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A SIMPLICIAL DESCRIPTION OF THE HOMOTOPY CATEGORY
OF SIMPLICIAL GROUPOIDS

A. R. GARZON, J. G. MIRANDA AND R. OSORIO
Transmitted by Ieke Moerdijk

ABSTRACT. In this paper we use Quillen’s model structure given by Dwyer-Kan for
the category of simplicial groupoids (with discrete object of objects) to describe in this
category, in the simplicial language, the fundamental homotopy theoretical constructions
of path and cylinder objects. We then characterize the associated left and right homotopy
relations in terms of simplicial identities and give a simplicial description of the homotopy
category of simplicial groupoids. Finally, we show loop and suspension functors in the
pointed case.

1. Introduction

1.1. Summary. A well-known and quite powerful context in which an abstract homo-
topy theory can be developed is supplied by a category with a closed model structure in
the sense of Quillen [16]. The category Simp(Gp) of simplicial groups is a remarkable
example of what a closed model category is, and the homotopy theory in Simp(Gp) de-
veloped by Kan [12] occurs as the homotopy theory associated to this closed model struc-
ture. According to the terminology used by Quillen, we have that the homotopy theory in
Simp(Gp) is equivalent to the homotopy theory in the category of reduced simplicial sets
and this last is equivalent to the homotopy theory in the category of pointed connected
topological spaces.

If Y is an object of a closed model category C, a path object for Y is a factorization
of the diagonal morphism

Y ��σ
Y I ��(∂0,∂1)

Y × Y ,

where (∂0, ∂1) is a fibration and σ is a weak equivalence.
If f, g ∈ HomC(X,Y ), a right homotopy from f to g is defined as a morphism h :

X → Y I such that ∂0h = g and ∂1h = f . The morphism f is said to be right homotopic
to g if such a right homotopy exists. When Y is fibrant “is right homotopic to” is an
equivalence relation on HomC(X,Y ). The notions of cylinder object and left homotopy
are defined in a dual manner. Moreover, if X is cofibrant and Y is fibrant, then the
left and right homotopy relations on HomC(X,Y ) coincide. If [X,Y ] denotes the set of
equivalence classes, the category πCcf , whose objects are the objects of C that are both
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fibrant and cofibrant, and HomπCcf
(X,Y ) = [X,Y ], with composition induced from that

of C, is equivalent to the homotopy category of C, Ho(C), which is defined to be the
localization of C, [5], with respect to the class of weak equivalences.

Moreover, if C is a closed simplicial model category (see [16]), X is cofibrant and Y is
fibrant then the left and the right homotopy relations on HomC(X,Y ) coincide with the
simplicial homotopy relation. This is the case in Simp(Gp) when G• is a free simplicial
group in which case, for any simplicial group H•, HomHo(Simp(Gp))(G•, H•) = [G•, H•],
the set of simplicial homotopy classes of simplicial morphisms from G• to H•.

In [3] Dwyer-Kan demonstrated that Simp(Gpd)∗, the category of simplicial groupoids
(with discrete object of objects), admits a closed model structure and the associated ho-
motopy theory was then shown to be equivalent to the (unpointed) homotopy theory in
the category Simp(Set) of simplicial sets and therefore to that one in the category of
topological spaces. This was done by extending the well-known adjoint situation, [14],

G : Simp(set)red ↔ Simp(Gp) : W

to a pair of adjoint functors

G : Simp(Set)↔ Simp(Gpd)∗ : W ,

which induces the equivalence of homotopy theories. In particular, their homotopy cate-
gories are equivalent and there is a 1-1 correspondence of homotopy classes of maps. More-
over, analogously to the case of simplicial groups, in the model category Simp(Gpd)∗
every object is fibrant and the cofibrant objects are the free simplicial groupoids and their
retracts.

The first aim of the present paper is to give explicit constructions of path space and
cylinder object in the closed model category of simplicial groupoids and then, although
Simp(Gpd)∗ is not a closed simplicial model category, we characterize the associated
right and left homotopy relations in terms of simplicial identities, which correspond by
the functorW to the simplicial homotopy identities in simplicial sets. Thus, Simp(Gpd)∗
behaves as it was a closed simplicial model category, that is, there is a notion of simpli-
cial homotopy when the source is cofibrant ant the target fibrant and it coincides with
the axiomatic left homotopy and right homotopy that Quillen develops via cylinder or
path objects. The surprise of this fact can be clarified if one looks at the objects of
Simp(Gpd)∗ inside of the category of all simplicial groupoids (i.e., with objects not nec-
essarily discrete) and then one restricts the notion of simplicial homotopy here to those
simplicial groupoids. Recall that there are true Quillen model structures on the category
of all simplicial groupoids, one created by the Moerdijk’s model structure on bisimpli-
cial sets [13] and the dimensionwise nerve N : Simp(Gpd) → BiSsets, and the other
by Joyal-Tierney in [10], obtained as a particular case (when E = Sets) of the model
structure on the category Gpd(S(E)) of simplicial groupoids in any Grothendieck topos
E . Both model structures should yield to equivalent homotopy theories (they have same
weak equivalences and cofibrations ordered by inclusion). Besides, as it is deduced from
([10] Theorem 10), the inclusion I : Simp(Gpd)∗ → Simp(Gpd) induces an equivalence
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of homotopy categories and there is a 1-1 correspondence of homotopy classes of maps
[G,H] ∼= [I(G), I(H)] for any objects G,H ∈ Simp(Gpd)∗.

The fact that the axiomatic right and left homotopy in Simp(Gpd)∗ can be expressed
in the simplicial language gives a more manageable version of the set of homotopy classes
of maps between two simplicial groupoids and thus we are able of giving, as in simplicial
groups, a simplicial description of the homotopy category of simplicial groupoids. Also
we think that, in this way and in order to study non-connected n-types , it is possible
to give truncated versions of the fundamental homotopy constructions and the homotopy
relation, following the same approach as in simplicial groups [1], [7] and in simplicial sets
[4].

Finally, we show pointed versions of the homotopy constructions of path and cylinder
objects that allow us to give the corresponding constructions of loop and suspension
functors.

The authors would like to thank the referee for several useful comments and sugges-
tions.

1.2. Notation and terminology. We will freely use the results of [14], [16] and
[3]. We denote by Simp(Gp) the category of simplicial groups and by Simp(Gpd)∗
the category of simplicial groupoids with discrete object of objects. An object X ∈
Simp(Gpd)∗ can be represented by means of a diagram

. . . Xn Xn−1 . . . X2 X1 X0

. . . O O . . . O O O

��
s0

��

sn−1

��dn

��
d0

��

s1

��
s0

��

s0

��d2
����

d0

��d1

��
d0

��s �� t ��s �� t ��s �� t ��s �� t ��s �� t

where each Xn O��
t

��s��
I

is a groupoid and di and sj are groupoid morphisms satisfying

the usual simplicial identities (see [14]). Note that if O = ∗ is a one-point set, then X can
be seen as a simplicial group and so Simp(Gp) is a full subcategory of Simp(Gpd)∗.
For any two objects p, q ∈ O in X, X(p, q) will denote the simplicial set of morphisms in
X from p to q. If p = q, X(p) = X(p, p) is a simplicial group called the simplicial group
of automorphisms in p. Both categories Simp(Gp) and Simp(Gpd)∗ are closed model
categories in the sense of Quillen [16]. Below we recall the structure in Simp(Gpd)∗ [3]:

-A morphism f : X → Y in Simp(Gpd)∗ is a fibration if

X0
��f0

��
s

��
t

Y0

��
s

��
t

O ��
f

O′
is a fibration of

groupoids and, for any p ∈ Obj(X), the induced morphism X(p)→ Y (f(p)) is a fibration
of simplicial groups.
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-The morphism f is a weak equivalence if f induces a 1-1 correspondence between
the components of X and those of Y and, for any p ∈ Obj(X), the induced morphism
X(p)→ Y (f(p)) is a weak equivalence of simplicial groups.

-The morphism f is a cofibration if it is a retract of a free map.

In any groupoid Xn O��
t

��s��
I

, the composition of two morphisms x, y ∈ Xn such

that s(x) = t(y) will be denoted by x ◦ y.

2. Homotopy groupoids and simplicial homotopy identities

Given X ∈ Simp(Gpd)∗, the Moore complex of X, NX, is defined as the following chain
complex of groupoids:

N∗X =




NnX ��dn

�� ��

Nn−1X

�� ��

N2X

�� ��

��d2
N1X

�� ��

��d1
N0X

�� ��
O O O O O




where N0X = X0, NnX
��s
��

t
O = Ker(d0)∩ · · · ∩Ker(dn−1) and d̄n is the restriction of

dn.
Note that, as the face and degeneracy morphisms of X are the identity on objects, the

groupoid NnX
��s
��

t
O is, for n ≥ 1, the disjoint union of the vertex groups Kerdi(p),

p ∈ O; in particular, dndn+1 is always an identity so that (NX, d) is, indeed, a chain
complex of groupoids over O. Then, this construction (see [6]) gives a functor from
Simp(Gpd)∗ to the category of chain complexes of groupoids and, if O has only one
element, it is clear that this construction reduces to the well-known Moore complex functor
defined in Simp(Gp) (see [14]).

Recall that the homotopy groups of the underlying simplicial set of a simplicial group
G• (pointed by the identity element) can be obtained as the homology groups of the
Moore complex of G•. In the same way, we can consider homotopy groupoids of any
X ∈ Simp(Gpd)∗, defined as follows:

Let us consider Bn(X)
��s
��

t
O , the groupoid whose set of morphisms is dn+1(Nn+1(X)),

and Zn(X)
��s
��

t
O , the groupoid whose set of morphisms is Ker(dn). It is clear that

Bn(X)
��s
��

t
O is a normal subgroupoid of Zn(X)

��s
��

t
O [9], and then we define, for all

n ≥ 1, the n-th homotopy groupoid of X, denoted by πn(X), as the quotient groupoid of

Zn(X)
��s
��

t
O by Bn(X)

��s
��

t
O . Thus, πn(X) has O as the set of objects and Zn(X)

≡ as

the set of morphisms, where x ≡ x′ if there exist y, y′ ∈ Bn(X) such that y
′ ◦ x = x′ ◦ y.



Theory and Applications of Categories, Vol. 7, No. 14 267

This construction determines a functor from Simp(Gpd)∗ to the category of groupoids.
Note that the group of automorphisms in p ∈ O of the groupoid πn(X) is πn(X(p)), which
is the n-th homotopy group of the simplicial group of automorphisms in p, and, for n ≥ 1,
πn(X) is the disjoint union of the homotopy groups πn(X(p)), p ∈ O.

Next we establish the notion of simplicial homotopy between morphisms in the cate-
gory Simp(Gpd)∗.

2.1. Definition. Let f, g : X → Y be two morphisms in Simp(Gpd)∗. A simplicial
homotopy from f to g, denoted by β : f � g, consists of a map β : O → Y0 such that
sβ = f and tβ = g together with a family of maps βj

n : Xn → Yn, 1 ≤ j ≤ n, satisfying
the following relations:

a) d0β
1
n(x) = gn−1d0(x) ◦ sn−1

0 βs(x) ; dnβ
n
n(x) = sn−1

0 βt(x) ◦ fn−1dn(x), ∀x ∈ Xn.

b) diβ
j
n =

{
βj−1
n−1di i < j

βj
n−1di i ≥ j

; siβ
j
n =

{
βj+1
n+1si i < j

βj
n+1si i ≥ j

.

c) Given p ��x q ��y
r ∈ Xn, β

j
n(y ◦ x) = βj

n(y) ◦ (sn0βt(x))−1 ◦ βj
n(x).

2.2. Proposition. Let f, g : X → Y be two morphisms in Simp(Gpd)∗. Then, giving
a simplicial homotopy from f to g is equivalent to giving a map α : O → Y0 such that
sα = f and tα = g, together with a family of maps αj

n : Xn → Yn+1, 0 ≤ j ≤ n, satisfying
the following relations:

a) sαj
n = fs ; tαj

n = gt.

b) d0α
0
n(x) = gn(x) ◦ sn0αs(x) ; dn+1α

n
n(x) = sn0αt(x) ◦ fn(x), ∀x ∈ Xn.

c) diα
j
n =




αj−1
n−1di i < j

diα
j+1
n i = j + 1

αj
n−1di−1 i > j + 1

; siα
j
n−1 =

{
αj+1
n si i ≤ j

αj
nsi−1 i > j

.

d) Given p ��x q ��y
r ∈ Xn, α

j
n(y ◦ x) = αj

n(y) ◦ (sn+1
0 αt(x))−1 ◦ αj

n(x).

Proof. Let us suppose that α and αj
n satisfy the above relations. Then, by putting β = α

and, for each 1 ≤ j ≤ n, βj
n = djα

j−1
n : Xn → Yn, it is straightforward to see that β is a

simplicial homotopy from f to g. Conversely, if β : f � g is a simplicial homotopy, then
α = β and αj

n = βj+1
n+1sj, 0 ≤ j ≤ n, satisfy the above relations.

It is not very difficult to see that the functor W preserves simplicial homotopies.
Now, given f, g : X → Y two morphisms in Simp(Gpd)∗ and β : f � g a simplicial

homotopy, there is, for each p ∈ O, a morphism β(p) : f(p) → g(p), and then we can
consider the morphism gβ : X → Y defined by gβ(p) = f(p) and gβ(x) = sn0βt(x)

−1 ◦
g(x)◦ sn0βs(x), x ∈ Xn. The next proposition shows the relationship between the induced
morphisms in the homotopy groupoids by two morphisms that are simplicially homotopic.
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2.3. Proposition. Let f, g : X → Y be two morphisms in Simp(Gpd)∗. If there
exists a simplicial homotopy β : f � g, then πn(f) = πn(gβ), n ≥ 0.

Proof. Let p ∈ O and consider the family of group morphisms β̄j
n, 1 ≤ j ≤ n, where each

β̄j
n : Xn(p) → Yn(f(p)) is given by β̄j

n = sn0β(p)
−1 ◦ βj

n. It is straightforward to check
that this family of morphisms determines a simplicial homotopy β̄ between the simplicial
group morphisms fp, (gβ)p : X(p)→ Y (p). Thus, for each n ≥ 0, πn(fp) = πn((gβ)p), and
so it is clear that πn(f) = πn(gβ), for any n ≥ 1.

In addition, π0(f) = π0(gβ), since for any x : p → q ∈ X0 there exist y, y
′ ∈ B0(Y ) such

that y′ ◦f(x) = gβ ◦y. In fact, if we consider ȳ = s0β(p)
−1 ◦ s0g(x)

−1 ◦ β1
1(s0x) ∈ Y1(f(p))

then d0(ȳ) = Idf(p) and d1(ȳ) = β(p)−1 ◦ g(x)−1 ◦ β(q) ◦ f(x) and so the morphisms
y = β(p)−1 ◦ g(x)−1 ◦ β(q) ◦ f(x) and y′ = Idf(q) satisfy the required condition.

3. Path and cylinder constructions in simplicial groupoids

Let us start by recalling that in the closed model category Simp(Gp) of simplicial groups
[16], given H• ∈ Simp(Gp), the simplicial group HI

• , whose n-simplices are:

(HI
• )n = HomSimp(Set)(∆[1]×∆[n], H•) ∼=

∼= {(x0, . . . , xn) ∈ (Hn+1)
n+1 / dixi = dixi−1, 1 ≤ i ≤ n}

and the face and degeneracy operators are:

di(x0, . . . , xn) = (di+1x0, . . . , di+1xi−1, dixi+1, . . . , dixn), 0 ≤ i ≤ n,

si(x0, . . . , xn) = (si+1x0, . . . , si+1xi, sixi, . . . , sixn), 0 ≤ i ≤ n ,

is a path space for H• since there is a factorization of the diagonal morphism

H• ��β•
HI

• ��(∂0,∂1)
H• ×H• ,

where β•, given by βn(x) = (s0x, . . . , snx), is a weak equivalence and (∂0, ∂1), the mor-
phism induced by (∂0)n(x0, . . . , xn) = dn+1xn and (∂1)n(x0, . . . , xn) = d0x0, is a fibration
(see [7], [8]).

3.1. Definition. Given H ∈ Simp(Gpd)∗, consider the simplicial groupoid HI whose
set of objects is H0 and the set of morphisms in dimension n is the set of (n+1)-uples of
commutative squares:

(HI)n =



χ =




p q

p′ q′

��
sn+1
0 a

�� x0 ��x′
0

��
sn+1
0 b

, . . . ,
p q

p′ q′

��
sn+1
0 a

�� xn ��x′
n

��
sn+1
0 b




/ a, b ∈ H0 dixi = dixi−1

xi, x
′
i ∈ Hn+1 dix

′
i = dix

′
i−1

p, q ∈ O
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where, in each dimension, the source and target of the groupoid (HI)n
��s
��

t
H0 are defined

by s(χ) = a and t(χ) = b, and the face and degeneracy operators are given, in each
dimension, by:

di(χ) =




p q

p′ q′

��
sn
0 a

��

di+1x0

��di+1x
′
0

��
sn
0 b

, ...,
p q

p′ q′

��
sn
0 a

��

di+1xi−1

��di+1x
′
i−1

��
sn
0 b

,
p q

p′ q′

��
sn
0 a

��

dixi+1

��dix
′
i+1

��
sn
0 b

, ...,
p q

p′ q′

��
sn
0 a

��

dixn

��dix
′
n

��
sn
0 b




sj(χ) =




p q

p′ q′

��
sn+2
0 a

��

sj+1x0

��sj+1x
′
0

��
sn+2
0 b

, ...,
p q

p′ q′

��
sn+2
0 a

��

sj+1xj

��sj+1x
′
j

��
sn+2
0 b

,
p q

p′ q′

��
sn+2
0 a

��

sjxj

��sjx
′
j

��
sn+2
0 b

, ...,
p q

p′ q′

��
sn+2
0 a

��

sjxn

��sjx
′
n

��
sn+2
0 b


 .

The above definition determines a functor

(−)I : Simp(Gpd)∗ −→ Simp(Gpd)∗

and we actually have the following:

3.2. Proposition. The simplicial groupoid HI is a path space for any H in Simp(Gpd)∗.

Proof. We must prove that there exists a factorization of the diagonal morphism

H HI H ×H��β ��(∂0,∂1)

��

∆

such that morphism β is a weak equivalence and (∂0, ∂1) is a fibration.
Let us define β : H → HI as follows:

- On objects, β : O → H0 is given by β(p) = Idp ∀p ∈ O.

- On morphisms, β : Hn → (HI)n is given, for each x : p → q ∈ Hn, by

β(x) =




p p

q q

sn+1
0 Idp

��
s0x ��

s0x

sn+1
0 Idq

, . . . ,
p p

q q

sn+1
0 Idp

��
snx ��

snx

sn+1
0 Idq


 .

It is straightforward to check that β is a morphism of simplicial groupoids. To verify
that it is a weak equivalence, we first show that it induces a bijection between the com-
ponents of H and those of HI . The injectivity is clear because, if β(p) and β(q) are in
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the same component of (HI)0, then p y q are in the same component of H0, since if the
following square

p p

q q
��

x

��
x

is a morphism connecting them in (HI)0, then x : p → q is a morphism connecting p and
q in H0. To show the surjectivity it is enough to see that, given x : p → q with p ∈ O,
then β(p) and x are in the same component in (HI)0, but this is clear if we consider the
following commutative square:

p p

p q .

s0Idp

��
s0x

��
s0x

Second, we must show that the induced morphism β(p) : H(p)→ HI(β(p)) is a weak
equivalence of simplicial groups for all p ∈ O and this is clear since we have:

(HI(β(p)))n =







p p

p p

sn+1
0 Idp

��
x0 ��

x0

sn+1
0 Idp

, . . . ,
p p

p p

sn+1
0 Idp

��
xn ��

xn

sn+1
0 Idp




/
dixi = dixi−1

xi ∈ Hn+1




∼=

∼=
{
(x0, . . . , xn)

/
dixi = dixi−1

xi ∈ (H(p))n+1

}
= (H(p))I ,

and so morphism β(p) can be identified with the corresponding morphism in the con-
struction of the path space in the category of simplicial groups (see the beginning of this
section), and therefore it is a weak equivalence.

Next we define (∂0, ∂1) : H
I → H ×H as follows:

- On objects, (∂0, ∂1) : H0 → O ×O is given by (∂0, ∂1)(a) = (s(a), t(a)), ∀a ∈ H0.

- On morphisms, (∂0, ∂1)n : (H
I)n → Hn ×Hn is given by

(∂0, ∂1)n




p q

p′ q′

��
sn+1
0 a

�� x0 ��x′
0

��
sn+1
0 b

, . . . ,
p q

p′ q′

��
sn+1
0 a

�� xn ��x′
n

��
sn+1
0 b


 = (dn+1xn, d0x

′
0) .
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The proof that (∂0, ∂1) is a morphism of simplicial groupoids is long and tedious but
straightforward. For instance, in dimension 1, we have to prove that the following cube
is commutative:

H0 O ×O

(HI)0 H0 ×H0

H0 O ×O

(HI)1 H1 ×H1

�� d0�����������
��

d1

�����������

�� d0
��������
��

d1

��������

��������������

��������������

����������
����������

��

��

��
(∂0,∂1)0

��(∂0,∂1)1

��

s

��

t

����

���� ����

and, for example, for the upper face and the morphism d0 this is true because:

(d0(∂0, ∂1)1)




p q

p′ q′

��
s20a

�� x0 ��x′
0

��
s20b

,
p q

p′ q′

��
s20a

�� x1 ��x′
1

��
s20b


 = d0(d2x1, d0x

′
0) = (d0d2x1, d0d0x

′
0)

((∂0, ∂1)0d0)




p q

p′ q′

��
s20a

�� x0 ��x′
0

��
s20b

,
p q

p′ q′

��
s20a

�� x1 ��x′
1

��
s20b


 = (∂0, ∂1)0


 p q

p′ q′

��

�� d0x1 �� d0x′
1

��


 = (d1d0x1, d0d0x

′
1)

and the simplicial identities and the relation dixi = dixi−1 imply (d0d2x1, d0d0x
′
0) =

(d1d0x1, d0d0x
′
1).

Finally, let us prove that the morphism (∂0, ∂1) is a fibration in Simp(Gpd)∗. To do
so, note first that the morphism of groupoids

(HI)0 ��
t

��s

��
(∂0,∂1)

H0

��
(∂0,∂1)

H0 ×H0 ��
t

��s
O ×O

is a fibration since, given a : p → q ∈ H0 and (p ��x
p′, q ��x′

q′) ∈ H0 ×H0, the ele-

ment of (HI)0 represented by the commutative square

p ��s0a

��
s0x

q

��
s0x′

p′ ��
s0(x′ax−1)

q′
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satisfies (∂0, ∂1)

( ��

�� ����

)
= (x, x′).

It remains to prove that, given a : p → q ∈ H0, the morphism (∂0, ∂1) : H
I(a) →

H(p)×H(q) is a fibration of simplicial groups. Now, since the objects p and q are in the
same component of H0, H(p) × H(q) ∼= H(p) × H(p). Moreover, it is easy to identify
HI(a) with H(p)I because an element of (HI(a))n such as the following:


p q

p q

��
sn+1
0 a

��
x0

��
x′
0

��
sn+1
0 a

,
p q

p q

��
sn+1
0 a

��
x1

��
x′
1

��
sn+1
0 a

, ...,
p q

p q

��
sn+1
0 a

��
xn

��
x′

n

��
sn+1
0 a




determines (x0, x1, . . . , xn) ∈ (H(p))In and, conversely, given (x0, x1, . . . , xn) ∈ (H(p))In,
the morphisms x′0, . . . , x

′
n are determined by composition. Thus, the morphism (∂0, ∂1) :

HI(a)→ H(p)×H(q) can be identified with the morphism of simplicial groups H(p)I →
H(p)×H(p), which is a fibration since it is the corresponding morphism in the construc-
tion of the path space in the category Simp(Gp).

Finally, it is clear that (∂0, ∂1)β = ∆.

Let us recall now that if G• is a cofibrant (i.e., free) simplicial group, the simplicial

group G• ⊗ I, whose n-simplices are (G• ⊗ I)n =
n+1∐
i=0

(Gn)i, where (Gn)i = Gn, 0 ≤ i ≤ n,

is a cylinder object for G• in the closed model category Simp(Gp) since there is a
factorization of the codiagonal morphism

G•
∐
G• ��i0+i1

G• ⊗ I ��σ
G•

where σ, which is the morphism induced by the identities, is a weak equivalence, and
the morphism i0 + i1, which is induced by the first and last inclusions respectively, is a
cofibration (see [7], [8]).

3.3. Definition. Given G ∈ Simp(Gpd)∗, consider the simplicial groupoid G⊗I whose
set of objects is O ∨O = O×{0, 1} and the sets of morphisms are constructed as follows:

Given p ∈ O, we denote p0 = (p, 0) ∈ O × {0} and p1 = (p, 1) ∈ O × {1}. For any
x ∈ G0, x : p → q, we consider two morphisms, x0 : p0 → q0 and x1 : p0 → q0, and the
sets G0

0 = {x0 / x ∈ G0} and G1
0 = {x1 / x ∈ G0}. Also, for any p ∈ O we consider a

morphism Ip : p0 → p1 and its inverse I
−1
p : p1 → p0.

The set (G ⊗ I)0 of morphisms in dimension zero, denoted by G
0
0 ∨ G1

0 ∨ O, consists
of these three classes of morphisms and all the words αn ◦ αn−1 ◦ . . . α0, where each αi is
any of the morphisms described above, such that s(αi) = t(αi−1). All these morphisms are
subject to the relations x0 ◦ y0 = (x ◦ y)0, x1 ◦ y1 = (x ◦ y)1, (Idp)0 = (Idp)1.

Now, for any morphism x : p → q ∈ G1, we consider three morphisms x
00 : p0 → q0,

x01 : p0 → q0 and x
11 : p0 → q0 and the sets G

00
1 = {x00 / x ∈ G1}, G01

1 = {x01 / x ∈ G1}
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and G11
1 = {x11 / x ∈ G1}. Also, for any p ∈ O, we consider the morphisms Ip : p0 → p1

and their inverses.
Then, the set (G⊗I)1 of morphisms in dimension one, denoted by G

00
1 ∨G01

1 ∨G11
1 ∨O,

consists of these four classes of morphisms and all the words αn ◦αn−1 ◦ . . . α0, where each
αi is any of the morphisms described above, such that s(αi) = t(αi−1). All these morphisms
are subject to the relations x00 ◦ y00 = (x ◦ y)00, x01 ◦ y01 = (x ◦ y)01, x11 ◦ y11 = (x ◦ y)11,
(Idp)

00 = (Idp)
01 = (Idp)

11 = Idp0.
By iterating this process, we define (G⊗ I)n =

∨
τ∈(∆[1])n

Gτ
n ∨O. Thus, given x ∈ Gn

and τ ∈ (∆[1])n, we have xτ ∈ Gτ
n ⊂ (G⊗ I)n.

Note that we have a groupoid

(G⊗ I)0 O ∨O ,
		

Id

��
s

��t

where Idp0 = (Idp)
0 = (Idp)

1; Idp1 = IpI
−1
p ; s(x0) = s(x1) = s(Ip) = p0;d s(I

−1
p ) = p1;

t(x0) = t(x1) = t(I−1
q ) = q0 and t(Iq) = q1. In general, we have, in each dimension n, a

groupoid

(G⊗ I)n O ∨O .




Id

��
s

��t

Thus, we have constructed a simplicial groupoid where the face and degeneracy operators
are defined by:

di(x
τ ) = (dix)

diτ , xτ ∈ Gn, 0 ≤ i ≤ n,
di(Ip) = Ip (in a smaller dimension),
si(x

τ ) = (six)
siτ , xτ ∈ Gn, 0 ≤ i ≤ n− 1,

si(Ip) = Ip (in a higher dimension).

The above definition determines a functor

(−)⊗ I : Simp(Gpd)∗ −→ Simp(Gpd)∗

and we actually have the following:

3.4. Proposition. The simplicial groupoid G⊗ I is a cylinder object for any cofibrant
object G in Simp(Gpd)∗.

Proof. We must prove that there exists a factorization of the codiagonal morphism

G
∐
G G⊗ I G��i0+i1 ��σ ��

∇

such that i0 + i1 is a cofibration and σ is a weak equivalence.
We define σ : G ⊗ I → G by σ(p0) = σ(p1) = p, p ∈ O; σ(xτ ) = x, xτ ∈ Gτ

n;
σ(Ip) = Idp, p ∈ O.
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The morphisms i0, i1 : G → G ⊗ I are defined by i0(p) = p0, p ∈ O; i0(x) = x00...0,
x ∈ Gn; i1(p) = p1, p ∈ O; i1(x) = Iqx

1...11I−1
p , x ∈ Gn.

It is clear that σi0 = σi1 = 1G.
Moreover, if G is cofibrant, i0 + i1 is a free map, and thus a cofibration, since it is

clearly one-to-one on objects and maps and it is straightforward to see that, if V is a base
of G, then W = {Wn / n ∈ N} is a base of G⊗ I where, with the same notation used in
the construction of G⊗ I, Wn = V 00...01

n ∪ V 00...011
n ∪ . . . ∪ V 011...1

n ∪O.
To prove that σ is a weak equivalence it is enough to see that it is a homotopy

equivalence (see [17], theorem 1.3). To do so, below we construct a right homotopy from
i0σ to 1G⊗I . Note first that (i0σ)(p0) = p0, (i0σ)(p1) = p1, (i0σ)(Ip) = (Idp)

0, p ∈ O;
(i0σ)(x

τ ) = x00...0, xτ ∈ (G⊗ I)n.
The right homotopy is a morphism H : G ⊗ I → (G ⊗ I)I such that

∂0H = i0σ, ∂1H = 1G⊗I and it is given as follows:
- On objects:

H(p0) = ( p0
Id p0 ) H(p1) = ( p0 ��Ip p1 )

- In dimension 0:

H(x0) =
p0 p0

q0 q0

Id

��
(s0x)00

��
(s0x)00

Id

; H(x1) =
p0 p0

q0 q0

Id

��
(s0x)01

��
(s0x)01

Id

; H(Ip) =
p0 p0

p0 p1

Id

Id
��
Ip

��
Ip

- In dimension 1:

H(x00) =




p0 p0

q0 q0
��

(s0x)000

��
(s0x)000 ,

p0 p0

q0 q0
��

(s1x)000

��
(s1x)000




H(x01) =




p0 p0

q0 q0
��

(s0x)001

��
(s0x)001 ,

p0 p0

q0 q0
��

(s1x)001

��
(s1x)001




H(x11) =




p0 p0

q0 q0
��

(s0x)011

��
(s0x)011 ,

p0 p0

q0 q0
��

(s1x)001

��
(s1x)001




H(Ip) =




p0 p1

p0 p1

��Ip

Id Id

��
Ip

,

p0 p1

p0 p1

��Ip

Id Id

��
Ip




- In general, for any element x00(n−j+1... 011(j...1 ∈ (G⊗ I)n, 0 ≤ j ≤ n+ 1:
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H(x00(n−j+1... 011(j...1) = (d0, d1, . . . , dk, . . . , dn)

where each dk is a diagram of the form:

p0 p0

q0 q0
��

(skx)00
(n−j+2... 011(j...1

��
(skx)00

(n−j+2... 011(j...1 if 0 ≤ k ≤ n− j + 1,

p0 p0

q0 q0
��

(skx)00
(k+1... 011(n−k+1... 1

��
(skx)00

(k+1... 011(n−k+1... 1 if n− j + 2 ≤ k ≤ n+ 1.

Finally, it is straightforward to see that ∂0H = i0σ y ∂1H = 1G⊗I .

4. A simplicial description of Ho(Simp(Gpd)∗)

The construction of path space in Simp(Gpd)∗ given in Section 3, allows us to formulate
the right homotopy relation between two morphisms in terms of the simplicial homo-
topy relations given in Proposition 2.2. In fact, if f, g : G → H are two morphisms in
Simp(Gpd)∗, a right homotopy from f to g is a morphism α : G → HI such that ∂0α = f
and ∂1α = g and this means to give:

- A map α : O → H0 such that (∂0, ∂1)α = (f, g) and, since (∂0, ∂1)α = (sα, tα), the
map α must satisfy that sα = f and tα = g.

- A map α0 : G0 → HI
0 such that (∂0, ∂1)α0 = (f0, g0) and the following diagram is

commutative:

G0 ��
t

��s

��
α0

O

��
α

HI
0 ��

t

��s
H0 .

Now, if x : p → q ∈ G0, α0(x) : α(p)→ α(q) ∈ HI
0 is a commutative square of the form

f(p)

��
x0

��s0α(p)
g(p)

��
x′
0

f(q) ��s0α(q)
g(q)

with d1x0 = f0(x) and d0x
′
0 = g0(x),

and so, giving α0 in these conditions is equivalent to giving a map

α0
0 : G0 H1

x s0αt(x) ◦ x0

��

� ��
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such that:

{
sα0

0(x) = fs(x), tα0
0(x) = gt(x),

d1α
0
0(x) = αt(x) ◦ f0(x), d0α

0
0(x) = g0(x) ◦ αs(x)

(note that d0α
0
0(x) = αt(x) ◦ d0x0 = αt(x) ◦ (αt(x))−1 ◦ d0x

′
0 ◦ αs(x) = g0(x) ◦ αs(x)).

The condition that the pair (α0, α) is a morphism of groupoids is clearly equivalent
to α0

0 satisfying the relation α0
0(y ◦ x) = α0

0(y) ◦ (s0αt(x))
−1 ◦ α0

0(x), for any morphisms

in G0, p ��x q ��y
r .

- A map α1 : G1 → (HI)1 such that (∂0, ∂1)α1 = (f1, g1) and the following diagrams
are commutative:

G1 O

(HI)1 H0

��
t

��s

��
t

��s
��

α1

��

α

,

G1 G0

(HI)1 (HI)0 .

��
s0

��
d1

��d0




s0

��
d1

��d0
��

α1

��

α0

Now, if x : p → q ∈ G1, α1(x) : α(p)→ α(q) ∈ (HI)1 and so it is of the form

f(p) g(p)

f(q) g(q)

��
s20α(p)

��
x0

��
x′
0

��
s20α(q)

,

f(p) g(p)

f(q) g(q)

��
s20α(p)

��
x1

��
x′
1

��
s20α(q)

/
d1x0 = d1x1

d1x
′
0 = d1x

′
1




with d2x1 = f1(x), d0x
′
0 = g1(x), α0(d0x) =




f(p)

��
d0x1

��s0α(p)
g(p)

��
d0x′

1

f(q) ��s0α(q)
g(q)


 and

α0(d1x) =




f(p)

��
d2x0

��s0α(p)
g(p)

��
d2x′

0

f(q) ��s0α(q)
g(q)


.

Thus, giving α1 is equivalent to giving two maps α0
1, α

1
1 : G1 H2

x

x

s2
0αt(x) ◦ x0

s2
0αt(x) ◦ x1

��

� ��

� ��

such that:




sα0
1(x) = fs(x), tα0

1(x) = gt(x), sα1
1(x) = fs(x), tα1

1(x) = gt(x) ,
d0α

0
1(x) = s0αt(x) ◦ d0x0 = d0x

′
0 ◦ s0αs(x) = g1(x) ◦ s0αs(x) ,

d1α
0
1(x) = s0αt(x) ◦ d1x0 = s0αt(x) ◦ d1x1 = d1α

1
1(x) ,

d2α
0
1(x) = s0αt(x) ◦ d2x0 = α0

0d1(x) ,
d0α

1
1(x) = s0αt(x) ◦ d0x1 = α0

0d0(x) ,
d2α

1
1(x) = s0αt(x) ◦ d2x1 = s0αt(x) ◦ f1(x) .
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Moreover, if x : p → q ∈ G0, then

s0α0(x) = s0



f(p) g(p)

f(q) g(q)

��s0α(p)

��
x0

��
x′
0

��
s0α(q)


 =



f(p) g(p)

f(q) g(q)

��
s20α(p)

��
s1x0

��
s1x′

0

��
s20α(q)

,

f(p) g(p)

f(q) g(q)

��
s20α(p)

��
s0x0

��
s0x′

0

��
s20α(q)


 = α1s0(x)

and so s0α
0
0(x) = s2

0αt(x) ◦ s0x0 = α1
1s0(x) and s1α

0
0(x) = s1s0αt(x) ◦ s1x0 = s2

0αt(x) ◦
s1x0 = α0

1s0(x).

Given p ��x q ��y
r ∈ G1, the condition that (α1, α) is a morphism of groupoids

is equivalent to α0
1 and α

1
1 satisfying the relations α

0
1(y ◦ x) = α0

1(y) ◦ (s2
0αt(x))

−1 ◦ α0
1(x)

and α1
1(y ◦ x) = α1

1(y) ◦ (s2
0αt(x))

−1 ◦ α1
1(x).

By iterating these calculations and recalling the characterization given in Proposition
2.2, we can state the following:

4.1. Proposition. Let G, H ∈ Simp(Gpd)∗ and f, g : G → H two morphisms. Then,
giving a morphism α : G → HI such that (∂0, ∂1)α = (f, g) is equivalent to giving a
simplicial homotopy α : f � g.

In the same way as above, the construction of cylinder object in Simp(Gpd)∗ given
in Section 3, allows us to formulate the left homotopy relation between two morphisms in
terms of the simplicial homotopy relations given in Definition 2.1. In fact, if f, g : G → H
are two morphisms in Simp(Gpd)∗, giving a morphism β : G⊗ I → H such that βi0 = f
and βi1 = g is equivalent to giving the following data:

- A map β̄ : O ∨ O → O′ such that, for any p ∈ O, β̄(p0) = f(p) and β̄(p1) = g(p);
thus, β̄ is completely determined by the maps f, g : O → O′.

- A map β0 : (G⊗ I)0 → H0 such that β0(i0+ i1) = f0+ g0 and the following diagram

(G⊗ I)0 ��
t

��s

��
β0

O ∨O

��
β̄

H0 ��
t

��s

O′

is commutative.

Now, given x : p → q ∈ G0, i0(x) = x0 and β0(x
0) = f0(x) : f(p)→ f(q), then β0 is

determined on G0
0 by f0. If p ∈ O, β0(Ip) is a morphism in H0 such that sβ0(Ip) = f(p)

and tβ0(Ip) = g(p). Thus, giving β0 on the morphisms Ip is equivalent to giving a
map β : O → H0 such that sβ = f y tβ = g. This map determines β0 if we define
β0(x

0) = f0(x); β0(Ip) = β(p); β0(x
1) = βs(x)−1 ◦ g0(x) ◦ βs(x).

- A map β1 : (G⊗ I)1 → H1 such that β1(i0+ i1) = f1+ g1 and the following diagrams
are commutative:
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(G⊗ I)1 O ∨O

H1 O′

��
t

��s

��
t

��s��

β1

��

β̄

,

(G⊗ I)1 (G⊗ I)0

H1 H0

		
s0

��
d1

��d0

��
s0

��
d1

��d0��

β1

��

β0

Now, if p ∈ O, it is clear that β1(Ip) = s0β(p) and, given x : p → q ∈ G1, β1i0(x) =
β1(x

00) = f1(x) : f(p)→ f(q) and β1i1(x) = s0βt(x)◦β1(x
11)s0◦βs(x)−1 = g1(x) : g(p)→

g(p). Thus, β1 is determined by giving β1(x
01) : f(p)→ f(q), satisfying that d0β1(x

01) =
β0(d0(x

01)) = β0((d0x)
1) = βt(x)−1 ◦ g0d0(x) ◦ βs(x) and d1β1(x

01) = β0(d1(x
01)) =

β0((d1x)
0) = f0d1(x), which is is equivalent to giving a map:

β1
1 : G1 H1

x s0βt(x) ◦ β1(x
01) : f(p)→ g(q)

��

� ��

satisfying that

{
d0β

1
1(x) = βt(x) ◦ βt(x)−1(x) ◦ g0d0(x) ◦ βs(x) = g0(x) ◦ d0βs(x)

d1β
1
1(x) = βt(x) ◦ f0d1(x) .

Given p ��x q ��y
r ∈ G1, the fact that (β1, β̄) is a morphism of groupoids is

equivalent to β1
1 satisfying the following relation:

β1
1(y ◦ x) = s0βt(y) ◦ β1((y ◦ x)01) = s0βt(y) ◦ β1(y

01x01) = s0βt(y) ◦ β1(y
01) ◦ β1(x

01) =

= s0βt(y) ◦ β1(y
01) ◦ s0βt(x)

−1 ◦ s0βt(x) ◦ β1(x
01) = β1

1(y) ◦ (s0βt(x))
−1 ◦ β1

1(x).

- A map β2 : (G⊗ I)2 → H2 such that β2(i0+ i1) = f2+ g2 and the following diagrams
are commutative:

(G⊗ I)2 O ∨O

H2 O′

��
t

��s

��
t

��s��

β2

��

β̄

,

(G⊗ I)2 (G⊗ I)1

H2 H1 .

		
s1



s0

����
d0

��d2

��
s1



s0

����
d0

��d2��

β1

��

β0

Now, given p ∈ O, β2(Ip) = s2
0β(p) and, if x : p → q ∈ G2, β2i0(x) = β2(x

000) = f2(x)
and β2i1(x) = β2(Iqx

111I−1
p ) = s2

0βt(x) ◦ β2(x
111) ◦ s2

0βs(x)
−1 = g2(x). Thus, β2 is deter-

mined by β2(x
001) and β2(x

011) satisfying that:

d0β2(x
001) = β1d0(x

001) = β1((d0x)
01) = s0βt(x)

−1 ◦ β1
1d0(x),

d1β2(x
001) = β1d1(x

001) = β1((d1x)
01) = s0βt(x)

−1 ◦ β1
1d1(x),

d2β2(x
001) = β1d2(x

001) = β1((d2x)
00) = f1d2(x) ◦ d0β2(x

011)
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= β1d0(x
011) = β1((d0x)

11) = s0βt(x)
−1 ◦ g1d0(x) ◦ s0βs(x),

d1β2(x
011) = β1d1(x

011) = β1((d1x)
01) = s0βt(x)

−1 ◦ β1
1d1(x),

d2β2(x
011) = β1d2(x

011) = β1((d2x)
01) = s0βt(x)

−1 ◦ β1
1d2(x),

which is equivalent to giving two maps:

β1
2 : G2 H2

x s2
0βt(x) ◦ β2(x

001)

��

� ��
and β2

2 : G2 H2

x s2
0βt(x) ◦ β2(x

011)

��

� ��

satisfying the following relations:

d0β
1
2(x) = d0s

2
0βt(x) ◦ d0β2(x

011) = s0βt(x) ◦ s0βt(x)
−1 ◦ g1d0(x) ◦ s0βs(x) =

= g1d0(x) ◦ s0βs(x),

d1β
1
2(x) = d1s

2
0βt(x) ◦ d1β2(x

011) = s0βt(x) ◦ s0βt(x)
−1 ◦ β1

1d0(x) = β1
1d0(x),

d2β
1
2(x) = d2s

2
0βt(x) ◦ d2β2(x

011) = s0d1s0βt(x) ◦ f1d2(x) = s0βt(x) ◦ f1d2(x),

d0β
2
2(x) = d0s

2
0βt(x) ◦ d0β2(x

001) = s0βt(x)s0βt(x)
−1 ◦ β1

1d0(x) = β1
1d0(x),

d1β
2
2(x) = d1s

2
0βt(x) ◦ d1β2(x

001) = s0βt(x) ◦ s0βt(x)
−1 ◦ β1

1d1(x) = β1
1d1(x),

d2β
2
2(x) = d2s

2
0βt(x) ◦ d2β2(x

001) = s0d1s0βt(x) ◦ f1d2(x) = s0βt(x)f1d2(x).

Moreover, if x : p → q ∈ G1, then d0β
2
2s0(x) = β1

1(x) and so β
2
2s0(x) = s0β

1
1(x), and

d1β
1
2s0(x) = β1

1(x) and so β
1
2s0(x) = s1β

1
1(x).

For any p ��x q ��y
r ∈ G2, the fact that (β2, β̄) is a morphism of groupoids is

equivalent to β1
2 and β

2
2 satisfying following relations:

β1
2(y ◦ x) = s2

0βt(y) ◦ β2((y ◦ x)011) = s2
0βt(y) ◦ β2(y

011x011) = s2
0βt(y) ◦ β2(y

011) ◦ β2(x
011)

= s2
0βt(y) ◦ β2(y

011)(s2
0βt(x))

−1 ◦ s2
0βt(x) ◦ β2(x

011) = β1
2(y) ◦ (s2

0βt(x))
−1 ◦ β1

2(x),

β2
2(y ◦x) = s2

0βt(y)◦β2((y ◦x)001) = s2
0βt(y)◦β2(y

001x001) = s2
0βt(y)◦β2(y

001)◦β2(x
001) =

= s2
0βt(y) ◦ β2(y

001) ◦ (s2
0βt(x))

−1 ◦ s2
0βt(x) ◦ β2(x

001) =β2
2(y) ◦ (s2

0βt(x))
−1 ◦ β2

2(x).

By iterating these calculations and recalling the definition of homotopy given in 2.1,
we can state that:

4.2. Proposition. Let f, g : G → H be two morphisms in Simp(Gpd)∗. Then, giving
a morphism β : G⊗ I → H such that β(i0 + i1) = f + g is equivalent to giving a simplicial
homotopy β : f � g.

Now, as a consequence of Propositions 4.1, 4.2 and 2.2, we have the following:

4.3. Corollary. The functor (−) ⊗ I : Simp(Gpd)∗ → Simp(Gpd)∗ is left adjoint
to the functor (−)I : Simp(Gpd)∗ → Simp(Gpd)∗.

Lastly we have:
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4.4. Theorem. The homotopy category Ho(Simp(Gpd)∗) is equivalent to the category
whose objects are the cofibrant (i.e. free) simplicial groupoids and whose morphisms are
simplicial homotopy classes of simplicial groupoid morphisms.

Proof. If G is a cofibrant simplicial groupoid and H is any simplicial groupoid, Propo-
sitions 3.4 and 4.2 assure that the left homotopy relation in HomSimp(Gpd)∗(G,H) co-
incides with the simplicial homotopy relation but this one coincides with the right
homotopy relation according to Propositions 3.2 and 4.1. Since Simp(Gpd)∗ is
a closed model category we have then that HomHo(Simp(Gpd)∗)(G,H) = {left ≡
right homotopy classes of morphisms from G to H} = [G,H] the set of simplicial homo-
topy classes of simplicial morphisms from G to H.

5. Homotopy constructions in the pointed case

Let us denote by (Simp(Gpd)∗,p) the category of pointed simplicial groups. This is the
category whose objects are pairs (X, p), with X ∈ Simp(Gpd)∗ and p ∈ O a fixed object
of X, and given (X, p), (Y, p′)∈ (Simp(Gpd)∗,p), the morphisms f : (X, p)→ (Y, p′) are
morphisms f : X → Y ∈ Simp(Gpd)∗ such that f(p) = p′.

If ∗ denotes the zero object in (Simp(Gpd)∗,p), it is clear that this category is
isomorphic to the category (∗,Simp(Gpd)∗) of objects under ∗. Thus, (Simp(Gpd)∗,p)
inherits a closed model structure from that of Simp(Gpd)∗ (see [16]) where f : (X, p)→
(Y, p′) is a fibration (respectively cofibration or weak equivalence) if f : X → Y is a
fibration (resp. cofibration or weak equivalence) in Simp(Gpd)∗.

Below we see that path space and cylinder constructions in (Simp(Gpd)∗,p) can be
done by using the constructions of these objects in Simp(Gpd)∗ which we have shown
in Section 3. This allows us to define loop and suspension functors in (Simp(Gpd)∗,p).

5.1. Proposition. The pointed simplicial groupoid (HI , Idp) is a path space for any
(H, p) in (Simp(Gpd)∗,p).

Proof. We have the following factorization of the diagonal morphism

(H, p) ��β
(HI , Idp) ��(∂0,∂1)

(H ×H, (p, p)) ,

where the morphisms β and (∂0, ∂1), defined as in Proposition 3.2, are clearly a weak
equivalence and a fibration in (Simp(Gpd)∗,p) respectively.

Now we can consider the loop functor

Ω : (Simp(Gpd)∗,p)→ (Simp(Gpd)∗,p)

defined by Ω((H, p)) = Ker((HI , Idp) ��(∂0,∂1)
(H ×H, (p, p)). This functor induces

the corresponding one in the homotopy category H0((Simp(Gpd)∗,p)).
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Now, let us consider the groupoid interval I, which is the groupoid with only two
objects 0 and 1 and one morphism between them. We also denote by I the simplicial
groupoid constant I in any dimension, and let us consider, for any G ∈ Simp(Gpd)∗
and p ∈ O, the morphism of simplicial groupoids u : I → G ⊗ I defined, in each di-
mension, by: u(0) = p0, u(1) = p1, u(0→ 1) = Ip. This morphism induces another one
in (Simp(Gpd)∗,p), u : (I, 0)→ (G⊗ I, p0), and we make the following:

5.2. Definition. Given (G, p) ∈ (Simp(Gpd)∗,p), we define (G⊗ I, p0) by means of
the following pushout diagram:

(I, 0) ��u

��
f

(G⊗ I, p0)

��
γ

∗ ��i
(G⊗ I, p0)

5.3. Proposition. For any cofibrant object G ∈ Simp(Gpd)∗ and any p ∈ O, the
pointed simplicial groupoid (G⊗ I, p0) is a cylinder object for (G, p).

Proof. Let us consider the morphisms σ : G⊗ I → G and i0, i1 : G → G⊗ I de-
fined in Proposition 3.4 and the morphisms they induce in (Simp(Gpd)∗,p),
σ : (G⊗ I, p0)→ (G, p) and i0 : (G, p)→ (G⊗ I, p0).

The morphisms σ and 0 : ∗ → (G, p) induce a morphism σ′ : (G⊗O, p0) → (G, p)
according to the following commutative diagram:

(I, 0) ��u

��
0

(G⊗ I, p0)

��
γ

��

σ

��
��

��
��

��
��

��
��

��
�

∗ ��

��
0

������������������������������� (G⊗ I, p0)

��σ′

(G, p) .

Moreover, we consider the morphism i′0 : (G, p) → (G⊗ I, p0) given as the
composition i′0 = γi0, so that, in each dimension and for any q ∈ O, we
have i′0(q) = γ(i0(q)) = γ(q0) = q0, and given x : q → r a morphism in G, we have
i′0(x) = γi0(x) = γ(x00...0) = x00...0.

Now, considering the morphism γi1 : G → G⊗ I, we have the following induced
morphism in (Simp(Gpd)∗,p), i′1 : (G, p)→ (G⊗ I, p0). In each dimension, and for any
q ∈ O, we have i′1(q) = q0 and, given x : q → r a morphism in G,then i′1(x) = Iqx

11...1I−1
r .

Then we have the following factorization of the codiagonal morphism

(G, p)
∐
(G, p) ��

i′0+i′1
(G⊗ I, p0) ��σ′

(G, p)

since:
σ′i′0(q) = σ′(q0) = σ(q0) = q,



Theory and Applications of Categories, Vol. 7, No. 14 282

σ′i′0(x) = σ′(x00...0) = σ(x00...0) = x,
σ′i′1(q) = σ′(q0) = σ(q0) = q,
σ′i′1(x) = σ′(Iqx11...1I−1

r ) = σ(Iqx
11...1I−1

r ) = x.
The proof that i′0 + i′1 is a cofibration is exactly similar to the proof of this fact given

in Proposition 3.4. Also, σ′ is a homotopy equivalence and therefore a weak equiva-
lence. The homotopy H ′ : (G⊗ I, p0)→ ((G⊗ I)I , Idp0) is defined similarly to the ho-
motopy H : G⊗ I → (G⊗ I)I given in the proof of Proposition 3.4 since we can iden-
tify the set of objects of the pointed simplicial groupoid ((G⊗ I)I , Idp0) with the set
{G0

0 ∨G1
0 ∨O/p0 = p1; Ip = Idp0 = Idp1}, (see Definition 3.3) and, moreover, ((G⊗ I)I)n

can be identified with the set







q r

q′ r′

��
sn+1
0 a

�� x0 ��x′
0

��
sn+1
0 b

, . . . ,
q r

q′ r′

��
sn+1
0 a

�� xn ��x′
n

��
sn+1
0 b




/ a, b ∈ (G⊗ I)0 dixi = dixi−1

xi, x
′
i ∈ (G⊗ I)n+1 dix

′
i = dix

′
i−1

q, r ∈ O




.

The above construction allows us to define a suspension functor

Σ : (Simp(Gpd)∗,p)→ (Simp(Gpd)∗,p)

given by

Σ((G, p)) = Coker((G, p)
∐
(G, p) ��

i′0+i′1
(G⊗ I, p0)) .

This functor is left adjoint to the loop functor Ω in (Simp(Gpd)∗,p) and it induces the
corresponding suspension functor in the homotopy category H0((Simp(Gpd)∗,p)).
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