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CLASSIFYING SPACES OF CATEGORIES AND TERM REWRITING

MAURIZIO G. CITTERIO

ABSTRACT. In this paper we show how collapsing schemes can give us information on
the homotopy type of the classifying space of a small category, when this category is
presented by a complete rewrite system.

1. Introduction

Given a small category C, the classifying space BC of C is constructed by assigning to C
its nerve NC and then taking the geometric realization BC = |NC| of the simplicial set
NC. The definition of the geometric realization functor | | is relatively plain and it is
well-known that the space |X| associated to a simplicial set X is a CW-complex whose n-
cells correspond to non degenerate n-simplices of X ([Mil57]). But simplicial sets tend to
be very large objects and the number of non degenerate simplices is usually much greater
than the number of cells which are necessary to describe the homotopy type of realization.
Can we reduce this number? Kenneth S. Brown and Ross Geoghegan ([BG84], [Bro92])
introduced the notion of collapsing scheme. This scheme distinguishes a class of non
degenerate simplices of a simplicial set X, which are called the essential simplices of X.
The main theorem on collapsing schemes states that the geometric realization |X| of the
simplicial set X has the homotopy type of a CW-complex E(X) whose n-cells correspond
to essential n-simplices of X. When we consider a “complete presentation” of a monoid
M (i.e. a presentation given by a complete rewrite system), then the classifying space of
M can be obtained as the geometric realization of a simplicial set X. The paper [Bro92]
shows that this simplicial set X is canonically endowed with a collapsing scheme.

We recall the definition of collapsing scheme in Section 2. Then we show that simplicial
sets endowed with collapsing schemes form a category CSet∆op

and that the construction
E can be viewed as a functor E : CSet∆op → Top into the category of topological spaces
and maps. Moreover, the canonical homotopy equivalence |X| → E(X) is a natural trans-
formation q : | | ⇒ E from the geometric realization to the functor E . In Section 3, we
recall basic definitions and facts on rewrite systems (main references are [ES87], [Str96]).
We reach the main result in Section 4: a functorial extension to categories of the con-
struction given by K. S. Brown for monoids. The power of this technique is emphasized
by an example, where we give a one-line proof of the fact that the classifying space of a
free category is (up to homotopy) the geometric realization of its generating graph.
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This paper is only a small part of a wider work (whose starting point is [Cit00]) on
collapsing schemes and their applications to bisimplicial sets and classifying spaces of
2-categories.

2. Collapsing schemes

Let X be a simplicial set whose face operators are denoted by d, and degenerate operators
by s. We shall write D for the graded set of degenerate simplices (i.e. the simplices
which are in the image of s), and Xnd = X − D for the graded set of non-degenerate
simplices. Assume that non-degenerate simplices have been partitioned into three classes:
E = {essential simplices}, R = {redundant simplices}, C = {collapsible simplices}. We
shall say that (E,R,C) is a partition of Xnd and write Xnd = E 
 R 
 C (equivalently
(E,R,C,D) is a partition of X and X = E 
R
C 
D); this means that for every n ≥ 0
we have Xndn = En 
Rn 
 Cn.

Writing [m] = {0, 1, . . . ,m} for the standard finite set with m + 1 elements, assume
that there exist functions cn : Rn → Cn+1 and ιn : Rn → [n + 1] such that, for every
redundant n-simplex τ we have dιn(τ)cn(τ) = τ . Functions cn and ιn define the following
relation >Rn on Rn:

τ >Rn τ
′ (τ, τ ′ ∈ Rn) if and only if τ ′ = djcn(τ) (j = ιn(τ))

and we say that τ ′ is an immediate predecessor of τ . The relation >Rn is said to be
noetherian (or terminating or well-founded) when there is no infinite descending chain
τ > τ ′ > τ ′′ > . . . of redundant n-simplices.

2.1. Definition. A collapsing scheme C = (E,R,C; c, ι) on a simplicial set X consists
of

1. a partition (E,R,C,D) of X with C0 empty

2. a function cn : Rn → Cn+1 for every n ≥ 0

3. a function ιn : Rn → [n+ 1] for every n ≥ 0
and axioms

CS1. ∀n ≥ 0, the function cn : Rn → Cn+1 is a bijection and dιncn = idRn

CS2. ∀n ≥ 0, the immediate predecessor relation >Rn is noetherian.

The axiom CS2 implies that a chain of redundant simplices cannot include twice the
same redundant simplex. In particular, for any τ ∈ Rn, we cannot have τ > τ and there
exists no index i = ι(τ) such that τ = dic(τ). We say that the redundant τ is the free
face of the collapsible σ = cn(τ). The axiom CS1 implies that every redundant simplex
is the free face of a unique collapsible simplex.

Since every redundant simplex has only finitely many immediate predecessors, there
cannot exist arbitrarily long descending chains. The maximum length of a chain τ >Rn

τ ′ >Rn · · · starting from τ will be called the height of τ and written h(τ).
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2.2. Theorem. [K. S. Brown] Let X be a simplicial set with a collapsing scheme C. The
geometric realization |X| of X admits a canonical quotient CW-complex E, whose cells are
in 1–1 correspondence with essential simplices of X. The quotient map qX : |X| → E is a
homotopy equivalence; it maps each open essential cell of |X| homeomorphically onto the
corresponding open cell of E and it maps each collapsible (n + 1)-cell into the n-skeleton
of E.

We present here the proof of [Bro92] mainly because we shall need the constructions
and notations. It also describes the geometry of collapsing schemes. We shall use the
same notation for simplices of the simplicial set and corresponding cells of the geometric
realization; as usual we shall identify degenerate cells with cells of lower dimension.

Proof. The geometric realization of a simplicial set X endowed with a collapsing scheme
can be viewed as the colimit of the sequence of topological spaces and cofibrations

X
e

0
� � j0 �� X

+

0
� � �� X

e

1
� � j1 �� · · · � � �� X

e

n
� � jn �� X

+

n
� � �� X

e

n+1
� � jn+1�� · · ·

where X
e

0 consists of essential 0-cells, X
+

n is obtained from X
e

n by adjoining redundant
n-cells and collapsible (n+ 1)-cells, and X

e

n+1 is obtained from X
+

n by adjoining essential
(n+ 1)-cells. The description of this filtration is the key of the proof.
After CS2, if Rn is not empty, there exist redundant n-simplices whose height is 1. Let
τ be one of them. Clearly the faces of τ are (n − 1)-cells and so we can adjoin it to X

e

n

obtaining the space X
e

n(τ). Let cn(τ) be the collapsible of τ . Observe that the faces of
cn(τ) are τ ∈ X

e

n(τ) and either essential or collapsible or degenerate n-cells which are in
X

e

n. This means thatX
e

n is a strong deformation retract of the spaceX
e

n(τ, cn(τ)) obtained
from X

e

n(τ) by adjoining cn(τ). Chosen a retraction (collapsing map) from the geometric
simplex ∆n+1 onto its boundary deprived of the open ι(τ)-face Λn+1

ι(τ) , this induces an

elementary retraction X
e

n(τ, cn(τ)) → X
e

n which collapses the (n + 1)-cell cn(τ) onto its
boundary deprived of the open free face τ ◦. Since cn : Rn → Cn+1 is a bijection, X

e

n is a
deformation retract of the space X

e,1

n obtained from X
e

n by adjoining all the redundant n-
cells with height one and the corresponding collapsible (n+1)-cells. Gluing the elementary
retraction, we get a homotopy inverse of the inclusion X

e

n ↪→ X
e,1

n .
Let X

e,k

n be the space obtained from X
e

n by attaching all the redundant n-cells with height
less or equal to k and the corresponding collapsible cells. Observe that, given a redundant
τ ′ with height k+ 1, every face of its collapsible cn(τ

′) other than its free face τ ′ is either
an immediate predecessor of τ ′ (hence with height less or equal to k) or else is essential,
collapsible or degenerate. These faces are therefore already present in X

e,k

n and we can
proceed as above.
We have factored the inclusion jn : X

e

n ↪→ X
+

n as a sequence of strong deformation retracts

X
e

n ⊆ X
e,1

n ⊆ X
e,2

n ⊆ · · · ⊆ X
e,k

n ⊆ X
e,k+1

n ⊆ · · ·
Observe that, fixed for any i ∈ [n + 1] a collapsing map ∆n+1 → Λn+1

i , retractions
X

e,k+1

n → X
e,k

n are canonically given. This proves that the cofibration jn is a homotopy
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equivalence with a canonical homotopy inverse rn.

X
e

n

� � jn ��
X

+

nrn
��

We finally consider the diagram

X
e

0
� � j0 �� X

+

0
� � ��

r0

��

X
e

1
� � j1 ��

r0
��

X
+

1
� � ��

r0r1
��

X
e

2
� � j2 ��

r0r1
��

X
e

2
� � ��

r0r1r2
��

· · ·

E0 E0
� � �� E1 E1

� � �� E2 E2
� � �� · · ·

where E0 = X
e

0 , the space En+1 is the push-out En +X+
n
X

e

n+1 and overlined maps are
induced by push-outs; horizontal maps are cofibration, while vertical maps are homotopy
equivalences. The colimit of this diagram gives us the required canonical projection
qX : |X| → E(X).

2.3. Example. Consider the category C that we picture below without drawing com-
posites and identities

x y

c

��

a

��
z

d

��

b

��

The classifying space BC of C is a CW-complex whose cells are in 1-1 correspondence
with non-degenerate simplices of the nerve NC :

(NC)nd0 = {x, y, z} , (NC)nd1 = {a, b, c, d, ab, ad, cb, cd} ,
(NC)nd2 = {(a, b), (a, d), (c, b), (c, d)} , (NC)ndn = ∅ (n ≥ 3),

then BC is a space which has surely the same homotopy type as S1 ∨ S1. The following
collapsing scheme makes this intuition rigorous:

En Rn
cn−→ Cn+1

n = 0 z y �→ d
x �→ c

n = 1 a, b fg �→ (f, g)
n ≥ 2 - - - -

where f ∈ {a, c}, g ∈ {b, d} and ιn = 1 (constant function) for every n. Now we can state
that BC ∼ S1 ∨ S1, since it has the same homotopy type as a CW-complex with one
0-cell and two 1-cells.

Observe that identifications need some care when we want to construct the geometric
realization of a simplicial set starting from a collapsing scheme; even in this simple example
(with the obvious meaning of symbols) d1a = x is not essential, but it is identified with z
collapsing first c over y and then d over x.
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2.4. Example. Any (small) category with terminal object is contractible.
Let C be a category with a terminal object ∗ (i.e. for any object x ∈ C, there exists a

unique arrow x→ ∗). A collapsing scheme (E,R,C; c, ι) on the nerve of C is defined by

E0 = {∗}, R0 = ObjC− {∗} and, for n ≥ 1, En = ∅, Rn = {x0
f1←− · · · fn←− xn : x0 = ∗},

Cn = {∗ ← x1
f2←− · · · fn←− xn} with cn(x0

f1←− · · · fn←− xn) = ∗ ← x0
f1←− · · · fn←− xn and

ιn = 0 (constant function). Clearly cn is a bijection and any redundant n-simplex τ has
height h(τ) = 1 since for i = 0, dic(τ) is either collapsible or degenerate. CS1 and CS2
are verified and BC ∼ E(NC) is contractible.

Simplicial sets endowed with a collapsing scheme are the objects of the category
CSet∆op

whose arrows are C-morphisms defined as follows.
Writing CX = (EX , RX , CX ; cX , ιX) for a collapsing scheme on the simplicial sets X,

and writing f |S for the graded function obtained from a simplicial function f : X → Y
by restricting it to the graded subset S of X, we say that

2.5. Definition. A C-morphism f : CX → CY is a simplicial function f : X → Y such
that

1. f respects the partitions, i.e. Imf |EX ⊆ EY , Imf |RX ⊆ RY , Imf |CX ⊆ CY ;
2. f commutes with c and ι , i.e. ∀x ∈ RX , fcX(x) = cY f(x) , ιY f(x) = ιX(x).

We are going to show the functoriality of the construction E : CSet∆op → Top and
the naturality of the canonical projection q : | | ⇒ E (where the geometric realization
functor is defined from CSet∆op

by composing it with the functor which forgets collapsing
schemes). We first need to state some lemmas.

2.6. Lemma. Any C-morphism f : CX → CY preserves the immediate predecessor rela-
tion and the height of redundant simplices.

Going back to the construction introduced in the proof of Theorem 2.2, we emphasize
the following observation.

2.7. Lemma. Let CX and CY be collapsing schemes for the simplicial sets X and Y . If
f : X → Y is a simplicial function such that Imf |EX ⊆ EY ∪DY and Imf |CX ⊆ CY ∪DY ,
then f gives rise to the following commutative diagram of spaces and maps, where f

e

n and
f

+

n are restrictions of the geometric realization |f | of f .

X
e

0
� � j

X
0 ��

f
e

0
��

X
+

0
� � ��

f
+

0
��

X
e

1
� � j

X
1 ��

f
e

1
��

· · · � � �� X
e

n
� � j

X
n ��

f
e
n

��

X
+

n
� � ��

f
+
n

��

X
e

n+1
� �
jXn+1��

f
e

n+1
��

· · ·

Y
e

0
� �

jY0

�� Y
+

0
� � �� Y

e

1
� �

jY1

�� · · · � � �� Y
e

n
� �

jYn

�� Y
+

n
� � �� Y

e

n+1
� �

jYn+1

�� · · ·

The colimit of the diagram is |f | : |X| → |Y |.
For any cofibration jXn : X

e

n+1 ↪→ X
+

n , we have introduced a canonical retract rXn :

X
+

n → X
e

n+1. A C-morphism verifies the hypotheses of Lemma 2.7 and

2.8. Lemma. Any C-morphism f : CX → CY commutes with r, i.e. f e

nr
X
n = rYn f

+

n for
any n.
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We are now ready to draw the following diagram which arises from a C-morphism
f : CX → CY .

EX0

e0
��

EX0 � � ��

e0
��

EX1

e1
��

EX1 � � ��

e1
��

EX2

e2
��

· · ·

X
e

0

�����
�����

� � jX0 ��

f
e

0

��

X
+

0

rX0

�������
� � ��

f
+

0

��

X
e

1

rX0

�������
� � jX1 ��

f
e

1

��

X
+

1

rX0 r
X
1

�������
� � ��

f
+

1

��

X
e

2

rX0 r
X
1

�������

f
e

2

��

· · ·

EY0 EY0 � � �� EY1 EY1 � � �� EY2 · · ·

Y
e

0

�����
�����

� �

jY0

�� Y
+

0

rY0

�������
� � �� Y

e

1

rY0

�������
� �

jY1

�� Y
+

1

rY0 r
Y
1

�������
� � �� Y

e

2

rY0 r
Y
1

�������
· · ·

(1)

The upper and the lower parts are the constructions for CX and CY described in the proof
of Theorem 2.2. Defined the map e0 : EX0 → EY0 as e0 := f

e

0 : X
e

0 → Y
e

0 , the first cube
(the one with index zero) commutes. The map e1 : EX1 → EY1 is induced by the push-outs
which are the upper and the lower squares of the second cube. So the third cube (with
index one) commutes and we can iterate. Thus we obtain the commutative diagram

EX0 � � ��

e0
��

EX1 � � ��

e1
��

EX2 � � ��

e2
��

EX3 � � ��

e3
��

· · ·

EY0 � � �� EY1 � � �� EY2 � � �� EY3 � � �� · · ·

whose colimit is a map Ef : EX → EY .
2.9. Proposition. The assignment f � �������� Ef defines a functor

E : CSet∆op → Top

and the canonical projection qX : |X| → EX is a natural transformation

q : | | ⇒ E : CSet∆op → Top .

Proof. The functoriality of E comes from standard properties of colimits (i.e. the
functoriality of coLim). The naturality of the canonical projection q arises from the
diagram

|X|
|f |

��

qX �� EX
Ef

��
|Y | qY

�� EY

obtained as colimit of diagram (1).
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3. Term rewriting for categories

In this section we recall definitions and basic facts on term rewriting for categories.

3.1. Graphs, words and free categories. An n-graph G consists of n+ 1 sets Gi
and n pairs of functions si, ti : Gi+1 → Gi such that si−1si = si−1ti and ti−1si = ti−1ti for
every i < n.

G : G0 G1s0
��
t0�� G2s1

��
t1�� · · ·

s2
��
t2�� Gnsn−1

��
tn−1��

Elements of G0 are called objects (or vertices or points); elements of G1 are called arrows
(or edges); elements of Gi are called i-arrows. The functions s and t are called source

and target. We can picture an arrow f ∈ G1 as t0(f)
f←− s0(f) . A typical picture of a

2-arrow α ∈ G2 will be

x y
g

��

f
		 �� ��



 α

where f, g ∈ G1 and x, y ∈ G0 with f = s1α, g = t1α and x = t0f = t0g = t0s1(α) =
t0t1(α), y = s0f = s1g = s0s1(α) = s0t1(α).

A morphism ϕ : G→ G′ of n-graphs is an (n+1)-tuple (ϕi)
n
0 of functions ϕi : Gi → G′

i

such that ϕiti = tiϕi+1 and ϕisi = siϕi+1 for every i < n. The category n-Graph consists
of n-graphs and morphisms of n-graphs. Observe that 0-Graph is the category of sets,
while 1-Graph is the category Graph of graphs.

We can get a graph by truncating an n-graph G; in particular, we shall write ski,i+1G
for the graph

ski,i+1G : Gi Gi+1si
��
ti�� 0 ≤ i < n

A pair of adjoint functors links the category of graphs and the category of small
categories. The forgetful functor U : Cat → Graph assigns the underlying graph C :
C0 ⇔ C1 to the small category C, where C0 is the set of objects, C1 is the set of arrows
of C, source and target are domain and codomain. The left adjoint F : Graph → Cat
of U assigns the free category FG to a graph G. Objects of FG are the objects of G,

while arrows of FG are words in G, described as follows. Given a graph G : G0 G1s
��
t�� ,

a word (or path) w of length l(w) = m is an alignment w = (x0, f1, x1, f2, · · · , fm, xm) =
(f1, f2, · · · , fm) where x∗ ∈ G0, f∗ ∈ G1, x0 = t(f1), s(fi) = xi = t(fi+1) (1 ≤ i < m),
xm = s(fm).

w = x0 x1
f1�� · · ·f2�� xm

fm�� =
f1�� · · ·f2�� fm��

An empty word w is a word of length zero; this means that w = (x0) and there exits
exactly one empty word for every object of G0. A word of length one (that is an element
of G1) may also be called letter and G1 may be called the alphabet. We thus obtain a new
graph (the underlying graph of the category FG)

FG : G0 FG1s
��
t��
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where FG1 is the set of words of finite length and s and t are defined by s(f1, f2, . . . , fm) =
s(fm) and t(f1, f2, . . . , fm) = t(f1). Two words w and w′ are composable when s(w) =
t(w′) and their composition w ◦

FG
w′ is the concatenation ww′

w ◦
FG

w′ = (f1, . . . , fm) ◦FG
(g1, . . . , gk) = (f1, . . . , fm, g1, . . . , gk) = ww′.

Empty words are the identities. Observe that a letter f ∈ G1 is a word of length one in
FG1, thus a word w can be written as

w = (f1, f2, . . . , fm) = f1f2 · · · fm = f1 ◦FG
f2 ◦FG

· · · ◦
FG

fm .

A word w′ is a sub-word of a word w (w′ ⊆ w) when w = uw′v (u and v words).
A non-empty word w′ is a proper sub-word of w (w′ ⊂ w) when either u or v is not
empty. A non-empty word w′ is an initial sub-word of w when w = w′v. Observe that if
w = (x0, f1, x1, f2, · · · , fm, xm), then any empty word (xi) with 0 ≤ i ≤ m is a sub-word
of w.

3.2. Rewrite systems. A rewrite system R = (G,R) is a 2-graph such that sk01R is
the free category FG over the graph G

R : G0 FG1s0
��
t0��

R
s1

��
t1��

R is called the set of rewrite rules. A morphism of rewrite systems ϕ : R → R′ is a pair
ϕ = (ϕG, ϕR) where ϕG = (ϕ0, ϕ1) : G→ G′ is a morphism of graphs and ϕR : R→ R′ is
a function such that (FϕG, ϕR) is a morphism of 2-graphs. We write RS for the category
of rewrite systems.

The whiskering wR of a rewrite system R = (G,R) is the 2-graph

wR : G0 FG1s0
��
t0��

wR
s′1

��
t′1��

where wR = {(u, α, v) ∈ FG1 × R × FG1 : s0(u) = t0t1(α), s0s1(α) = t0(v)} is the set
of reductions (or applications of rewrite rules, or elementary derivations, or whiskered 2-
arrows). Source and target are defined by s′1(u, α, v) = u(s1α)v and t′1(u, α, v) = u(t1α)v.
A whiskered 2-arrow (u, α, v) may be viewed as the “horizontal composition” of α with u
(on left) and v (on right).

x y

u(t1α)v

��

u(s1α)v

�� (u,α,v)

 = x yu�� z
t1α



s1α

�� �� ��


 α tv��

When no ambiguity occurs, we write uαv (or also u◦
FG
α◦

FG
v) instead of (u, α, v), while,

given a reduction p = (u, α, v), we write u′pv′ (or also u′ ◦
FG

p ◦
FG

v′) for (u′u, α, vv′).
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The derivation scheme dR of a rewrite system R = (G,R) is the 2-graph

dR : G0 FG1s0
��
t0��

dR
s′′1

��
t′′1��

where dR is the set of paths of elementary derivations (called chains of reductions or
simply derivations).

.

um

����
��

��
��

��
��

�
.����

�� ��


 αm

.

um−1�����������
.����

�� ��


 αm−1

. ...
.

v1

����
��

��
��

��
��

�v2

�����������

vm−1

�����������

vm

���������������

.

u2

�����������
.����

�� ��


 α2

.

u1

���������������
.����

�� ��


 α1

A derivation is then a sequence
(
(u1, α1, v1), (u2, α2, v2), · · · , (um, αm, vm)

)
of elementary

derivations (u, α, v) ∈ wR such that

ui(s1αi)vi = s′1(ui, αi, vi) = t′1(ui+1, αi+1, vi+1) = ui+1(t1αi+1)vi+1.

Source and target of a derivation are defined by

s′′1
(
(u1, α1, v1), · · · , (um, αm, vm)

)
= s′1(um, αm, vm) = um(s1αm)vm

t′′1
(
(u1, α1, v1), · · · , (um, αm, vm)

)
= t′1(u1, α1, v1) = u1(t1α1)v1.

Observe that sk12(dR) is the underlying graph of the category F sk12(wR), when we admit
that a derivation can be empty.

A rewrite system R is said to be
• confluent when, for any pair of derivations p : w ⇒ u, p′ : w ⇒ u′ in dR, there exist
chains of reductions q : u⇒ w′, q′ : u′ ⇒ w′ in dR;
• terminating when there is no infinite chain of reductions;
• complete when it is both confluent and terminating.

Before listing some basic facts on rewrite systems, we recall that a word is irreducible
when it is not the source of any reduction.
• Sub-words of irreducible words are irreducible.
• Empty sub-words of an irreducible word are irreducible.
• In a complete rewrite system R = (G,R), any word w ∈ FG1 can be reduced to a
unique irreducible w ∈ FG1 by a (not necessarily unique) derivation.
• In a complete rewrite system, any empty word is irreducible.

Complete rewrite systems are the objects of the category CRS, whose arrows are
those morphisms of rewrite systems which send irreducible words to irreducible words.
Observe that CRS is not a full subcategory of RS.
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3.3. Categories of normal forms and presentations of categories. Given a
rewrite system R = (G,R), and its derivation scheme dR, one usually defines a relation
P on the set FG1 of words by saying that (w,w′) ∈ P when there exists a derivation

form w to w′. The quotient FG1/P̃ of FG1 modulo the equivalence relation P̃ generated
by P is the set π0(sk12dR) of connected components of sk12dR. An element of the set
π0(sk12(dR)) is therefore a class [w] of words belonging to FG1, and w̃ ∈ [w] if and only
if then there exist reductions (not necessarily in the same direction) connecting w̃ and
w (e.g. w ⇒⇐ · · · ⇒⇒⇐ w̃ ). Since a reduction has been defined as a 2-arrow of a
2-graph, all the words in an equivalence class have the same source and target. Writing
s0[w] = s0(w) and t0[w] = t0(w), we obtain the graph

QR : G0 π0

(
sk12(dR)

)
.

s0
��
t0��

If p : w ⇒ w̃ is a reduction and a word w′ is composable on right (or on left) with w,
then we have a reduction pw′ : ww′ ⇒ w̃w′ (or w′p : w′w ⇒ w′w̃). This means that
a composition law is well defined by [w] ◦QR [w′] = [w ◦FG w

′] = [ww′] and the graph
QR is indeed a category: the quotient category of the rewrite system R = (G,R). It is
well-known that Q is a functor Q : RS→ Cat.

A presentation of a (small) category C is a rewrite system R such that the quotient
category QR is isomorphic to C.

From QR we obtain the graph of normal forms by choosing a representative for any
class [w] of equivalent words. When the rewrite system R is complete, there exists a
canonical choice. Let IFG1 be the subset of FG1 consisting of irreducible words of the
complete rewrite system R = (G,R) and let q̄ : IFG1 → π0 (sk12(dR)) be the restriction
to IFG1 of the quotient function q : FG1 → π0(sk12(dR)), q(w) = [w]. Remember now
that the completeness of R gives us a function r : FG1 → IFG1 which assigns to a word
w ∈ FG1 the corresponding irreducible word r(w) = w. It is easy to show that q̄ is a
bijection whose inverse is (well-defined by) r̄[w] = r(w). The graph of normal forms IR
of a complete rewrite system R

IR : G0 IFG1s0
��
t0��

is therefore isomorphic to the graph QR. The concatenation of irreducible words is not,
a priori, an irreducible word, but we can introduce a composition in IR by defining
w ◦IR w′ = r(ww′) = ww′. This makes q̄ and r̄ isomorphisms between the quotient
category QR and the category of normal forms IR. Therefore the category IR comes
from QR by choosing, for each class [w], the unique irreducible word w ∈ [w] as normal
form and defining a composition such that IR results isomorphic to the category QR. In
this way we have defined a functor I : CRS→ Cat.

A complete presentation of a (small) category C is a rewrite system R such that the
category of normal forms IR is isomorphic to C.

We observed that in a complete rewrite system any object is irreducible, when we think
of it as a word of length zero. A priori it is not true that any (1-)arrow is irreducible,
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but one can easily show that “reducible letters can always be deleted from the alphabet”.
In fact, given a complete rewrite system R, there exists a complete rewrite system R∗ =
(G∗, R∗) such that IR = IR∗ and G∗

1 ⊆ IFG∗
1. For this reason one can consider only

complete rewrite systems where every letter is irreducible.

4. Collapsing schemes and rewrite systems

We are going to define a canonical collapsing scheme on the nerve NIR of the category of
normal forms IR of a complete rewrite system R. When R is a complete presentation of
a small category C, then the collapsed space E(NIR) is (up to homotopy) the classifying
space BC of C. It is useful to remark now that, given two irreducible words w and w′, we
will use both the notations ww′ and w◦w′, but with different meanings: ww′ = w◦FGw

′ is
the concatenation in FG, while w ◦w′ = w ◦IRw′ is the composition in IR. In particular,
the nerve of IR is defined by

(NIR)0 = G0 , (NIR)n = {(w1, . . . , wn) : wi ∈ IFG1, s0wi = t0wi+1}

di(w1, · · · , wn) =


(w2, . . . , wn) i = 0

(w1, . . . , wi ◦ wi+1, . . . , wn) 0 < i < n

(w1, . . . , wn−1) i = n

si(w1, . . . , wn) = (w1, . . . , wi, id, wi+1, wn)

where id is the empty word id = (s0wi) = (t0wi+1).

Here is the construction of the canonical collapsing scheme of NIR.

• Any 0-simplex is essential, that is E0 = G0 and R0 = C0 = ∅.
• An n-simplex τ = (w1, . . . , wn) is essential when it satisfies the following three

conditions:

ES1. w1 ∈ G1 ∩ IFG1 (i.e. w1 is an irreducible letter);

ES2. wiwi+1 (1 ≤ i < n) is reducible;

ES3. the sub-word of wiwi+1 (1 ≤ i < n) obtained by deleting the last letter is irre-
ducible.

When a non-degenerate τ is not essential, we may have

1. w1 ∈ G1 ∩ IFG1. Since the irreducible word w1 has length l(w1) ≥ 2, we can
write w1 = gw′

1 with g ∈ G1 ∩ IFG1. Now τ = (gw′
1, w2, . . . , wn) is redundant

with cn(τ) = (g, w′
1, w2, . . . , wn) and ιn(τ) = 1;

2. w1 ∈ G1 ∩ IFG1. Let e be the largest index such that (w1, . . . , we−1) is essential
(we will call this (e− 1)-simplex the essential front face of τ).
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2.1. If we−1we is irreducible, then τ is collapsible.

2.2. If we−1we is reducible, then some proper initial sub-word of we−1we must be
reducible (otherwise (w1, . . . , we−1, we) would be essential). τ is redundant
with cn(τ) = (w1, . . . , we−1, w

′
e, w

′′
e , we+1, . . . , wn) and ιn(τ) = e where w′

e is
the smallest initial sub-word of we such that we−1w

′
e is reducible.

4.1. Proposition. The above data define a collapsing scheme on the nerve N(IR) of
the category of normal forms of a complete rewrite system R.
Proof. Axiom CS1 is trivially checked.

Given a simplex τ = (w1, w2, . . . , wn), the word of τ is defined as w(τ) = w1w2 · · ·wn.
We prove that CS2 holds, showing that each descending chain τ1 >Rn τ2 >Rn · · · of
redundant simplices gives rise to a chain of words w(τ1)  w(τ2)  · · · ; the two chains
have the same length, but the second one is necessarily finite.

We introduce the relation > on the set FG1 of words saying that w > w′ if and only
if either w ⊃ w′ (i.e. w′ is a proper sub-word of w) or there exists a reduction q ∈ wR
such that q : w ⇒ w′. Observe that we have

w1 ⊃ w2
q �� w3 if and only if w1 = uw2v

uqv �� uw3v ⊃ w3 ;

in any chain w > w1 > w2 > · · · , we can thus move the symbols⇒ on the left and obtain
a chain of the same length

w1 ⇒ w′
2 ⇒ · · · ⇒ w′

k ⊃ w′
k+1 ⊃ · · · ⊃ w′

k+h (k, h ≤ +∞) .

Since the rewrite system R is terminating, there is no infinite chain of reductions and k
must be finite. Any word w ∈ FG1 has finite length, so h is finite too. The relation >
and its transitive closure # are terminating.

Let τ and τ ′ be two redundant n-simplices with τ >Rn τ
′; if σ = cn(τ) = (w1, . . . , wn+1),

then, for an index j = ιn(τ),

τ = dιn(τ)(σ) = (w1, . . . , wi−1, wiwi+1, wi+2, . . . , wn+1) ,

τ ′ = dj(σ) =


(w2, . . . , wn+1) j = 0,

(w1, . . . , wj ◦ wj+1, . . . , wn+1) 0 < j < n+ 1,

(w1, . . . , wn) j = n+ 1.

If j = 0 or j = n + 1, then w(τ) ⊃ w(τ ′) and w(τ) # w(τ ′). If 0 < j < n + 1
and wjwj+1 is reducible, there exists a chain of reductions q : wjwj+1 ⇒⇒ · · · ⇒ wj ◦
wj+1. So (w1 · · ·wj−1)q(wj+2 · · ·wn+1) is a derivation w1 · · ·wj−1(wjwj+1)wj+2 · · ·wn+1 ⇒
w1 · · ·wj−1(wj ◦ wj+1)wj+2 · · ·wn+1 and w(τ) # w(τ ′).
If 0 < j < n + 1 and wjwj+1 is irreducible, we have w(τ) = w(τ ′). Observe that, since
(w1, . . . , wi−1, wi) is the essential front face of σ, we may have wjwj+1 irreducible only if
i < j < n + 1 and thus the essential front face of τ ′ has at least dimension i, while the
one of τ is (w1, . . . , wi−1).
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From a descending chain τ1 >Rn τ2 >Rn · · · of redundant simplices, we get a chain
of words w(τ1)  w(τ2)  · · · , where  is the reflexive closure of # . Since # is
terminating, the chain of words must be of the form w(τ1)  · · ·  w(τk) = w(τk+1) = · · ·
with k finite. On the other hand we have observed that if τ >Rn τ

′ implies w(τ) = w(τ ′),
then the dimension of the essential front face of τ ′ is higher than the dimension of the
essential front face of τ . Since such dimension is bounded by n, the chain w(τ1) · · ·  
w(τk)=w(τk+1)= · · · =w(τk+h) is finite and CS2 holds.

4.2. Example. The category ∆e of ordinal numbers and order preserving surjective
functions has the following presentation. The graph G has G0 as the set of ordinal
numbers, while the set G1 consist of the order preserving elementary surjective functions

σi(x) =

{
x (x ≤ i) ;

x− 1 (x > i) .

We obtain the free category on G by considering the concatenations of these functions.
Observe that an order preserving surjective function may be written in different ways as
the composition of these elementary functions; for any of these possibilities we want to
choose a “normal form”. On the free category FG, consider the set of rewrite rules given
by

σiσj ⇒ σj−1σi (i < j) .

We obtain in this way a complete rewrite system whose normal forms are words of the
type

σi1σi2 · · ·σis with i1 ≥ i2 ≥ · · · ≥ is .

The quotient category is the category ∆e. For the canonical collapsing scheme of this
rewrite system, we have that all the ordinal numbers are the essential 0-simplices. The
essential 1-simplices are the elementary functions σi, while all the normal forms of length
greater than one are redundant 1-simplices. For example σ3σ2σ1 is redundant and its
collapsible is the 2-simplex (σ3, σ2σ1). The essential n-simplex has the form

(σi1 , σi2 , · · · , σin) with i1 < i2 < · · · < in .

4.3. Example. A free category C is presented by a rewrite system (G,R) with R empty.
(G, ∅) is surely complete and the collapsing scheme is very simple. Since no word of FG1

is reducible, after condition ES2, there are no essential n-simplices with n > 1 and we
have

E0 = G0 , E1 = G1 , En = ∅ (n ≥ 2).

Using other words, the classifying space of a free category generated by the graph G has
the homotopy type of the topological graph |G| (the geometric realization of G).
For example, the category C in Example 2.3 is the free category on the graph pictured
there and thus BC has the same homotopy type as

• • •
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4.4. Proposition. There exists a functor K such that the following diagram commutes

CRS

I

��

K �� CSet∆op

U
��

Cat
N

�� Set∆op

Proof. The functorK assigns to a complete rewrite system the collapsing scheme defined
above. Now remember that a morphism of rewrite systems preserves the length of words
and sends reducible words to reducible words. A morphism of complete rewrite systems
sends also irreducible to irreducible and the rest of the proof is immediate.
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