≤n βix
i. Then, for 0 ≤ i ≤ n, let

Wi = N(αi − βi) be the open subset of Spec(R) consisting of all primes P for which
αi = βi modulo P . Let W = U ∩ V ∩

⋂
0≤i≤nWi. Letting c(x) be either a(x) or b(x),

then we have (a(x), U) ∩ (b(x), V ) = (c(x),W ). The remaining steps in showing that
E[x] // Spec(R) is a local homeomorphism are now straightforward.

We next claim that R[x] is isomorphic to Γ(E[x]). Let γ ∈ Γ(E[x]) be given. At each
prime ideal P of R we can find a polynomial aP (x) ∈ (R/P )[x] such that γ(P ) = aP (x)
in a neighbourhood of P . By compactness, there is a finite cover of Spec(R) by open
sets Uj such that for each j there exists aj(x) ∈ R[x] such that aj(x) and γ have the
same restriction to Uj. Now choose n such that every aj(x) has degree no bigger than
n. Write aj(x) =

∑
0≤i≤n ri,jx

i. Note that E // Spec(R), the canonical sheaf for R, is
easily shown to be an open subsheaf of E[x]. It follows that, for a fixed i with 0 ≤ i ≤ n,
the coefficients ri,j form a global section with values in E // Spec(R), hence, as R is
DL-closed, there exists ri ∈ R such that for P ∈ Uj we have ri = ri,j modulo P . It follows
that γ =

∑
0≤i≤n rix

i which is in R[x]. Therefore, by Theorems 3.5.3 and 4.1.3, we have
that R[x] is DL-closed.

It immediately follows that the polynomial ring in any finite set of indeterminates is
DL-closed. For the general case, one easily verifies that the category DL-closed rings is
closed under filtered colimits. That fact is generally true for models of finitary essentially
algebraic theories.

4.3.2. Theorem. Let R be DL-closed and suppose that S ⊆ R is a multiplicatively closed
subset that contains no zero divisors. Then S−1R is also DL-closed.

Proof. Suppose that a/s, b/t, r1/u1, . . . , rn/un are elements of S−1R such that (a/s −
(r1/u1)

2) · · · (a/s − (rn/un)2) = 0 and (a/s)3 = (b/t)2. Let v = stu1 · · ·un, a′ = (v2/s)a,
b′ = (v3/t)b, and, for i = 1, . . . , n, r′i = (v/ui)ri. Note that these new elements are
all elements of R since the denominator is one factor of the numerator. Then from
a′ − r′2i = v2a/s− v2r2i /u2i = v2(a/s− r2i /u2i ), we see that (a′ − r′21 ) . . . (a′ − r′2n ) = 0 and
a′3 = v6a3/s3 = v6b2/t2 = (v3b/t)2 = b′2 so that there is a c ∈ R such that a′ = c2 and
b′ = c3. Thus v2a/s = c2 or a/s = (c/v)2, while v3b/t = c3 or b/t = (c/v)3, as required.
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4.4. Examples.

4.4.1. Proposition. Every von Neumann regular ring is DL-closed.

Proof. It is well known that every von Neumann regular ring is in the limit closure of
fields, hence in the limit closure of domains.

4.4.2. Example. It was proved in [Niefield & Rosenthal 1987] that a commutative ring
R is a Pierce sheaf of integral domains if and only if the annihilator of each element is
generated by a set of idempotents. It follows from Theorem 4.1.3 that these rings are DL-
closed. It also follows that commutative semiprime Baer rings are DL-closed, which means
that if we adjoin to a commutative semiprime ring R the idempotents of its complete ring
of quotients, [Lambek (1986)], we get a DL-closed ring. Thus although the reflection of R
cannot adjoin idempotents it is contained in a subring of the complete ring of quotients
of R obtained by adjoining idempotents.

4.4.3. Example. The notion of a quasi-rational ring is introduced in Example 3.7.3 where
it is shown that Kqrat, the limit closure of Aqrat, the class of quasi-rational domains, has
the canonical sheaf representation property. Here we claim that the semiprime ring R is
in Kqrat if and only if R is quasi-rational and DL-closed.

Proof. The necessity that R be quasi-rational is shown in 3.7.3 and the necessity that
R be DL-closed is obvious. Conversely, suppose that R is quasi-rational and DL-closed.
Then R is isomorphic to the ring of global sections of its canonical Adom sheaf. But since
R is quasi-rational, it is obvious that every quotient ring R/P , for P a prime ideal of
R, is quasi-rational, and therefore the canonical Adom sheaf coincides with the canonical
Aqrat sheaf. So R is isomorphic to the ring of global sections of its canonical Aqrat sheaf,
which implies that R ∈ Kqrat. Example 4.4.5 shows that a quasi-rational ring need not
be DL-closed.

The following is an immediate consequence of Example 5.3.9.

4.4.4. Example. For any topological space X, the ring C(X), respectively C(X,C), of
continuous real-valued, respectively complex-valued, functions on X is DL-closed.

On the other hand, we have:

4.4.5. Example. The ring C1(R) of continuously differentiable functions in C(R) is not
DL-closed.

For let f be the function that is x2 for x > 0 and 0 otherwise. Then clearly f ∈ C1(R).
We have that (f − 02)(f − x2) = 0 and f 3 has a square root, namely xf ∈ C1(R). But no
square root of f can have a derivative at 0.

Therefore the following is slightly surprising.
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4.4.6. Example. The ring C∞(R) of infinitely differentiable functions R // R is DL-
closed.

We let A = C∞(R) denote the ring of all C∞ functions from R to R. To show that
A is in the limit closure of all domains it suffices, by Theorem 3.5.3, to show that A is
isomorphic to the ring of global sections of a sheaf of domains. We first establish some
notation.

4.4.7. Notation. In the list below, we assume f ∈ A.

1. For f ∈ A and n ∈ N, we let f (n) denote the nth derivative of f (with f (0) = f).

2. We say that f is flat at r ∈ R if f and all its derivatives vanish at r.

3. For each r ∈ R, we denote by Pr ⊆ A the set of all functions that are flat at r.

4. We denote by f [ the set of r ∈ R at which f is flat.

5. If u is an ultrafilter on R, we let Pu denote the set of all f such that f [ ∈ u. We
note that if u is the principal ultrafilter at r ∈ R then Pu = Pr. We will show below
that Pu (and hence Pr) is a prime ideal of A.

6. We let X denote the set of all pairs (r,u) where r ∈ R and u is an ultrafilter on R
which converges to r.

7. For each r ∈ R, we let r̂ ∈ X denote the pair (r, (r)) where (r) is the principal
ultrafilter generated by r.

8. The elements of the form r̂ will be called the principal elements of X.

9. For all U ⊆ R we let Û ⊆ X denote the set {r̂ | r ∈ U}.

4.4.8. Proposition. For any ultrafilter u, the set Pu is a prime ideal of A.

Proof. We begin by showing that Pr is prime for r ∈ R. It is clearly an ideal. So let
f, g ∈ A such that f /∈ Pr and g /∈ Pr. Suppose m,n ∈ N are least indices such that
f (m)(r) 6= 0 and g(n)(r) 6= 0. Then our supposition shows that in the computation of

(fg)(m+n)(r) =
m+n∑
i=0

(
m+ n

i

)
f (i)(r)g(m+n−i)(r)

every term is 0 except for
(
m+n
m

)
f (m)(r)g(n)(r) and that one is non-zero.

Now suppose that u is an ultrafilter. One easily sees that (f + g)[ ⊇ f [ ∩ g[ which
belongs to u assuming both sets do. The preceding paragraph shows that (fg)[ = f [ ∪ g[
and if it belongs to u, then either f [ ∈ u or g[ ∈ u.
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4.4.9. Lemma. Suppose the ultrafilter u converges to r ∈ R. Then Pu ⊆ Pr.

Proof. If f ∈ Pu, then f [ ∈ u. If n(r) is the neighbourhood filter of r, then n(r) ⊆ u.
Thus if V ∈ n(r), then V ∩ f [ ∈ u. That means that every neighbourhood of r contains a
point at which f is flat. But all the derivatives of a C∞ function are continuous and thus
they all vanish at r.

4.4.10. Definition.

1. We topologize X so that W ⊆ X is open if whenever (r,u) ∈ W , then there is a

U ∈ u such that M(r,u)(U) = {(r,u)} ∪ {r̂} ∪ Û ⊆ W . Note that each r̂ ∈ X is an
isolated point, that is the singleton set {r̂} is open. But {r̂} is not closed because its
closure is the set of all points of the form (r,u).

2. We define a set F and a map π : F // X such that for all (r,u) ∈ X we have
π−1((r,u)) = A/Pu.

3. For each f ∈ A we define a global section σ(f) : X // F so that σ(f)((r,u)) is the
image of f in A/Pu.

4. We give F the largest topology for which σ(f) is continuous for each f ∈ A.

We aim to prove that A is isomorphic (in the obvious way) to the ring of global sections
of F . We first need some lemmas:

4.4.11. Lemma. For each (r,u) ∈ X, sets of the form {M(r,u)(U) | U ∈ u} form a
neighbourhood base at the point (r,u). It readily follows that F is a sheaf over X.

Proof. We must first show that M(r,u)(U) is open in the topology on X. But this readily
follows from the observation that all elements of M(r,u)(U) except (r,u) are principal
elements which are isolated.

The main step in showing that F is a sheaf over X is to observe that the when two
global sections σ(f), σ(g) agree at a point (r,u), then there exists U ∈ u such that they
agree on M(r,u)(U). The remaining details are straightforward.

4.4.12. Lemma. For each r ∈ R, the ring A/Pr is isomorphic to the ring R[[x]] of formal
power series in x with real coefficients.

Proof. Let t : A // R[[x]] be given by Taylor’s formula t(f) =
∑

(f (n)(r)/n!)xn. It is
clear that the kernel of t is Pr. It is surjective by [Borel (1895)].

4.4.13. Notation. If ζ : X // E is a global section of E, then for r ∈ R, we can,
by Lemma 4.4.12, consider ζ(Pr) to be a power series in R[[x]]. Then write ζ(Pr) =∑

n≥0 an(r)xn. Let ζn(r) = n!an(r). This assigns to each global section ζ a sequence
ζ0, ζ1, . . . of functions R // R.

4.4.14. Lemma. Let ζ ∈ Γ(F ) be given. Let (ζ0, ζ1, . . . , ζn, . . .) be the corresponding se-
quence of functions. Then for each n ≥ 0 the function ζn+1 is the derivative of ζn.
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Proof. It suffices to show that, for each r ∈ R, the differential quotient (ζn(r + ∆r) −
ζn(r))/∆r must approach ζn+1(r) as ∆r approaches zero (without actually being zero).
More precisely, along every non-principal ultrafilter u which converges to r the differential
quotient of ζn must converge to ζn+1(r). But we claim this follows as there must be an
f ∈ A such that ζ agrees with σ(f) on a neighbourhood of (r,u). This means that there
exists U ∈ u such that f (n)(s) = ζn(s) for all s ∈ U and f (n+1)(r) = ζn+1(r). Since the
differential quotient of f (n) approaches f (n+1)(r), the same is true of ζn on U and ζn+1(r).

4.4.15. Theorem. The ring A is DL-closed.

Proof. As noted before, it suffices to show that the canonical embedding A // Γ(F ),
which maps f ∈ A to σ(f) ∈ Γ(F ) is an isomorphism. Let ζ ∈ Γ(F ) be given. Then in
view of the above lemma, ζ0 is in C∞(R) and it is easily shown that ζ = σ(ζ0). It is also
obvious that the map A // Γ(F ) is an injection and an isomorphism.

5. Limit closure of integrally closed domains.

We remind the reader that in standard usage the phrase “integrally closed domain” does
not describe a domain that is integrally closed in every containing domain, but rather a
domain that is integrally closed in its field of fractions. We use the standard meaning
here.

In this section we will denote by Aic the category of integrally closed domains, by Kic

the limit closure of Aic, and by Kic : SPR //Kic the reflector.
We will characterize the rings in Kic but first we need some preliminary results.

5.1. Integrally closed domains and (n, k)-closures. The following result is well
known, but we include a proof.

5.1.1. Proposition. Recall that N, set of non-negative integers is a monoid under ad-
dition. A submonoid of N that contains a relatively prime pair of integers contains all
sufficiently large integers.

Proof. Denote the submonoid by S and suppose n, k ∈ S are relatively prime. Any
integer m (possibly negative) has a unique representation m = xn+yk with 0 ≤ x < k. In
fact, starting with any representation m = un+vk, let x = u−bu/kck and y = v+bu/kcn
(where bu/kc is the greatest integer that is less than or equal to u/k). Now suppose
m1,m2 are two integers such that m1 +m2 = nk−n−k and write them in the above form
m1 = x1n+y1k andm2 = x2n+y2k. Adding them, we get (x1+x2)n+(y1+y2)k = nk−n−k
or (x1 + x2 + 1)n+ (y1 + y2 + 1)k = kn. Now 0 < x1 + x2 + 1 < 2k and must be divisible
by k since k and n are relatively prime. This implies that x1 + x2 + 1 = k and hence
that y1 + y2 + 1 = 0 which implies that one of them is negative and the other one isn’t.
It follows that one of m1,m2 ∈ S (and it is easily seen that the other one is not). In
particular, m2 < 0, we cannot have m2 ∈ S and so every m1 > nk− k− n belongs to S.
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The following proposition will be helpful.

5.1.2. Proposition. Suppose r, s are elements of a (semiprime) ring S and k, n are a
relatively prime pair of positive integers such that rk = sk and rn = sn. Then r = s.

Proof. It readily follows from the preceding that r` = s` for all sufficiently large integers.
Let m be the least integer for which it fails. In the expansion of (r − s)2m+1 each term
risj must have either i > m or j > m. In the first case, risj = si+j = ri+j and in the
second, risj = ri+j. The result is that (r − s)2m+1 coincides with the binomial expansion
of (r − r)2m+1 so (r − s)2m+1 = 0. But in a semiprime ring, this implies that r = s.

5.1.3. Definition. If n > 1 and k > 1 are a pair of relatively prime integers we say that
a commutative ring R is (n, k)-closed if, whenever r, s ∈ R satisfy rn = sk, then there
is a t ∈ R such that tk = r and tn = s. The uniqueness of t follows from the preceding
proposition.

If R ⊆ S, we say that R is (n, k)-closed in S if whenever s ∈ S is such that sn ∈ R
and sk ∈ R, then also s ∈ R.

We will say that R is absolutely (n, k)-closed if it is (n, k)-closed in every containing
semiprime ring.

5.1.4. Proposition. If n and k are relatively prime integers, a ring R is (n, k)-closed if
and only if it is absolutely (n, k)-closed.

Proof. Suppose R ⊆ S and R is (n, k)-closed. Suppose s ∈ S is such that sn, sk ∈ R.
Then (sk)n = (sn)k so there is a t ∈ R with tn = sn and tk = sk. Since S is semiprime, it
follows that t = s ∈ R. For the converse, simply embed R into a product of fields, which
certainly is (n, k)-closed.

5.1.5. Lemma. Let R be a semiprime ring. Then the following conditions are equivalent:

1. R is (2,3)-closed.

2. R is (n, k)-closed for some relatively prime pair n > 1, k > 1.

3. Whenever R �
� // S embeds R into a semiprime ring, then s` ∈ R for all sufficiently

large ` implies s ∈ R.

4. R is (n, k)-closed whenever n > 1 and k > 1 and gcd(n, k) = 1.

Proof. (1) +3 (2) and (4) +3 (1) are immediate.
(2) +3 (3): Assume that s` ∈ R for all sufficiently large ` and suppose that m is the least
integer such that sm /∈ R. Then a = smk and b = smn are both in R and an = bk. By
(n, k)-closure, there is a c ∈ R such that ck = a = smk and cn = b = smn. If we write
t = sm, then ck = tk and cn = tn, whence by Proposition 5.1.2, we conclude that c = t,
which contradicts the hypothesis that t = sm /∈ R.

(3) +3 (4): If R �
� //S is an embedding into a semiprime ring and s ∈ S is such that sk ∈ R

and sn ∈ R, then Proposition 5.1.1 implies that s` ∈ R for all sufficiently large ` and
hence from (3) that s ∈ R.
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5.1.6. Lemma. Every integrally closed domain is (2,3)-closed.

Proof. Let D be integrally closed with field of fractions F . Let r, s ∈ D such that
r3 = s2. We can leave aside the trivial case that r = 0. Otherwise, α = s/r ∈ F satisfies
α2 = r, α3 = s and is a root of x2 − r and therefore lies in D.

5.1.7. Example. The converse of the preceding is false. Let Z[i][x] denote the ring of
polynomials over the Gaussian integers. It is a UFD by standard theorems. Let R ⊆
Z[i][x] be the subring consisting of the polynomials whose constant term is real. Since
i = ix/x is integral over R, R is not integrally closed in its field of fractions. But in the
following diagram,

Z Z[i]//

R

Z
��

R Z[i][x]// Z[i][x]

Z[i]
��

in which the vertical maps are evaluation at x = 0, R is a pullback of three UFDs and so
is (2,3)-closed.

Another example is the domain constructed in 6.3.1.

5.1.8. Proposition.R is absolutely (2,3)-closed if and only if it is (2,3)-closed in Kic(R).

Proof. Suppose R �
� // S is given and s ∈ S is such that s2 = a ∈ R and s3 = b ∈ R. Let

R[c] = R[x]/〈x2 − a, x3 − b〉 with c the image of x. Since c2 = a = s2 and c3 = b = s3, we
see that the inclusion of R into S can be extended to R[c] by the map that sends c 7→ s.
Moreover, any map R //D with D an integrally closed domain can be extended uniquely
to R[c] by the previous proposition. So R //R[c] has the unique extension property with
respect to all A ∈ Aic. But this implies that R //R[c] has the unique extension property
with respect to all T ∈ Kic (as the class of all objects with respect to which R // R[c]
has the unique extension property is limit-closed). It follows that Kic(R[c]) coincides with
Kic(R) and we can regard R ⊆ R[c] ⊆ K(R). But if R is (2,3)-closed in Kic(R), it follows
that c ∈ R.

5.2. The main theorem. The main theorem of this section states that a semiprime
ring is in Kic if and only if it is (2,3)-closed.

Before stating and proving this theorem, we need some definitions and lemmas.

5.2.1. Notation. As usual, we identify R/P with its image in Kic(R/P ). If ζ ∈ Kic(R)
and if P is a prime ideal of R, we let ζP denote the image of ζ in Kic(R/P ). We know
from Theorem 2.3.1.15, together with the obvious fact that Aica ⊆ Aic that Kic is Dom-
invariant and hence by Theorem 3.6.12 that Kic(R) is isomorphic to Γ(E) where E = ER.
So each ζ ∈ Kic(R) is associated with a global section, also denoted by ζ in Γ(E). In this
case, ζP coincides with ζ(P ), the value of the global section ζ at the prime ideal P .



282 MICHAEL BARR, JOHN F. KENNISON, R. RAPHAEL

5.2.2. Definition. Recall from 3.9.1 that ζ is grounded on U ⊆ Spec if ζP ∈ R/P for all
P ∈ U . If ζ is grounded over all of Spec(R) we will simply say it is grounded. If ζ is
not grounded (on U) we will say that it is ungrounded (on U).

5.2.3. Lemma. Let R be a semiprime ring that is (2,3)-closed. If ζ ∈ Kic(R) is such that
ζ2 ∈ R and ζ3 ∈ R, it follows that ζ ∈ R.

Proof. This immediately follows from the fact that R is (2,3)-closed in Kic(R).

5.2.4. Corollary. Let R be a semiprime ring which is (2,3)-closed and ζ ∈ Kic(R) be
given. It follows that:

1. if ζw ∈ R for all sufficiently large w, then ζ ∈ R;

2. if ζ is grounded, then ζ ∈ R.

Proof. These results follow from Lemma 5.1.5, Proposition 3.9.7, and Corollary 3.9.8.

Outline of the proof of the Main Theorem. We recall that Aic denotes the class
of integrally closed domains, and Kic denotes its limit closure. It follows from Theorem
2.3.1.15, and the obvious fact that Aica ⊆ Aic ⊆ Kic that we are in the Dom-invariant case
so that all the equivalent properties in Theorem 2.3.1 are available to us. We will start
the proof by showing that Aic is first order, so, by Proposition 3.1.2, we can construct the
associated canonical sheaf. By 3.6.12, the reflection of a ring into Kic is isomorphic to
Γ(E), the ring of global sections of the canonical sheaf.

As usual, we regard R ⊆ Γ(E) by identifying r ∈ R with the “constant” global section
ν(r) ∈ Γ(E). The main part of the proof will be showing that if R is a (2,3)-closed
semiprime ring, then every ζ ∈ Γ(E) is in R.

If ζ ∈ Γ(E) is grounded, then, as shown in the corollary above, ζ ∈ R. What if ζ
is ungrounded at some prime ideals? We will use an inductive technique starting with
the largest prime ideals then working our way down to the smaller primes. In fact, if P
is a maximal ideal, then ζ is automatically grounded at P , because we can always find
r, s ∈ R such that ζ(P ) = r/s with s /∈ P . But when P is maximal, s /∈ P implies that s
has an inverse, mod P , so that r/s = rs−1 (mod P )).

If P is not quite maximal, but big enough so that if ζ(P ) = r/s then for any ideal Q
with P ⊆ Q and s ∈ Q, we have already proven that ζ is grounded at Q. Then, using
Corollary 3.9.8 and Lemma 5.2.11 below, we will prove that we can reduce the problem
of whether ζ ∈ R to the equivalent problem of whether (ζ − c)m and (ζ − c)m+1 are both
in R (for c ∈ R). We can solve this problem as these powers of ζ − c will be grounded
at such ideals P . More precisely, we will use induction on the “depth” of the ideal P
to complete the proof. The “depth” is essentially a measure of the size of P with the
maximal ideals being of maximal depth. The induction works by considering, in effect,
an ideal P of greatest depth for which ζ is not grounded at P .

The exact notion of depth is related to the concept of a fractional cover—see Definition
5.2.9). The idea is that for a given prime ideal P , we can write ζ(P ) = r/s (mod P ))
for r, s ∈ R. Then there is a neighbourhood U of P such that for all P ′ ∈ U , we have
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ζ(P ′) = r/s (mod P ′). We cover Spec(R) by finitely many such U . For technical reasons,
to make our arguments work, we need to make the cover “gridded” (see Definition 5.2.14).

5.2.5. Proposition. The class Aic of all integrally closed domains is first order.

Proof. The domain D is integrally closed if and only if whenever c/d is a fraction, with
c, d ∈ D and d 6= 0, such that c/d is a root of a monic polynomial p(x) ∈ D[x], then
c/d ∈ D (meaning that there exists e ∈ D with de = c). If n is the degree of p(x) then
this condition is first order; we will denote by Cn the sentence:

(∀an−1, an−2, . . . , a0, c, d).(cn + cn−1dan−1 + · · ·+ a1cd
n−1 + a0d

n) = 0 +3 ∃e.(de = c)

It follows that D is integrally closed if and only if D satisfies Cn for each n > 1.

5.2.6. Remark. By the above proposition, and 3.1.2, the canonical sheaf associated with
the limit closure of Aic exists for every semiprime ring. In what follows, we let R be a
given semiprime ring and we let E = ER be the associated canonical sheaf. As usual, we
regard R ⊆ Γ(E), by identifying each r ∈ R with the global section ν(r) ∈ Γ(E). By
3.6.12, we can identify Kic(R) with Γ(E).

5.2.7. Notation. For ζ ∈ Γ(E) and r, s ∈ R, we write ζ(P ) = r/s for P a prime ideal of
R if s /∈ P and ζ(P ) = qP (r)/qP (s) where qP : R //R/P is the quotient map.

5.2.8. Definition. Let R be a semiprime ring and let ζ ∈ Γ(E) be given.
If r, s ∈ R we say that (r, s) fractionally represents ζ at the prime ideal P ∈

Spec(R) if ζ(P ) = r/s.
We say that U ⊆ Spec(R) is fractional for ζ if there exist r, s ∈ R such that (r, s)

fractionally represents ζ at P for every P ∈ U .

5.2.9. Definition. Let ζ ∈ Γ(E) be given where R is a semiprime ring. Then a frac-
tional cover for ζ is a finite cover of Spec(R) by subsets which are clopen in the patch
topology and fractional for ζ.

5.2.10. Proposition. Every ζ ∈ Γ(E) has a fractional cover.

Proof. For every P ∈ Spec(R), there is some r, s ∈ R such that ζ(P ) = r/s and s /∈ P .
Then (r, s) represents ζ on N(sζ−r)∩Z(s). Clearly we can cover Spec(R) by a collection
of such sets. Since the patch topology is compact, this cover has a finite subcover.

5.2.11. Lemma. Suppose ζ ∈ Γ(E) and r, s ∈ R are such that s 6= 0 and sζ = r in Γ(E).
Assume that, for all primes P ∈ R, s ∈ P implies ζ ∈ P ∗. Then there exist t ∈ R and a
positive integer m such that ζm = st and ζm+1 = rt.
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Proof. We start by claiming that ζn ∈ sR[ζ] for some positive integer n. This is equiva-
lent to saying that ζ is in every prime ideal of R[ζ] that contains s. By Theorem 2.3.1.11
and Proposition 2.2.16 the prime ideals of R[ζ] are all of the form P ∗ ∩ R[ζ] for a prime
P ⊆ R. By hypothesis, it easily follows that s ∈ P ∗ ∩ R[ζ] implies ζ ∈ P ∗ ∩ R[ζ]
which proves the claim. Since ζn ∈ sR[ζ], there is a polynomial g(x) ∈ R[x] such that
ζn = sg(ζ). Let f(x) ∈ R[x] be a monic polynomial satisfied by ζ (Theorem 2.3.1.13)
and suppose that f has degree w. Then ζnw = swg(ζ)w. Let h(x) be the remainder
when g(x)w is divided by f . Then the degree of h is at most w − 1, which implies that
sw−1h(ζ) = sw−1h(r/s) ∈ R. If we denote this element by t, this implies that ζnw = st
and then that ζnw+1 = ζst = rt since ζs = r.

5.2.12. Notation.

1. For ζ ∈ Γ(E), we say that σ ∈ Γ(E) is a polynomial in ζ if σ ∈ R[ζ], the subring
of Γ(E) generated by R ⊆ Γ(E) and ζ.

2. If U ⊆ Spec(R) we let U↑ denote the up closure of U so that U↑ = {Q | ∃P ∈
U. P ⊆ Q}.

5.2.13. Lemma. Let ζ ∈ Γ(ER) be given, where R is (2,3)-closed. Then ζ ∈ R if there
exists a patch-closed subset U ⊆ Spec(R) such that:

1. U is fractional for ζ with ζ(P ) = r/s when P ∈ U .

2. ζ is grounded on U↑ ∩N(s).

3. Whenever σ ∈ Γ(E) is a polynomial in ζ then σ ∈ R if and only if σ is grounded
on U .

Proof. We will actually prove that σ ∈ R whenever σ is a polynomial in ζ. Let I =⋂
{P | P ∈ U} and let R = R/I. Note that R is semiprime that we can regard Spec(R)

as the set of prime ideals Q ∈ Spec(R) for which I ⊆ Q. By Proposition 2.2.22, we can
regard Spec(R) as U↑. It easily follows that U↑ is compact (in the patch topology and
therefore patch-closed) as it is Spec(R) and the convergence of ultrafilters is preserved as
we pass from Spec(R) to Spec(R).

Let σ be a given polynomial in ζ. Let d be the degree of this polynomial. Since
ζ(P ) = r/s for all P ∈ U , it follows that there exists r1, s1 ∈ R with σ(P ) = r1/s1
for all P ∈ U . Moreover, we can take s1 = sd. It follows that N(s1) = N(s). Let
W = U↑ ∩N(s) = U↑ ∩N(s1)

Clearly σ is grounded on W because ζ is grounded there. It follows by Proposition
3.9.3 that σ has a grounded representation U = {U1, . . . , Un} on W . We proceed by
induction on n, the cardinality of the representing set U . If n = 1, then there exists
a ∈ R such that σ and ν(a) have the same restriction to W . We may as well assume that
a = 0 otherwise we can replace σ by σ − a. This means that σ, the restriction of σ to U↑

satisfies the hypotheses of Lemma 5.2.11, applied to R, so there exists a positive integer
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m and t ∈ R such that σm = s1t and σm+1 = r1t on W1. But this clearly implies that σm

and σm+1 are grounded on U↑ so, by the above hypothesis, we have σm and σm+1 are in
R. Since R is (2,3)-closed, this implies that σ ∈ R.

Finally, suppose we have proven that any polynomial σ in ζ is in R whenever it has a
grounded representation on W of cardinality n. Let U = {U1, . . . , Un+1} be a grounded
representation for σ, of cardinality n + 1. Then by Theorem 3.9.5, there exists U ′, a
grounded representation of cardinality n for sufficiently large powers of σ − b, where
b ∈ R. By our induction hypothesis, we see that these large powers of σ − b are in R so,
as R is (2,3)-closed, we have σ − b ∈ R so σ ∈ R.

We need the following technical definition.

5.2.14. Definition. Let R and ζ ∈ Γ(E) and let C be a fractional cover for ζ. By an
assignment for C , we mean a choice, for each U ∈ C , of a pair rU , sU ∈ R so that
ζ(P ) = rU/sU for all P ∈ U (note that this implies that sU /∈ P for all P ∈ U).

Suppose we are given an assignment for the fractional cover C . Let S = {sU | U ∈ C }.
The assignment is gridded if whenever the prime ideals P,Q are in the same member
of C , then S ∩ P = S ∩ Q. Equivalently, if whenever U, V ∈ C are given, then either
U ⊆ N(sV ) or U ⊆ Z(sV ).

By a gridded fractional cover for ζ or GFC for ζ, we mean a fractional cover
together with a specified gridded assignment.

5.2.15. Notation. Let C be a GFC. Then the set S = {sU | U ∈ C }, mentioned above,
is called the denominator set for the GFC.

5.2.16. Proposition. Every fractional cover can be refined to a GFC.

Proof. Let C be a fractional cover for ζ ∈ Γ(E). Write C = {U1, U2, . . . , Um}. For each
Ui ∈ C , choose (ri, si) so that ζ(P ) = ri/si for all P ∈ Ui. Say that G ⊆ Spec(R) is a
grid set if we can write G = A1 ∩ A2 ∩ . . . ∩ Am where each Ai is either N(si) or Z(si).
Form a new cover consisting of all sets of the form Ui ∩ G where G is a grid set. Assign
(ri, si) to each set of the form Ui ∩G. Then this cover, together with this assignment, is
easily seen to be a GFC for ζ.

Obviously, this process could, in principle, enlarge a cover by m sets into one by m2m

sets (actually somewhat less since Ui ∩N(si) = ∅).

5.2.17. Proposition. If C , together with a uniform assignment, is a GFC for ζ and if
f ∈ R[x] is a polynomial, then C is a GFC for f(ζ), when we modify the assignment in
the obvious way as indicated in the proof.

Proof. Suppose U ∈ C and write (r, s) for (rU , sU). Let n be the degree of the polynomial
f . Then to make C into a GFC for f(ζ), we have to assign (snf(r/s), sn) to U .
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5.2.18. Remark. Suppose that ζ ∈ Γ(E), f ∈ R[x], and C , are a GFC for ζ. We will
often say that C is also a GFC for f(ζ), without explicitly mentioning that we have
modified the assignment used for ζ to give us an assignment for f(ζ).

5.2.19. Definition. The element ζ ∈ Γ(E) has index k, denoted by k = ind(ζ), when k
is the least integer for which there is a GFC which contains exactly k elements at which
ζ is ungrounded. Evidently, a grounded element has index 0.

Let ζ ∈ Γ(E) have positive index and suppose that C is a GFC that realizes that index.
Let S = {sU | U ∈ C } be the denominator set. We say that ζ has depth n on U ∈ C
and write n = depU(ζ) if for every P ∈ U , the set S ∩ P has exactly n elements.

5.2.20. Lemma. Let ζ ∈ Γ(E) be ungrounded at P . Write ζ(P ) = r/s. Then there exists
a prime ideal Q with P ⊆ Q and s ∈ Q.

Proof. If not, then the image of s is non-zero in every prime ideal of R/P . This means
that s has an inverse, s1 modulo P , so ζ(P ) = rs1, contradicting the fact that ζ is
ungrounded at P .

5.2.21. Theorem. A semiprime ring is in the limit closure of all integrally closed domains
if and only if it is (2,3)-closed.

Proof. We note that the necessity of being (2,3)-closed is obvious because all integrally
closed domains are (2,3)-closed and the class of all (2,3)-closed semiprime rings is easily
seen to be closed under limits.

To prove the converse, let R be a (2,3)-closed, semiprime ring. Recall that E = ER is
the canonical sheaf for R and we are identifying Kic(R) with Γ(E). We let ζ ∈ Γ(E) be
given. We have to prove that ζ ∈ R.

The argument is by induction on ind(ζ). If ind(ζ) = 0, then ζ is grounded, and ζ ∈ R
by Corollary 5.2.4.

Now assume that ind(ζ) = k and that every element of Γ(E) of index less than k
belongs to R. Let C be a GFC that realizes this index for ζ. Choose U ∈ C on which ζ
is ungrounded such that the depth d of U is as large as possible. It follows that if we find
V ∈ C on which ζ has greater depth, then ζ is grounded on V .

Let r, s ∈ R be such that ζ(P ) = r/s for all P ∈ U . We claim that Lemma 5.2.13
applies, which completes the proof. Clearly if σ is any polynomial in ζ which is grounded
on U , then σ is grounded whenever ζ is and, moreover, σ is grounded on U so σ has an
index less than k so, by our induction hypothesis, σ ∈ R. It remains to show that ζ is
grounded on W = U↑ ∩N(s).

We claim that ζ is grounded on W . If Q ∈ W , choose V ∈ C with Q ∈ V . It suffices
to show that V has greater depth then U . But if S is the denominator set of C , and if
s1 ∈ S has the property that s1 ∈ P for all P ∈ U , then clearly s1 ∈ Q so s1 ∈ Q′ for all
Q′ ∈ V . But s = sU is not in P for any P ∈ U but is in Q and therefore is in Q′ for all
Q′ ∈ V . This proves the claim which implies that ζ is grounded on V .
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5.2.22. Remark. The following are obvious consequences of the above theorem:

1. The functor Kic which reflects semiprime rings to the limit closure of integrally
closed domains, coincides with the reflection into the subcategory of (2,3)-closed
domains.

2. Just as we can construct, in 4.2, the DL-reflection 4.2 by successive DL-extensions,
we can construct Kic(R) as the closure of R under a succession of simple (2,3)-
extensions.

3. We can also classify the elements of Kic(R) according to the “level” at which they
appear, as in the definition below.

5.2.23. Definition. For each ring R, we define En(R) ⊆ Kic(R) so that E0(R) = R and
ζ ∈ Em+1 if there is an r ∈ R and relatively prime positive integers n, k such that (ζ− r)n
and (ζ − r)k are both in Em(R). Finally, we let E(R) =

⋃
Em(R).

In view of the next result, we can define the level of each ζ ∈ Kic(R) as the smallest
integer n for which ζ ∈ En.

An analysis of the argument in the proof above demonstrates:

5.2.24. Theorem. E(R) = Kic(R).

5.3. Some examples. We start this section, with an example of a semiprime ring which
is not (2,3)-closed and then give several examples of semiprime rings which are (2,3)-
closed.

5.3.1. Example. Let Z[x] be the domain of all polynomials in the indeterminate x and
with integer coefficients. Let D ⊆ Z[x] be the domain of all polynomials a0 +a1x+a2x

2 +
· · ·+ anx

n for which a1, the coefficient of the x-term, is zero. Then D is the test example
in the sense that the semiprime ring R is (2,3)-closed if and only if every homomorphism
D //R extends to a homomorphism Z[x] //R.

Proof. D is obviously not (2,3)-closed in Z[x] as x /∈ D but x2 ∈ D and x3 ∈ D. It
is also clear that D // Z[x] has the extension property because if h : D // R is given,
where R is (2,3)-closed, and if h(x2) = r and h(x3) = s then there is a unique t ∈ R with
t2 = h(x2) and t3 = h(x3) so the extension of h is the map Z[x] //R which takes x to t.
It remains to show that whenever r, s ∈ R satisfy r3 = s2 there exists a map h : D // R
with h(x2) = r and h(x3) = s. Consider the ring Z[y, z]/(y3 − z2). Given r, s ∈ R with
the above properties, there exists Z[y, z]/(y3− z2) //R which maps y to r and z to s. In
particular, there exists a map g : Z[y, z]/(y3 − z2) //D which sends y to x2 and z to x3.
We need to show that g is an isomorphism. It is clearly surjective, so it suffices to show it
is injective. Suppose that P (y, z) ∈ ker(g). By replacing all terms in P involving z2 with
y3, we can write find P0(y) and P1(y) such that P (y, z) is equivalent to P0(y) + zP1(y)
(mod y3−z2). Then g(P0(y)+zP1(y)) = P0(x

2)+x3P1(x
2) = 0. But P0(x

2) only involves
even powers of x while x3P1(x

2) only involves odd powers of x, so their sum is zero if and
only if P0 = 0 and P1 = 0 which implies that P (y, z) = 0 (mod y3 − z2).
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5.3.2. Remark. For a similar ring, see Example 6.3.1.

Here we give some examples of (2,3)-closed rings.

5.3.3. Example. The ring of global sections of any sheaf of (2,3)-closed domains is (2,3)-
closed.

Proof. This follows from Theorem 3.5.3.

5.3.4. Example. Let R be a (2,3)-closed ring and suppose S ⊆ R is a multiplicatively
closed set without zero divisors. Then S−1R is also (2,3)-closed.

Proof. Suppose that (a/s)3 = (b/t)2 with s, t ∈ S. This gives t2a3 = s3b2 which implies
s3t6a3 = s6t4b2 or (st2a)3 = (s3t2b)2. Thus there is a c ∈ R with st2a = c2 and s3t2b = c3

which implies that a/s = (c/st)2 and b/t = (c/st)3, as required.

5.3.5. Example. If R is (2,3)-closed and X is a family of indeterminates, then R[X] is
(2,3)-closed.

Proof. Since models of an essentially algebraic category are closed under filtered colimits,
it suffices to show it for a single variable. We will show that the class R of all semiprime
rings R for which R[x] satisfies the (2,3) property is Kic. By [Eisenbud (1995), Exercise
4.17; see also the hints], whenever D is a domain integrally closed in its field F of fractions,
D[x] is integrally closed in F [x]. But F [x] is a UFD and therefore integrally closed in its
field of fractions, which is the rational function field F (x). It follows that D[x] is also
integrally closed in F (x), which is its field of fractions. Thus R contains all integrally
closed domains. If we show that R is limit closed, it follows that R = Kic since they are
each the limit closure of the integrally closed domains. It is evident that R is closed under
equalizers, so it suffices to show it closed under products. So suppose that R =

∏
Ri and

that each Ri ∈ R. Clearly R[x] ⊆
∏

(Ri[x]). The difference between the two rings is that
in R[x], every polynomial has a fixed degree, while in

∏
(Ri[x]) the polynomials must, for

each i, have a degree but there is not necessarily a uniform bound on them. Now suppose
a(x), b(x) ∈ R[x] are polynomials such that a(x)3 = b(x)2. Since each Ri[x] is (2,3)-closed,
it follows that there is a unique c(x) = (ci(x)) ∈

∏
(Ri[x]) such that a(x) = c(x)2 and

b(x) = c(x)3. Since each Ri is semiprime, it follows that deg(ci) ≤ deg(a)/2 for all i, so
that c ∈ R[x].

The following corollary is immediate, while showing this directly would seem to be
non-trivial.

5.3.6. Corollary. Suppose D is a (2,3)-closed domain with field F of fractions. If
p(x) ∈ F [x] is such that both p(x)2 and p(x)3 are in D[x], then so is p(x).

Recall that when R ⊆ S we say that R is (2,3)-closed in S if whenever the square and
cube of an element of S belong to R, so does the element. We have:

5.3.7. Corollary. Suppose R ⊆ S is (2,3)-closed. Then R[x] ⊆ S[x] is also (2,3)-closed.
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Proof. From 2.3.1.9, we know that Kic(R) ⊆ Kic(S). We claim that

Kic(R) Kic(S)� � //

R

Kic(R)

� _

��

R S� � // S

Kic(S)

� _

��

is a pullback. Suppose that s ∈ S ∩ Kic(R). Then we have from Theorem 5.2.24 that
s ∈ Em for some positive integer m. But then there are relatively prime integers n and
k an r ∈ R such that (s − r)n ∈ R and (s − r)k are both in Em−1(R). If we make the
inductive assumption that S ∩ Em−1(R) = R, it follows that (s − r)n and (s − r)k in R.
The fact that R is (2,3)-closed in S implies, by 5.1.2 that s− r ∈ R and hence s ∈ R.

It follows that

Kic(R)[x] Kic(S)[x]� � //

R[x]

Kic(R)[x]

� _

��

R[x] S[x]� � // S[x]

Kic(S)[x]

� _

��

is a pullback. If p(x) ∈ S[x] is such that its square and cube lie in R[x], then it lies in
Kic(R)[x] and hence in R[x].

5.3.8. Corollary. Suppose R is (2,3)-closed in S and X is any set of variables. Then
R[X] is (2,3)-closed in S[X].

Proof. The previous corollary gives it for any finite X. But every element of S[X] lies
in S[Y ] for some finite subset Y ⊆ X from which the conclusion is obvious.

5.3.9. Example. For any topological space X, the ring C(X) (respectively, C(X,C)) of
continuous real-valued (respectively, complex-valued) functions on X is (2,3)-closed.

Proof. We will do this for C(X,C); the real case can be easily done using the continuity
of the real cube root function. Suppose ζ ∈ Kic(C(X,C)) is such that ζ2 = g and ζ3 = h
both in C(X,C). Define f ∈ C(X,C) by

f(x) =

{
h(x)/g(x) if g(x) 6= 0
0 if g(x) = 0

Clearly f is continuous at any point x ∈ X at which g(x) 6= 0. So suppose x ∈ X
is such that g(x) = 0. From g(x)3 = h(x)2 we conclude that also h(x) = 0. Given
ε > 0, find a neighbourhood U of x such that |h(y)| < ε3 for y ∈ U . We claim that
for y ∈ U , |f(y)| < ε. This is evident if g(y) = 0. If g(y) 6= 0, we have that |f(y)| =
|h(y)|/|g(y)| = |h(y)|/|h(y)|2/3 = |h(y)|1/3 < ε. Thus f is continuous everywhere in X.
At a point x ∈ X at which g(x) 6= 0, we have f(x)2 = h(x)2/g(x)2 = g(x)3/g(x)2 = g(x)
and f(x)3 = h(x)3/g(x)3 = h(x)3/h(x)2 = h(x). When g(x) = h(x) = 0, we also have
f(x)2 = 0 = g(x) and f(x)3 = 0 = h(x) so that f 2 = g = ζ2 and f 3 = h = ζ3. In a
semiprime ring, this means f = ζ as claimed.
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6. Perfect Rings

6.1. Generalities. Recall from 2.1.1.8 that a domain D is perfect if it is either of
characteristic 0 or is of characteristic p and every element has a pth root. We denote by
Aper the category of perfect domains and by Kper its limit closure. In this section, we will
define what is meant by a “perfect ring” and show that a ring is in Kper if and only if it
is a perfect ring (see Definition 6.2.1). We will prove that Kfld ∩Kper = Kpfld but show
that Kica is a proper subclass of Kic ∩Kper.

6.1.1. Notation. For any domain D we let char(D) denote the characteristic of D.

For technical reasons, we make the following definitions:

6.1.2. Definition. Let p be an integer prime, then:

1. A domain is p-perfect if it either has characteristic other than p or is perfect.

2. A semiprime ring R satisfies the p-condition if, whenever r, u1, u2, . . . , un, t ∈ R
satisfy

p(ru1 − t)(ru2 − t) · · · (run − t) = 0 and p(rp+1 − tp) = 0

there exists u ∈ R such that

up = r and p(ru− t) = 0

6.1.3. Notation. In what follows, we assume that R is a semiprime ring, that p is an
integer prime, and that Ep is the sheaf associated with Ap-per, the full subcategory of all
p-perfect domains.

If D is a domain, then Gp-per(D) denotes the G-operation associated with the limit
closure of Ap-per Obviously, If p /∈ Q then char(R/Q) 6= p so Gp-per(R/Q) = R/Q.

Our first goal is to show that R is in the limit closure of the p-perfect domains if
and only if R satisfies the p-condition. Since every domain in Aica is p-perfect, it follows,
from Theorem 2.3.1 that we are in the Dom-invariant case. In particular, Spec(R) has the
domain topology and Γ(Ep) is the reflection of R into the rings that satisfy the p-condition.

6.1.4. Lemma. A domain D is p-perfect if and only if it satisfies the p-condition.

Proof. We first show that if D is p-perfect then D satisfies the p-condition.

Case 1 : char(D) = p. Since D is p-perfect and char(D) = p, we see that D is perfect. To
prove that D satisfies the p-condition, assume that r, u1, u2, . . . , un, t ∈ D satisfy:

p(ru1 − t)(ru2 − t) · · · (run − t) = 0 and p(rp+1 − tp) = 0

Since char(D) = p, these conditions are vacuous. Since D is perfect, there is a u ∈ R such
that up = r, while the condition p(ru− t) = 0 is vacuous.
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Case 2 : char(D) 6= p. Assume that r, u1, u2, . . . , un, t ∈ D satisfy:

p(ru1 − t)(ru2 − t) · · · (run − t) = 0 and p(rp+1 − tp) = 0

Since char(D) 6= p, we see that

(ru1 − t)(ru2 − t) · · · (run − t) = 0 and rp+1 = tp

We may assume that r 6= 0, otherwise we can choose u = 0. Since D is a domain, there
exists i with rui = t. Let u = ui. Then uprp = tp = rp+1 and it follows that up = r.

Next we prove the converse, that if D satisfies the p-condition, then D is p-perfect. If
char(D) 6= p then there is nothing to prove, so assume that char(D) = p. Let r ∈ D be
given. We must find a pth root for r. But choose n = 1 and u1 and t to be any elements
of D. The conditions that p(ru1− t) = 0 and p(rp+1− tp) = 0 are vacuously true, so there
exists u ∈ D with up = r while p(ru− t) = 0. It follows that u is the desired pth root.

6.1.5. Lemma. Let R be a semiprime ring, let r, t ∈ R and let k be a positive integer.
Then the following conditions on u ∈ R are equivalent and uniquely determine u if such
an element exists.

1. uk = r and uk+1 = t.

2. ru = t and uk = r.

3. ru = t and rk+1 = tk and N(r) ⊆ N(u).

Proof. 1 +3 2 : Given 1, we have ru = uku = uk+1 = t

2 +3 3 : Given 2, it is clear that r ∈ P implies u ∈ P . Also, rk+1 = rkuk = tk.

3 +3 1 : Given 3, it suffices to show this mod every P ∈ Spec(R). If r ∈ P then t ∈ P (as
rk+1 = tk) and P ∈ N(r) ⊆ N(u) so u ∈ P and 1 trivially holds mod P . On the other
hand, if r /∈ P then rkuk = tk = rk+1 and we can cancel rk to see that uk = r. Moreover,
when r /∈ P we have t /∈ P , as rk+1 = uk and from tkuk+1 = rk+1uk+1 = tk+1 we can
cancel the tk to infer uk+1 = t.

Since condition 1 uniquely determines u, by Proposition 5.1.2, each of the conditions
uniquely determines u when such a u exists.

6.1.6. Lemma. Let R be semiprime and let p be an integer prime. Let r, u1, . . . , un, t ∈ R
satisfy p(ru1− t)(ru2− t) · · · (run− t) = 0 and p(rp+1− tp) = 0. Then there exists at most
one u ∈ R for which up = r and p(ru− t) = 0.

Proof. We claim that the equations up = r and p(ru − t) = 0 determine u uniquely
modulo every prime ideal P of R. If r ∈ P we see that u ∈ P . If p ∈ P then u is
determined modulo P as pth roots are unique in R/P . If r /∈ P and p /∈ P , then we
have up = r and ru = t modulo P . Thus Lemma 6.1.5.2 applies, with k = p, and the
uniqueness of u, modulo P , follows as stated in that lemma.
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6.1.7. Lemma. Let p be an integer prime. The class of all semiprime rings which satisfy
the p-condition is closed under limits.

Proof. It is immediate that this class is closed under arbitrary products and, in view of
the above lemma, it is easy to prove closure under equalizers.

6.1.8. Corollary. Every ring in Kper satisfies the p-condition for every prime p.

We will eventually prove the converse of the above, but we need some more lemmas.
For technical reasons we need the following definition:

6.1.9. Definition. Let R be a semiprime ring and let k > 1 be an integer. We say that
R is k-coherent if, whenever r, t ∈ R satisfy the following conditions:

1. rk+1 = tk and

2. for every prime ideal P of R, there exists uP ∈ R such that ruP = t (mod P ),

then there exists u ∈ R such that uk = r and uk+1 = t.

6.1.10. Lemma. For any k > 1, the semiprime ring R is k-coherent if and only if it is
DL-closed.

Proof. Assume that R is k-coherent and let E be the canonical sheaf for the limit closure
of all domains (see Section 4). By Corollary 3.9.8, it suffices to show that for all ζ ∈ Γ(E),
if ζk and ζk+1 are in R, then ζ ∈ R. Assume ζk = r ∈ R and ζk+1 = t ∈ R. Then, clearly,
rk+1 = tk. Also, for every prime ideal P , we can let uP ∈ R be any element whose image
in R/P is ζ(P ). Then, by k-coherence, there exists u ∈ R with uk = r and uk+1 = t. By
Proposition 5.1.2, applied to the ring Γ(E), we see that u = ζ.

Conversely, assume that R is DL-closed and that rk+1 = tk for some r, t ∈ R and
that for every prime ideal P , there exists uP ∈ R such that ruP = t (mod P )). We may
assume that uP = 0 if r ∈ P . We can then define ζ ∈ Γ(E) by letting ζ(P ) be the image
of uP ∈ R/P for each prime P . To prove that ζ is continuous, note that ζ(P ) is defined
by conditions which, in view of Lemma 6.1.5.3, uniquely determine ζ as a local section
in a neighbourhood of P . By uniqueness these local sections patch together and form a
global section. Since R is DL-closed, there exists u ∈ R with ζ = u so u is the desired
element.

6.1.11. Lemma. Let R be a semiprime ring and let r, t ∈ R be given. Then for every
prime ideal P of R, there exists uP ∈ R such that ruP = t (mod P )) if and only if there
exist u1, u2, . . . , un ∈ R such that (ru1 − t)(ru2 − t) · · · (run − t) = 0.

Proof. If there exist u1, u2, . . . , un ∈ R such that (ru1− t)(ru2− t) · · · (run− t) = 0 and
if P is a prime ideal of R, then there obviously exists i with rui− t ∈ P and we can choose
uP = ui.

Conversely, if for every prime ideal P of R, there exists uP ∈ R such that ruP = t
(mod P )) then for each such P there is an open neighbourhood N(ruP − t) of P such that
for all P ′ in the neighbourhood, we have ruP = t (mod P ′). Cover Spec(R) by finitely
many of these neighbourhoods.
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6.1.12. Proposition. Let p be an integer prime. Then a semiprime ring which satisfies
the p-condition is DL-closed.

Proof. We claim that R is p-coherent. Suppose r, t ∈ R satisfy rp+1 = tp and that, for
every prime ideal P , there exists uP ∈ R such that ruP = t (mod P )). Then there exist
u1, u2, . . . , un ∈ R such that (ru1 − t)(ru2 − t) · · · (run − t) = 0. It is immediate that
p(rp+1 − tp) = 0 and that p(ru1 − t)(ru2 − t) · · · (run − t) = 0. By the p-condition, there
exists u ∈ R such that up = r and p(ru − t) = 0. We need to show that ru = t, which
suffices by Lemma 6.1.5.

It is enough to show that this is true modulo each prime ideal Q of R. But if p /∈ Q,
then from p(ru− t) = 0 we immediately see that ru = t (mod Q). On the other hand, if
p ∈ Q, then (ru)p = rpup = rpr = rp+1 = tp. It follows that ru and t are both pth roots
of tp so ru = t (mod Q)) as pth roots are unique in R/Q.

6.1.13. Remark. Whenever Q is a prime ideal of R with p /∈ Q,we have Gp-per(R/Q) =
R/Q so, if ζ ∈ Γ(Ep), then ζ(Q) ∈ R/Q.

6.1.14. Notation. Recall the following notational conventions:

1. Let s ∈ R and ζ ∈ Γ(Ep) be given, We say that ζ(Q) = s (mod Q) if ζ(Q) coincides
with the image of s in R/Q.

2. Let ν : R //Γ(Ep) be the canonical embedding. We often identify R with its image
in Γ(Ep). Thus given ζ ∈ Γ(Ep) we may say ζ ∈ R if ζ = ν(r) for some r ∈ R and,
in this case, write ζ = r. Note that if R is DL-closed, then we have ζ ∈ R if and
only if ζ(P ) ∈ R/P for all prime ideals P . For if ζ(P ) ∈ R/P for all P , then ζ can
be regarded as a global section of the canonical sheaf for Adom and, by Theorem
4.1.3 this implies that ζ ∈ R.

6.1.15. Lemma. Let the semiprime ring R satisfy the p-condition and let ζ ∈ Γ(Ep) be
given. Then:

1. If ζp ∈ R and ζp+1 ∈ R then ζ ∈ R.

2. If ζw ∈ R for all sufficiently large integers w, then ζ ∈ R.

3. If ζk ∈ R and ζ` ∈ R for k, ` relatively prime positive integers, then ζ ∈ R.

Proof. Note that by the previous proposition, R is DL-closed. It suffices to prove 1
as the other conditions are equivalent using the argument used in Lemma 5.1.5. Let
ζp = r ∈ R and ζp+1 = t ∈ R. Then clearly rp+1 = tp. Note that if P is a prime ideal
of R and p /∈ P , then char(R/P ) 6= p so Gp-per(R/P ) = R/P and there exists uP ∈ R
with ζ(P ) = uP . Thus in R/P , we have upP = r and up+1

P = t (mod P ). Since ζ(Q) = uP
for Q in a neighbourhood of P , we can cover the compact set of all prime ideals which
do not contain p with finitely many such neighbourhoods so there are u1, u2, . . . , un ∈ R
such that for each P with p /∈ P , there exists i with (rui − t) ∈ P . It follows that
p(ru1− t) · · · (run− t) = 0 (by checking that this holds at each prime ideal) and so, by the
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p-condition, there exists a unique u ∈ R such that up = r and p(up+1 − t) = 0. Since it is
readily verified that ζ satisfies these same equations (checking them modulo each prime
ideal) it follows from Lemma 6.1.6, applied to the ring Γ(Ep), that ζ = u.

6.1.16. Definition. The p-spread of ζ ∈ Γ(E) is the least cardinal of a grounded repre-
sentation, U , of ζ on Z(p).

6.1.17. Lemma. For any ζ ∈ Γ(Ep) and any p-cover U1, U2, . . . , Um of ζ, there exist an
element s ∈ R and an integer w0 such that whenever w ≥ w0, the sets (U1∪U2), U3, . . . , Un
are a p-cover of (ζ − s)w.

Proof. This follows from Theorem 3.9.5.

6.1.18. Lemma. Assume that the semiprime ring R satisfies the p-condition and that
ζ ∈ Γ(Ep). Then ζ ∈ R if and only if ζp ∈ R.

Proof. Clearly if ζ ∈ R, then ζp ∈ R. To prove the converse, assume that ζp ∈ R and
let r ∈ R be such that ζp = r. We will prove that ζ ∈ R by induction on n = p-spread(ζ).

Suppose that n = 1. Then the entire compact set of all prime ideals P with p /∈ P
is uniformly grounded. Therefore there exists u1 ∈ R with ζ(P ) = u1 (mod P ) whenever
p /∈ P .

Let t = ru1. Then, trivially, we have p(ru1 − t) = 0. We claim that p(rp+1 − tp) = 0.
It suffices to show that p(rp+1 − tp) ∈ P for every prime ideal P . But if p ∈ P this is
immediate. And if p /∈ P we have ζ(P ) = u1 and ζp(P ) = r = up1 so t = u1r = up+1

1 from

which it follows that, modulo P , we have rp+1 = u
p(p+1)
1 = tp.

In view of the claim, it follows by the p-condition that there exists u ∈ R with up = r
and p(up+1 − t) = 0. We next claim that ζ = u. It suffices to show that ζ(P ) = u
(mod P ) for every prime ideal P . If p /∈ P then rp+1 = tp and ru = t (both mod P ). It
also follows from the above argument that ζp(P ) = r = up (mod P )) and that:

ζp+1(P ) = ζ(P )ζp(P ) = ru1 = t = ru = up+1

therefore, modulo P , when p /∈ P , we have shown that ζp(P ) = up and ζp+1(P ) = up+1

so by Proposition 5.1.2, applied to the ring Γ(Ep), it follows that ζ = u (mod P ).
On the other hand, if P is a prime ideal with p ∈ P , we see that ζ(P ) and u are both

pth roots of r and, modulo P , such roots are unique as p ∈ P , Therefore ζ = u (mod P ).
We continue the inductive argument by assuming that for every ζ ∈ Γ(Ep), if ζp ∈ R

and p-spread(ζ) < m then ζ ∈ R. We claim that if ζ has p spread m then ζ ∈ R. But
by Lemma 6.1.17 we have that for sufficiently large w, ζw has p-spread less than m and
since (ζw)p is clearly in R, we have, by the induction hypothesis, that ζw ∈ R. It follows
from Lemma 6.1.15 that ζ ∈ R.

6.1.19. Lemma. If D is a domain then for every x ∈ Gp-per(D), there exists a non-negative

integer k with xp
k ∈ D.
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Proof. We may assume char(D) = p, as otherwise Gp-per(D) = D. Let D ⊆ Q(D)
embed D into the perfect closure of its field of fractions. Obviously Gp-per(D) is the
smallest subdomain of Q(D) which contains D and is closed under the forming of pth
roots. It suffices to show that the set of all x ∈ Q(D) such that xp

k ∈ D for some k ≥ 0
is closed under addition and multiplication. But this is trivial because if xp

k ∈ D and
yp

` ∈ D, then we may assume that k = `, as we can replace both k and ` by the larger of
the two integers.

6.1.20. Theorem. A semiprime ring is in the limit closure of all p-perfect domains if and
only if it satisfies the p-condition.

Proof. The necessity of the condition follows from Corollary 6.1.8. To prove sufficiency,
assume that R satisfies the p-condition. We must prove that every ζ ∈ Γ(Ep) belongs to
R, which follows if there exists n such that ζp

n ∈ R. By the above lemma, for each prime
ideal P of R, there exists kP with ζp

kP (P ) = rP ∈ R. Then the set of prime ideals Q with
ζp

kP (Q) = rP is an open subset of Spec(R). Cover Spec(R) by finitely many such open
sets. Thus there exist k1, k2, . . . , km such that for every prime ideal P of R there is some
i with ζp

ki (P ) ∈ R. Let n be the largest ki, whence ζp
n ∈ R.

The theorem now follows by induction on n. If n = 1 then the result follows from
Lemma 6.1.18. Assume that for all σ ∈ Γ(Ep), we have σ ∈ R if σp

n ∈ R. Suppose that
ζp

n+1 ∈ R. Letting σ = ζp we see that σp
n ∈ R and so, by the induction hypothesis,

σ ∈ R and therefore ζ ∈ R by Lemma 6.1.18.

6.2. Describing Kper. We will show that a semiprime ring is in the limit closure of the
perfect domains if and only if it is perfect, where:

6.2.1. Definition. A semiprime ring is perfect if it satisfies the p-condition for every
prime integer p.

6.2.2. Notation. We let E denote the canonical sheaf associated with the limit closure
of the category of all perfect domains, while Ep is the sheaf for the limit closure of the
category of p-perfect domains.

For each domain D we let Gp-per(D) denote the G-operation associated with Ep and
let Gper(D) denote the operation associated with Kper.

Clearly, for each domain D we have Gper(D) is given by:

1. If char(D) = p > 0, then Gper(D) = Gp-per(D).

2. If char(D) = 0, then Gper(D) = D.

6.2.3. Lemma. For each prime integer p, we can regard Ep as an open subsheaf of E.

Proof. This is obvious since we can regard Gp-per(D) as a subset of Gper(D). The fact
that each Ep is an open subsheaf of E is straightforward.
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6.2.4. Lemma. With the above notation, let ζ ∈ Γ(E) be given. Then there exists a finite
set S of prime integers, such that for every prime ideal Q of R with char(R/Q) /∈ S, we
have ζ(Q) ∈ R/Q.

Proof. If Q is a prime ideal of R with char(R/Q) = 0, then there exists r ∈ R with
ζ(Q) = r (mod Q)). Since global sections agree on open sets, Q has an open neighbour-
hood UQ such that for all Q′ ∈ UQ, we have ζ(Q′) = r (mod Q′)).

Clearly the set of prime ideals Q with char(R/Q) = 0 is covered by the open sets UQ
defined above. On the other hand, the prime ideals P with char(R/P ) > 0 are covered by
the open sets {N(p)} where p varies over the set of prime integers. So Spec(R) is covered
by the sets {UQ} and {N(p)}. Let UQ1 , . . . UQk

, N(p1), . . . , N(pn) be a finite subcover.
Then S = {p1, . . . , pn} has the desired property.

6.2.5. Theorem. A semiprime ring is in Kper if and only if it satisfies the p-condition
for every prime integer p.

Proof. Let R be a semiprime ring which satisfies the p-condition for every prime integer
p. We need to show that R = Γ(E). The converse direction is clear, as stated in Corollary
6.1.8.

Let ζ ∈ Γ(E) be given and let S = {p1, p2, . . . , pn} be the set of prime integers such
that if char(R/Q) /∈ S then ζ(Q) ∈ R/Q. We assume that the primes p1, p2, . . . , pn are
distinct. For each i, we let

qi = p1 · · · pi−1pi+1 · · · pn
be the product of all prime integer in S other than pi. We note that, for each i, we have qiζ
is in Γ(Epi) as qiζ(Q) ∈ Gpi-per(R/Q) for all prime ideals Q of R. But since R satisfies the
pi-condition, we see that R = Γ(Epi) so qiζ ∈ R. But there exist integers {ci} such that
c1q1 + c2q2 + · · ·+ cnqn = 1 since gcd{q1, q2, . . . , qn} = 1. Therefore ζ = c1q1ζ+ · · ·+ cnqnζ
is in R.

6.2.6. Example. If p is an integer prime and R is a semiprime ring in which p = 0, then
R satisfies the p-condition if and only if every r ∈ R has a pth root.

Proof. Most of the conditions in the p-condition are vacuous when p = 0, and the only
non-vacuous condition is that given r ∈ R, there exists u ∈ R with up = r as in the proof
of 6.1.4.

6.2.7. Example. If p is an integer prime and R is a DL-closed semiprime ring in which
p has an inverse, then R satisfies the p-condition.

Proof. Since R is DL-closed, it is p-coherent. It is easily verified that a p-coherent ring
in which p is invertible satisfies the p-condition.
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6.2.8. Example. If p is an integer prime and R is a DL-closed semiprime ring in which
p has an quasi-inverse, then R satisfies the p-condition if and only if each prime ideal P
of R with char(R/P ) = p has pth roots.

Proof. Let p be the quasi-inverse for which p2p = p and p2p = p. Then pp is an
idempotent and we can write R = R1 × R2 where p = 0 in R1 and p has a (genuine)
inverse in R2 and then apply the arguments of the two examples above.

6.2.9. Theorem. The semiprime ring R is in Kpfld if and only if R is regular and perfect.

Proof. If R is in the limit closure of perfect fields then, trivially, R is in the limit closure
of perfect domains and in the limit closure of fields, so R is perfect and regular.

Conversely, assume that R is perfect and regular. Let E be the sheaf associated
with Kpfld. Then for each prime ideal P of R we see that Gpfld(R/P ) is Q(R/P ), the
perfect closure of the field of fractions of R/P . But in a regular ring every prime ideal
is maximal, so Gpfld(R/P ) is the perfect closure of R/P . Thus E coincides with the
canonical sheaf associated with Kper. Since R is perfect, it follows that R = Γ(E) which
implies R ∈ Kpfld.

6.2.10. Corollary. Kper ∩Kfld = Kpfld.

6.2.11. Corollary. Kicp ∩Kfld = Kpfld.

Proof. Since Aicp ⊆ Aper, it follows that Kicp ⊆ Kper so Kicp∩Kfld ⊆ Kper∩Kfld = Kpfld.
The reverse inclusion Kpfld ⊆ Kper ∩Kfld is easy.

6.3. Is Kper ∩Kic = Kica? Having proven the above corollaries, it seems natural to ask
if the analogous result would describe Kica. However, there are counter-examples and we
present one here.

6.3.1. Definition. Let Z[x] be the ring of polynomials in the indeterminate x and let
D ⊆ Z[x] be the subring generated by 2x and x2. Evidently, D is the ring of polynomials
a0 + a1x+ · · ·+ anx

n where each an is even whenever n is odd.

6.3.2. Lemma. With the above definition, D ∈ Kper ∩Kic.

Proof. Clearly D perfect because it is a domain of characteristic 0.
To prove that D is in Kic observe that the following diagram is a pullback, where

Z2[x
2] �
� // Z2[x] is the subring of all polynomials which have only even powers of x.

Z2[x
2] Z2[x]� � //

D

Z2[x
2]
��

D Z[x]� � // Z[x]

Z2[x]
��

Note that Z[x] and Z2[x] are in Kic as they are UFDs. Also, Z2[x] is isomorphic to Z2[x
2]

by the map that sends x to x2. So D ∈ Kic as Kic is closed under pullbacks.
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6.3.3. Lemma. If a and b are in the semiprime ring R and if 2a = 2b and a2 = b2 then
a = b.

Proof. Square a− b.

6.3.4. Lemma. The embedding D // Z[x] is epic in SPR .

Proof. Let R ∈ SPR and g, h : Z[x] // R be given such that g and h have the same
restriction to D. Then g(2x) = h(2x) and g(x2) = h(x2) and, by the above lemma, we
have g(x) = h(x) which implies g = h.

6.3.5. Lemma. Let R ∈ SPR be given. A map from f : D //R is determined by f(2x) = r
and f(x2) = s if and only if r, s ∈ R satisfy r2 = 4s. Moreover, the map f extends to
Z[x] if and only if there exists t ∈ R for which 2t = r and t2 = s.

Proof. If f(2x) = r and f(x2) = s then it is clear that r2 = 4s. Conversely, given such
an r, s ∈ R, we define a map f : D //R as follows. Each polynomial in D can be written
uniquely in the form (p, q) = p(x2) + 2xq(x2). The rules for adding and multiplying
these canonical forms are: (p1, q1) + (p2, q2) = (p1 + p2, q1 + q2) and (p1, q1)(p2, q2) =
(p1p2 + 4xq1q2, p1q2 + p2q1). It is clear that we can define f(p, q) = p(s) + rq(s) which is
a homomorphism if and only if r2 = 4s.

Finally, if t ∈ R satisfies 2t = r and t2 = s, then f can be extended to a homomorphism
h : Z[x] //R for which h(x) = t.

6.3.6. Proposition. The inclusion map D �
� // Z[x] is the reflection of D into Kica.

Proof. Since Z[x] is integrally closed and perfect it belongs to Kicp = Kica. It suffices to
show that the inclusion D �

� //Z[x] has the UEP (unique extension property) with respect
to every A ∈ Aicp. In view of the above lemma, this boils down to showing that if A ∈ Aicp

and if r, s ∈ A are such that r2 = 4s then there exists t ∈ A such that 2t = r and t2 = s.
But suppose char(A) 6= 2. Then the fraction r/2 is a square root of s so it must be in A,
which is integrally closed, and we can choose t = r/2. On the other hand, if char(A) = 2,
then we must have r = 0 as r2 = 4s. But since A is perfect, we see that s has a unique
square root t ∈ A. And obviously t2 = s and 2t = 0 = r.

6.3.7. Corollary. D ∈ Kper ∩Kic but D /∈ Kica.

Proof. That D ∈ Kper ∩Kic is proven in 6.3.2. But D /∈ Kica because the reflection of
D into Kica is not an isomorphism.

7. Limit closure of UFDs.

7.1. The reflector. In the preceding three sections we have characterized the limit
closure of domains, of integrally closed domains, and of perfect domains in the category
of commutative rings. In each case, the limit closure turned out to be the models of an
essentially algebraic (or left exact) theory. When examining the limit closure of UFDs,
we are surprised not only by how many domains are in it (for example every quadratic
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extension of Z) but also by which domains are not in it (for example every non-principal
ultraproduct of Z). It is true that the limit closure of UFDs is contained in the (2,3)-rings
because all UFDs are integrally closed (alternatively, if b3 = c2, we can directly find the
prime factors of the element a for which a2 = b and a3 = c).

We can dispose of the latter point by observing that if an element of a UFD has a
square root then every prime divides it an even number of times. The converse is not
necessarily true but if every prime divides an element an even number of times, then some
associate of the element will be a square. For example, in the Gaussian integers Z[i] the
element i is divisible by each prime an even number of times (0), but does not have a
square root. Obviously the associate 1 does. Thus to show that a UFD is (2,3)-closed, it
suffices to show that invertible elements do. But if u3 = v2 and u is invertible, then it is
immediate that (v/u)2 = u.

Next consider the domain D0 ⊆ k[x], with k a field, consisting all the polynomials
a0 + a2x

2 + a3x
3 + · · ·, that is with linear term 0. Then clearly x6 has a square root in D,

while x2 doesn’t. It can be shown that D0
∼= k[y, z]/(y3 − z2) from which we see that a

necessary and sufficient condition that a domain D be a (2,3)-domain is that every map
from D0

//D extend to a map k[x] //D.
We denote the limit closure of the UFDs by Kufd. We have,

7.1.1. Theorem. The inclusion Kufd
// SPR has a left adjoint.

Proof. Apply Theorem 2.2.12.

7.2. Quadratic extensions of Z. We fix a square-free integer n ∈ Z. Note that n
can be positive or negative. We let ω =

√
n. When n ≡ 1 (mod 4), the ring Z[ω] is not

integrally closed; its integral closure is Z[τ ] for τ = (1 + ω)/2.
It is known that for n < 0 there are only nine prime values of n, the largest being 163,

for which Z[ω] (Z[τ ] in the case n ≡ 1 (mod 4)) is a UFD. For n > 0, the ring seems to
be a UFD infinitely often and a non-UFD infinitely often (the truths of these claims are
not known).

In this section we will show, nonetheless that Z[ω] is always in the limit closure of the
UFDs.

For p prime, let Qp ⊆ Q consist of all rationals whose denominators are not divisible
by p. It is clear that Z[ω] =

⋂
pQp[ω]. We will show that except when p = 2 and n ≡ 1

(mod 4), Qp[ω] is itself a UFD. In the missing case, we will show that Q2[τ ] is a UFD,
and that Q2[ω] is the equalizer of two maps from Q2[τ ] to a field and hence also in the
limit closure of UFDs.

We will therefore be studying the rings of the form Qp[θ] where θ = ω, unless p = 2
and n ≡ 1 (mod 4), in which case θ = τ .

An element of Qp[ω] will be written a+ bω with a, b ∈ Qp. There is an automorphism
on Qp[ω] that takes ω to ω = −ω. Applied to Q2[τ ], it takes τ to τ = (1− ω)/2 = 1− τ .
In either case the map that takes a + bω to a + bω (respectively takes a + bτ to a + τ)
is an automorphism and therefore the map N : Qp[τ ] // Qp defined by N (a + bτ) =
(a+ bτ)(a+ bτ) is multiplicative. The function N is called the norm function.
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An element of a ∈ Qp can be written a = peb where e is a non-negative integer and b is
invertible in Qp. We will call e the p-index of a and write e = indp(a). We will frequently
omit the p when it is clear.

7.2.1. Remark. A statement such as “a divides b” implicitly refers to a ring R which
contains a, b (and means that there exists c ∈ R with b = ca). Unless we specifically
mention otherwise, this will be interpreted to mean the smallest ring containing a and b.
In particular, if a and b are both integers, then, unless a different ring is clearly indicated,
the statement “a divides b” will be interpreted with respect to the ring of integers.

7.2.2. Proposition. An element ξ ∈ Qp[θ] is invertible if and only p 6 | N (ξ).

Proof. If ξξ−1 = 1, then N (ξ)N (ξ−1) = N (1) = 1 so N (ξ) must be invertible, that is
not divisible by p. Conversely, if N (ξ) is invertible, then ξ | N (ξ) is also invertible.

The only ideals in Qp are powers of p and so it makes sense to speak of two elements
being congruent (mod pe). In particular, it makes sense in Q2 to talk of odd and even
and of elements of being divisible by 4 or 8, etc.

7.2.3. Theorem. Qp[θ] is a UFD for all primes p.

This will be divided into seven cases. The treatments of four of those cases will be
subsumed into the following proposition.

7.2.4. Proposition. Suppose there is an element π ∈ Qp[θ] such that p | N (π) and for
any ξ ∈ Qp[θ] whenever p | N (ξ) then π | ξ. Then π is prime in Qp[θ], every element of
Qp[θ] is a power of π times an invertible element and therefore Qp[θ] is a UFD.

Proof. If π | ξη, then p | N (π) | N (ξ)N (η) and hence p must divide one the factors on
the right and hence π must divide ξ or η so we see that π is prime.

Now suppose ξ ∈ Qp[θ]. If ξ is not invertible, then p | N (ξ), whence π | ξ. Dividing
out one factor of π divides the norm by N (π) so this process terminates in an invertible
element after a finite number of steps.

We now finish the proof of Theorem 7.2.3. The proof is divided into cases that depend
on n and p.

Case that p | n: By Proposition 7.2.2, a + bω is invertible in Qp[ω] if and only if
p 6 | N (a+ bω) = a2 − b2n, which happens if and only if p 6 | a. If p | a, the equa-
tions (x + yω)ω = a + bω leads to the equations ny = a and x = b. Since n is square
free, it is divisible by p but not by p2 and hence y = a/n ∈ Qp. Thus every non-invertible
element is divisible by ω. Since p|N (ω) = −n the result follows from Proposition 7.2.4
with π = ω.

Case that p = 2, and n ≡ 3 (mod 4): By Proposition 7.2.2, a+ bω ∈ Q2[ω] is invertible
if and only if N (a+ bω) is odd if and only if a and b have opposite parity.

We claim that every non-invertible element of Q2[ω] is divisible by 1 + ω. If a+ bω
is non-invertible, then a, b have the same parity and a+ bω = (1 + ω)(x+ yω) where
x = (bn− a)/(n− 1) and y = (a− b)/(n− 1). Note that n− 1 ≡ 2 (mod 4) so that it is
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divisible by 2 but not by 4, hence both x, y ∈ Q2. Proposition 7.2.4 with π = 1− ω gives
the result.

Case that p = 2, n ≡ 1 (mod 4): Let m = (n − 1)/4. Then τ = (1 +
√
n)/2 then

N (τ) = −m. This case splits into three subcases depending on the residue of m (mod 4).

Subcase that m is odd : In this case, it is clear that N (a + bτ) is odd unless a and b
are both even, whence a + bτ is divisible by 2. Thus an element is either invertible or
divisible by 2 and Proposition 7.2.4 with π = 2 applies.

Subcase that m ≡ 2 (mod 4): We begin by claiming that τ |2. Write n = 8k + 1 with
k odd. Then we have that ττ = −2k and k is odd so that 2 is divisible by both τ and
]tau. Since N (a+ bτ) = a2 −mb2 + ab ≡ a2 + ab ≡ a(a+ b) (mod 2), we see that a+ bτ
is invertible if and only if a is odd and b is even. We further claim that if a + bτ is not
invertible, then it is divisible by either τ or τ . If a and b are both even, then τ | 2 | a+ bτ .
If a is even and b is odd, then the equation (x+ yτ)τ = a+ bτ has the solution y = −a/m
and y = b − m. Note that m | a since a is even and m is twice an odd number. If
a and b are both odd, then a + bτ = a + b(1 − τ) = a + b − bτ and a + b is even, b
odd. Since the replacement of τ by τ is an automorphism, the same argument shows that
τ | a+ b+ bτ = a+ bτ .

We claim that τ and τ are prime. We do this for τ . If τ 6 | a + bτ , then a must be
odd. Similarly, if τ 6 | c + dτ , then (a + bτ)(c + dτ) = ac + bdm + (ad + bc + bd)τ and
certainly ac+ bdm is odd and so τ does not divide the product. Since every division of an
element by τ or τ reduces the index of that element (the number of times it is divisible
by 2) by 1, we conclude that every element is a product of a power of τ , a power of τ ,
and an invertible element.

Subcase that m = (n− 1)/4 ≡ 0 (mod 4): Write n = 16k + 1. Then (1 + τ)(1 + τ) =
1 + τ + τ + ττ = 2(−2k + 1), which is twice an odd number so that both τ and τ divide
2. As in the preceding subcase, we see that a+ bτ is invertible if and only a is odd and b
is even. If a and b are both even, then a + bτ is divisible by both 1 + τ and 1 + τ . Next
we note that τ 2 = (1 + n+ 2

√
n)/4 = 4k + τ . Then

τ

1 + τ
=

τ(1 + τ)

(1 + τ)(1 + τ)
=
τ + τ 2

2− 4k
=

4k + 2τ

2− 4k
=

2k + τ

1− 2k

and the denominator is odd, so that 1 + τ |τ . Now if a is even and b is odd then τ divides
a + (b + 1)τ , as well as τ , so it divides a + bτ . Finally, if a and b are both odd, then
1 + τ divides (a + 1) + (b + 1)τ as well as 1 + τ and hence divides a + bτ . Thus every
non-invertible element is divisible by at least one of 1 + τ and 1 + τ .

Note that when a is even and b is odd, then (1 + τ) | (a− 1 + bτ) and does not divide
1 so that (1 + τ 6 | a+ bτ) in that case. If also (1 + τ) 6 | (c+ dτ), then

(a+ bτ)(c+ dτ) = ac+ (ad+ bc)τ + bdτ 2 = ac+ (ad+ bc)τ + bd(4k + τ)

= ac+ 4kbd+ (ad+ bc+ bd)τ
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and that is also not divisible by 1 + τ . Thus 1 + τ is prime and by symmetry, so is 1 + τ .
The rest is routine.

Case that p 6= 2, p 6 | n and n is a quadratic non-residue (QNR) of p: We begin by noting
that if n is a QNR of p in Z it is also a QNR in Qp. For if there are s, t ∈ Z such that
p 6 | t and (s/t)2 ≡ n (mod p) and we choose r ∈ Z such that rt ≡ 1 (mod p), then one
readily sees that (rs)2 ≡ n (mod p).

If N (a+ bω) = a2 − b2n is divisible by p, then we must have p | b and therefore p | a.
Then p | a+ bω. Thus Proposition 7.2.4 applies.

Case that p 6= 2, p 6 | n and n is a quadratic residue (QR) of p: In this case, we can find a
k ∈ Z so that p | k2 − n. Replace k by k + p, if necessary, to force that p2 6 | k2 − n. Now
suppose that p | N (a+bω) = a2−b2n. We have 0 ≡ a2−b2n ≡ a2−b2k2 ≡ (a−bk)(a+bk)
(mod p) and so p | a+ bk or p | a− bk. Choose u = ±1 so that p | a−ubk. We claim that
k+uω | a+bω. In fact the equation a+bω = (k+uω)(x+yω) = kx+uny+(ux+ky)ω gives
the equations kx+uny = a and ux+ky = b which have the solution y = (a−ubk)/(n−k2)
and x = (a− uny)/k which lie in Qp since p | a− ubk and p2 6 | n− k2.

We can also conclude from this computation that k + uω 6 | a + bω when p 6 | a− ubk.
Suppose now that k+uω 6 | a+bω and k+uω 6 | c+dω. Then we claim that p 6 | (a+bω)(c+
dω) = ac+ bdn+ (ad+ bc)ω. In fact ac+ bdn− u(ad+ bc)k ≡ ac− bdk2− uadk− ubck ≡
(a−ubk)(c−udk) 6≡ 0 (mod p). This proves that k±ω are the only primes and completes
the proof for the last case.

7.2.5. Theorem. If n ∈ Z is square-free, then Z[
√
n] is in the limit closure of the UFDs.

Proof. Let ω =
√
n as above. Clearly Z[ω] =

⋂
Qp[ω] the intersection taken over all

primes. We know that when p is an odd prime, Qp[ω] is itself a UFD. In addition, Q2[ω]
is a UFD if n ≡ 3 (mod 4). Thus it is sufficient to show that Q2[ω] is in the limit closure
of the UFDs when n ≡ 1 (mod 4). In that case, we know that τ = (1 + ω)/2 satisfies
the equation x2 + x + m for m = (n − 1)/4. Let R be the splitting field of x2 + x + m
over the field of two elements. If m is even, R = Z/2Z and the two roots are 0 and 1.
If m is odd, the roots are the two new cube roots of 1 in the field of four elements. In
either case, there are two maps f, g : Q2[τ ] //R, that take τ to one or the other root of
the equation. Since 1 + ω = 2τ is even, we have f(1 + ω) = 0, and g(1 + ω) = 0 so that
f(ω) = g(ω) = 1 and so Q2[ω] is the equalizer of f and g.

8. Conclusions and open questions

The following summarizes the main results of this paper.

1. A semiprime ring is in Kdom if and only if it is DL-closed.

2. A semiprime ring is in Kfld if and only if it is regular.
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3. A semiprime ring is in Kqrat if and only if it is quasi-rational and DL-closed. More-
over, for some rings, the Aqrat-topology is strictly between the domain and patch
topologies.

4. A semiprime ring is in Kper if and only if it is perfect.

5. A semiprime ring is in Kic if and only if it is (2,3)-closed.

6. Every ring in Kica is perfect and (2,3)-closed, but there are perfect, semiprime,
(2,3)-closed rings which are not in Kica.

7. A semiprime ring is in Kpfld if and only if it is perfect and regular.

8. In all of the above examples, the canonical sheaf representation property holds.

Open Questions. The following questions remain open:

1. Is there a concise description of Kica? (See 6.3.1.)

2. If the conditions in 3.4.1 are satisfied, does the canonical sheaf representation prop-
erty, 3.5, always hold?

3. If A , B, K satisfy the conditions in 3.4.1, must K be first order?

4. If K is a Dom-invariant subcategory, R ∈ K and S ⊆ R a multiplicatively closed
subset of non-zero divisors, does S−1R ∈ K ? Compare 4.3.2 and 5.3.4.
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Sup. 12, 9-55.

D.E. Dobbs (1981), Lying-over pairs of commutative rings. Can. Jour. Math, 33, 454–475.

D. Eisenbud (1995), Commutative algebra with a view toward algebraic geometry.
Springer Verlag.

E. Enochs (1968), Totally integrally closed rings. Proc. Amer. Math. Soc., 19 701–706.

L. Fuchs and I. Halperin (1964), On the imbedding of a regular ring in a ring with identity.
Fundamenta Mathematicae, 54, 285–290.



304 MICHAEL BARR, JOHN F. KENNISON, R. RAPHAEL

R. Gilmer (1992), Multiplicative Ideal Theory, Queens Papers in Pure and Applied Math-
ematics, 90, Kingston, Ontario.

M. Hochster (1969), Prime ideal structure in commutative rings, Trans. A.M.S. 142 43-60.

J.F. Kennison (1976), Integral domain type representations in sheaves and other topoi.
Math. Z. 151, 35–56.

J.F. Kennison and C.S. Ledbetter (1979), Sheaf representations and the Dedekind reals.
M. Fourman, C. Mulvey, and D. Scott, eds., Applications of Sheaves, Proc. 1977
Durham conference, LNM753, 500–513.

J. Lambek (1986), Lectures on Rings and Modules, third edition. AMS Chelsea Publishing,
Providence, RI.

M.D. Larsen and P.J. McCarthy (1971), Multiplicative Theory of Ideals. Academic Press.

S. Niefield and K. Rosenthal (1987), Sheaves of Integral Domains on Stone Spaces. J.
Pure Appl. Alg., 47, 173–179.

H.H. Storrer (1968), Epimorphismen von kommutativen Ringen. Comm. Math. Helv. 43,
378–401.

O. Zariski and P. Samuel with the cooperation of I.S. Cohen (1958), Commutative Algebra.
Van Nostrand.

Department of Mathematics and Statistics
McGill University, Montreal, QC, H3A 0B9

Department of Mathematics and Computer Science
Clark University, Worcester, MA 01610

Department of Mathematics and Statistics
Concordia University, Montreal, QC, H4B 1R6
Email: barr@math.mcgill.ca

jkennison@clarku.edu

raphael@alcor.concordia.ca

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.
Full text of the journal is freely available in .dvi, Postscript and PDF from the journal’s server at
http://www.tac.mta.ca/tac/ and by ftp. It is archived electronically and in printed paper format.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For in-
stitutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors The typesetting language of the journal is TEX, and LATEX2e
strongly encouraged. Articles should be submitted by e-mail directly to a Transmitting Editor. Please
obtain detailed information on submission format and style files at http://www.tac.mta.ca/tac/.

Managing editor. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor. Michael Barr, McGill University: barr@math.mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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