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LAX DISTRIBUTIVE LAWS FOR TOPOLOGY, II

HONGLIANG LAI, LILI SHEN AND WALTER THOLEN

Abstract. For a small quantaloid Q we consider four fundamental 2-monads T on
Q-Cat, given by the presheaf 2-monad P and the copresheaf 2-monad P†, as well as by
their two composite 2-monads, and establish that they all laxly distribute over P. These
four 2-monads therefore admit lax extensions to the category Q-Dist of Q-categories
and their distributors. We characterize the corresponding (T,Q)-categories in each of
the four cases, leading us to both known and novel categorical structures.

1. Introduction

Monoidal Topology [7] provides a common framework for the study of fundamental metric
and topological structures. Its ingredients are a quantale V, a Set-monad T and, most
importantly, a lax extension of T to the 2-category V-Rel of sets and V-valued relations.
Such lax extensions are equivalently described by lax distributive laws of T over the
discrete V-presheaf monad PV, the Kleisli category of which is exactly V-Rel. Once
equipped with a lax extension or lax distributive law, the monad T may then be naturally
extended to become a 2-monad on the 2-category V-Cat. This lax monad extension from
Set to V-Cat facilitates the study of greatly enriched structures. For example, for V
the two-element chain and T the ultrafilter monad, while the Eilenberg-Moore category
over Set is CompHaus, over V-Cat one obtains ordered compact Hausdorff spaces, and
when V is Lawvere’s [14] extended half-line [0,∞], metric compact Hausdorff spaces; see
[16, 32, 7]. Moreover, the functorial interaction between the Eilenberg-Moore category
(V-Cat)T and the category (T,V)-Cat of (T,V)-categories is a pivotal step for a serious
study of representability, a powerful property which, in the basic example of the two-
element chain and the ultrafilter monad, entails core-compactness, or exponentiability, of
topological spaces; see [4] and [7, Section III.5].

While this mechanism for generating a 2-monad on V-Cat from a Set-monad provides
an indispensable tool in monoidal topology, the question arises whether it is possible to
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make a given 2-monad T on V-Cat the starting point of a satisfactory theory, preferably
even in the more general context of a small quantaloid Q, (i.e., a Sup-enriched category),
rather than just a quantale V (i.e., a Sup-enriched monoid), a context that has been
propagated in this paper’s predecessor [33]. Such theory should, as a first step, entail the
study of lax extensions of T to the 2-categoryQ-Dist ofQ-categories and their distributors
(also (bi)modules, or profunctors), rather than just to Q-Rel, or, equivalently, the study
of lax distributive laws of T over the non-discrete presheaf monad PQ, rather than over
its discrete counterpart. The fact that the non-discrete presheaf monad is, other than its
discrete version, lax idempotent (i.e., of Kock-Zöberlein type [35, 10]), serves as a first
indicator that this approach should in fact lead to a categorically more satisfactory theory.

This paper makes the case for an affirmative answer to the question raised, even in
the extended context of a given small quantaloid Q, rather than that of a quantale. It is
centred around a fairly simple, but fundamental extension procedure for endo-2-functors
of Q-Cat to become lax endofunctors of Q-Dist, which has been used in the quantalic
context in [2] and extended from quantales to quantaloids in [12]. More importantly, the
paper [12] emphasized the fact that there is precisely one flat (or normal) lax extension
when the given endo-2-functor of Q-Cat preserves the full fidelity of Q-functors. We
recall this technique in Section 4 and then apply it to four naturally arising 2-monads
T on Q-Cat which do not come about as monads “lifted” from Set via the mechanism
described above, but which should nevertheless be of considerable general interest. They
all distribute laxly, but flatly, over P = PQ and, hence, are laxly, but flatly, extendable
to Q-Dist, and we give a detailed description of the respective lax algebras, or (T,Q)-
categories, arising. These monads are

• the presheaf 2-monad P itself (Section 5);

• the copresheaf 2-monad P† (Section 5);

• the double presheaf 2-monad PP† (Section 6);

• the double copresheaf 2-monad P†P (Section 7).

In each of the four cases, the establishment of the needed lax distributive law over P and
the characterization of the corresponding lax algebras, or, equivalently, (T,Q)-categories,
take some “technical” effort. However, the lax algebras pertaining to both, P and P†P, are
fairly quickly identifiable as Q-closure spaces, as considered in [23, 25]. More challenging
is the identification of the lax algebras pertaining to PP†, which we describe as Q-interior
spaces, a structure considered here for the first time. Also the lax algebras pertaining to
P† are of a novel flavour; they are monoid objects in Q-Dist. Given that their discrete
cousins, i.e., the monoid objects in Q-Rel, are Q-categories, they surely deserve further
study.

We have given sufficiently many details to make the proofs easily verifiable for the
reader, also since all needed basic tools are comprehensively listed in Section 2. The
introduction of lax distributive laws of a 2-monad over the (non-discrete) presheaf monad
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and of their lax algebras (as given in Section 3), as well as the proof of the fact that these
correspond bijectively to lax extensions of T toQ-Dist, with lax algebras corresponding to
(T,Q)-categories (as given in Section 8), are straightforward extensions of their “discrete”
treatment in [33]. Nevertheless, prior reading of [33] is not required for the purpose of
understanding these parts of the paper.

Acknowledgement. We thank the anonymous referee for his/her suggestions on the first
version of this paper, which was missing the techniques of Section 4 that in particular
simplify the treatment of the four monads of our interest. These suggestions included a
concrete indication of how the results of this paper may be established in the context of
a locally cocomplete bicategory, rather than that of a quantaloid, on which we plan to
follow up in a separate paper.

2. Quantaloid-enriched categories and their distributors

A quantaloid [20] is a category enriched in the monoidal-closed category Sup [9] of com-
plete lattices and sup-preserving maps. Explicitly, a quantaloid Q is a 2-category with its
2-cells given by an order “�”, such that each hom-set Q(r, s) is a complete lattice and the
composition of morphisms from either side preserves arbitrary suprema. Hence, Q has
“internal homs”, denoted by↙ and↘ , as the right adjoints of the composition functors:

− ◦ u a − ↙ u : Q(r, t) //Q(s, t) and v ◦ − a v ↘ − : Q(r, t) //Q(r, s);

explicitly,
u � v ↘ w ⇐⇒ v ◦ u � w ⇐⇒ v � w ↙ u

for all morphisms u : r // s, v : s // t, w : r // t in Q.
Throughout this paper, we let Q be a small quantaloid. From Q one forms a new

(large) quantaloid Q-Rel of Q-relations with the following data: its objects are those
of Set/Q0 (with Q0 := obQ), i.e., sets X equipped with an array (or type) map |-| :
X // Q0, and a morphism ϕ : X //7 Y in Q-Rel is a map that assigns to every pair
x ∈ X, y ∈ Y a morphism ϕ(x, y) : |x| // |y| in Q; its composite with ψ : Y //7 Z is
defined by

(ψ ◦ ϕ)(x, z) =
∨
y∈Y

ψ(y, z) ◦ ϕ(x, y),

and 1◦X : X //7 X with

1◦X(x, y) =

{
1|x| if x = y,

⊥ else

serves as the identity morphism on X. As Q-relations are equipped with the pointwise
order inherited from Q, internal homs in Q-Rel are computed pointwise as

(θ ↙ ϕ)(y, z) =
∧
x∈X

θ(x, z)↙ ϕ(x, y) and (ψ ↘ θ)(x, y) =
∧
z∈Z

ψ(y, z)↘ θ(x, z)
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for all ϕ : X //7 Y , ψ : Y //7 Z, θ : X //7 Z.
A (small)Q-category is an (internal) monad in the 2-categoryQ-Rel; or equivalently, a

monoid in the monoidal-closed category (Q-Rel(X,X), ◦), for some X overQ0. Explicitly,
aQ-category consists of an object X in Set/Q0 and aQ-relation a : X //7 X (its “hom”),
such that 1◦X � a and a ◦ a � a. For every Q-category (X, a), the underlying (pre)order
on X is given by

x 6 x′ ⇐⇒ |x| = |x′| and 1|x| � a(x, x′),

and we write x ∼= x′ if x 6 x′ and x′ 6 x.
A map f : (X, a) // (Y, b) between Q-categories is a Q-functor (resp. fully faithful Q-

functor) if it lives in Set/Q0 and satisfies a(x, x′) � b(fx, fx′) (resp. a(x, x′) = b(fx, fx′))
for all x, x′ ∈ X. With the pointwise order of Q-functors inherited from Y , i.e.,

f 6 g : (X, a) // (Y, b) ⇐⇒ ∀x ∈ X : fx 6 gx ⇐⇒ ∀x ∈ X : 1|x| � b(fx, gx),

Q-categories and Q-functors are organized into a 2-category Q-Cat.
The one-object quantaloids are the (unital) quantales (see [19]); equivalently, a quan-

tale is a complete lattice V with a monoid structure whose binary operation ⊗ preserves
suprema in each variable. We generally denote the ⊗-neutral element by k; so, k = 1? if
we denote by ? the only object of the monoid V, considered as a category.

We refer to [7] for the standard examples of quantales V of interest in monoidal topol-
ogy, which include the Lawvere quantale [0,∞] with its addition ([14]) or its frame op-
eration ([21]), giving generalized metric spaces and generalized ultrametric spaces as V-
categories. For relevant examples of small quantaloids that are not quantales, we mention
the fact that every quantale V (in fact, every quantaloid) gives rise to the quantaloid
DV of “diagonals of V” (see [29]), which has a particularly simple description when V
is divisible: see [8, 17]. For V = [0,∞] one obtains as DV-categories generalized partial
(ultra-)metric spaces, as studied by various authors: [15, 3, 8, 17, 31, 33]. We also refer
to Walters’ original paper [34] which associates with a small site (C,F) a quantaloid R
whose Cauchy complete R-categories have been identified as the internal ordered objects
in the topos of sheaves over (C,F) in the thesis [5]; see also [6].

A Q-relation ϕ : X //7 Y becomes a Q-distributor ϕ : (X, a) //◦ (Y, b) if it is com-
patible with the Q-categorical structures a and b; that is,

b ◦ ϕ ◦ a � ϕ.

Q-categories and Q-distributors constitute a quantaloid Q-Dist that contains Q-Rel as
a full subquantaloid, in which the composition and internal homs are calculated in the
same way as those of Q-relations; the identity Q-distributor on (X, a) is given by its hom
a : (X, a) //◦ (X, a).

Each Q-functor f : (X, a) // (Y, b) induces an adjunction f∗ a f ∗ in Q-Dist, given
by

f∗ : (X, a) //◦ (Y, b), f∗(x, y) = b(fx, y) and
f ∗ : (Y, b) //◦ (X, a), f ∗(y, x) = b(y, fx),

(2.i)



740 HONGLIANG LAI, LILI SHEN AND WALTER THOLEN

and called the graph and cograph of f , respectively. Obviously, a = (1X)∗ = 1∗X for any
Q-category (X, a); hence, a = 1∗X will be our standard notation for identity morphisms
in Q-Dist.

For an object s in Q, and with {s} denoting the singleton Q-category, the only object
of which has array s and hom 1s, Q-distributors of the form σ : X //◦ {s} are called
presheaves on X and constitute a Q-category PX, with 1∗PX(σ, σ′) = σ′ ↙ σ. Dually, the
copresheaf Q-category P†X consists of Q-distributors τ : {s} //◦ X with 1∗P†X(τ, τ ′) =
τ ′ ↘ τ .

It is important to note that for any Q-category X, it follows from the definition that
the underlying order on P†X is the reverse local order of Q-Dist, i.e.,

τ 6 τ ′ in P†X ⇐⇒ τ ′ � τ in Q-Dist.

That is why we use a different symbol, “6”, for the underlying order of Q-categories and
the 2-cells in Q-Cat, while “�” is reserved for ordering the 2-cells in Q and Q-Dist.

A Q-category X is complete if the Yoneda embedding

yX : X // PX, x 7→ 1∗X(−, x),

has a left adjoint supX : PX //X in Q-Cat; that is,

1∗X(supXσ,−) = 1∗PX(σ, yX−) = 1∗X ↙ σ

for all σ ∈ PX. It is well known that X is a complete Q-category if, and only if,
Xop := (X, (1∗X)op) with (1∗X)op(x, x′) = 1∗X(x′, x) is a complete Qop-category (see [27]),
where the completeness of Xop may be translated as the co-Yoneda embedding

y†X : X // P†X, x 7→ 1∗X(x,−),

admitting a right adjoint infX : P†X //X in Q-Cat.

2.1. Lemma. [25, 27] Let X be a Q-category.

(1) (Yoneda Lemma) For all σ ∈ PX, τ ∈ P†X,

σ = (yX)∗(−, σ) = 1∗PX(yX−, σ) and τ = (y†X)∗(τ,−) = 1∗P†X(τ, y†X−).

In particular, both yX : X // PX and y†X : X // P†X are fully faithful.

(2) supX ·yX ∼= 1X , infX ·y†X ∼= 1X .

(3) Both PX and P†X are separated1 and complete, with

supPXσ = σ ◦ (yX)∗ and infP†Xτ = (y†X)∗ ◦ τ,

for all σ ∈ PPX, τ ∈ P†P†X.

1A Q-category X is separated if x ∼= x′ implies x = x′ for all x, x′ ∈ X.
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Each Q-distributor ϕ : X //◦ Y induces Kan adjunctions [25] in Q-Cat given by

PY PX
ϕ�

//

PXPY
ϕ�

oo ⊥

ϕ�τ = τ ◦ ϕ, ϕ�σ = σ ↙ ϕ
and

P†Y P†X
ϕ⊕

//

P†XP†Y
ϕ⊕

oo ⊥

ϕ⊕τ = ϕ↘ τ, ϕ⊕σ = ϕ ◦ σ.
(2.ii)

Moreover, all the assignments in (2.i) and (2.ii) are 2-functorial, and one has two pairs of
adjoint 2-functors [5] described by

X Y
ϕ
//◦

Y PX
←−ϕ
//

←−ϕ y = ϕ(−, y) Q-Cat (Q-Dist)op,
(−)∗

//

(Q-Dist)op,Q-Cat
P

oo ⊥

(ϕ� : PY // PX) �oo (ϕ : X //◦ Y )

X Y
ϕ
//◦

X P†Y
−→ϕ
//

−→ϕx = ϕ(x,−) Q-Cat (Q-Dist)co,
(−)∗

//

(Q-Dist)co,Q-Cat
P†

oo ⊥

(ϕ⊕ : P†X // P†Y ) �oo (ϕ : X //◦ Y )

(2.iii)

where “co” refers to the dualization of 2-cells. The unit y and the counit ε of the adjunction
(−)∗ a P are respectively given by the Yoneda embeddings and their graphs:

εX := (yX)∗ : X //◦ PX.

The presheaf 2-monad P = (P, s, y) on Q-Cat induced by (−)∗ a P sends each Q-functor
f : X // Y to

f! := (f ∗)� : PX // PY,

which admits a right adjoint f ! := (f ∗)� = (f∗)
� : PY // PX in Q-Cat; the monad

multiplication s is given by

sX = ε�X = supPX = y!X : PPX // PX, (2.iv)

where supPX = y!X is an immediate consequence of Lemma 2.1. Similarly, the unit y†

is given by the co-Yoneda embeddings, and ε† := (y†�)∗ is the counit of the adjunction
(−)∗ a P†. The induced copresheaf 2-monad P† = (P†, s†, y†) on Q-Cat sends f to

f¡ := (f∗)
⊕ : P†X // P†Y,

which admits a left adjoint f ¡ := (f ∗)⊕ = (f∗)⊕ : P†Y // P†X in Q-Cat, and the monad
multiplication is given by

s†X = (ε†X)⊕ = infP†X = (y†X)¡ : P†P†X // P†X. (2.v)

We also point out that the presheaf 2-monad P on Q-Cat is lax idempotent, or of
Kock-Zöberlein type [28], in the sense that

(yX)! 6 yPX
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for all Q-categories X. Dually, the copresheaf 2-monad P† on Q-Cat is oplax idempotent,
or of dual Kock-Zöberlein type, in the sense that

y†
P†X
6 (y†X)¡

for all Q-categories X.
In a sequence of lemmata we now give a comprehensive list of rules that are needed in

the calculations later on. While many of these rules are standard and well known, some
are not and, in fact, new.

2.2. Lemma. [22, 25] Let f : X // Y be a Q-functor.

(1) f is fully faithful ⇐⇒ f ∗ ◦ f∗ = 1∗X ⇐⇒ f ! · f! = 1PX ⇐⇒ f ¡ · f¡ = 1P†X ⇐⇒
f! : PX // PY is fully faithful ⇐⇒ f¡ : P†X // P†Y is fully faithful.

(2) If f is essentially surjective, in the sense that, for any y ∈ Y , there exists x ∈ X
with y ∼= fx, then f∗ ◦ f ∗ = 1∗Y , f! · f ! = 1PY , f¡ · f ¡ = 1P†Y and both f! : PX //PY ,
f¡ : P†X // P†Y are surjective.

2.3. Lemma. [18, 27] For all Q-functors f : X // Y and g : Y //X,

f a g ⇐⇒ f∗ = g∗ ⇐⇒ f ! = g! ⇐⇒ f¡ = g¡

⇐⇒ f! a g! ⇐⇒ f ! a g! ⇐⇒ f¡ a g¡ ⇐⇒ f ¡ a g¡.

2.4. Lemma. For all Q-functors f, g : X // Y and Q-distributors ϕ, ψ : X //◦ Y ,

(1) f 6 g ⇐⇒ f∗ � g∗ ⇐⇒ f ∗ � g∗ ⇐⇒ f! 6 g! ⇐⇒ f¡ 6 g¡ ⇐⇒ f ! > g! ⇐⇒
f ¡ > g¡.

(2) ϕ � ψ ⇐⇒ ϕ� 6 ψ� ⇐⇒ ϕ⊕ > ψ⊕ ⇐⇒ ←−ϕ 6
←−
ψ ⇐⇒ −→ϕ >

−→
ψ .

2.5. Lemma. [23, 27] Let f : X // Y be a Q-functor between complete Q-categories.
Then

supY · f! 6 f · supX and f · infX 6 infY · f¡.

Furthermore, f is a left (resp. right) adjoint in Q-Cat if, and only if, supY ·f! = f · supX
(resp. f · infX = infY ·f¡).

The above lemma shows that left (resp. right) adjoint Q-functors between complete
Q-categories are exactly sup-preserving (resp. inf-preserving) Q-functors. Thus we de-
note the 2-subcategory of Q-Cat consisting of separated complete Q-categories and sup-
preserving (resp. inf-preserving) Q-functors by Q-Sup (resp. Q-Inf).
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2.6. Lemma. The following identities hold for all Q-distributors ϕ : X //◦ Y .

(1) yX =
←−
1∗X , y†X =

−→
1∗X .

(2) 1PX =
←−−−
(yX)∗, 1P†X =

−−−→
(y†X)∗.

(3) ←−ϕ = ϕ� · yY , −→ϕ = ϕ⊕ · y†X .

(4) ϕ =←−ϕ ∗ ◦ (yX)∗ = (y†Y )∗ ◦ −→ϕ ∗.

(5) (yY )∗ ◦ ϕ = ϕ�∗ ◦ (yX)∗, ϕ ◦ (y†X)∗ = (y†Y )∗ ◦ (ϕ⊕)∗.

Proof. (1), (3) are trivial, and (2), (4) are immediate consequences of the Yoneda lemma.
For (5), note that the 2-functor

P : (Q-Dist)op //Q-Cat, (ϕ : X //◦ Y ) 7→ (ϕ� : PY // PX)

is faithful, and

((yY )∗ ◦ ϕ)� = ϕ� · y!Y = ϕ� · supPY = supPX · (ϕ�)! = y!X · ϕ�∗� = (ϕ�∗ ◦ (yX)∗)
�

follows by applying Lemma 2.5 to the left adjoint Q-functor ϕ� : PY // PX. The other
identity can be verified analogously.

2.7. Lemma. The following identities hold for all Q-functors f : X // Y .

(1) f¡! = f ¡!, f!¡ = f !¡, (f!)
! = (f !)!, (f¡)

¡ = (f ¡)¡.

(2)
←−
f∗ = f ! · yY ,

−→
f∗ = y†Y · f = f¡ · y†X .

(3)
−→
f ∗ = f ¡ · y†Y ,

←−
f ∗ = yY · f = f! · yX .

(4) (yX)∗ ◦ f ∗ = (f!)
∗ ◦ (yY )∗, f! · y!X = y!Y · f!!, (yX)¡ · f ¡ = (f!)

¡ · (yY )¡.

(5) f∗ ◦ (y†X)∗ = (y†Y )∗ ◦ (f¡)∗, f¡ · (y†X)¡ = (y†Y )¡ · f¡¡, (y†X)! · f ! = (f¡)
! · (y†Y )!.

Proof. For (1), f¡! = f ¡! since (f ¡)! a f ¡! and (f ¡)! a f¡!, and the other identities can be
checked similarly. The non-trivial identities in (2) and (3) follow respectively from the
naturality of y† and y, while (4) and (5) are immediate consequences of Lemma 2.6(5).

2.8. Lemma. The following identities hold for all Q-distributors ϕ : X //◦ Y , ψ : Y //◦ Z
and Q-functors f whenever the operations make sense:

(1)
←−−−
ψ ◦ ϕ = ϕ� ·

←−
ψ = y!X ·

←−ϕ ! ·
←−
ψ ,

←−−−
ψ ◦ f ∗ = f! ·

←−
ψ ,

←−−−
f ∗ ◦ ϕ =←−ϕ · f .

(2)
−−−→
ψ ◦ ϕ = ψ⊕ · −→ϕ = (y†Z)¡ ·

−→
ψ ¡ · −→ϕ ,

−−−→
ψ ◦ f∗ =

−→
ψ · f ,

−−−→
f∗ ◦ ϕ = f¡ · −→ϕ .

Proof. Straightforward calculations with the help of Lemmas 2.6 and 2.7.
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2.9. Lemma. For Q-functors f, g : PX // Y (resp. f, g : P†X // Y ), if f (resp. g) is
a left (resp. right) adjoint in Q-Cat, then

fyX 6 gyX (resp. fy†X 6 gy†X) ⇐⇒ f 6 g.

Proof. For the non-trivial direction, suppose that f a h : Y // PX, then fyX 6 gyX
implies yX 6 hgyX . Consequently, the Yoneda lemma and the Q-functoriality of hg :
PX // PX imply

σ = (yX)∗(−, σ) = 1∗PX(yX−, σ) � 1∗PX(hgyX−, hgσ) � 1∗PX(yX−, hgσ) = hgσ

and thus σ 6 hgσ, hence fσ 6 gσ for all σ ∈ PX.

Since one already has the isomorphisms of ordered hom-sets

Q-Dist(X, Y ) ∼= Q-Cat(Y,PX) ∼= (Q-Cat)co(X,P†Y ),

ϕ
∼←→ ←−ϕ ∼←→ −→ϕ

with the adjunctions (2.iii) we obtain further isomorphisms in Q-Sup and Q-Inf , as
follows.

2.10. Lemma. [25] For all Q-categories X, Y , one has the natural isomorphisms of or-
dered hom-sets

Q-Dist(X, Y ) ∼= (Q-Sup)co(PX,P†Y ) ∼= Q-Inf(P†Y,PX)
∼= Q-Sup(PY,PX) ∼= (Q-Inf)co(PX,PY ).

Proof. EachQ-distributor ϕ : X //◦ Y induces the Isbell adjunction ϕ↑ a ϕ↓ : P†Y //PX
[25] with

ϕ↑σ = ϕ↙ σ and ϕ↓τ = τ ↘ ϕ

for all σ ∈ PX, τ ∈ P†Y . It is straightforward to check that

Q-Dist(X, Y ) ∼= (Q-Sup)co(PX,P†Y ) ∼= Q-Inf(P†Y,PX)

ϕ
∼←→ ϕ↑

∼←→ ϕ↓

∼= Q-Sup(PY,PX) ∼= (Q-Inf)co(PX,PY )
∼←→ ϕ�

∼←→ ϕ�

gives the required isomorphisms. We refer to [25, Theorems 4.4 & 5.7] for details.
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3. The non-discrete version of lax distributive laws and their lax algebras

In this section we establish the non-discrete version of the lax distributive laws considered
in [33]. An equivalent framework in terms of lax extensions of 2-monads on Q-Cat to
Q-Dist is presented below in Section 8.

For a 2-monad T = (T,m, e) on Q-Cat, a lax distributive law λ : TP // PT is given
by a family

(λX : TPX // PTX)X∈ob(Q-Cat)

of Q-functors satisfying the following inequalities for all Q-functors f : X // Y :

(a)

PTX PTY
(Tf)!

//

TPX

PTX

λX
��

TPX TPY
T (f!)

// TPY

PTY

λY
��

6 (Tf)! · λX 6 λY · T (f!) (lax naturality of λ);

(b)

TPX PTX
λX

//

TX

TPX

T yX

��

TX

PTX

yTX

��> yTX 6 λX · T yX (lax P-unit law);

(c)

TPX PTX
λX

//

TPPX

TPX

T sX
��

TPPX PPTXPPTX

PTX

sTX

��

TPPX PTPX
λPX // PTPX PPTX

(λX)!
//

> sTX · (λX)! · λPX 6 λX · T sX (lax P-mult. law);

(d)

TPX PTX
λX

//

PX

TPX

ePX

��

PX

PTX

(eX)!

��> (eX)! 6 λX · ePX (lax T-unit law);

(e)

TPX PTX
λX

//

TTPX

TPX

mPX

��

TTPX PTTXPTTX

PTX

(mX)!
��

TTPX TPTX
TλX // TPTX PTTX

λTX //

> (mX)!·λTX ·TλX 6 λX ·mPX (lax T-mult. law).

Each of these laws is said to hold strictly (at f or X) if the respective inequality sign
may be replaced by an equality sign; for a strict distributive law, all lax laws must hold
strictly everywhere. For simplicity, in what follows, we refer to a lax distributive law
λ : TP //TP just as a distributive law ; we also say that T distributes over P by λ in this
case, adding strictly when λ is strict.

Note that in the discrete case (see [33]), a distributive law λ of a monad T = (T,m, e)
on Set/Q0 over the discrete presheaf monad P on Set/Q0 is usually required to be
monotone, i.e.,

f 6 g =⇒ λX · Tf 6 λX · Tg
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for all Q-functors f, g : Y //PX. This property comes for free in the current non-discrete
case since the 2-functor T of the 2-monad T = (T,m, e) will respect the order.

3.1. Definition. For a distributive law λ : TP // PT , a lax λ-algebra (X, p) over Q is
a Q-category X with a Q-functor p : TX // PX satisfying

(f)

TX PXp
//

X

TX

eX

��

X

PX

yX

��> yX 6 p · eX (lax unit law);

(g)

TX PXp
//

TTX

TX

mX

��

TTX PPXPPX

PX

sX
��

TTX TPX
Tp
// TPX PTX

λX // PTX PPX
p! //

> sX · p! · λX · Tp 6 p ·mX (lax mult. law).

A lax λ-homomorphism f : (X, p) //(Y, q) of lax λ-algebras is a Q-functor f : X //Y
which satisfies

(h)

PX PY
f!

//

TX

PX

p
��

TX TY
Tf

// TY

PY

q
��

6 f! · p 6 q · Tf (lax homomorphism law).

The resulting 2-category is denoted by (λ,Q)-Alg, with the local order inherited from
Q-Cat.

3.2. Proposition. (λ,Q)-Alg is topological over Q-Cat and, hence, totally complete
and totally cocomplete.

Proof. For any family of λ-algebras (Yj, qj) and Q-functors fj : X // Yj (j ∈ J),

p :=
∧
j∈J

(fj)
! · qj · Tfj

gives the initial structure on X with respect to the forgetful functor (λ,Q)-Alg //Q-Cat,
and thus establishes the topologicity of (λ,Q)-Alg over Q-Cat (see [1]). The total com-
pleteness and total cocompleteness of (λ,Q)-Alg then follow from the respective proper-
ties of Q-Cat (see [24, Theorem 2.7]).

4. Flat distributive laws of 2-monads on Q-Cat over P
Given a 2-monad T = (T,m, e) on Q-Cat, a distributive law λ of T over P is called flat
(or normal) if it satisfies the P-unit law (b) strictly; that is, if

yTX = λX · T yX
for all X ∈ ob(Q-Cat). In fact, although there may be several distributive laws of T over
P, only one of them may be flat:
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4.1. Proposition. A flat distributive law λ : TP // PT must satisfy

λX =
←−−−−
(T yX)∗ : TPX // PTX.

Proof. Indeed, λX >
←−−−−
(T yX)∗ holds for any λ : TP //PT satisfying the lax laws (b) and

(c), since

λX = λX · T
←−−−
(yX)∗ (Lemma 2.6(2))

= λX · T y!X · T yPX (Lemma 2.7(2))

> y!TX · (λX)! · λPX · T yPX (λ satisfies (c))

> (T yX)! · λ!X · (λX)! · yTPX (λ satisfies (b))

> (T yX)! · yTPX ((λX)! a λ!X)

=
←−−−−
(T yX)∗. (Lemma 2.7(2))

When λ also satisfies the laws (a) laxly and (b) strictly, one has

λX 6 (T yX)! · (T yX)! · λX ((T yX)! a (T yX)!)

6 (T yX)! · λPX · T (yX)! (λ satisfies (a))

6 (T yX)! · λPX · T yPX (P is lax idempotent)

= (T yX)! · yTPX (λ satisfies (b) strictly)

=
←−−−−
(T yX)∗. (Lemma 2.7(2))

The following Theorem provides the crucial tool for establishing the flat distributive
laws over P presented in Sections 5–7. In fact, it just paraphrases a lax extension result of
[12] for 2-monads on Q-Cat to Q-Dist, which we formulate explicitly below as Corollary
8.5 and which, in turn, builds on a lax extension result for endofunctors of V-Cat (where
V is a quantale) used in [2].

4.2. Theorem. Let T = (T,m, e) be a 2-monad on Q-Cat such that T yX : TX //TPX
is fully faithful for all Q-categories X. Then

λX =
←−−−−
(T yX)∗ : TPX // PTX

defines a flat distributive law of T over P, and it is the only one.

Proof. We verify that for any 2-monad T = (T,m, e), λ satisfies the lax laws (a)–(d),
with (c) always holding strictly; meanwhile, (b) holds strictly if, and only if, T yX is fully
faithful, in which case λ also satisfies the lax law (e); this will complete the proof, by
Proposition 4.1.
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(a) (Tf)! · λX 6 λY · T (f!). From the naturality of y one has

(T (f!))∗ ◦ (T yX)∗ = (T yY )∗ ◦ (Tf)∗,

and then the adjunction rules ensure that

(Tf)! · λX =
←−−−−−−−−−−
(T yX)∗ ◦ (Tf)∗ 6

←−−−−−−−−−−−−
(T (f!))

∗ ◦ (T yY )∗ = λY · T (f!),

where the first and the last equalities follow from Lemma 2.8(1).
(b) yTX 6 λX · T yX . The adjunction rules give

yTX =
←−−
1∗TX 6

←−−−−−−−−−−−
(T yX)∗ ◦ (T yX)∗ = λX · T yX ,

where “6” may be replaced by “=” if, and only if, T yX is fully faithful, by Lemma 2.2(1).
(c) sTX · (λX)! ·λPX = λX ·T sX . Since the 2-functor T preserves adjunctions in Q-Cat,

one has

sTX · (λX)! · λPX =
←−−−−−−−−−−−−
(T yPX)∗ ◦ (T yX)∗ (Lemma 2.8(1))

=
←−−−−−−−−−−−−−
(T (yX)!)∗ ◦ (T yX)∗ (y is natural)

=
←−−−−−−−−−−−−−
(T (yX)!)∗ ◦ (T yX)∗ (T (yX)! a T (yX)!)

= λX · T sX . (Lemma 2.8(1))

(d) (eX)! 6 λX ·ePX . The naturality of e induces T yX ·eX = ePX ·yX , and consequently

(eX)! 6 (T yX)! · (ePX)! · (yX)! ((T yX)! a (T yX)!)

6 (T yX)! · (ePX)! · yPX (P is lax idempotent)

= (T yX)! · yTPX · ePX (y is natural)

= λX · ePX . (Lemma 2.7(2))

(e) (mX)! · λTX · TλX 6 λX ·mPX if (b) holds strictly. From the naturality of m one
has T yX ·mX = mPX · TT yX , and it follows that

(mX)! · λTX · TλX 6 (T yX)! · (mPX)! · (TT yX)! · λTX · TλX ((T yX)! a (T yX)!)

6 (T yX)! · (mPX)! · λTPX · T (T yX)! · TλX (λ satisfies (a))

6 (T yX)! · (mPX)! · λTPX · TλPX · TT (yX)! (λ satisfies (a))

6 (T yX)! · (mPX)! · λTPX · TλPX · TT yPX (P is lax idempotent)

= (T yX)! · (mPX)! · λTPX · T yTPX (λ satisfies (b) strictly)

= (T yX)! · (mPX)! · yTTPX (λ satisfies (b) strictly)

= (T yX)! · yTPX ·mPX (y is natural)

= λX ·mPX . (Lemma 2.7(2))
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5. The distributive laws of the (co)presheaf 2-monad

As an immediate consequence of Lemma 2.2 and Theorem 4.2, one sees that

λX =
←−−−
(yX)!∗ = ((yX)!)

! · yPPX = yPX · y!X = yPX · supPX : PPX // PPX

defines a flat distributive law of the presheaf 2-monad P over itself:

5.1. Proposition. The presheaf 2-monad P distributes flatly over itself by λ with

λX = yPX · supPX : PPX // PPX.

Now we describe the lax algebras for this distributive law. A Q-closure space [23, 25]
is a pair (X, c) that consists of a Q-category X and a Q-closure operation c on PX; that
is, a Q-functor c : PX // PX satisfying 1PX 6 c and c · c = c. A continuous Q-functor
f : (X, c) // (Y, d) between Q-closure spaces is a Q-functor f : X // Y such that

f! · c 6 d · f! : PX // PY.

Q-closure spaces and continuous Q-functors constitute the 2-category Q-Cls, with the
local order inherited from Q-Cat. One sees quite easily that these are the lax λ-algebras
over Q:

5.2. Theorem. (λ,Q)-Alg ∼= Q-Cls.

Proof. For any Q-category X, we show that a Q-functor c : PX // PX gives a lax
λ-algebra structure on X if, and only if, (X, c) is a Q-closure space.

c satisfies (f) ⇐⇒ 1PX 6 c: This is an immediate consequence of Lemma 2.9.
c satisfies (g) ⇐⇒ c · c 6 c: Note that

c · c = supPX · yPX · c · supPX · yPX · c
= supPX · c! · yPX · supPX · c! · yPX (y is natural)

= supPX · c! · λX · c! · yPX ,

and thus

c · c 6 c ⇐⇒ supPX · c! · λX · c! · yPX 6 c

⇐⇒ supPX · c! · λX · c! 6 c · supPX , (supPX a yPX)

which is precisely the condition (g).
Therefore, the isomorphism between (λ,Q)-Alg and Q-Cls follows since a continuous

Q-functor f : (X, c) // (Y, d) is exactly a Q-functor f : X // Y satisfying the condition
(h).
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The distributive law of the copresheaf 2-monad P† over P arising from Lemma 2.2 and
Theorem 4.2 is even strict:

5.3. Proposition. The copresheaf 2-monad P† distributes strictly over P by λ† with

λ†X =
←−−−
(yX)¡∗ = ((yX)¡)

! · yP†PX : P†PX // PP†X.

Proof. One needs to show that λ† satisfies the laws (a)–(e) strictly. We leave the lengthy
but routine verification to the readers.

5.4. Remark. Stubbe described a strict distributive law of P over P† given by

PP†X
(yX)¡!

// PP†PX
sup

P†PX // P†PX (5.i)

in [30]. In fact, the strict distributive law λ†X : P†PX //PP†X defined in Proposition 5.3
is precisely the right adjoint of (5.i) in Q-Cat.

Recall that a Q-category is a monad in Q-Rel. Similarly, a monad in Q-Dist gives
“a Q-category over a base Q-category”; that is, a Q-category X equipped with a Q-
distributor α : X //◦ X, such that 1∗X � α and α ◦ α � α. The latter two inequalities
actually force the Q-relation α on X to be a Q-distributor, since with a = 1∗X one has

a ◦ (α ◦ a) � a ◦ (α ◦ α) � a ◦ α � α ◦ α � α.

Thus, a monad in Q-Dist is given by a set X over Q0 that comes equipped with two
Q-category structures, comparable by “�”. With morphisms to laxly preserve both struc-
tures we obtain the 2-category Mon(Q-Dist); hence, its morphisms f : (X,α) // (Y, β)
are precisely the Q-functors f : X // Y with

f! · ←−α 6
←−
β · f

or, equivalently, α(x, x′) � β(fx, fx′) for all x, x′ ∈ X, which are equipped with the order
inherited from Q-Cat.

5.5. Remark. The 2-category Mon(Q-Dist) must be carefully distinguished from the
2-categories Mnd(Q-Dist), as considered by Street [26], and EM(Q-Dist), as considered
by Lack and Street [11]. Although all three 2-categories have the same objects, they have
different 1-cells. In fact, Mnd(Q-Dist) and EM(Q-Dist) are internally constructed from
Q-Dist, with 1-cells being those of Q-Dist, i.e., Q-distributors.

5.6. Theorem. (λ†,Q)-Alg ∼= Mon(Q-Dist).
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Proof. Step 1. We show that, if (X, p) is a (λ†,Q)-algebra, then

p = infPX · p¡ · (y†X)¡. (5.ii)

Indeed, the conditions (f) and (g) for the (λ†,Q)-algebra (X, p) read as

(f) yX 6 p · y†X and

(g) y!X · p! · λ
†
X · p¡ 6 p · (y†X)¡,

and consequently

p = infPX · y†PX · p
= infPX · p¡ · y†P†X (y† is natural)

6 infPX · p¡ · (y†X)¡ (P† is oplax idempotent)

= (y†X)! · (y†X)! · infPX · p¡ · (y†X)¡ (y†X is fully faithful)

= (y†X)! · λ†X · y
†
PX · infPX · p¡ · (y†X)¡ (λ† satisfies (d) strictly)

6 (y†X)! · λ†X · p¡ · (y
†
X)¡ (y†PX a infPX)

6 (y†X)! · p! · p! · λ†X · p¡ · (y
†
X)¡ (p! a p!)

6 y!X · p! · λ
†
X · p¡ · (y

†
X)¡ (p satisfies (f))

6 p · (y†X)¡ · (y†X)¡ (p satisfies (g))

= p. (y†X is fully faithful)

Step 2. As an immediate consequence of (5.ii), p is a right adjoint in Q-Cat. For
any Q-category X, one already has

Q-Dist(X,X) ∼= Q-Inf(P†X,PX)

from Lemma 2.10, with the isomorphism given by

(α : X //◦ X) 7→ (α↓ : P†X // PX, α↓τ = τ ↘ α).

Hence, in order for us to establish a bijection between monads on X (in Q-Dist) and
(λ†,Q)-algebra structures on X, it suffices to prove

• 1∗X � α ⇐⇒ α↓ satisfies (f), and

• α ◦ α � α ⇐⇒ α↓ satisfies (g)

for all Q-distributors α : X //◦ X.

First, 1∗X � α ⇐⇒ α↓ satisfies (f). Since
←−
1∗X = yX and, as one easily sees,←−α = α↓ ·y†X ,

the equivalence 1∗X � α ⇐⇒ yX 6 α↓ · y†X follows immediately.
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Second, α ◦ α � α ⇐⇒ α↓ satisfies (g), i.e.,

y!X · (α↓)! · λ
†
X · (α

↓)¡ 6 α↓ · (y†X)¡ = α↓ · infP†X .

Note that
←−−−α ◦ α = y!X · ←−α ! · ←−α (Lemma 2.8(1))

= y!X · (α↓)! · (y
†
X)! · α↓ · y†X (α↓ · y†X =←−α )

= y!X · (α↓)! · λ
†
X · y

†
PX · α

↓ · y†X (λ† satisfies (d) strictly)

= y!X · (α↓)! · λ
†
X · (α

↓)¡ · y†P†X · y
†
X (y† is natural)

and, hence,

α ◦ α � α ⇐⇒ ←−−−α ◦ α 6←−α = α↓ · y†X
⇐⇒ y!X · (α↓)! · λ

†
X · (α

↓)¡ · y†P†X · y
†
X 6 α↓ · y†X

⇐⇒ y!X · (α↓)! · λ
†
X · (α

↓)¡ · y†P†X 6 α↓ = α↓ · infP†X · y†P†X (Lemma 2.9)

⇐⇒ y!X · (α↓)! · λ
†
X · (α

↓)¡ 6 α↓ · infP†X , (Lemma 2.9)

as desired.
Step 3. f : (X,α) // (Y, β) is a morphism in Mon(Q-Dist) if, and only if, f :

(X,α↓) // (Y, β↓) satisfies (h). Indeed,

f! · α↓ 6 β↓ · f¡ ⇐⇒ f! · α↓ · y†X 6 β↓ · f¡ · y†X (Lemma 2.9)

⇐⇒ f! · α↓ · y†X 6 β↓ · y†Y · f (y† is natural)

⇐⇒ f! · ←−α 6
←−
β · f,

which completes the proof.

6. The distributive law of the double presheaf 2-monad

Recall that the adjunctions (−)∗ a P and (−)∗ a P† displayed in (2.iii) give rise to the
isomorphisms

Q-Cat(Y,PX) ∼= Q-Dist(X, Y ) ∼= Q-Cat(X,P†Y ), (6.i)

for all Q-categories X, Y . In fact, (6.i) induces another pair of adjoint 2-functors [30]

P†c a Pc : Q-Cat // (Q-Cat)coop, (6.ii)

which map objects as P† and P do, but with P†cf = f ¡ and Pcf = f ! for all Q-functor f .
The units and counits of this adjunction are respectively given by

yP†X · y†X = (y†X)! · yX : X // PP†X and y†PX · yX = (yX)¡ · y†X : X // P†PX

PX PP†X
(y†X)!

//

X

PX

yX

��

X P†X
y†X // P†X

PP†X

y
P†X
��

P†X P†PX
(yX)¡

//

X

P†X

y†X
��

X PX
yX // PX

P†PX

y†PX
��
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for all Q-categories X. This adjunction induces the double presheaf 2-monad (PcP
†
c, y, s)

on Q-Cat with the multiplication given by

sX = ((yP†X)¡ · y†P†X)! = (y†
PP†X

· yP†X)! = sP†X · (y†PP†X)! : PP†PP†X // PP†X. (6.iii)

As Lemma 2.7(1) implies PcP
†
c = PP†, the double presheaf 2-monad on Q-Cat may

alternatively be written as
PP† = (PP†, y, s).

With Lemma 2.2 and Theorem 4.2 one obtains immediately:

6.1. Proposition. The double presheaf 2-monad PP† distributes flatly over P by Λ, with

ΛX =
←−−−−−
((yX)¡!)∗ = ((yX)¡!)

! · yPP†PX = yPP†X · ((yX)¡)
! : PP†PX // PPP†X.

A Q-interior space is a pair (X, c) consisting of a Q-category X and a Q-closure
operation c on P†X. A continuous Q-functor f : (X, c) // (Y, d) between Q-interior
spaces is a Q-functor f : X // Y such that

c · f ¡ 6 f ¡ · d : P†Y // P†X.

Q-interior spaces and continuous Q-functors constitute a 2-category Q-Int, with the
local order inherited from Q-Cat. To prove that these are precisely the lax Λ-algebras
over Q requires the full arsenal of tools provided in this paper.

6.2. Remark. When Q is a commutative quantale, V, one has u ↙ v = v ↘ u for all
u, v ∈ V. Considering a set X as a discrete V-category one can display PX and P†X as
having the same underlying set VX , and for all ϕ, ψ ∈ VX one has

1∗PX(ϕ, ψ) = 1∗P†X(ψ, ϕ),

i.e., P†X is the dual of PX. Thus, for a closure operation c : P†X // P†X one has

1P†X 6 c ⇐⇒ c 6 1PX ,

that is, c is an interior operation on PX (see [13]). Particularly, when V = 2, PX is just
the powerset of X, and a closure operation c on P†X is exactly an interior operation on
the powerset of X. So, an interior space (X, c) as defined here coincides with the usual
notion.

6.3. Theorem. (Λ,Q)-Alg ∼= Q-Int.
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Proof. Step 1. We show that, if (X, p) is a (Λ,Q)-algebra, then

p = (infPP†X · p¡ · y†PX · yX)! · yPP†X = (yX)! · (y†PX)! · p¡! · inf !PP†X · yPP†X . (6.iv)

Indeed, from the definition of the 2-monad PP† one may translate the conditions (f) and
(g) for (X, p) respectively as

yX 6 p · (y†X)! · yX and y!X · p! · ΛX · p¡! 6 p · supPP†X · (y
†
PP†X

)!.

Since from Lemma 2.9 one has

yX 6 p · (y†X)! · yX ⇐⇒ 1PX 6 p · (y†X)!

and since ΛX = yPP†X · ((yX)¡)
! implies

y!X · p! · ΛX · p¡! = y!X · p! · yPP†X · ((yX)¡)
! · p¡!

= supPX · yPX · p · ((yX)¡)
! · p¡! (y is natural)

= p · ((yX)¡)
! · p¡!,

the conditions (f) and (g) may be simplified to read as

(f) 1PX 6 p · (y†X)! and

(g) p · ((yX)¡)
! · p¡! 6 p · supPP†X · (y

†
PP†X

)!.

Therefore,

p = supPX · yPX · p
= (yX)! · p! · yPP†X (y is natural)

= (yX)! · p! · (infPP†X)! · inf !PP†X · yPP†X (infPP†X is surjective)

6 (yX)! · (infPX)! · p¡! · inf !PP†X · yPP†X (Lemma 2.5)

= (yX)! · (y†PX)! · p¡! · inf !PP†X · yPP†X (y†PX a infPX)

= (y†X)! · ((yX)¡)
! · p¡! · inf !PP†X · yPP†X (y† is natural)

6 p · (y†X)! · (y†X)! · ((yX)¡)
! · p¡! · inf !PP†X · yPP†X (p satisfies (f))

6 p · ((yX)¡)
! · p¡! · inf !PP†X · yPP†X ((y†X)! a (y†X)!)

6 p · supPP†X · (y
†
PP†X

)! · inf !PP†X · yPP†X (p satisfies (g))

= p.

Step 2. As an immediate consequence of (6.iv), p is a right adjoint in Q-Cat. For
every Q-category X one has

Q-Dist(P†X,X) ∼= (Q-Cat)co(P†X,P†X) ∼= (Q-Inf)co(PP†X,PX)
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from Lemma 2.10, with the isomorphisms given by

(ϕ : P†X //◦ X) 7→ (−→ϕ : P†X // P†X) 7→ (ϕ� : PP†X // PX).

Consequently, in order for us to establish a bijection between Q-closure operations on
P†X and (Λ,Q)-algebra structures on X, it suffices to prove

• 1P†X 6
−→ϕ ⇐⇒ ϕ� satisfies (f), and

• −→ϕ · −→ϕ 6 −→ϕ ⇐⇒ ϕ� satisfies (g)

for all Q-distributors ϕ : P†X //◦ X.
First, 1P†X 6

−→ϕ ⇐⇒ ϕ� satisfies (f). Indeed,

−−−→
(y†X)∗ = 1P†X 6

−→ϕ ⇐⇒ ϕ� 6 (y†X)∗� = (y†X)! (Lemma 2.4(2))

⇐⇒ 1PX 6 ϕ� · (y†X)!. (ϕ� a ϕ�)

Second, −→ϕ · −→ϕ 6 −→ϕ ⇐⇒ ϕ� satisfies (g), i.e.,

ϕ� · ((yX)¡)
! · (ϕ�)¡! 6 ϕ� · supPP†X · (y

†
PP†X

)!.

Since

ϕ� · ((yX)¡)
! · (ϕ�)¡! = ϕ� · ((yX)¡)

! · (ϕ�)¡! (Lemma 2.7(1))

= ϕ� · ((yX)¡)
! · ((ϕ�)¡)

! (ϕ� a ϕ�)

= ϕ� · (←−ϕ ¡)
!, (Lemma 2.6(3))

and since from (6.iii) one already knows

sX = supPP†X · (y
†
PP†X

)! = (y†
P†X

)! · ((yP†X)¡)
!,

the condition (g) for ϕ� may be alternatively expressed as

ϕ� · (←−ϕ ¡)
! 6 ϕ� · (y†P†X)! · ((yP†X)¡)

!.

Moreover, from Lemma 2.6(4) one has

ϕ⊕ = (←−ϕ ∗ ◦ (yX)∗)
⊕ =←−ϕ ¡ · (yP†X)¡, (6.v)
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and, consequently,

−→ϕ · −→ϕ 6 −→ϕ
⇐⇒ ϕ⊕ · y†

P†X
· ϕ⊕ · y†

P†X
6 ϕ⊕ · y†

P†X
(Lemma 2.6(3))

⇐⇒ ϕ⊕ · y†
P†X
· ϕ⊕ 6 ϕ⊕ (Lemma 2.9)

⇐⇒ ϕ⊕ · (ϕ⊕)¡ · y†P†P†X 6 ϕ⊕ = ϕ⊕ · infP†P†X · y†P†P†X (y† is natural)

⇐⇒ ϕ⊕ · (ϕ⊕)¡ 6 ϕ⊕ · infP†P†X = ϕ⊕ · (y†
P†X

)¡ (Lemma 2.9)

⇐⇒ (ϕ ◦ (ϕ⊕)∗)
⊕ 6 (ϕ ◦ (y†

P†X
)∗)⊕

⇐⇒ (ϕ ◦ (y†
P†X

)∗)� 6 (ϕ ◦ (ϕ⊕)∗)
� (Lemma 2.4(2))

⇐⇒ (y†
P†X

)! · ϕ� 6 (ϕ⊕)! · ϕ� = ((yP†X)¡)
! · ←−ϕ ¡! · ϕ� (Equation (6.v))

⇐⇒ ϕ� · (←−ϕ ¡)
! 6 ϕ� · (y†P†X)! · ((yP†X)¡)

!

⇐⇒ ϕ� satisfies (g);

here the penultimate equivalence is an immediate consequence of

(y†
P†X

)! · ϕ� a ϕ� · (y†P†X)! and ←−ϕ ¡! · ϕ� a ϕ� · (←−ϕ ¡)
!.

Step 3. For any ψ : P†Y //◦ Y , f : (X,−→ϕ ) // (Y,
−→
ψ ) is a continuous Q-functor if,

and only if, f as a morphism (X,ϕ�) // (Y, ψ�) satisfies (h), i.e.,

f! · ϕ� 6 ψ� · f¡!.

Indeed,

−→ϕ · f ¡ 6 f ¡ ·
−→
ψ

⇐⇒ ϕ⊕ · y†
P†X
· f ¡ 6 f ¡ · ψ⊕ · y†

P†Y
(Lemma 2.6(3))

⇐⇒ ϕ⊕ · (f ¡)¡ · y†P†Y 6 f ¡ · ψ⊕ · y†
P†Y

(y† is natural)

⇐⇒ ϕ⊕ · (f ¡)¡ 6 f ¡ · ψ⊕ (Lemma 2.9)

⇐⇒ ϕ⊕ · (f¡)¡ 6 f ¡ · ψ⊕ (Lemma 2.7(1))

⇐⇒ (ϕ ◦ (f¡)
∗)⊕ 6 (f ∗ ◦ ψ)⊕

⇐⇒ (f ∗ ◦ ψ)� 6 (ϕ ◦ (f¡)
∗)� (Lemma 2.4(2))

⇐⇒ ψ� · f! 6 f¡! · ϕ�

⇐⇒ f! · ϕ� 6 ψ� · f¡!; (ϕ� a ϕ� and ψ� a ψ�)

here Lemma 2.9 is applicable to the third equivalence because f ¡ = (f ∗)⊕ and ψ⊕ are
right adjoints in Q-Cat. This completes the proof.
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7. The distributive law of the double copresheaf 2-monad

Considering the dual of the adjunction (6.ii),

Pcoop
c a (P†c)

coop : Q-Cat // (Q-Cat)coop, (7.i)

one naturally constructs the double copresheaf 2-monad

P†P = (P†P, y†, s†)

on Q-Cat, with the units given by

y†X = y†PX · yX = (yX)¡ · y†X : X // P†PX (7.ii)

and the multiplication by

s†X = (yP†PX · y†PX)¡ = ((y†PX)! · yPX)¡ = s†PX · y
¡
P†PX

: P†PP†PX // P†PX. (7.iii)

Lemma 2.2 and Theorem 4.2 imply:

7.1. Proposition. The double copresheaf 2-monad P†P distributes flatly over P by Λ†

with
Λ†X =

←−−−−−
((yX)!¡)∗ = ((yX)!¡)

! · yPP†PX = y!¡!X · yP†PPX : P†PPX // PP†PX.

It turns out that the lax Λ†-algebras overQ coincide with the lax λ-algebras of Theorem
5.2:

7.2. Theorem. (Λ†,Q)-Alg ∼= Q-Cls.

Proof. Step 1. We show that, if (X, p) is a (Λ†,Q)-algebra, then

p = infPX · p¡ · (y†PX)¡. (7.iv)

Indeed, with (7.ii) and (7.iii) one may translate the conditions (f) and (g) respectively as

yX 6 p · y†PX · yX and supPX · p! · Λ
†
X · p!¡ 6 p · (y†PX)¡ · y¡

P†PX
.

To simplify the above conditions, first note that Lemma 2.9 implies

yX 6 p · y†PX · yX ⇐⇒ 1PX 6 p · y†PX .

Second, from Lemma 2.7(1) and the naturality of y one has

Λ†X = y!¡!X · yP†PPX = (y!X)¡! · yP†PPX = yP†PX · (y!X)¡ = yP†PX · (supPX)¡,

which induces

supPX · p! · Λ
†
X · p!¡ = supPX · p! · yP†PX · (supPX)¡ · p!¡

= supPX · yPX · p · (supPX)¡ · p!¡ (y is natural)

= p · (supPX)¡ · p!¡
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and, moreover,

p · (supPX)¡ · p!¡ 6 p · (y†PX)¡ · y¡
P†PX

⇐⇒ p · (supPX)¡ · p!¡ · (yP†PX)¡ 6 p · (y†PX)¡ (y¡
P†PX

a (yP†PX)¡)

⇐⇒ p · (supPX)¡ · (yPX)¡ · p¡ 6 p · (y†PX)¡ (y is natural)

⇐⇒ p · p¡ 6 p · (y†PX)¡.

Therefore, (X, p) is a (Λ†,Q)-algebra if, and only if,

(f) 1PX 6 p · y†PX and

(g) p · p¡ 6 p · (y†PX)¡.

It follows that

p = infPX · y†PX · p
= infPX · p¡ · y†P†PX (y† is natural)

6 infPX · p¡ · (y†PX)¡ (P† is oplax idempotent)

6 p · y†PX · infPX · p¡ · (y†PX)¡ (p satisfies (f))

6 p · p¡ · (y†PX)¡ (y†PX a infPX)

6 p · (y†PX)¡ · (y†PX)¡ (p satisfies (g))

= p. (y†PX is fully faithful)

Step 2. As an immediate consequence of (7.iv), p is a right adjoint in Q-Cat. For
every Q-category X, as one already has

Q-Dist(X,PX) ∼= Q-Cat(PX,PX) ∼= Q-Inf(P†PX,PX)

from Lemma 2.10, with the isomorphisms given by

(ϕ : X //◦ PX) 7→ (←−ϕ : PX // PX) 7→ (ϕ↓ : P†PX // PX),

in order for us to establish a bijection between Q-closure operations on PX and (Λ†,Q)-
algebra structures on X, it suffices to prove

• 1PX 6
←−ϕ ⇐⇒ ϕ↓ satisfies (f), and

• ←−ϕ · ←−ϕ 6←−ϕ ⇐⇒ ϕ↓ satisfies (g)

for all Q-distributors ϕ : X //◦ PX.
First, the equivalence (1PX 6

←−ϕ ⇐⇒ ϕ↓ satisfies (f)) holds trivially since ←−ϕ =
ϕ↓ · y†PX .
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Second, one has (←−ϕ · ←−ϕ 6←−ϕ ⇐⇒ ϕ↓ satisfies (g)). Indeed,

←−ϕ · ←−ϕ 6←−ϕ ⇐⇒ ϕ↓ · y†PX · ϕ
↓ · y†PX 6 ϕ↓ · y†PX (←−ϕ = ϕ↓ · y†PX)

⇐⇒ ϕ↓ · y†PX · ϕ
↓ 6 ϕ↓ (Lemma 2.9)

⇐⇒ ϕ↓ · (ϕ↓)¡ · y†P†PX 6 ϕ↓ = ϕ↓ · infP†PX · y†P†PX (y† is natural)

⇐⇒ ϕ↓ · (ϕ↓)¡ 6 ϕ↓ · infP†PX = ϕ↓ · (y†PX)¡ (Lemma 2.9)

⇐⇒ ϕ↓ satisfies (g).

Step 3. For any ψ : Y //◦ PY , f : (X,←−ϕ ) // (Y,
←−
ψ ) is a continuous Q-functor if,

and only if, f : (X,ϕ↓) // (Y, ψ↓) satisfies (h). Indeed,

f! · ←−ϕ 6
←−
ψ · f! ⇐⇒ f! · ϕ↓ · y†PX 6 ψ↓ · y†PY · f!

⇐⇒ f! · ϕ↓ · y†PX 6 ψ↓ · f!¡ · y†PX (y† is natural)

⇐⇒ f! · ϕ↓ 6 ψ↓ · f!¡, (Lemma 2.9)

which completes the proof.

8. Distributive laws of T over P versus lax extensions of T to Q-Dist

In this section, for an arbitrary 2-monad T on Q-Cat, we outline the bijective correspon-
dence between distributive laws2 of T over P and so-called lax extensions of T to Q-Dist.
The techniques adopted here generalize their discrete counterparts as given in [33].

Given a 2-functor T : Q-Cat // Q-Cat, a lax extension of T to Q-Dist is a lax
functor

T̂ : Q-Dist //Q-Dist

that coincides with T on objects and satisfies the extension condition (3) below. Explicitly,
T̂ is given by a family

(T̂ϕ : TX //◦ TY )ϕ∈Q-Dist(X,Y ), X,Y ∈ob(Q-Cat) (8.i)

of Q-distributors such that

(1) ϕ � ϕ′ =⇒ T̂ϕ � T̂ϕ′,

(2) T̂ψ ◦ T̂ϕ � T̂ (ψ ◦ ϕ),

(3) (Tf)∗ � T̂ (f∗), (Tf)∗ � T̂ (f ∗),

for all Q-distributors ϕ, ϕ′ : X //◦ Y , ψ : Y //◦ Z and Q-functors f : X // Y .
It is useful to present the following equivalent conditions of (3), which can be proved

analogously to their discrete versions in [33], by straightforward calculation:

2We remind the reader that, as stated in Section 3, in this paper we use “distributive law” to mean
“lax distributive law”, which is especially relevant when reading Proposition 8.3 and Corollary 8.4 below.
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8.1. Lemma. Given a family (8.i) of Q-distributors satisfying (1) and (2), the following
conditions are equivalent when quantified over the variables occurring in them (f : X //Y ,
ϕ : Z //◦ Y , ψ : Y //◦ Z):

(i) 1∗TX � T̂ (1∗X), T̂ (f ∗ ◦ ϕ) = (Tf)∗ ◦ T̂ϕ.

(ii) 1∗TX � T̂ (1∗X), T̂ (ψ ◦ f∗) = T̂ψ ◦ (Tf)∗.

(iii) (Tf)∗ � T̂ (f∗), (Tf)∗ � T̂ (f ∗) ( i.e., T̂ satisfies (3)).

8.2. Proposition. Lax extensions of a 2-functor T : Q-Cat //Q-Cat to Q-Dist cor-
respond bijectively to lax natural transformations TP // PT satisfying the lax P-unit law
and the lax P-multiplication law.

Proof. Step 1. For each λ : TP // PT satisfying (a), (b) and (c), Φ(λ) := T̂ = (T̂ϕ)ϕ

with
←−
T̂ϕ := λX · T←−ϕ is a lax extension of T to Q-Dist.

Φ(λ) = T̂ : Q-Dist(X, Y ) // Q-Dist(TX, TY )

(←−ϕ : Y // PX) 7→
TY

TPX
T←−ϕ ��

TY PTX
←−
T̂ϕ

// PTX

TPX

??

λX

Indeed, (1) follows immediately from the 2-functoriality of T . For (2), just note that

←−−−−−
T̂ψ ◦ T̂ϕ = y!TX · (

←−
T̂ϕ)! ·

←−
T̂ψ (Lemma 2.8(1))

= y!TX · (λX)! · (T←−ϕ )! · λY · T
←−
ψ

6 y!TX · (λX)! · λPX · T (←−ϕ !) · T
←−
ψ (λ satisfies (a))

6 λX · T y!X · T (←−ϕ !) · T
←−
ψ (λ satisfies (c))

= λX · T (
←−−−
ψ ◦ ϕ) (Lemma 2.8(1))

=
←−−−−−
T̂ (ψ ◦ ϕ).

For (3), it suffices to check Lemma 8.1(i). Since λ satisfies (b), it follows easily that

←−−
1∗TX = yTX 6 λX · T yX = λX · T

←−
1∗X =

←−−−
T̂ (1∗X).

For the second identity, Lemma 2.8(1) implies

←−−−−−−
T̂ (f ∗ ◦ ϕ) = λX · T (

←−−−
f ∗ ◦ ϕ) = λX · T←−ϕ · Tf =

←−
T̂ϕ · Tf =

←−−−−−−−
(Tf)∗ ◦ T̂ϕ.

Step 2. For every lax extension T̂ of T , Ψ(T̂ ) := λ = (λX)X with

λX :=
←−−
T̂ εX =

←−−−−
T̂ (yX)∗ : TPX // PTX
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is a lax natural transformation satisfying the P-unit law and the P-multiplication law.
(a) (Tf)! · λX 6 λY · T (f!) for all Q-functors f : X // Y . Indeed,

(Tf)! · λX =
←−−−−−−−−−−
T̂ (yX)∗ ◦ (Tf)∗ (Lemma 2.8(1))

6
←−−−−−−−−−−−−−−−−−
T̂ (yX)∗ ◦ (Tf)∗ ◦ T̂ (1∗Y ) (Lemma 8.1(i))

=
←−−−−−−−−−−
T̂ (yX)∗ ◦ T̂ (f ∗) (Lemma 8.1(i))

6
←−−−−−−−−−
T̂ ((yX)∗ ◦ f ∗) (T̂ satisfies (2))

=
←−−−−−−−−−−
T̂ ((f!)

∗ ◦ (yY )∗) (Lemma 2.7(4))

=
←−−−−−−−−−−
(Tf!)

∗ ◦ T̂ (yY )∗ (Lemma 8.1(i))

= λY · T (f!). (Lemma 2.8(1))

(b) yTX 6 λX · T yX . Indeed,

yTX =
←−−
1∗TX 6

←−−−
T̂ (1∗X) (Lemma 8.1(i))

=
←−−−−−−−−−
T̂ (y∗X ◦ (yX)∗) (yX is fully faithful)

=
←−−−−−−−−−−−
(T yX)∗ ◦ T̂ (yX)∗ (Lemma 8.1(i))

= λX · T yX . (Lemma 2.8(1))

(c) sTX · (λX)! · λPX 6 λX · T sX . Indeed,

sTX · (λX)! · λPX =
←−−−−−−−−−−−−
T̂ (yPX)∗ ◦ T̂ (yX)∗ (Lemma 2.8(1))

6
←−−−−−−−−−−−−
T̂ ((yPX)∗ ◦ (yX)∗) (T̂ satisfies (2))

=
←−−−−−−−−−−−−−
T̂ (((yX)!)∗ ◦ (yX)∗) (y is natural)

=
←−−−−−−−−−−−
T̂ ((y!X)∗ ◦ (yX)∗) ((yX)! a y!X)

=
←−−−−−−−−−−−
(T y!X)∗ ◦ T̂ (yX)∗ (Lemma 8.1(i))

= λX · T sX . (Lemma 2.8(1))

Step 3. Φ and Ψ are inverse to each other. For each λ : TP // PT , ΨΦ(λ) = λ since

(ΨΦ(λ))X =
←−−−−−−
Φ(λ)(yX)∗ = λX · T

←−−−
(yX)∗ = λX · T1PX = λX .

Conversely, for every lax extension T̂ , one has

←−−−−−−−
(ΦΨ(T̂ ))ϕ =

←−−−−
T̂ (yX)∗ · T←−ϕ =

←−−−−−−−−−−−
(T←−ϕ )∗ ◦ T̂ (yX)∗ =

←−−−−−−−−−−
T̂ (←−ϕ ∗ ◦ (yX)∗) =

←−
T̂ϕ,

where the last three equalities follow respectively from Lemmas 2.8(1), 8.1(i) and 2.6(4).
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For a 2-monad T = (T,m, e) on Q-Cat, a lax extension T̂ of T to Q-Dist becomes a
lax extension of the 2-monad T if it further satisfies

(4) ϕ ◦ e∗X � e∗Y ◦ T̂ϕ,

(5) T̂ T̂ϕ ◦m∗X � m∗Y ◦ T̂ϕ

for all Q-distributors ϕ : X //◦ Y . By adjunction, (4) and (5) may be equivalently
expressed as

(4’) (eY )∗ ◦ ϕ � T̂ϕ ◦ (eX)∗,

(5’) (mY )∗ ◦ T̂ T̂ϕ � T̂ϕ ◦ (mX)∗.

8.3. Proposition. Lax extensions of a 2-monad T = (T,m, e) on Q-Cat to Q-Dist
correspond bijectively to distributive laws of T over P.

Proof. With Proposition 8.2 at hand, it suffices to prove

• T̂ satisfies (4) ⇐⇒ λ satisfies (d), and

• T̂ satisfies (5) ⇐⇒ λ satisfies (e)

for every lax extension T̂ of the 2-functor T and λ = Ψ(T̂ ) with λX =
←−−−−
T̂ (yX)∗ :

TPX // PTX.
First, (T̂ satisfies (4) ⇐⇒ λ satisfies (d)). Since Lemma 2.8(1) and the naturality of

e imply

(eX)! · ←−ϕ =
←−−−−
ϕ ◦ e∗X and λX · ePX · ←−ϕ = λX · T←−ϕ · eY =

←−
T̂ϕ · eY =

←−−−−−
e∗Y ◦ T̂ϕ

for all ϕ : X //◦ Y , it follows that

(eX)! 6 λX · ePX ⇐⇒ ∀ϕ : X //◦ Y : (eX)! · ←−ϕ 6 λX · ePX · ←−ϕ
⇐⇒ ∀ϕ : X //◦ Y : ϕ ◦ e∗X � e∗Y ◦ T̂ϕ.

Second, (T̂ satisfies (5) ⇐⇒ λ satisfies (e)). Similarly as above, one has

(mX)! · λTX · TλX · TT←−ϕ = (mX)! · λTX · T
←−
T̂ϕ = (mX)! ·

←−−
T̂ T̂ϕ =

←−−−−−−−
T̂ T̂ϕ ◦m∗X

and

λX ·mPX · TT←−ϕ = λX · T←−ϕ ·mY =
←−
T̂ϕ ·mY =

←−−−−−
m∗Y ◦ T̂ϕ

by Lemma 2.8(1) and the naturality of m. Consequently,

(mX)! · λTX · TλX 6 λX ·mPX

⇐⇒ ∀ϕ : X //◦ Y : (mX)! · λTX · TλX · TT←−ϕ 6 λX ·mPX · TT←−ϕ
⇐⇒ ∀ϕ : X //◦ Y : T̂ T̂ϕ ◦m∗X � m∗Y ◦ T̂ϕ.
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A lax extension T̂ of a 2-functor T onQ-Cat is flat (more commonly known as normal)
if

T̂1∗X = 1∗TX

for all Q-categories X. One says that a lax extension T̂ of a 2-monad T = (T,m, e) on
Q-Cat is flat if T̂ , as a lax extension of the 2-functor T , is flat.

If T̂ is related to a distributive law λ by the correspondence of Proposition 8.3, then
with Lemma 2.6(1) one sees immediately

←−−
T̂1∗X = λX · T

←−
1∗X = λX · T yX and

←−−
1∗TX = yTX .

Thus we have proved:

8.4. Corollary. Flat lax extensions of a T to Q-Dist correspond bijectively to flat
distributive laws of T over P.

When formulated equivalently in terms of lax monad extensions, Theorem 4.2 gives

[12, Theorem 4.4], since λX =
←−−−−
(T yX)∗ in Theorem 4.2 corresponds to the lax extension T̂

with
←−
T̂ϕ = λX · T←−ϕ =

←−−−−−−−−−−−
(T←−ϕ )∗ ◦ (T yX)∗. In summary, we obtain the following theorem.

8.5. Theorem. Let T be a 2-functor on Q-Cat. Then

T̂ϕ = (T←−ϕ )∗ ◦ (T yX)∗ : TX //◦ TY

defines a lax extension of T to Q-Dist, and the following statements are equivalent:

(i) T̂ is flat;

(ii) there exists some flat lax extension of T to Q-Dist;

(iii) T maps fully faithful Q-functors to fully faithful Q-functors;

(iv) T yX is fully faithful for all Q-categories X;

(v) T̂ is the only flat lax extension of T to Q-Dist.

Moreover, if T belongs to a 2-monad T on Q-Cat and satisfies the above equivalent
conditions, then T̂ is a flat lax extension of the 2-monad T, and it is the only one.

Proof. By checking the proofs of Proposition 4.1 and Theorem 4.2, it is not difficult
to extract from them the corresponding conclusions that are valid for all λ : TP // PT
satisfying (a), (b) and (c) which, by Proposition 8.2, may be transferred to lax extensions
of 2-functors; that is, T̂ always defines a lax extension of the 2-functor T , and (iv) =⇒ (v)
holds. Now the only non-trivial part of the proof of (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒
(v) =⇒ (i) not yet covered is the implication (ii) =⇒ (iii). But if a Q-functor f : X //Y
satisfies f ∗ ◦ f∗ = 1∗X , the application of any flat lax extension T̃ of T to this equality
gives

(Tf)∗ ◦ (Tf)∗ = (Tf)∗ ◦ 1∗TX ◦ (Tf)∗ = (Tf)∗ ◦ T̃1∗X ◦ (Tf)∗ = T̃ (f ∗ ◦ f∗) = 1∗TX ,

by Lemma 8.1.
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8.6. Remark.

(I) Let us mention that, more generally than in the above proof, whenever ϕ = v∗ ◦u∗ :
X //◦ Y with Q-functors u : X // Z, v : Y // Z, one has

T̃ϕ = (Tv)∗ ◦ (Tu)∗,

for every flat lax extension T̃ of T — which must then coincide with T̂ if there is
such T̃ .

(II) As the anonymous referee observed, as a consequence of (I) one has the following
presentation of the uniquely determined flat lax extension T̂ when T preserves the
full fidelity of Q-functors: simply take for u and v above the fully faithful injections
of respectively X and Y into the collage (also cograph) of ϕ: its objects are given by
the disjoint union of the object sets of X and Y , and the hom arrows from objects
in X to objects in Y are given by ϕ, while in the opposite direction they are always
bottom element arrows.

(III) For the sake of completeness let us also mention the following obvious extension of
the language used in the context of lax distributive laws: a strict extension of a 2-
monad T = (T,m, e) on Q-Cat is a 2-functor T̂ : Q-Dist //Q-Dist that coincides
with T on objects and satisfies

(3∗) T̂ (f ∗ ◦ ϕ) = (Tf)∗ ◦ T̂ϕ,

(4∗) ϕ ◦ e∗X = e∗Y ◦ T̂ϕ,

(5∗) T̂ T̂ϕ ◦m∗X = m∗Y ◦ T̂ϕ,

for all f and ϕ. In other words, a lax extension T̂ of T is strict if all the inequalities in
(2), Lemma 8.1(i), (4) and (5) are equalities. From the above proofs one immediately
sees that strict extensions of T toQ-Dist correspond bijectively to strict distributive
laws of T over P.

With a given lax extension T̂ to Q-Dist of the 2-monad T of Q-Cat we can now
define:

8.7. Definition. A (T,Q)-category (X,α) consists of aQ-categoryX and aQ-distributor
α : X //◦ TX satisfying the lax unit and lax multiplication laws

1∗X � e∗X ◦ α and T̂α ◦ α � m∗X ◦ α.

A (T,Q)-functor f : (X,α) // (Y, β) is a Q-functor f : X // Y with

α ◦ f ∗ � (Tf)∗ ◦ β.

(T,Q)-categories and (T,Q)-functors constitute a 2-category (T,Q)-Cat, which is
more precisely recorded as (T, T̂ ,Q)-Cat. It is not surprising that this category just
disguises (λ,Q)-Alg (and vice versa), for λ corresponding to T̂ . The discrete counterpart
of this fact already appeared in [33].
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8.8. Corollary. If λ and T̂ are related by the correspondence of Proposition 8.3, then

(λ,Q)-Alg ∼= (T, T̂ ,Q)-Cat.

Proof. For any Q-category X, as one already has

Q-Dist(X,TX) ∼= Q-Cat(TX,PX),

with the isomorphism given by

(α : X //◦ TX) 7→ (←−α : TX // PX),

in order for us to establish a bijection between (T,Q)-category structures on X and
(λ,Q)-algebra structures on X, it suffices to prove

• 1∗X � e∗X ◦ α ⇐⇒ yX 6
←−α · eX , and

• T̂α ◦ α � m∗X ◦ α ⇐⇒ y!X ·
←−α ! · λX · T←−α 6←−α ·mX ,

for all Q-distributors α : X //◦ TX. Indeed, the first equivalence is easy since
←−
1∗X = yX

and
←−−−−
e∗X ◦ α = ←−α · eX by Lemma 2.8(1). For the second equivalence, just note that

←−−−−
m∗X ◦ α =←−α ·mX and

←−−−−
T̂α ◦ α =

←−−−−−−−−−−−−−
(T̂ (←−α ∗ ◦ (yX)∗) ◦ α (Lemma 2.6(4))

=
←−−−−−−−−−−−−−−
(T←−α )∗ ◦ T̂ (yX)∗ ◦ α (Lemma 8.1(i))

=
←−−−−−−−
T̂ (yX)∗ ◦ α · T←−α (Lemma 2.8(1))

= y!X · ←−α ! · λX · T←−α , (Lemma 2.8(1) and λX =
←−−−−
T̂ (yX)∗)

Finally, a Q-functor f : X // Y is a (T,Q)-functor f : (X,α) // (Y, β) if, and only

if, f : (X,←−α ) // (Y,
←−
β ) is a lax λ-homomorphism since

α ◦ f ∗ � (Tf)∗ ◦ β ⇐⇒ f! · ←−α =
←−−−
α ◦ f ∗ 6

←−−−−−−
(Tf)∗ ◦ β =

←−
β · Tf

by Lemma 2.8(1).

8.9. Example.

(1) For the identity 2-monad I on Q-Cat, the identity 2-functor on Q-Dist is a strict
extension of I, and it is easy to see that (I,Q)-Cat ∼= Mon(Q-Dist).

(2) The flat distributive law λ of P over itself described in Proposition 5.1 corresponds
to the flat lax extension P̂ of P with

P̂ϕ := ϕ�∗ : PX //◦ PY

for ϕ : X //◦ Y . From Theorem 5.2 one obtains (P,Q)-Cat ∼= Q-Cls.
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(3) The strict distributive law λ† of P† over P given in Proposition 5.3 determines the
strict extension P̌† of P† with

P̌†ϕ := (ϕ⊕)∗ : P†X //◦ P†Y.

Theorem 5.6 shows that (P†,Q)-Cat ∼= Mon(Q-Dist).

(4) Proposition 6.1 gives the flat distributive law Λ of PP† over P that corresponds to

the flat lax extension P̂P† of PP† with

P̂P†ϕ := P̂P̌†ϕ = ((ϕ⊕)∗)
�∗ = ϕ⊕!∗ : PP†X //◦ PP†Y.

From Theorem 6.3 one has (PP†,Q)-Cat ∼= Q-Int.

(5) The flat distributive law Λ† of P†P over P (see Proposition 7.1) is related to the flat

lax extension P̂†P of P†P with

P̂†Pϕ := P̌†P̂ϕ = (ϕ�∗⊕)∗ = (ϕ�¡)∗ : P†PX //◦ P†PY.

Theorem 7.2 shows that (P†P,Q)-Cat ∼= Q-Cls.
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