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Preface

The present work is intended to provide some materials for participants of the
forthcoming TICMI Advance Courses (September 22-25, 2019) on ”Mathemat-
ical Models of Piezoelectric Solids and Related Problems”. This work is ori-
ented mainly on the lecture course of the same name ” Piezoelectric Viscoelastic
Kelvin-Voigt Cusped Prismatic Shells”, foreseen in the prospective programme
of the above-mentioned Advance Courses. It mainly contains unpublished re-
sults of the author concerning piezoelectrics. Some auxiliary materials, which
make the work self-contained, are provided as well.

The aim of the present work is also to draw the attention of scientists, par-
ticularly of young researchers, to problems to be solved, connected with cusped
shell-like elastic and viscoelastic piezoelectric bodies with voids and with re-
lated nonclassical BVPs and IBVPs for partial differential equations with order
and type degeneracy. The development of the corresponding numerical meth-
ods and numerical calculations on computers are especially challenging.

George Jaiani
Thilisi, Georgia
November, 2018
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Abstract. The present work is devoted to construction of hierarchical models
for piezoelectric nonhomogeneous porous elastic and viscoelastic Kelvin-Voigt
prismatic shells on the basis of linear theories. Using I. Vekua’s dimension
reduction method, governing systems are derived and in the Nth approximation
of hierarchical models boundary value problems (BVPs) and initial boundary
value problems (IBVPs) are set. In the N = 0 approximation, considering,
e.g., elastic, plates of a constant thickness, governing systems mathematically
coincide with the governing systems of the plane strain corresponding to the
basic three-dimensional (3D) linear theory up to a separate equation for the
out of plane component of the displacement vector.

The ways of investigation of BVPs and IBVPs, including the case of cusped
prismatic shells, are indicated and some preliminary results are presented.
Antiplane deformation of piezoelectric nonhomogeneous materials in the three-
dimensional formulation and in N = 0 approximation is analysed.

Well-posedness of Dirichlet and Keldysh type problems (BVP) are studied
in the N = 0 order approximation of hierarchical models for cusped prismatic
shells. Some BVPs are solved in explicit forms in concrete cases.
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1 Introduction

In 1955 Ilia Vekua [1] published his models of elastic prismatic shells. In
1965 he offered analogous models for standard shells [2]. In both papers he
considered a very important investigation of well-posedeness of boundary value
problems (BVPs) of peculiar types which could arise in the case of cusped
shells.

Cusped prismatic shells considered as 3D bodies may have non-Lipschitz
surfaces as the boundaries and their thicknesses may vanish at the edge. Using
I. Vekua’s dimension reduction method, complexity of the 3D domain, occupied
by the body will be transformed into the degeneracy of the order of the 2D
governing equations of the constructed hierarchy of 2D models on the boundary
of the 2D projection of the 3D bodies under consideration.

Consideration of BVPs and initial boundary value problems (IBVPs) within
the framework of hierarchical models for elastic cusped prismatic shells leads
to investigation of nonclassical BVPs and IBVPs for the governing elliptic
and hyperbolic systems of equations of the second order with order degener-
acy on the boundary of the domain under consideration in the case of two
spatial variables [1]-[4]. We easily reduce this case to the case of systems of
singular equations, i.e., to systems of equations with unbounded coefficients.
Initial conditions (IC) for the so called weighted mathematical moments of
displacements remain classical, while the boundary conditions (BC) for them
are nonclassical, in general. It means that in certain cases the Dirichlet BCs
should be replaced by the Keldysh BCs (i.e. some parts of the boundary, where
the order of the equations degenerates, should be freed from the BCs) and in
certain cases weighted BCs should be set (see [4]).

The present work is devoted to construction of hierarchical models for piezo-
electric nonhomogeneous porous elastic and viscoelastic Kelvin-Voigt prismatic
shells on the basis of linear theories [5]-[10]. Using I. Vekua’s [1] (see also [2])
dimension reduction method, governing systems are derived and in the Nth
approximation of hierarchical models BVPs and IBVPs are set. In the N =0
approximation, considering, e.g., elastic plates of a constant thickness, govern-
ing systems mathematically coincide with the governing systems of the plane
strain corresponding to the basic three-dimensional (3D) linear theory [1]-[4]
up to a separate equation for the out of plane component of the displacement
vector.

The ways of investigation of BVPs and IBVPs, including the case of cusped
prismatic shells [4], are indicated and some preliminary results are presented.
Antiplane deformation of piezoelectric nonhomogeneous materials in the three-
dimensional formulation and in N = 0 approximation is analysed. Some BVPs
are solved in explicit forms in concrete cases.

The aim of the present work is also to draw the attention of scientists, par-
ticularly of young researchers, to problems to be solved connected with cusped
shell-like elastic and viscoelastic piezoelectric bodies with voids and with re-



lated nonclassical BVPs and IBVPs for partial differential equations with order
and type degeneracy. The development of the corresponding numerical meth-
ods and numerical calculations on computers are especially challenging.

The work is organized as follows. Introduction is devoted to motivations of
our research and the main targets of the work are indicated as well. Section 2
contains 3D field equations for nonhomogeneous piezoelectric Kelvin-Voight
materials with voids in the case of the general anisotropy. In Section 3 the
hierarchical models are constructed and in the Nth approximation BVPs and
IBVPs are set in the case of noncusped prismatic shells. Section 4 deals with
the analysis of Dirichlet and Keldysh type problems for the general governing
system of the NV = 0 approximation for nonhomogeneous piezoelectric Kelvin-
Voight materials with voids and general anisotropy. To this end results of
Section 8 are exploited. In Section 5 we consider transversely isotropic elastic
piezoelectric nonhomogeneous bodies in the case when the poling axis coincides
with one of the material symmetry axises. Namely, time-harmonic motion un-
der conditions of anti-plane piezoelectric state is discussed. In Section 6 we
study an antiplane deformation of piezoelectrics in N = 0 approximation of
hierarchical models for prismatic shells, in particular, with cusped edges. In
Section 7 we treat BVPs for porous isotropic elastic cusped prismatic shells.
In Section 8 we examine well-posedeness of BVPs for systems of elliptic equa-
tions of the second order with an order degeneracy, covering systems of elliptic
equations arising in previous sections. In Section 9 for the convenience of the
reader we repeat the relevant material, concerning H-weak solutions of BVPs
for a single second order equation with an order degeneracy, from [15] with
proofs in a slightly changed form, thus making our exposition of the present
work self-contained. Section 10 provides some useful formulas for construct-
ing the hierarchical models. Section 11 is devoted to conclusions, concerning
mainly mechanical meaning.

2 Field Equations for Piezoelectric
Kelvin-Voigt Materials with Voids

Let a piezoelectric solid occupy a reference configuration Q2 € R®. Under the
quasi-static conditions, when the rate of change of the magnetic field is small
and there is no electric current, i.e., the electric field E and magnetic field M
are curl free, the governing equations have the following form.

Motion Equations

Xjij+ ®; = pg(w1, w2, 23,1), (v1,72,73) € 2 C R, (2.1)
t>ty, i=1,3;



ijj + Ho + ./T" == pl{gD, (22)

Dj,j = fe, B],] = O, QX]O,T[, (23)

where X;; € C'() is the stress tensor; ®; are the volume force components;
k is equilibrated inertia, p is the mass density; ¢ := v — 1y € C%*(Q) is the
change of the volume fraction from the matrix reference volume fraction v
(clearly, the bulk density p = vy, 0 < v < 1, here « is the matrix density);
u; € C*(Q) are the displacements; H; € C*() is the component of the equi-
librated stress vector, Hy and F are the intrinsic and extrinsic equilibrated
volume forces; Einstein’s summation convention is used; indices after comma
mean differentiation with respect to the corresponding variables of the Carte-
sian frame Ozjxyx3 (throughout the work we assume existence of the indi-
cated (continuous) derivatives unless otherwise stated); dots as superscripts
of the symbols mean derivatives with respect to time ¢; X : 2x]0,T[— R!
and 7 : 2x]0, T[— R! are electric and magnetic potentials, respectively, i.e.,
E = —gradX, M = —gradn, f. : 2x]0,T[— R! is electric charge density,
Dri; are the piezoelectric coefficients, gi;; are the piezomagnetic coefficients, ¢j
and ¢;; are the dielectric (permittivity) and magnetic permeability coefficients,
respectively, a;; are the coupling coefficients connecting electric and magnetic
fields. D := (Dy, Dy, D3) : Qx]0, T[— R3 is the electrical displacement vector,
B := (By, B, B3) : Qx]0, T[— R? is the magnetic induction vector.
Kinematic Relations

1 R
€ij = §<ui,j + uj,i)) 1,] = 173 (24)

Constitutive Equations
Xji = Xij = Eijuen + Ejéu + bijo + b + dijrpsk +dij 90k
+pkin,k + pznjxak +qk7,jn,k + qzwnﬂﬂ ) 17] = ma (25)

Hj = dkljekl + d]tljékl + dj(p + d;k(p + djigp,i + Oé;figbﬂ', j = 1, 3, (26)

Hy = —bei; — Ep — dip,; —bj;éij — &0 — dipy, (2.7)
Dj = DPjki€ki +p;klékl — Xy —aun., J= m, (2'8)
Bj = qjmen + Grilr — aXy — Emy, j=1,3, (2.9)

where ¢;; € C1(Q) is the strain tensor; the constitutive coefficients Eijn, Efjkl,

> * * ~ * & * * k ~ 3
bij, b@'j7 dyij, dklja di, d, A, Qi) & &, Prij Pk Qkig> ey Sits i, & satisfy
the following relations

Eijkl - Eyzkl - Eﬂlk - Eklzga E'jkl = Ljikl — Pjik — Eklz‘j7

)

9



bij = bji, dijk = djir, Quj = Qi
b;‘kj = ;m ;kjk = ;uﬁ 04:]' = 04;-; Pjkl = DPjik, ikl = 4jik, Sjl = Slj;
~ o~ _ ® ok ® %
aj = ay, &= &y, Pikt = Pjik> 45k = 951k~
The constitutive equations also meet some other conditions, following from
physical considerations (see [5], [8], and the references given there). With a
view to apply I. Vekua’s dimension reduction method, we require the consti-

tutive coefficients to be independent of x3.
Let us consider the general BVPs and IBVPs with the following mixed BCs

U; = fz on Fo, Xijnj = g; on Fl = 8Q\F_0, 1= m, (210)
o=f% on T¢ Hm;=g¢° on I'Y=00\I, i=1,3, (2.11)
X=f* on Iy, Dmn;j=g° on T{= GQ\F_f)‘, i=1,3, (2.12)
n=f" on TY, Bn;=g" on T7=00NT{, i=13, (2.13)

and the standard ICs in the case of dynamical problems

u(:z:,O) = uO(x)’ 11(33,0) = ul(x)7 QO(ZU,O) = 900(%)7 90(3770) = 901(3:)7 (2'14)
x € €

here n := (ny,ny, ng) is the outward unit normal vector to 99, (f1, f2, f3), f¥,
1%, f1are the given displacement vector, volume fraction, electric and magnetic
potentials, respectively, (g1, g2, 93), g%, g~ and ¢" are the given stress vector,
normal components of the equilibrated stress, electric displacement and mag-
netic induction vectors, respectively, while u® and u! are the initial mechanical
displacement and velocity vectors, whereas ¢ and ¢! are the initial volume
fraction distribution and its rate. Note that the sub-manifolds Iy, 'y, T,
and I'J, of the boundary 02 in boundary conditions (2.10)-(2.13) are different,
in general, from each other and depending on the physical problem, some of
them may be empty.

3 Construction of Hierarchical Models.
Nth Approximation

Now, we construct hierarchical models for piezoelectric Kelvin-Voigt prismatic
shells. First a few words about prismatic shells.

Let us consider prismatic shells (see, e.g., Figure 3.1 and [4], [11]), occu-
pying 3D domain 2 with the projection w (on the plane 3 = 0) and the face
surfaces

(+) ()
r3= h (z1,72) € C*(w) and x5 = h (71,22) € C*(w), (71,22) € w.

10



()
X3=h(x,x,)

K O]

X3=h(x,,x,)

Figure 3.2: A sharp cusped pris-
matic shell with a semicircle pro-
jection. 02 is a Lipschitz bound-
ary

(+)
2h(z1,22) == h

is the thickness of the prismatic shell.
vanishes, i.e., 2h = 0, is said to be a cusped edge. If 9¢) contains it smoothly,
we shall call it a blunt edge, otherwise, i.e., the points of the cusped edge are
points of nonsmoothness of 02, we shall call it a sharp edge (see Figures 3.2,

3.3).

Let
~ +)

Figure 3.3: A cusped plate with
sharp v, and blunt 7, edges, 7° :=
v1 Uy, 00 is a non-Lipschitz
boundary

(=)
(1'1,332) — h ($17I2) > 07 ($17:E2) € w,

A part of Ow, where the thickness

(=)

2h(z1, o) := h (21, 29) +

p——

Figure 3.4: Comparison of cross-
sections of prismatic and standard
shells

11

g (z1,72), (v1,22) € w.

Figure 3.5: Cross-sections of a pris-
matic (left) and a standard shell
with the same mid-surface



In the case of the symmetric prismatic shell, i.e., when

(=) (+)
h (:ElaxQ) - - h (xlaxQ)a

evidently )
2h(x1,22) =0, (x1,22) € W.

Distinctions between the prismatic shell of a constant thickness and the
standard shell of a constant thickness are shown in the Figures 3.4, 3.5, where
cross-sections of the prismatic shell of a constant thickness with its projection
and of the standard shell of a constant thickness with its middle surface are
given in red and green colors, respectively, with common parts in blue. In
other words, the lateral boundary of the standard shell is orthogonal to the
"middle surface” of the shell, while the lateral boundary of the prismatic shell
is orthogonal to the prismatic shell’s projection on z3 = 0 (see [4]).

In particular, let w be a domain bounded by a sufficiently smooth arc
(0w \ 7°) lying in the half -plane x5 > 0 and a segment 10 of the x;—axis
(x2 = 0). Let the thickness look like (see Figures 3.2, 3.3)

2h(x1,x9) = 2hoxs,  ho, K = const > 0, (3.1)
which corresponds to the case

(£) (£) (£ -+ =) -+ )
h (l’l,%g) = hol'g, hy = const, ho > ho7 2hg := hg — hyg.

In this case we have to do with a blunt edge for k < 1 and with a sharp edge
for k > 1, respectively.

(+)
In Figures 3.6-3.20 (¢ is the angle at the cusp between tangents 7' and
(=)
T, v is an inward normal at O to Ow) we show some characteristic (typical)

profiles (cross-sections) of cusped prismatic shells (see also figures in [1], [11],
[4])-

First we consider the general case of w and of positive thickness. In such a
case the prismatic shell under consideration has not cusped edges.

)
) h(v)
T

Figure 3.7: A cross-section of a blunt
cusped prismatic shell (¢ €]0, Z[). It
has a Lipschitz boundary

Figure 3.6: A cross-section of a blunt

cusped prismatic shell (¢ = 7). It
has a Lipschitz boundary

12



X
&)
¢ )

(i;)(V)

o
<y

Figure 3.8: A cross-section of a blunt
cusped prismatic shell (¢ = 0). It
has a non-Lipschitz boundary

Figure 3.9: A cross-section of a blunt
cusped plate (¢ = 7). It has a Lips-
chitz boundary

Xy X3
)
)
¢ e T no)
ol\\_l v
©

o ) |
0 -
T 7o) T Q)

<V

Figure 3.10: A cross-section of a Figure 3.11: A cross-section of a

blunt cusped prismatic shell (¢ = blunt cusped prismatic shell (¢ €
7). It has a Lipschitz boundary ]5,7[). It has a Lipschitz boundary
)
T

1
~'

f,\

Figure 3.12: p =7

Figure 3.13: Wedge, ¢ €]0, 7]

)
T

O X
T

Figure 3.14: ¢ =0
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(+) (+)W
T

)
l\ 2 (T)\\

=V
)

=

Figure 3.15: § <o < Figure 3.16: § <o <7

) )
(f)l\ ) .
Figure 3.17: ¢ = 7
) )
T _ T / .
(-i-\y\ x2 X

=Y

\4
—
-

\
-17
[\e]

Figure 3.19: 0 < ¢ < 7 Figure 3.20: 0 < o <7

rth order moments of the following quantities are defined as the integrals

<uir; Xijm €ijr, q)jra Him HOT; Pry fraDjraBijmnmfeT) ($1,1’2,t)

(+)
h (z1,x2)

= / (uia XZ]7 €ij, q)jy Hi7H07¢7F7 Djqu7X7lr])fe> (xlaanxfi?t)

)
h (z1,22)
X P.(axs —b) dzs, i,7=1,3, (3.2)
where
9 1 (71) n (;z) i
Blazs =) | alon,22) = =5 = 3 Wevm)i=g5—5 =5 |
h — h h — h

r = 07 1’ e,

are the rth order Legendre polynomials.
Under the well-know restrictions (see, e.g., [1]) the following Fourier-Legendre

<Ui;Xij7€ij>(DjaHivHOagpa‘F? Dj’Bj’X’n7fe> (.T1,372,-T37t> a Za(r " 2
r=0
(3.3)

series
1 )

X <uir7 Xijr7 eijra (I)jr‘v Hz'ra H0r7 Pr, -Fra Djm Bjr7 Xra Ty fer) (xla T2, t)

X P,.(ax3 — b)
14



are convergent.
Therefore on the upper and lower face surfaces of the prismatic shell under
consideration

Usjs,
—~ 2h
whence
(E)Z - (_1>T(TTL)Z = - aSsuzsa 1= m,
s=0
(+) ) (=) .o _
(Z)Z e (_1)T( )z o — Z CLZSUZS, =13, a=12
s=0
where
Ly = Qas, s#T, ab, = (2r +1)=2,
(+) -)
o -1 r+s o h,a
aas—(28+1)h7 (2h) h 5 S#T, G/O(T’:TT7
r 1 _ (_1)s+r
ags == —(2s + 1) —————.
i 2s+1)—7p;
(};js = —5;'3, 5> };js =0, s<m;
. (}:) (;L)
baz = C’,L‘az — (IZz — —(7’ + 1)%7 b3£ — O)

Using (see formulas (10.4), (10.5) of Section 10)

(+)

h (z1,22)
A ", (H)(+) =)=)
Pr((lflfg - b)faa dl'3 = fﬁa + Zaasfs - f h Nel + (_1)T f h &
s=0
(;L)($17-'172)
a=1,2,
(2)(11,902)
", (+) L)
P.(axs —b)f,3drs = Za?)sfs + f =D,
s=0
(;L>(1717$2)

15



from (2.1)-(2.3), after multiplying them by P,(ax3 —b) for r = 0,1,--- , and

(=) (+)
then integrating within the limits 4 (z1,%2) and h (21, z5) with respect to the
thickness variable x3, we obtain the following formulas in w:

: r r (92uir R
Xair,a"i_; ajszis+Xi:p 2 , 7,:1,3, 7':0,1,"' s (34)
H +ia’7H-+H el o (3.5)
ar,o £ isdlis Oor =Pp 8t2 ) — Uy 4 ) .

D‘"va_‘_z arisDis_l_TD:feTa 7’:0,1,“' ’ (36)

s=0
Bar,a + Z C{isBis + -TB = Oa r= 07 17 Ty (37)

s=0

where
r (+) +) () (-) (=) (=)

(+)\ 2 (+)\ 2 (=)\2 (=)\2
= X(;)j 1+ (h,1> + (h,g) + (_1)TX<;L)]’ 1+ (h,1> + (h,g) + (I)jr>
j:17_37 T:071727"'7
Xy and X, are components of the stress vectors acting on the upper and
n j nj

Jr —
lower face surfaces with normals (n) and (n), respectively,

r (+) (+) (+) (=) (=) (=)
; H [ ~Hy+ Hah,a} y

() =)
H; and H; are components of the equilibrated stress vectors on the upper and

: + —) .
lower face surfaces with normals (n) and (n , respectively,

F@ B © e
D= Dy = Dyhy + (=1)"| = Dy + Dyhy

) ) (+) (+) (=) () ) (=)
=D;n\[1+(h1)24+ (h2)?2+ D;ni\| 1+ (h1)?+ (h2)?,

16



PW © G
Bi= By = Byhy + (=1 | = By + By b,

) () (+) ) (=) () ) (-)
= Bz n; 1+<h71)2+(h72)2+ Bz n; 1+(h’1)2+<h72)2
(in the above calculations we have used formulas (10.13) and (10.14) of Section
10 corresponding for X,,; and X3;, H, and Hs, D, and D3, B, and Bs instead
of f).
Using (10.5), (10.6) of Section 10 for w; instead of f and the Fourier-
Legendre expansions of u; on the upper and lower face surfaces

Y

= (+1)%(25 + 1 _
(i)izzwum i=1,3

2
s=0
from (2.4), similarly to (10.10), (10.11), we obtain
1 Ry R
€ijr = 5 (uir,j + Ujrﬂ‘) + 5 Z bisujs -+ 5 Z bjsuis, (38)

iaj:1a37 T:Oal7"'7

)
r
0, = eyir = Unpy + E bpsurs, T =0,1,---.

S=T

In view of . .
b3r - 07 hr+1(h_r_1)7a - bon"v o = ]-7 27

we can rewrite (3.8) for

as follows
1 r+1 1 EOO s+1 " ’
Cijr = 5h (U"’j + Uj’"ﬂ) "3 oot " <bisvjs * bjsv“)’ (3.9)

iajzlaga T:Oa17"'7

6)7‘ = Ciir = hr+1fU’W‘,’Y + Z hs+1bl€svk87 r= 07 ]-7 . (310)

s=r+1

If we apply formulas (10.11), (10.12) of Section 10, using the Fourier-Legendre
expansions of X and n on the upper and lower face surfaces

) X (£1)5(2
PN ED st
s oh

17



(£ o= (£1)*(25 + 1)
n —;T%

from (2.5) we obtain

Xijr - ijkleklr + E:jkléklr + Bijgpr + b;}%« + dij'y <§07’,fy + Z b'ysgps)

S=Tr

_dij3 Z arvs(ps + d:jw (Sbr,w + Z b25905> - d:j?, Z JSS‘?S

s=r+1 s=r+1

oo o) 0
+p’yij (XT,’Y + Z b’YSXS) — P3ij Z ar3sXs + pi‘;z] (Xr;y + Z b'ysXs>

s=r s=r+1 s=r
_pgij Z ar?)sxs + Q’yij<777",'y + Z bysﬁs) — 43ij Z aT3s773
s=r+1 s=r s=r+1
+q;ij (ﬁn’y + Z b'ysﬁs) - Q;gkij Z ar3s775, 1,] = 1,_3, r=0,1,---. (3.11)
s=r s=r+1

Therefore, by virtue of (3.8),

1 1 > r r
Xijr = §Eijkl (ukr,l + ulr,k) + §Eijkl Z <bksuzs + blsuks)

S=rT

1 * y y 1 * - T T
+5 Eijh (Ukr,l + Ulr,k) + 5 Eijw > <bksuls + blsuks)

S=T

o
+bijor + bi;or + dijy (90%7 - Z 1)75903>

iy Y s+, (g'om + was) — &y Y dus,
s=r+1 s=r s=r+1
2V 4 20 ) = D 00y (o + Do)
s=r s=r—+1 s=r
_pgij Z aTSSXs + Q'yij (nr,'y + Z b'ys”s) - Q3ij aTSSns
s=r+1 s=r s=r+1
(e + D bale) = @iy Y Aaalhey 5 =13, r=0,1-. (3.12)
S=T s=r+1
Let N
W R v AT S~ S
Up 1= W7 w’f‘ T hT+17 o hr+17 n’f‘ T h"'+1 . (313)
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Substituting (3.9) into (3.11), and taking into account (3.13), it follows that
1

1 o0 r r
Xijr = §Eijklhr+1 ('Ukr,l + Uzr,k> + §Eijkz Z hett <bk:s'Uls + blsvks>
s=r+1

1 * r . . 1 * fo: s "o -
+§Eijklh + <Ukr,l + Ulr,k) + iEijkl h 1 (bksvls + blsvks)
s=r+1

+Eijhr+1wr+ijhr+1¢r+dij7hr+1¢r,v+dijk Z hs+1bks¢s+d>‘k hr+1¢r,v

ijry
s=r+1
i > B bksths + prigh T Xy +prip Y BT bkaX
s=r+1 s=r+1

+p:ijhr+1%r,'y + pzlj Z hSJrlbks%s + Q’yijhrJrlﬁr,'y + qm'j Z hSJrlbksﬁs

s=r+1 s=r+1
@B T e gy Y R bk, 6, =1.3, r=0,1,-- (3.14)

s=r+1
(because of

N o - N
(hr—HXr),,y o hr—i—l(r + 1)77Xr — hr—i—lxrﬁ7

and the similar formulas for ¢) and 7).
Analogously, from (2.6) we have (compare with (10.11), (10.12))

1 1 > r T
er = §dklj (Ukr,l + ul’/‘7k> + Edklj Z(bksuls + blsuks)
s=r
diy; Z(bksuls + bisurs) + djpr + i)y

S=T

1

1 *
+-dyy; (Wkry + Wi i) + 5

2

+a;s [%ﬁ +) apps — Phg+ (—1) Chg
s=0
T (+) -)
g Y daeps + © — (<1) 9|
s=0

+a [@r,ﬁ + 3 apps — P ha— (—1) ¢ ha
s=0

W o
ol | D anis+ ¢ — (-1 ¢, i=T3,
s=0

) () ()(—)]

and substituting here the corresponding Fourier-Legendre expansions of ¢ on
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the upper and lower face surfaces

%) _ i (11)5(23 +1)

oo
s=0
we get
1 1 e r r
Hj, = §dklj (kg + Wi i) + §dklj Z(bksuls + bistugs)
1, 1, =, r ..
+§dklj (Uprg + W) + adklj Z(bksuls + bistugs) + djor + dip,
+djk (907“7’6 =+ Z bk5§05> +a;k <¢T,/€ + Z bk8¢5>7 ] = 17_37 r= Oa 17 ) (315)

i.e. (see (3.13))

1 *© r r
diiih ™ (Vg + Vper) + §dklj Z R (brsvns + bists)
s=r+1

1
HJT:§

o0

1 * r . . ]' * S "o "
+§dkljh' +1<Ukr,l + Ulr,k) + idklj Z h +1 (bksvhs + blsvks)
s=r+1

+djhr+1wr + d;hr—’—ld}r

+éj (hrﬂ?ﬁm‘ + Z h5+1bi5¢5> + Oé;i(hr+177br,i + Z h5+1bis¢s>, (3.16)
s=r+1 s=r+1
j=1,3,r=0,1---.

From (2.7), on account of combined (10.11), (10.12), evidently,
Ho = —di(pri + Z bisps) — Bijeijr — fNSDr
_d*(gbr,i + Z bisgbs) - b:jéijr - 5*85%, r= 07 17 e

S=T

and, in view of (3.8),

HOT - _di(gpr,i + Z bisgps)

B 1 1 > r 1 X r
_bij |:§ (uim + U]’rﬂ') + 5 Z bisujs + 5 Z bj3u15:|
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_épr - d*(ﬁbr,i + Z bz’sgbs)

L1/, . IR ..
_bij [5 (Uir,j +ujr,i> —+ 5 Zbisujs + §ijsuis} _5 Pry (317)

while, by virtue of (3.9) and (3.13),

~ 1l 1 ° r r
HOT = —bij |:—hr+1 (Uw}j + ’Ujm) + 5 Z herl (bisvjs + bjsvis)}

2
s=r+1

R (T Sy

s=r+1

1 IS , ,
—b;kj |:§hr+1 <’U7,r7] + U]r,z) + 5 Z hs+1 (sz/UJS + bjsvzs>:|

s=r+1
. . ° o
e R, — d (h’“ﬂwr,i + Y bisws>, r=0,1,--- . (3.18)
s=r+1
Similarly, from (2.8) it follows
Djr = PjkiCklr + p;kléklr — Sjv (Xr,w + Z b'ysXs> + Sj3 Z ar3sXs
s=r s=r+1

_&J'Y <TIT’7 + Z bysﬁs) + djg Z aTgsnL?? j = 17_37 r= 07 17 Ty

s=r S=7‘+1
i.e., in view of (3.8),

1

1 R r r
Dj, = §pjkl(ukr,l + wr k) + §pjkl Z(bksuls + bistys)

2

—Sjy (Xr,’y + Z bgsxs) =+ YE Z aTSSXs

s=r+1

1 * g J 1 3 - r . r .
5P (Ukrt + i) + 5Pk Z(bksuls + bistiys)

gy (T + D0 bye) + s D daane =13, 7 =01, (319)

s=r s=r+1
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while by virtue of (3.9) and (3.13), we have

1 1 o0 r r
Dj, = §pjklhT+1(Ukr,l + vy i) + Pkl Z BT (brsvis + bists)

s=r+1
_}_1* hT—H(’[) 40 )_l_l* Zhs—i—l(bri) +l;"v )
2pjkl krl Ir,k 2pjkl ksUls 1sVks
s=r+1
—qjq,(h”“l;(m—i- Z hsﬂbws%s) + ¢j3 Z htlag X
s=r+1 s=r+1
_aj’)’<hr+1ﬁﬁ’)’+ Z hs—Hb'ysﬁs) +dj3 Z h3+1({337757 (320)
s=r+1 s=r+1

j:L_37 T:())]-)""
In the same way from (2.9) we get

1 1 a r r
Bj, = §ijl(ukr,l + wpy ) + 5 ik Z(bkzsuls + bistgs)

S=T

1, . . 1, &, . .
+§q]‘kl<ukr,l + ) + o5 Ljkt Z(bksuls + brstns)

S=T

—0jy (Xm + Z brvsXS> + a3 Z 3. X

s=r s=r+1

5y (e + 3 ) + 65 3 A J=T3, r=0,1,-, (3:21)

s=r+1

1.e.

1 1 o r r
Bj, = §ijlhr+1(vkr,l + k) + 5 ik Z R (brsvis + bisks)
s=r+1

1 x T . . 1 * - s "o -
s @ih"™ Oy + Vi) + ik > W (gt + biats)

2
s=r+1
(e%S)

—Qjy (hrﬂ%m + hSHbvs%s) +ajg Y b,
s=r+1 s=r+1
—gjfy <hT+1'ﬁr77 -+ Z hs+1brysﬁs> + 533 Z hs+1ar3sﬁ87 (322)
s=r+1 s=r+1
j:marzoala'”;

We remind that

r h r
bar 1= —(r+1) bsr = 0,

ple’
h?
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( 0, s<r,
(+) (=)
T oo T —1 s o .
17;]'3 - —Qgs = —(25+ 1) h (Zh) h , J=a, s>,
, = (—1)str
\ —a35:(25+1)%, j=3, s>,

a=1,2, j=1,3, r,s=0,1,2,---.

So, we get the equivalent' to (2.1)-(2.9), infinite system (3.4)-(3.8), (3.12),
(3.15), (3.17), (3.19), (3.21), (3.8) with respect to the so called r-th order
moments Xj., €jr, Wir, Hjr, Hor, @r, X, n-. Then, substituting (3.12) into
(3.4), expressions (3.15) and (3.17) into (3.5); expressions (3.19) and (3.21)
into (3.6) and (3.7), respectively, we construct an equivalent infinite system
with respect to the r-th order moments u;., ¢,, X, n,. Namely,

1

1 1 =
5 (anikciukrﬁ) et +§ (Eai'ylulr,'y> et +§ (Eaikl Z bksuls> Lo’
1 Ry .
5 < atkl Z blsuks) et 5 (Eaik(sukr,z;) ( awlulr 'y)
1/ . o 1
+§ (Eaik;l ; bksuls> o +§ ( aikl Z blsuks> e < az§0r>
+ <b21¢r> Yo +( az'y@r,'y) ( oty Z b'ys@s) oo T (daii’) Z GTSSSOs) o
+ (d:n"ygbr,'y> Qo + (dz iy Z 75@3) o (dzz‘g Z GSSSbs) Yo
s=r S=r+

p'yaiXT,'y Yo + (p’yaz Z b’ysXs>

+ p:aixr,'y plet +<p azz bysXs>

+ <q'yozz77r 7) o + <q'yaz 'ysns) <q3az Z ar?)sns) o
s=r s=r+1

+ (q:k/aiﬁr 7) s+ <qj;az Z b'ys”s) oo T <Q3m agsﬁs) eY
s=r+1

iin the following sense: if Xij, eij, ui, Hy, Ho, Dj, Bj, X, n, and ¢ satisfy the relations
(2.1)-(2.9), then constructed by (3.2) functions X;jr, €ijr, Wir, Hir, Hor, Djr, Bjr, X, 0y,
and ¢, will satisfy the infinite relations (3.4)-(3.8), (3.12), (3.15), (3.17), (3.19), (3.21),
(3.8) and, vice versa, if Xy, €ijr, Wir, Hir, Hop, Djr, Bjr, Xy, 0, and ¢, satisfy the infinite
relations (3.4)-(3.8), (3.12), (3.15), (3.17), (3.19), (3.21), (3.8), then constructed by means of
(3.3) functions X;;, e;5, u;, H;, Ho, D;, Bj, X, n and ¢ will satisfy the relations (2.1)-(2.9).
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1
+ Z Ajs |: jzkl (uksl + s k> + 2E]zkl Z (bks’uls + bls’uks )

s'=s

1 . 7. _ 1
+5E i (Uks,l + Uls,k:> + 5 Ejim Z <bks’uls + bty )

2 s'=s
Fbijps + bjjps + djiy (90877 + Z va":”S') — dji3 Z a3s'Ps
s'=s s'=s+1
o 0o
+djw (('bsﬂ + Z va"pS’> - d;’i?, Z azs' Pt
s'=s §'=s+1
+p’yji <Xs,’y + Z b’ys’Xs’> — D3ij Z sz’Xs’
s'=s s'=s+1
+p~mz (Xs,’y + Z brys/Xs/> — p;w Z dsgs/Xs/
s'=s s/:s—i-l
+Q'yji (773,7 + Z b'ys’ﬁs’) — {43ji Z 357!
s'=s s'=s+1
* : — . * - s . r a2uir
s'=s s'=s+1

i=13, r=01,,--,

1 1 1 ——
5 (dklaukr,l) sa +§ (dklaulr,k> o +§ (dkm ; bksuls) sa
1 o 1/, . 17, .
+§ <dkloz Z blsuks> Y’ +§ <dklaukr,l> e +§ (dk;laulnk) o
<dkla Z bksuls> 7a < klo Z blsuk:s) pre’ < agpr) Yo’ <d* 307“) Yo"
+ (dakgpr,k> ,Q + (dak Z bk’s@s) Y’ + (Oé:;]gsbr,k) Y’ + (a;k Z bks@s) o
—l—iar- [ld <u +u )+1di<(; u +bs u )
£ is 9 kli ks,l s,k 9 kli ks’ Uls Is' Wks

S =s

1. /. , SN s .
+§dklz (uks,l + uls,k) + Qdkh Z <bks’uls’ + bls’uks’) + szOs + dl Ps

s'=s

+azk <Sos k + Z bks’gps > + O%]g (SOS k + Z bks’gos )]

s'=s s'=s
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_BU [% <Uir7] + Ujr, 1) Z bzsujs + = Z b]suzs:| - 5907“
_dl (QOT,Z' + i b:SQOS> - b;kj |:§ (uir,j + ujr,i) + 5 Z b:'sujs + % i szuzsi|

. . T r 9o,
—S*sor—d;‘<sor,i+zbissos)+H=pk: LA T

1 1 1 = r 1 27
B (paklukr,l> sa +§ (paklulr,k> o +§ <pakl ; bksuls) o +§ (pakl ; blsuks) o
3 (smtnn) o () o3 (s 3 o) 5 (s D i)
T, T, a () ) a o U )
Doyt Uker,l Doyt Wir 2 Paki o ksUls | o 9 Paki 2o IsUks | »a
(ga’YX > a <§01’Y Z b’YSX8> o + <<o¢3 Z ar3sXs> ple’
s=r 1

S=r+

a ayTr, y) a T (da'y Z b1:ys775> o T (da?) Z aT38nS) o
s=r s=r+1

r Tl J s
+ ) s [épik;l (s + Uis ) + S Pin > (brsrtrg + bigrtiga)

s=0 s'=s

1, . . I s
+ =i (Uksy + s i) + §pikl Z(bks’uls’ + by tUgsr)

2 s'=s
—Siy (Xs,'y + Z b’ys’Xs/> + Gi3 Z dg?)s’Xs’
s'=s s'=s+1
o oo . ,
_CNL'L‘V (7737’7 + Z b’YS’T/S'> + di?) Z a38’ns’i| +D= fe'N r= 07 ]-7 T
s'=s s'=s+1

1 1 1 > r 1 27
5 <Qaklukr,l> o +§ (Qaklulr,k> o +§ <qakz1 Z bksuzs> a +§ <qak1 Z blsuks> a
1/, . 1/, . 1/, =7 . 1/, ~—/ .
+§ (qaklukr,l> a +§ (qaklulr,k> a +§ (qam Z bksuzs> s +§ <qak1 ; blsuks> o
(aa'y T 7) - (aow Z bwsXs> o <ao¢3 Z CLTBSXS) e

s=r+1
- <§a777r,7> oo T <§oﬂ/ Z b’vsﬁs) jYe" + (50[3 Z 6535775) o
s=r s=r+1
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1 1
+ Z Qs [ Qi (Uks 1 + Wis i) + %kl Z bks’uls + bls’uks )

s=0 s'=s

1., . ) 1, s s
+§Qikl(uks,l + W ) + §Qikl Z(bks’uls’ + b g

_di'y (Xsf}’ + Z b'Ys’Xs’> + diB Z dg?)s/Xs’
s'=s s/'=s+1
_§i7<ns,7+z bvs’”s’) +513 Z (535’775’] + B :O, r= 0,1,“'

s'=s s'=s+1

If we suppose that the moments, whose subscripts, indicating moments’
order, are greater than N, equal to zero and consider only the first N + 1
equations (r = 0, N) for each i = 1,2,3, ©,, X,, 0., from the obtained infinite
system of equations with respect to

Wiy Z.:1737 Pry X?‘v Ny T:()Jl?"'a

we obtain the Nth order approximation (hierarchical model) governing system
consisting of 6N + 6 equations with respect to 6/N + 6 unknown functions

N N N N . N N
Wiry  Pr, Xry, M, Z:1a37 T:O,N

N N N

. N .
(roughly speaking w;., ¥,, X,, 1, are “approximate values” of wu;., p., X, 1

N N N N
since u;., ¥, X, N are solutions of the derived finite system; below superscript

N is omitted in order to avoid overloading the symbols):

1

3 (Eaiklukr,l) o +% <Eaiklulr,k> o +% (Eaz'kl SZ: b:csuls) o
< ikl Z blsuks> o+ (E;Z-kﬂbkr,z) ( Ui, k)
1
( aikl Z bksuls> s +§< aik Z blsuks> s ( m<,0r>
+ <bl‘u-s'0r> sa (dam@r,w> ( iy Z bws%) o —< i3 Z a3390s> a

s=r+1

N
+ (d:;i’ygbﬁ’Y) e + (dzi’ygbﬁ’Y> a T (dZiS Z ar359b5) o

s=r+1

l\.’)lr—t
N | —

l\’)l»—t
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N N
(pq/ozz Ty | o +(p7az Z b'ysXs oo T (p?)ai Z aT3SXS> o

) s=r ) s=r+1
N r N
(pyazxr,’y> Yo% + (p ol Z b'ysXs> a p;ai Z (135X5> Lo’
s=r s=r+1
N - N
(anznr 'y) o + (q'yon Z b’ys”s) oo <q3ai Z CL35775> e
s=r s=r+1
N - N
(qyalnTﬁ) o + <q'ycn Z b’)’sn3> o <q§ai Z a387]8) ye
s=r s=r+1

N
1 s s
+ Z a’]s|: Ejil (Uksl + s k> + 5 Ejik > (bks’uls’ + blsfuks'>

s'=s

1 . 7. . 1
+_Ejikl (Uks,l + uls,k) + -F; jikl Z (bks/uzs + bls’uks )

2 s'=s
~ N s N
+bij905 + b;(]@s + d]z'y (@s,’y + Z bws’@s’) - dji3 Z a3s'Psg!
s/'=s s/'=s+1
N s N
(e + D byt ) = dia Y dne
s'=s s'=s+1
N s N
_’_p'yji (Xs,'y + Z bvs’Xs’> - p3ij Z a3s’Xs’
s'=s s'=s+1
N s N
i (Xsw + Z bvs'Xs’> — D3y Z azs Xy
s'=s s'=s+1
N s N
+Q"/ji (775,7 + Z b”/s’ns’) — {43ji Z ags'T)s!
s'=s s/'=s+1
N s N r 6211,'
+Q§]z (ﬁs,’y + Z b'\/s’ﬁs’) - qgﬂ Z a3s’7.75’i| + Xz = paTQZTv
s'=s s'=s+1
i=1,3, r=0,

1 1 1 Ny
5 <dklaukr,l) sa +§ (dklaulr,k> sar +§ (dkla 32:; bksuls> sa
N
1 T 17, . 1/, .
+§ (dkla ; blsuks> o +§ < klauknl) o +§ (dklaulr,k> Y’

27



<dkla Z bksuls> o ( kla Z bzsuks) o ( a%) o <d* SOT) o
N
+ (@aksf?r,k) ot <C~Yak Z b;;ssos) va (aZkar,k) va (aZk Z b;ssbs) a
el 1 s ]
+ ; Qs |:§dkli (uks,l + uls,k) + §dkli Z (bks’uls’ + blsfuks'>

s'=s

N
1. /. . L., s S .
+§dkli (Uks,z + Uls,k) + Edklz’ Z (bksfuls' + bls’“ks’) + ditps + d; ps

s'=s

N N
+O~51k (@s,k + Z bks’(ps’) + Oéjk (Sbs,k + Z bks/gbs’)]

s'=s s'=s

~ 1 1 N T 1 N ., -
—bj [5 <Uir,j + Ujr,i) 5 Z bisujs + 5 Z bjsuis} —&pr
(Qprz + Z bzs@s) - ’LJ [ (uir,] + u]r z> Z bzsujs + = Z b]suzsi|

%o, —
8;7 T:07N7

_g*(:br - d: <9bm' + Z bisgb8> =+ [T'—I = pk

S=r

1 1 1 N 1 N,

5 (paklukr,l> s +§ (pakzulr,k> a +§ (pakz ; bksuls) a +§ (pakl ; bzsuk5> s
1 N 1 N,

) (pakl Ugy k) 5 <pj;kl ; bksul5> a +§ (kaz Sz:; blsuk‘s> o

N N

<§a'yX7" ) a (gay Z bysXs> o + <§a3 Z a3sXs) plet

(pakl Ukr,l

s=r+1

N N
a ’7777" 'y) ao T (dav Z b'ysns) ' + (da3 Z aT3sns> Yo’
s=r s=r+1

T

.l 1 : s
+ Qs [épikl(uk&l + ws ) + épikl Z(bkzs’uls/ + b Upsr)

s=0 s'=s

N
1, . . 1, s 5
+§pikl(uks,l + s k) + §pikl Z(bks’uls’ + bt )

s'=s

N o N
—Siy (Xs,'y + Z b'ys’Xs/> + Gi3 Z dg?)s’Xs’

s'=s s'=s+1
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N

N
_ELi7 (775,7 + Z bws’ﬁg’) + a3 Z 6538/7751] + D= fe'r’, r=0,N,

s'=s §'=s+1

1 1 1 N 1 Ny
B (qakzukr,l) o +§ (qaklulr,k> sa +§ (qakz ; bksuzs> sa +§ <qak1 ; blsuks> o
1/, . 1/, . 1/, &, 1/, &7,
+§ (qakluknl) o +§ (qaklulr,kz> a +§ <qakl Z bksuzs> a +§ <qakl Z blsuks> o

r

N N
- (aomxr,v> ya (dow Z bwsxs> o 1 <da3 Z CLTBSXS) o

s=r+1
N . N
- <§a'y77r,'y> o <§a'y Z b'ys775> Qo + (5&3 Z aBsns) o
s=r s=r+1

T N
r Tl 1 s s
+ E Qs [§Qikl(uks,l + ws ) + §Qikl E (brs s + b Ugs)
s=0

s'=s

N
L, . . L, s S
5 G (ks + s ) + S Gin > (brertg + bty

2 s'=s
N s N
_di’y (Xs,v + Z b’)/s’Xs’) + di?; Z Cf3s’Xs’
s'=s s'=s+1
N s N .
_gi’y (778,’7 + Z b'ys’ns’) +&i3 Z a3s’7]s’i| +B=0, r=0,N.
s'=s s'=s+1

In the Nth approximation (hierarchical model)

(uiv @, X; 7])@1; X2, X3, t)
N

1 N
o a(r + 5) <7jj¢,«, gir, Xir, 7];/”,) (21, 29,t)P(axs — 1),
r=0

N N N N\ . .
where (Um Diry Xirs nz-T> is a solution of the above system.

Remark 3.1. Note that solutions

N ___ N N N _ _
Uiy, i:1737 ¢r7 Xy My i:1737 T:O,N

of the governing system of the Nth approximation are not rth order moments
in sense of (3.2) any more, in general.
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It should be also mentioned that by deriving the governing system of the
Nth approximation we use the following expressions prescribed on the face
surfaces of the prismatic shell:

(£) (£) R
Xni=Xn,, 1=1,3;

(£) (£) (£)

Hn.=(H, n)=H;n
(£) (£) (£)
D :(Dan):D]n]a

+
=35 =%,

In the Nth order approximation BCs (2.10)-(2.13) on the lateral boundary
of the prismatic shell and ICs (2.14) should be written in terms of r-the order,
r =0, N, moments for functions participating in BCs.

BCs (on the lateral surface of the prismatic shell) and ICs we easily get
from BCs (2.10)-(2.13) and ICs (2.14) after multiplying them by P, (ax3 — b)

(=) +)
and integrating the obtained within the limits h (21, 22) and h (21, 22) with
respect to w3z, provided the constitutive coefficients and the thickness do not
vanish on @:

Uir = fir o Yo, Xjiun; =gy on Y =0w\Y, i=1,3, (3.23)
= f7 on f, Hpnj=gf on A =0w\y§, i=13,  (3.24)
X,=fX on ), Djnj=g5 on % = aw\%, i=1,3, (3.25)
=f1 on ], Bpnj=g! on Al =0w\yg, i=1,3,  (326)

and the standard ICs in dynamical problems

u?“(:E?O) = 112(1’), ﬁr(gjvo) = ui(a:),

r(2,0) = )(x), @r(2,0) = pp(2), = €Y;

here n := (nq,ns) is the outward unit normal vector to dw, (fir, for, far), [,

X [ are the rth order moments of the given displacement vector, volume frac-
tion, electric and magnetic potentials, respectively, (g1, gor, 93-), 9%, g and
g" are the rth order moments of the given stress vector, normal components of
the equilibrated stress, electric displacement and magnetic induction vectors,
respectively, while u® and u’ are the rth order moments of the initial mechani-
cal displacement and velocity vectors, whereas ¢° and ! are the initial volume
fraction distribution and its rate of change. Note that the curves v, 77, g,
and -, which represent projections on plane x3 = 0 of the corresponding parts
of the lateral boundary of the prismatic shell, in BCs (3.23)-(3.26) are differ-
ent, in general, from each other and depending on the physical problem some
of them may be empty.
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Remark 3.2. In case of cusped prismatic shells the setting of BCs is not clas-
sical, in general, and is depending on the character of tapering: either the
Dirichlet problem should be replaced by the Keldysh problem or BCs should
be weighted ones, in general. On the parts of dw, where the thickness is
positive (i.e., it does not vanish) the BCs have the form (3.23)-(3.26).

Multiplying equality (3.4) by A" and, taking into account that

r
—1
Qor = rh h;om

we get
L r r 2hr+11}ir
(h XaiT)a()c +h ; ajszis + h Xz - Ph T»
-1
Z(”')EO’ i=1,3 r=0,1,---. (3.27)
s=0
Multiplying (3.5) by A" we obtain
r—1 . . thr—i—lwr
(W Har) o + 1" i Hig + B Hop + B H = Pkl == (3.28)
s=0
Similarly, from (3.6) and (3.7) we have
r—1 ,
(W' Dar)sa +B" > 3 Dig + W'D =" fur, 7=0,1,---, (3.29)
s=0
and
r—1 ,
(W Bar)sa +h" Y @i Bis + WB =0, 1=0,1,--, (3.30)
s=0

Substituting (3.14) into (3.27); (3.16) and (3.18) into (3.28); (3.20) into
(3.29); (3.22) into (3.30), respectively, we construct an equivalent infinite sys-
tem with respect v;,, 1., X,., and 7),.:

1 1 1 N
5 (Eaiklh2r+lvkr,l) et +§ (Eoziklh2r+1vl'r,k> o +§ (Eaikl Z bkshr+s+1vl5> o

2
s=r+1

1 — 1 * r+1 - 1 * r+1 -
+§ (Eaikl Z blshr+s+1fuks) o +§ (Eon'klh2 Hvkr,l) o +§ (Eaiklh2 Hvzr,k) o
s=r+1

1 e r 1 > r ~
+§ <E;ikl Z bkshT+s+1®ls> bre’ +§ (E;ikl Z blshrJrSJrli}ks) o + <baihzr+1wr) Yo

s=r+1 s=r+1
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x 7121 i
+ (baih H%) e’ + (dai7h2T+1¢ ) 3 y
rey ) sa <daik E bish™ >

s=r+1
( 5 p2rd )
., ’l/}T,’y 7a+< o Z b hT+s+1w>
ol s |ha
. (pwthTHX )
Y )oo + (pkon Z bkshr+s+1x )
- s |ha
+<p WP TIX ) i 4
o7 Y |« + <pkaz Z bkshr""s"'_lj’( >
4 T+1 s |ha
+<Q’Y047,h2r+1 ) y
Mry )sa + Qkai Z bkshr+s+1ﬁ

+ (q'yathT—i_l ~7",'y> ' +

q i Z b;Sh’r—l—s—i—lL )

s=r+1

E : 78 |: ﬂklhr ' (U ‘2
—f- a; ks,l Vis k> ikl h s'+1 S S
E ( ks’ Uls! ls’vkzs’>

s'=s+1

1
ZE* hr+s+1 ( :
5 Ejim Uksi + U1 k) + ! 3
) S, _E*’L T+Sl+1 ) )
N 977 kl S,ZS_H h (bks/i}ls/ + bls’{)ks’)
+b r4+s+1 * i
zyh ¢s + bijhr+s+1¢s + d hr-‘rs-i—l e
Jiry 77/}8,7 + djik: Z bks’hr+5,+1¢
'=s+1 "’

—i—djwhHerll/} SNy
sy + A E brsrh' by + e
, B s+1v
— s+ Dyjilt Xspy

+Dkji b 71X
j ks/h XS/ —I— pjt/]zh’l”“rs-i‘ljv( + * & S
E sy T Prji E b hTH X

s'=s+1
s'=s+1

+qyjih T §O )
i s,y -+ qkji bkslh’l“-l-s/—l-l P *
, s+l
s'=s+1 b q’y‘”h T]s”y

i 3 3
i k,slh s'+1~ /] r ) 82 rH

'=s+1 775 + h XZ - phr% -
t )

1
- 2r+1
2<dkzlah Ukr,l>>a +% <dklah2r+lvl > +1 i
rk a5 d \
2( Elo bkshr+8+lv )
ls | a

s=r+1

< kla d T, « T,
d E blsh UkS) pre’ < h

s=r+1
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1 * = " r+s+1 -
( kla Z b hT+S+1Uls>aa 2( klo Z blsh + +1Uks> el

s=r+1 s=r+1

(k) o+ (k0 ) o (Gerh? )

+<&ak Z szhr+s+1¢s>,a+<a2kh2r+17j}r,k> 7a+<a:;k Z bZShr+S+1¢s>,a

s=r+1 s=r+1

" r 71 1 ad s s s
+ Z Qis bdkuhﬂrs“ (Uk;s,l + Uls,k) + 5 dui > wrt (bksfvls' + bzskas'>

s'=s+1
oo

1 s s
+2dklzhr+s+1 (Uksl + Vs k) + §d7;li Z prts (bks”Uls’ + bzs/Uks/>

'=s+1

+dz hr+s+1¢8 + d;k hr+s+1¢s + dzk (hr—l—s-‘rlw&k + Z bkslhr+5,+1’l7/)8/>

/=541

+Oé;<k <hr+s+1¢s7k + Z bks’hr+5/+1¢s’>:|

'=s+1

-l 1 s IS
—bij [5h2r+1 <Uir,j + Ujr,i> + 5 Z bishH_SHUjs + 9 Z bjshr+s+1vi5}

s=r+1 s=r+1

&Ry, — d; <h2r+1¢r,i I i b;hr““zbs)

s=r+1

1 1)
_b: |: h2r+1 (Uzr,] +U]TZ> +§ Z bishr+s+lbj5+§ Z bjshr—‘rs—‘rl{)is}

s=r+1 s=r+1

a2hr+1wr
oz’

r=0,1,-,

R <h2r+l¢r,i i Z bz’shr+s+l¢s> . kT

s=r+1

1 1 1 =
= (Paklh2r+lvkr,l) o +§ (paklh2r+lvlr,k> o +§ (pakl Z bkshr—i_s—i—lvls) o

2
s=r+1

1 - " TS 1 * T 1 * T
+§ <pak:l SZT;A bish™ +1Uk:s> a +§ (pak:lh2 +1Ukrl> +§ (pak;lh2 iy, k)

1 * — T r4+s+1 - 1 * o~ r+s+1 -
+§ (pak:l Z bksh * +1vls> so +§ <pakl Z blsh * +1Uks> sa

s=r+1 s=r+1

- <§a’yh2r+1>~<h’y> oo T (gock; Z bkshr+s+l>~<5> s

s=r+1
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00
T
~ 2r41 ~ ~ E r+s+1~
- (aa'yh r,'y) o T <aak bksh s> so

s=r+1

ol ) - o S
| Zprstl, 1 e
+ ; Ais |:2h pzkl(vks,l + 'Uls,k) + 2pzkl 8121 h (bkslvlsl —+ bls’vkg’)

1 ) ] 1, o e s s
P T (s + Dusp) + SPiki Z RS (b ing + bisrOgs)

2
§'=s+1

00
~ S / ~
_§i'yhr+8+1xs,'y — Gk § bks’ hr—i—s +1XS/
s'=s+1

oo
S r
~  prtstls ~ E r+s'+1~ Ty BT _
_ai’Yh Ns,y — Wik bks’h 775'} +h D_h fera T_0717"' ;
s'=s+1

1 1 > r
<Qaklh2r+lvkr,l> otz <Qakzh2T+lvlT,k> o +§ <Qakl Z bkshHSHUls) a

2
s=r+1

— r 1 * . 1 * r+1,-
(qakz > bih +$+1Uks)> ats (qaklh%—‘rlvkr,l) ats (qakth +1Ulr,k> o
s=r+1

1 * - " r+s : 1 * - 4 r+s ;
+§<qakz Z bish + +1Uls>aa+§<qle Z bish + +1Uks)>7a

s=r+1 s=r+1

- <C~La7h2r+1>~<r,’7> o T <C~Lak Z bkshr+s+1)~<s> plet

s=r+1

- <§a7h2r+1 Nr,’y) a (fak Z bkshr+s+1 Ns) o

s=r+1

- ro[1 r+s 1 G r+s’ N >
+ Z Qs [§Q¢k1h * +1(Uks,l + vie k) + qu'kz Z hrt H(bks/?)ls/ + by Uksr)
s=0 s'=s+1

1
2

L1
2

1 * 1r+s . . 1 * - r+s’ 5o g
+§q¢klh - +1(Uk:s,l + Vs ) + §qikz /_2;1 " +1<bk8/vl5/ + bt

00
~ S ’ ~
_ai'yhTJrSJrle,’y — Qi E bks’hr+s Jrle/
s'=s+1

—€ W iy = G Y b A B =0, 7= 0,1,

s'=s+1

Assuming

0, X, =0, 7, =0 for r> N, (3.31)

I
=
w
=
3

I

Vir :O, 1
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we obtain governing system consisting of 6N + 6 equations of the Nth approx-
imation with respect to (see Remark 3.1)

N __ N N N
Vir, Z:]-?i))a 1/)7"7 XT7 ﬁr7 T:07N7

provided we consider the first N + 1 equations for » = 0, N for
each i =1,2,3, 9, >~<7"7 M-

Namely (below superscript N on unknown functions is omitted),

N
1 1 1 T
5 <Eaik6h2r+lvkr,§> o +§ <Eai7lh2r+lvlr,7> o +§ (Eozikl Z bkshr+s+lvls> o
s=r+1
1 Ny 1 1
+§ <Eaikl Z blshr+s+1vks> plet +§ < ;ik5h2r+1®kr,§> o +§ (E;irythT—H@lr,'y) o
s=r+1
1 Ny 1 N
+§ (E;ikl Z bkshr+8+1bls> Pre’ +§ (E:ﬂ'kl Z blshrJrSJrli)ks) o + <baih2r+1wr> Yo
s=r+1 s=r+1
. N T
+ (bZihQTJrle) Yo’ + (dai7h2r+1¢r,'y> L’ + (daik Z bksh’r+s+1¢s> jre’
s=r+1
. N T .
(i )+ (e Y b1,
s=r+1
N
+ (p'yaihzr+1>~<r,'y> o + <pk:on' Z bkshr+s+1>~<s '
s=r+1
. N
+ <p:/a1,h‘2lr+lx7',’y) bie? + <p20ﬂ Z b Sh‘r+s+1xs) bLe]
s=r+1
N r
+ ((]’Ymh%—i_1 NT,’?) e’ + (CIkai Z bkshH_S—H ~s) e’
s=r+1
N r
+ (Qf,aih%HﬁW) o+ <q,’:ai Z beh et ~8> "
s=r+1
—~ [l r+s+1 1 - rs'+1 (g ,
+ Z Ujs |:§Ejiklh (Uks,l + Uls,k) + §Ejik:l Z h (bksfvzs' + bls/Uks/>
s=0 s'=s+1
1 1 N s s
"‘5 ;iklhr+8+1 (bks,l + @ls,k) + 5 ;ikl Z hr+s +l <bks/®lsl + bls’,[]ks’>
s/'=s+1

N
+bijhr+s+1ws+b;f‘jhr+s+1¢s_i_djmhr+s+1wm+dﬁk Z Do i,
s'=s+1
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N
S
r+s+1,; * E : r+s'+1, ] r+s+15
h ¢s,7 + djik bks’h 77st’ + p'yjz'h Xs,’y
s'=s+1

+d;iv

N N
S . S .
r+s'+15 x  1r+s+1y * r+s'+15
+Dkji E besh Xg + pw‘ih Xsy + Prji E besh Xy
s'=s+1 s'=s+1

N
s
r+s+1~ r+s'+1~ *  1r4s+12
i o+ g Y DB g g
s'=s+1

N s oy r 82hT+1Uir
+eji Z b W s'} +h'X; = PhrT7

s'=s+1

(3.32)

i=1,3, r=0,N,

N
1 2r+1 1 2r+1 1 " r+s+1
5 (dklah Ukr,z) a +§ (dklah Uzr,k) a +§ (dkla E brsh Uls> o

s=r+1
1 N 1 1
+§ (dkla Z blshr+s+1vks> o +§ ( Zlah%—'—lvkr,l) o +§ ( Zlah2r+1vlr7k> o
s=r+1
1 Al 1 N
+§ ( ZZa Z bkshrJrSJrlq‘)ls) s +§ < Zla Z blshr+s+1/0ks> o
s=r+1 s=r+1

T (daiﬂ”wr) ot (d;h”*%) o (&akh”“@br,k) o

N N
+<&ak Z bkshr+s+1¢s>aa+<a2kh2r+1¢7‘,k> 7a+<a(’;k Z bkshr+s+1¢s>,a

s=r+1 s=r+1
r N
T 1d hT-i-S-i-l 1d hr+s’+1 bs g
+ Qs o i Ugsi + Visk | + o G ks'Uls' + Ops' Upgt
s=0 s/'=s+1

N
1 1 TR
+§d2lihr+s+l <@ks,l + 'i]ls,k) + §dlt:lz E hr+s +l (bks’vls’ + bls’vk’s’)

s'=s+1

N
+dihr+s+1¢s + d;k hr+8+1¢5 + dzk’ (hr+s+1¢s7k + Z bks’hr+8/+1¢s’>

s'=s+1

N
_l_a;ﬂk<hr+s+1¢s7k_|_ Z bks’hr+5,+1¢s’>:|

s'=s+1

1 1 - 1L s
7 2r+1 ) - Cprts+l, - s+l
~bis | SR (Ving + vins ) + E;Ibwh vio + z;lbjsh via|
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N
SRy, — d <h2r+1¢r,i n Z bzshr+s+1ws>

s=r+1
1 1 N ooy 1 N oo
* 2r+1( - . r+s+1 - r4-s41 -
—0b3; [éh * (Uir,j + Ujm) + 3 Z bish™ ™0, + 5 Z bjsh" /Uis:|
s=r+1 s=r+1
. . N r .
_é‘*h2r+1wr . d;k (h2T+1¢T,i + Z bishT+s+1ws)
s=r+1
r a2hr+1 .
ThH = phh =" L S (3.33)

N
1 1 1 r
5 (paklh2r+lvkr,l> ats (pakthTHUlr,k) ats (pakl > bkshr+s+lvls> a

s=r+1

N
1 ” r4+s 1 * T : 1 * T s
N (pak:l S;1 bish™ +1Uks> oty (pak:lh2 Hvkr,l) s +§ (po‘kth Hvl’"’k) @

N N
1 * " r+s+1 - 1 * g r+s+1 -
+§ (pakl Z bksh + Jr1Uls> Yo +§ <pakl Z blsh + +1Uks) o

s=r+1 s=r+1

N
- <§a7h2r+1>~<r,’y> a T (gak Z bkshT+s+1>~<s> a

s=r+1

N
r
> p2rdl~ ~ 2 : rs+1
- (aowh nrﬁ) o T (aak bk’sh 5> o

s=r+1

r N
ro[l r+s 1 r+s’ N >
+ E Qs bh * Hpikz(vks,z + e k) + épikl E hrt +1(bks'ws' + bisUkst)

s=0 s’'=s+1
N
1 * hr+s+1 . . 1 * hr+s’+lbs . g .
+§pikz (Oks + Uis i) + §pik1 (bs U1 + bis Vps)
s'=s+1

N
s
+s+1y 2 : +s'+1y
_gi'yhr * Xs,'y — Sik bks’hr B Xs/
s'=s+1

N
+&i7hr+s+1ﬁs;y + g Z bkslhr+s’+1ﬁsl:| +RD = hrfer’ (334)
s'=s+1

r =20,

=
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N
1 241 1 241 1 T sl
3 <Qaklh Ukr,l> a +§ (%kzh ?Jlr,k> o +§ <Qakl Z brsh Uls) a
s=r+1
1 N, 1 1
+§ <Qak1 Z bzshr+8+1vk5)> o +§ (QZkthT—i_l'Dkr,Z) o +§ <QZk1h2r+1@lr,k> a
s=r+1
1 Ny 1 N,
+3 <QZM > bkshr+s+1@ls> aty (qzkl > blshr+s+1@ks)) o
s=r+1 s=r+1
N T
- (aa"/h2r+1>~<r,7> a T (dak Z bkshr+s+1>~<s> o
s=r+1
N T
- (ga’YhQT—i_l NT,W) oo T <§akz Z bkshr+s+1 ~s) o
s=r+1

r N
r[1 r+s 1 r+s’ N >
+ E Qs [§Q¢k1h * H(’Uks,l + vie k) + qu'kz E ht H(bks/?)ls/ + by Uksr)
s=0 s'=s+1

N
1 * 17r+S . . 1 * r4s’ 5o g
+§Qiklh T (st + Vi) + 5 ikt /ZH R (g Vs + brgr Orsr)

N
~ S ’ ~
_ai'yhr+8+1xs,'y — Qi E bks’hr—i_s +1Xs/
s'=s+1

N
_&’th-i-s-&-l ~8,’y o fzk Z bks’hr+5/+1ﬁs’] +h'B= O, (335)

§'=s+1

r=0,N.
In the Nth approximation (hierarchical model):

(Ui790,X>77)($1>$27$3at)
1 N N YN
= ZN(T + 5) hT (Ui'r‘; 1/)1"7 X,«, ﬁ'r) ((L’l,l'g,x:;, t)PT<(lZE3 — b),
r=0

N N NN
where (vm Uy X, ﬁT) is a solution of the above system (3.32)-(3.35);
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N
1 1 r r
Xijr = §Eijklhr+1 (Ukr,z + Ulr,k) + o it Z pett (bksvzs + blsvks)
s=r+1
1 1 al " :
+§ ;kjklhﬂrl (i’knl + "[’lr,k> + §Ez*jkz Z het <bks®ls + blsf}k8>
s=r+1
N
+bijhr+1¢r + b:jhr+1¢r + dijvh'r—i_ld]r;y + dijk Z hs—‘rlbksws + dfj'yh’r—’—ld]r;y
s=r+1

N N
i > R b+ ph T X pry Y BT X,

s=r+1 s=r+1
. N ro N .
+pj;ijhr+lxr,'y + pzz'j Z hS—kusXs + Q'yijhr—i_lﬁr,'y + Qkij Z hS_kusﬁs
s=r+1 s=r+1
. N T,
+q:ijhr+lﬁr,7 + qltz] Z h'SJrl kaﬁsu 27] = mu r= 07 N7
s=r+1

N
1 1 r r
er = §dkljhr+1 (Ukr,l + Ulr,k) + édklj Z hs+1(bksvhs + blsvks)
s=r+1

N
1 * r . . 1 * "o "o
+§dkljh +1(Uk7’,l + UZT,]G) + Edkl-] Z hs+1(bksvh5 + blSUkS)
s=r+1

_'_djhr—l—lwr + d;hT+1¢r

N N
+éy; <ff“+ Wi+ Y h”lbz-sws) —|—a;fi<h’"+ Wit Y h8+1bis¢s),
s=r+1 s=r+1
J=13,r=0N,

N
~ 1 1 r r
HOT = _bij |:—hr+1 (vir,j -+ Ujr,i) + 5 E hSJrl (bisvjs —+ bjs'Uis):|

2
s=r+1

€N = di (W S bists )

s=r+1
1 IS , ,
—b;kj |:§h/7’+1 (U”‘J + U]m> + 5 Z h8+1 (bwvjs + b]svzs>]
s=r+1
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N
_g*hr+l¢r - d;k (hr—i_lzj]r,i + Z bris’&s)y r= O,_N;

s=r+1

N
1 1 r r
Dj, = 5pjklhr+1(vkr,l + v i) + Pkl Z R (brsvrs + bisvgs)
s=r+1

N
1 * T . . 1 3 S r . T .
oDl (Okrg + D) + SPin D (ks + bits)

2
s=r+1
N r
r+l1y s+1 Y
_gjfyh Xr;y — Sjik E h bksXs
s=r+1
N r
~ r4+1~ ~ s+1 ~
=Gy ey — Qi E: W bksTls,
s=r+1

j=13, r=0,N;

N
1 1 r r
Bj, = 5@1jklhr+1(7fk:r,l +Urg) + S D (biavis + bisvis)
s=r+1
N

1 * T : 8 1 * s "o -
+§q]'klh (Vg + Vi) + 5 djki Z W (bestns + bists)
s=r+1

N
r
~ r+1y ~ § s+1 3
—(Ij,yh XT,’Y — Qjk h bksXs
s=r+1

N
_Sj'yhr—i-lﬁr,w - fjk Z hs—kusﬁs ] = m» r= 07 N;

s=r+1

N

1 1 r r

Cijr = éhrﬂ (Uir,j + Ujr,z‘) + 5 E hoH! (bisUjs + bstis),
s=r+1

1,7 =1,3, r=0,N;

an = Xijrni

N
1 ]_ r r
= {_EijklhTJrl (Ukr,l + Ulr,k) + o ikt E het! (bksvzs + bzsvks>

2
s=r+1

N

1 * r g . 1 * s "o I

+§Eijk’lh‘ +1 (Ukr,l -+ /Ulr’k> -+ EEijkl Z h + <bksvls + bls”ks)
s=r+1
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N
+bigh" Ty U Ty 4 digy b My 4 dige > B bt + iy W

J 1jy
s=r+1

N - N .
+d:]k Z hs—kuzsws +p7ijhr+lxr,7 +pkzy Z h$+1bksXs

s=r+1 s=r+1
: N o N
« pr+ly * s Y r+l>~ s+l =~
+p7ijh * Xr,'y + pkz‘j Z h +1bksts + qVijh +1777“;y + pkij Z h +1bksns
s=r+1 s=r+1

N
_'_q:ijhrJrlﬁTﬁ + q;:’lj Z h5+1 bksﬁs} ng, j = 17 37 r= 07 N7
s=r+1

N

1 , 1 T r
Hnr = H]M’L] = {§dkl]h +1(Uk1",l —+ Ul?",k) + §dkl] Z hs+1(bksvhs + blsvks)
s=r+1

1 * T g . 1 * N " * " *
+§dkljh +1<Ukr,l + Opg) + §dkl_j Z hs+1(bksvhs + bisUks)
s=r+1

+djhr+1¢r + d;hT+1¢r

N . N .
+a; (h’”“wr,z- + Z hSHbis%) + Oé;i (hr+1wr,i + Z hSJrlbisws) } n;

s=r+1 s=r+1

1 . 1 N r T
Dy = Djn; = {ipjklh +1(Ukr,l + vy i) + §pjkl Z hs+1<bksvls + bisUks)
s=r+1

1

N
. il : L, T o
5Pl Okt + irk) + 2 Pin > B (brstis + bris)
s=r+1

N
~ T
1 ~
—Siy "X — E , h* X
s=r+1

N
_&j'yhrJrlﬁr,'y - &jk Z hSJrlbksﬁs} ng, T 07 N;

s=r+1
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N

1 1 " :
By, == Bj,n; = {§ijlhr+1<vkr,l + U i) + §ijl Z hs+1(bksvls + bisVks)

s=r+1

2
s=r+1

N
T
~ r+ly ~ 2 : s+1p v
—aﬂh XTKY — Qjk h bksXs
s=r+1

N
_gj'Yh’rJrlﬁT,’Y - fjk Z hSJrlbksﬁs} ng, 1= 07 N.

s=r+1

N
1 * 17 . . 1 * s "o o
+_qjklh i (UkT,l + Ulr,k) + §qj'kl Z h —H(bksvls + blsvks)

From (3.23)-(3.26) and from the ICs following them we easily obtain BCs
and ICs in terms of v, 1, X,, 7,, provided prismatic shells are not cusped

ones (concerning BCs for cusped prismatic shells see Remark 3.2).

4 N =0 Approximation

For the sake of simplicity we rewrite the equations (3.27), (3.28), (3.29), (3.30);
(3.14), (3.16), (3.18), (3.20), (3.22), (3.9) for the N = 0 approximation and
derive the governing equations of the N = 0 approximation. We first have

0 82}11)]'0 . [
XajO,a+Xj:p o2 J :173a
0 9?h
HaO,a+HOO+H:pk atzboa

0
DaO,a +D = feOa

0
BaO,a + B = Oa
U0 Y0
Ujo = #7 Yo = 7;

1 1, . )
Xijo = §Eijklh<vk0,l + Uzo,k:) + éEz‘jklh<UkO,l + Uzo,k;>

+Bij hbo + by I + dijyhbo . + dijhi/')o,w + p’yijh%r,'y

+p:ijh%0,'y + q’yijhﬁo,'y + qj;ijhﬁ(];y? Z?] = 17 37

S Xo . 7o
Xo i= — =
0 h? Tlo h7
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1 * . * .
_dltljh(vko,z + Do) + djhipo + d;hibo

1
Hjo = —dp;h(vkoy + viok) + 5

2

+6‘]zhw0,2 + a;ih¢0,i7 ] - mv (46)
1~ 1
Hyy = _§bz’jh(vi0,j + Uj();i) fhf/fo — dihtpo; — (UZOJ + UJ(M)
—& hajy — d} by ; (4.7)

1 1, ) ) =
Djy = §pjklh(vk0,l + v k) + §ijlh(vko,z + Vo k) + SjvhXoy

+ajyhijoy, J=1,3; (4.8)

L, . _ o
_qjkzh(vko,l + Vo ) + @jyhXo 5

1
Bjo = =qjuh(vkog + viox) + 5

2

+€j'yhﬁ0,'ya ] = 17_3; (49)

1 ..
€ijo = §h<vi0,j + UjO,i)a 1,7 =13, (4.10)

respectively.

Now substituting (4.5)-(4.9) into (4.1)-(4.4), respectively, for the N = 0
approximation we obtain the following governing system of equations with
respect to vy, Yo, Xo, 7o in the following form:

1 1 1 . 1/ ., )
5 (EaiszhUkO,J) a +§ (Eai'ylhvlo,'y> o +§ <E;ik5hvk0,6) sa +§ (Eai'ylhvlo,’y> o

o (Bait ) o+ (Bt )+ (i) o+ (i i, )+ (Preilt o ) o

- % 2 0 azh’l}io
<p»yth0 'y> o (quzihn(),'y) sa + <q7aih770,7> o +Xi =p o2

i=T1,3,

1.e'l 1 1 . 1 )
5 <Eaik6hvk0,5> ra +§ (Eamzhvlo,7> o +§ <Ezik5hvk0,6) sa +§ (E;thzo,y> o
Fhaihtosa + (Baih ) Yo + Virihthosa +(Vih ) o Vi
+ <dai'yh¢0,’y> s ( awhl/io «,) e (p'yaihi(),')) o
B (p;m-hf(oﬂ> o+ <qwz~hﬁ0ﬁ> ot (q;m-hﬁqo o +§(¢ _ p@thio ,

ot?
L3,

(4.11)

—_

1=
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1 1 17, .. /.. ..
5 (dkdahvk0,6> Tl +§ (d'ylochvlo,'y> jYe’ +§ (dkaahvko,(?) pYe’ +§ <d«/lahvl0,7> bre’

+ (dah¢0> Pl + (dthvbO) PYe’ + (da5h¢075> Pre’ + (OZZ(S]’L@Z}O,(S) brel
1- 1~ -
_§biﬁhvi0,6 - §bajhvj0,a - fhwo - dah¢o,a

0?hay
ot? ’

1 ) 1 . . e v 0
—§b;<5h1)i075 — ébajhvjo’a — 5 hlpo - dahwo,a + H = pl{?

L.e., because of b;; = bj;, bj; = b},

1 1 1 : 7. ..
5 (dhsahvnos ) a5 (diahtion ) o +3 (dhsahtros ) o +5 (@i, ) o

2 2
+ <dah) pre’ % + (d2h> s 1/.}0 + <&a5hw0,5) pret + (a25h¢0,5> pre’ _Z;iahvi(],a
- ' .0 9*h
o — Bahige — € Ry + 1T = pk TS, (4.12)
1 1 1o, .
= (pak(ShUkO,J) sa T2 (pa'ylhvlo,'y) va T2 (pakéhvko,a) o
2 2 2
1 . ~ - - 0
+§ (szlhvlo,w> o + <§a'yhX0,7> e + <a'a'yh770,7> Prel +D = feOa (413)
1 1 17, ..
5 <Qak6hvk0,5> Yol +§ ((Ioz'ylhvlo,w> Yol +§ (qak5hvk0,5> o
17, .. L~ . 0
+§ <qa»ylhvlo,'y> Yo + (Qawhxo,'y> Yo + <€a’yh770,'y> Yo +B = 0 (414)

For such equations and systems with order degeneracy see Section 8 of the
present work and also [11]-[18].

Remark 4.1. System (4.11)-(4.14) we may also obtain from system (3.32)-(3.35)
assuming there (3.31).

Evidently,

1 1, . )
Xnjo = Xijon; = {iEijklh<Uk0,l + UlO,k) + EEijklhf('UkO,l + UlO,k)
+[~7ijhw0 -+ b;kj h?/)o —+ dijtho,'y -+ d:j,yh’gboﬁ + pwj h%o’7

‘H?%'h%o,w + Gyihio,y + Cﬁijhﬁo,y} ni, j=13,

1 1, ) )
Hyo = Hjonj = {idkljh(vk(),l +vok) + idkljh(vk(),l + Vio k)
+dj hlbo + d;khwo + djihtbo,i + Oé;ihlbo,i} N,
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1 1, ) .
Dyo = Djon; = {épjklh(vko,l + vo,) + §ijzh(vko,l + Dio k)

+r M X0 + &mhﬁo,w} n;,

1 1 ) )
B,y = Bjon; = {§ijlh(vk0,l + k) + §q;kzh(vk0,z + Do)

+aijyhXoq + fmhﬁo,v} n;.

Now we apply the results of Section 8. To this end we rewrite the system
(4.11)-(4.14) for the static case in the following matrix form

Lu = (A*Pu,, )p +E U +Cu=F, = € w, (4.15)
where
= = T= Xo,70) " 4.16
x = (1, %2),u = (u1,...,us) = (10, Voo, V30, Yo, X0 7o) (4.16)
T 0 0 0 0 0 0 T
F = (Fb"-aFﬁ) E(_Xla_X27_X3a_HafeO_Da_B) 9 (417)
af . afs a . « 1/-\.
A= lag |l B = [legll € CF(@);
(4.18)
C .= ||Ckl|| GC((D), a,=1,2, k,1=1,6,
AL = h
%(Eglla + Eglal) %(EQIQCM + Egla2) %(EQISCM + Eglaf}) dgla Paal daal
%(EQZIa + Eg2a1) %(Eg22a + Eg2a2) %(EQQSQ + Eg2a3) ngu Paa2 daa2
%(EQSla + EgBal) %(Eg?ﬂa + Eg3a2) %(Eg33a + EQSQ?:) ngoz Paa3 daa3
X 5
%(dlag + dalg) %(d2ag + da2g) %(diiag + da3g) dga 0 0
%(pgla + Paal) %(pg%z + Paa2) %(pgi‘sa + Paa3) 0 —Saa —Gaa
%(QQla + QQal) %(QQQa + CIga2) %(CIQ&)L + qg()é:‘}) 0 Qoo _fga
a=1,2, (4.19)
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FEa111

Ea211

Ea311
di12

p211

q211

1(Ba121 + Fo112)

L(Ba221 + Fa212)

%(E2321 + E2312)
(d212 + d122)

1
2
%(P221 + p212)
%(%21 + g212)

%(E1112 + F1121) FE1122
1(Er212 + E1221)  FEh22
1(Ei312 + E1321)  Ehsae
x
L(d121 + da11) da21
L(p112 +p121) P122
L(q12 + @121) q122
0 0
0 0
E%:=h 0 0
_bla _b2a
0 0
0 0
0 0
0 0
R 0
' 0 0
0 0
0 0

A2 .= p

1(Ea131 + Fo113)
L(Ba231 + Fa213)
1(Ba3s1 + Fa3i3)

1(ds12 + d132)
1 (p231 + p213)
1
2

(g231 + g213)

A%l .= h

%(E1132 + F1123)
1(B1232 + F1223)
1(B13s2 + F1323)

1 (ds21 + das1)
L(p132 + p123)
1
2

(q132 + q123)

SO O O

o O

SO O O o O

S S SN

Q

Q

o O O

da11
da21
d231

a1

w N =

O OO O O O

Pp121

Pp122

p123

—<21

—ag1

p211

p212

Pp213

—G12

—aiz

SO O O o O

O O O O O O

q121
q122

q123

—ag1

—€21

g211
q212

q213

—ai2

—&12

SO O O o o

. (4.20)

) (421)

(4.23)

Keeping in mind some symmetry properties of the constitutive coefficients,
from (4.20), (4.21) it follows that
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Eorin Eoio1 Eoisi doni D12t @iz
Eon1 Eagar Eaggr door proo d122

Eoszin Fagor Eassi dosi Dizs  qias

A2 = h
dy12 dai2 ds12 Q9 0 0
D211 P221 Pa31t 00— —am
@11 21 @n 0 —an —&u
Eii2 Enoe Euse diiz pain @
Eio19 Eiooe Ehioga disa  paro 4212
Ei312 Eisae Eigsa diza P2z ga13

A = h

d121 d221 d321 5512 0 0

P12 P22 pizz 00— —ai

4112 q122 q132 0 —aiz —&12

Let for any vector

satisfying

inequality
(@ (B 0
EAPE >0, zem\y
be valid, where

Vi={rey:=0w: A% () =0, a,f =1,2}.

)

)

(4.24)

(4.25)

So, system (4.15) with (4.19)-(4.23) is strongly elliptic on w\~® while on ~°

the order of equations degenerates.

In the case under consideration all the elements of the matrices A“? contain
as factors h(x). Therefore, v° C dw coincides with the set, where h(z) = 0,
provided all the constitutive coefficients do not vanish on dw, otherwise they

will participate in formation of ~°.
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Let a piecewise smooth curve v consist of smooth non-intersecting curves
7®) which may have only endpoints in common:

we assume that the Gauss-Ostrogradsky formula is applicable to the domain
w.
At points of smoothness of 7° let us consider the matrix

P = E%,,

where v := (v1,15) is the inward normal at the above boundary points. Let
further

v ={r€q’ : ®(x) =0}, n:={re’: o) >0},

yi={z ey’ d(x) <0}, y3:9\"

Under matrix inequalities we mean inequalities for corresponding quadratic
forms on vectors with nonzero length.

Let 2y € 4° be a common point of the neighbour pairs of the curves among
~M . 7P If there exists a neighbourhood of zy on v which C (’yz U’}/3>, then
the above point will be added to 7, U 73, otherwise it will be added to vo U ;.

Let further

70 =4 Uy U e,

and consider BC
ul’YQU’Y:s = 07 (426)

Definition 4.1. Let C}, be the class of bounded vectors u© such that

u € C*(w)NC(wUryeUns),
A%y, APy By € CHQ),

(A%, )]0 =0, Lu be bounded.

Definition 4.2. A vector u € C, satisfying system (4.15) and BC (4.26) will
be called a regular solution of the BVP (4.15), (4.26).

Definition 4.3. A vector u € Ly(w) will be called a weak solution of the BVP
(4.15), (4.26) if the vector F' € Lo(w) and u satisfies

/dex:/L*v-udx
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for any v € Cp« satisfying the condition

Ulyuys =0, v =(v1,...,06)

(the space of such vectors v will be denoted by V'), L* is the adjoint operator
to L:
L*(v) i= (0,6 A*?),5 —(VE®),q +0C.

Theorem 4.1. Let A2 = A?' [et the matrices E®, o = 1,2 be symmetric,
and
E®,—-2C >0, in w, (4.27)

then homogeneous BVP, corresponding to the BVP (4.15), (4.26) has only the
trivial solution in Cp if

1 _
uA*Pu, g +§uEau € CYG), MmUrnUy #a.

Theorem 4.2. Let A2 = A% let the matrices E® be symmetric, and

E(EY,,—20) > COZ@%, T E€w, ¢g=const >0, £&:=(&,....&) (4.28)

k=1
then there exists a weak solution of the BVP (4.15), (4.26).

Comparing (4.24) and (4.25) we easily obtain additional restrictions on the
constitutive coefficients for fulfillment of A'? = A%, Namely,

E1212 = E22117 E1312 = E2311 E1322 = E2321;

di91 = di12, dao1 = do1a dsa1 = d319;
P112 = P211, Pi122 = P221 P132 = P231;

d112 = 4211, (G122 = §221 4132 = (231-

For symmetry of matrices F¢, a = 1,2, we have to assume Bij =0 (see
(4.22)), which implies that E* =0, « = 1, 2. Since £ > 0, (4.27) holds because
of E“=0, a = 1,2, and (4.23). Indeed,

§(=20)¢ = 2[¢h = (dah).a | (€)2 2 0 on &,
For the same reason
Q|0 = Eq|y0 =0,
hence
N=2, =2, =%, v=7%U"%s.
So, we have to do with the Keldysh type BVP.
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Thus, according to Theorem 4.1, a regular solution of BVP (4.15), (4.26)
(the last takes the form

u3|’¥3 = O)

is unique, provided it exists.
In the case under consideration

§(B* o —20)6 = —26C¢ = 2[£h - (dah),a} (€)2>0 on wUs
and (4.28) will be fulfilled if
min [éh - (dah),a} > %

But hlye = 0 and ¢ should be unbounded in a neighborhood of 4°. If the
last reasoning has a physical sense, then (4.28) holds and, according to The-
orem 4.2, a weak solution of problem (4.15), (4.26) exists. If this physical
assumption is not reasonable, then we apply an approach mentioned in Re-
mark 8.2 and choose the multiplier ¢ suitably for ensuring the fulfillment of
condition (4.28).

5 Transversely Isotropic Solids

Let us now consider the transversely isotropic elastic piezoelectric material in the
case when the poling axis coincides with one of the material symmetry axes [19]. A
material behavior is said to be transversely isotropic if it is invariant with respect
to an arbitrary rotation about a given axis. This material behavior is of special im-
portance in the modelling of fibre-reinforced composite materials with a coordinate
axis in the fibre direction and assumed isotropic in cross-sections orthogonal to fibre
direction [20] (in our case to poling axis as well, since in the case under consider-
ation they coincide). The transverse isotropic model is also suitable for biological
applications because it adequately describes the elastic properties of bundled fibers
aligned in one direction [21] (see also [22]).

It is well-known [19] that the electric field that develops in piezoelectrics can be
assumed to be quasi-static because the velocity of the elastic waves is much smaller
than the velocity of electromagnetic waves. Therefore, the magnetic field due to the
elastic waves is negligible B ~ 0. This fact implies that

0B

o =0

So one of Maxwell’s equations of electrodynamics becomes

0B
tE = — =~
0 5 0

and, as it was already assumed,

E = —gradX.
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Consequently, considering transversely isotropic piezoelectric continuum, it will be
based on the governing equations of elastodynamics in the care of small deformations
and quasi-electrostatic fields. Note that piezoelectric materials show in most cases
a crystal structure with a symmetry of hexagonal 6 mm class. In the case when
the poling axis coincides with one of the material symmetry axes these materials
become transversely isotropic. Restricting to the case of time-harmonic motion with
frequency o, i.e., all the sought quantities, s.c. free members of governing equations,
and boundary data are represented as the products of €’ and of the same quantities
(to avoid redundant indices and symbols we leave the same notation) depending only
on the space variables, from the governing equations of dynamics (2.1), (2.3), (2.4),
(2.5), (2.8), we get the following governing equations

Xij,j + pOQUZ‘ =—-&,, 1=1,3; (5.1)

Djj = fe; (5.2)

1 .
eij = 5(%3’ +uj), 4,5 =1,3;

X1 e11
X2 €22
X33 €33
Xo3 2e93
X31 =C 2631 (53)
X2 2e12
Dy Er
Dy Eo
D3 E3
where (see [19])
C:=
Ei111 Eri22 Friiss 0 0 0 0 0  psn
FEi122 FE1111 Fiiss 0 0 0 0 0  p3n
FEi133  Fr133 FE33ss 0 0 0 0 0 pas3
0 0 0 E303 0 0 0  pus 0
0 0 0 0 E2323 0 P113 0 0 (5 4)
0 0 0 0 0  3(Bun—En) 0 0 0
0 0 0 0 P113 0 —G11 0 0
0 0 0 D113 0 0 0 —S11 0
P311 P31l P333 0 0 0 0 0  —g33

From (5.3), (5.4) we have

X11 = Frinenn + Eri22e22 + Eri3zess — p3i1Es,
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Xoo = Fiioe11 + Erii1e22 + Eii3zess — p3i11Es,
X33 = Friszerr + Eri3zezr + E333zess — p333Es,
Xo3 = 2E9303€93 — p113F2, X31 = 2F2303e31 — pr13l,
Xi2 = (Eri11 — Erizz)ere,
Dy = 2p11ze13 + 111, Do = 2p1i3ess + <11ko,
D3 = p311e11 + p311e22 + p3zzess + 33 k3,
i.e.,
X11 = Ennuig + Erisous 2 + Fiissus s — psinEs,

Xoo = FEiioou11 + Friiug e + Eri3zus g — p311 s,

X33 = Fri33u1,1 + Er133u22 + E3333u3 3 — p333bs,

Xoz = Eozoz(u3 + us2) — prizka, Xs1 = Fagas(us + u1,3) — prisFi,

1
Xig = §(E1111 — Er122)(u1,2 + u2,1),

D1 = pus(us1 +u13) +s11E1, Do = pris(uzz + u32) + s11Eo,

D3 = p311u1,1 + p311u2,2 + p3saus 3 + 33 k3.

Conditions of Anti-plane Piezoelectric State [19] have the form

up =0, up =0, ug#0;

Xi3#0, Xo3#0; Xo=0, o,6=1,2; X33=0;
eis 0, en#0; ep=0, o,=12; e33=0;
Ey#0, Ey#0, FE3=0;

D120, Dy20, Ds=0.

Ol W o=

Taking into account (5.6), from the first three relations of (5.5) we have

ugz =0, us=ug(z1,x2);
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the fourth and fifth relations of (5.5) give

Xo3 = FEaza3u3 2 — p113Fa, (5.7)

X31 = FEa3o3uz 1 — pr13kFna, (5.8)

respectively;
the sixth of (5.5) is identically fulfilled,;
the seventh and eighth relations of (5.5) give

Dy = prizus, + i B, (5.9)

D9y = pr13us2 + <11 Ea. (5.10)

respectively;
the ninth of (5.5) is identically fulfilled.
From the first two of (5.1) it follows that

D, =0, a=1,2 (5.11)
the third of (5.1) will have the form
X311 + X329 + po*uz = —Ps; (5.12)
while (5.2) will have the form
D11+ Dopo = fe. (5.13)
Substituting (5.7) and (5.8) into (5.12), and (5.9) and (5.10) into (5.13), we get
(Easosus 1)1 + (Easasus2) 2 — (p113E1) 1 — (p113E2) 2 + po’uz = — @3,

and
(p11susi) 1 + (prigus2) 2 + (S1Er) 1 + (s11E2) 2 = fe,

respectively.
Taking into account
Ey=-X,, oa=1,2,

we obtain the following governing equations in the anti-plane piezoelectric state

(Eas23u3.1) .1 + (E2s23usa) 2 + (p113X.1).1 + (p113X 2) 2 + po*uz = —®3,

(p113us.1) 1 + (Pr13us2) 2 — (s11X,1) 1 — (11X 2) 2 = fe,

i.e.,
(E2323u3.0) .0 + (P113X 0) o + po°uz = —P3, (5.14)

(p113u3,a),a - (CllX,a),a = fe. (515)
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a
>
O ]/U X
Figure 5.1:

Let the plane domain of interest have the form given in Figure 5.1 and let

Eas03 = Eoxs', Ep = const >0, k1 = const > 0;
P113 = poxy?, po = const >0, kg = const > 0;

S11 = soxh®, o = const >0, k3 = const >0,

then (5.14) and (5.15) take the forms

Eo(z5'uza).a + po(25°X o) o + pouz = —Ps, (5.16)
and
Po(5*z,0) 0 = 0(25°X,a) .0 = fe, (5.17)
respectively.
We will consider the following two cases. To this end first we state the following

Theorem 5.1 (Jaiani, see [12]). If the coefficients an, o = 1,2, and c of the
equation

5 Usna +0a(T1, T2)Usq +c(z1,22)u =0, ¢ <0, Kq = const >0, a=1,2,

are analytic in w, then
(i) if either ko < 1, or ko > 1,

az(x1,x2) < x;Q_l (5.18)
in wWs for some d = const > 0, where
ws = {(x1,22) Ew : 0 <z <},

the Dirichlet problem (Problem D, u € C?*(w) N C(@)) is well-posed;
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(Z'Z') if kg > 1,
as(r1,22) > xgz_l (5.19)

in ws and ay(z1,x2) = O(x5'), x2 — 04 (O is the Landau symbol), the Keldysh
problem (Problem E, bounded u € C%(w) N C(w\ 1)) is well-posed.

Case 1. k; =Kk =const >0,i=1,3.
After some actions, from (5.16) and (5.17) we get
(s0Fo + pd) (z5us.a) 0 + sopo’us = —o®s + po fe, (5.20)
and
(P5 + s0E0) (25X 0) . + Popo°uz = —po®3 — Eo fe. (5.21)
(5.20) and (5.21) we rewrite as

2\—1,1-k, 2
Tou3.aa + Kug2 + o(soFo + pgy) x5 “pous

= (<oFo +pg) 'y " (—c0®3 + pofe), (5.22)
and

29X aa + KX 2 + po(0Eo + p3) "ty " potus

= (90Bo +p§) w3 "(—po®s — Eolfe), (5.23)
respectively.

In the static case o = 0 and from (5.22), (5.23) we obtain separate equations

Tou3 a0 + KUz2 = (0o + pg) oy " (—0®s + pofe) (5.24)

29X aa + KX 2 = (B0 + pg) tay " (—po®s — Eofe), (5.25)

with respect to us and X, correspondingly.

We will consider

Problem D. Find solutions u3, X € C%(w) N C(@) of the system (5.24), (5.25)
by their values prescribed on dw

and

Problem E. Find bounded solutions u3, X € C?(w) N C(w U (w \ 7°)) of the
system (5.24), (5.25) by their values prescribed only on the arc duw \ .

Now we are about to apply Theorem 5.1 but this theorem concerns the homo-
geneous equation whereas equations (5.24) and (5.25) are nonhomogeneous ones. If
we find their particular solutions which are continuous on @, then in usual way we
reduce the problems under consideration to BVPs for the homogeneous equations
corresponding to equations (5.24), (5.25) with boundary data changed according to
boundary values of the particular solutions. In case of Problem E it is sufficient to
find a bounded particular solution continuous on w \$ If ®3 and f. depend only on
T9, then we easily find such particular solutions, depending only on zs. For another
way of finding of desired particular solutions we refer the reader to [[23], pp. 75-78].
Further applying to nonhomogeneous equations Theorem 5.1 we will always have in
mind this observation. According to Theorem 5.1 it follows
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Theorem 5.2. The values of ug and X should be prescribed on the entire boundary
(Problem D) for k < 1, while on the part of the boundary, where zo = 0, should
be freed at all of boundary conditions (Problem E) for k > 1. Both problems are
uniquely solvable in the classical sense.

Proof. Indeed, for k < 1 and x > 1, correspondingly, (5.18) and (5.19) are fulfilled,
which proves the theorem. ]

We now consider system (5.22), (5.23), assuming that the right-hand sides belong
to La(w) and
xy "p € O@).
Equations (5.22) and (5.23) we rewrite as follows

(29u3.0) 50 +(k — Dug2 + so(soFo + p3) "ty "po*us

= (90FEo + p3) to3 " (—0P3 + pofe), (5.26)

and

(72X )50 + (5 — 1)X 2 = —po(soEo + pg) a5 "po*us

+(s0Fo + pd) "ty " (—po®s — Eofe), (5.27)

Intending to apply results of Section 9, we check for the first equation (5.26) of the
system which contains only the unknown wug, the condition (9.15). In our case it
looks like

1 1
iEo‘,a —C = 5(/@ —1) — so(soFEo + pg) ta3 "po* > ¢ >0, on @.
The last condition will be satisfied for
1 -1
0* < |:*</i —1) —co|(Bo+5'pd)| max (x5 "p) (5.28)
2 (z1,22)ED
provided
k> 1+ 2co, (5.29)

where ¢y may be arbitrary small.

Therefore there exists an H-weak solution uz of Problem E for equation (5.26).
Substituting the found ug into equation (5.27) we obtain the equation only with
respect to X. We now apply Theorem 5.1 to equation (5.27) and conclude that there
exist unique classical solutions for Problem D if x < 1 and Problem E if x > 1.
Evidently, classical solutions are H-weak solutions as well

So, we have proved the following

Theorem 5.3. An H-weak solution (us, X) of Problem E for system (5.26), (5.27)
exists under conditions (5.28), (5.29). The last actually means

k>1

because of arbitrarily smallness of the constant cg.
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Remark 5.1. If @ is a stripe {—o00 < 1 < +00, 0 < 29 < L = const} and all the
quantities depend only on x9 (it means that we consider cylindrical strain) then in
the static case (o = 0) from (5.20) and (5.21) we obtain

(z5u32),2 = (0Fo + p3) " (—s0®P3 + pofe)

and
(25X 2),2 = (0Eo + p§) ' (—po®s — Eo fe),

respectively. Their general solutions have the forms
o1 [P dT ¢ 1
uz(z2) = (s0Fo + pp) / T’i/ [—<0®3(t) + pofe(t)]dt + c5
L L

! (1—r)" Ny = L17F) for w#1,
'Y Inzg—InL for k=1

and
o1 [T dT ¢ 2
X(z2) = (s0Eo + pp) — | [7po®s(t) — Eofe(t)]dt + 3
L L

L (1 — k) Yy " — LI7F) for w#1,
'Y Inzg—InL for x=1.

In the case under consideration BCs look like

u3(0) = ¢§, X(0) = ¢2; uz(L) =ck, X(L) = ¢ (Problem D);

uz(x9) = O(1), X(z2) = O(1), x3 — 04; us(L) = ct, X(L) = ¢2 (Problem E).
From these BCs we easily calculate constants

¢z, o, 8=1,2, for K <1 (Problem D)

and
g, a=1,2, for k > 1 (Problem E),

in the last case ¢ =0, a = 1,2, (otherwise solutions will be unbounded) and some
restrictions on ®3(z2), fe(z2) are required as well.

Case 2. k9 = k3 = kK = const > 0.
After some actions, from (5.16) and (5.17) we get

(P + o Eoxs ) us o) .0 + s0po*us = —so®3 + po fe, (5.30)

0(25X,a) 0 = Po(T5U3,0) 0 — fe (5.31)
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So, for k1 = 0 and any k > 0, equation (5.30) is not a degenerate one, while
equation (5.31) is a degenerate one. If o = 0, i.e., we deal with the static case and
from (5.30), (5.31) we arrive at the system

(P35 + 0 Bo)uza).a = —0Ps + pofe, (5.32)

go(mgx,a),oc = pO(JJSUS,a),a _fe' (533)

As (5.32) is not a degenerate equation, the values of ug should be prescribed on
the entire boundary (Problem D), while, according to Theorem 5.1, the values of X
should be prescribed on the entire boundary (Problem D) for 0 < x < 1 and the
part where z3 = 0 should be freed of BCs (Problem E) for x > 1. It will be clear if
we rewrite (5.33) in the following form

ToX,0a +EX,2 = §61[P0($gu3,a),a _fe]xéin-

Indeed, for k < 1 and k > 1, correspondingly, (5.18) and (5.19) are realized. So we
have proved the following

Theorem 5.4. Problem D for equation (5.32) for all k > 0 is uniquely solvable in
the classical sense. Problem D for 0 < k <1 and Problem E for k > 1 for equation
(5.33) are uniquele solvable in the classical sense. In other words Problem D for
system (5.82), (5.33) has a unique classical solution, while Problem E has a unique
classical solution for k > 1.

Remark 5.2. Similarly to Case 1 we solve BVPs in the explicit form in the case of
cylindrical strain (see Remark 5.1).

Now we come back to the time-harmonic motion and follow Section 9.
Let k1 > K, then we rewrite (5.30) as follows

2 — 1 2 —
(pir2 + 0 Foxs "M uz aa + (kp§ + k1soEozs' " uz 2

+600%pry "uz = x5 " (pofe — 0P3). (5.34)

Now, we write equation (5.34) in the following form

(P32 + soBors" " ug.a)sa +(k — 1) (0 + o Bors" " )us 2

+600%pxy "ug = x5 " (po fe — 0 P3). (5.35)
Conditions (9.2) lead to the restrictions

K1 2> K+ 1,
(5.36)
x3y "p € O@).
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Equation (5.35) has an order degeneracy by z3 = 0, i.e., on 4°. According to
(9.5) and (9.6)
@‘IQZO = Ely’i‘xQZU = E2V2|x2=0 = E2‘:1:2:0

= [(k = 1)p§ — 0 Bo(1 — £)25" |ap=0 = (k — 1)1

and consequently
v, for k> 1,

=14 7 for kK <1,
v for k=1,

which means that we have to do with the Dirichlet problem for x < 1 and with the
Keldysh problem for x > 1, since g U 71 should be freed of BC and at v U~y; BC
should be replaced by boundedness of u3 in a neighborhood of vy U ~;.

Condition (9.15) looks like

1
_§§0E0(1 — k) (k1 — RS — o pak ™" > ¢p > 0 in @,

which is not valid since the limit of the left hand side, because of (5.36), tends to

—00 for w>1;

500%p < 0 for k=1,k1 > 2;

0 for k<1, k1 >Kk+1;
—%goEo(l —k)<0; for k<1, k1 >K+1,

as xo — 0+.

To avoid this obstacle we have to apply an approach described in Remark 8.2.
For an example of application of the above-mentioned approach we refer the reader
to [13], where cusped elastic prismatic shells are considered.

Similarly, when x > k1 + 1, we first rewrite (5.30) as

2 kR4l 2 ke
(pis ™ + G Eom2)us aa + (kpjrhs ™ + K150 Eo)us 2

+sopotay Mg = w3 " (pofe — 0®3), (5.37)

then as follows

((p(Q)f’?g%lJrl + €0E0£U2)U3,a) + (k1 — 1) (P "™ + o Fo)us 2

o4

2y "ug = 2y " (pofe — s0P3) (5.38)

and carry out the corresponding reasonings.

After substituting the found solutions of Problem E for equation (5.34), ((5.37))
into (5.31) we arrive at the already investigated problem for equation (5.31) with
respect to X with the result that for X Problem E is well-posed for k > 1 (k > 2).

+Sopo
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6 Antiplane Deformation of Piezoelectrics
in N=0 Approximation
In the N = 0 Approximation conditions of the antiplane state look like
1. vip=0, wyp =0, w3y ZO0;
2. X130 #0, Xo30#0, Xopo=0, o,8=1,2; X330 =0;
3. e130 720, e2307Z0, eapo=0, o,B=12; e330=0;
4. B1o#0, Ex#0, E3=0;
5. Dip 20, Doy 20, Dsy=0.
Then from (4.11)-(4.14) we have

1 1 - 0
i(EaBZS(Sh'U?)O,J),a + i(Eaﬁ'y?)h'USO;y),a + (p'ya,b’hXO,'y),wa + X =0, g=12

1 1 - 0 .
§(Ea335hv30,6),a + i(Ea?rthUBO,’y),a + (Pya3hXoy).a + X3 = phiig, (6.1)

- 1 1 0
_(goc’yhXO,’y),oc + *(poz3§hv30,5),o¢ + *(poc'yShUSO;y),oz + D= feO-
2 2

If we consider transversely isotropic piezoelectric materials, then
FEa303 = E1313 # 0;
Eo290 = Erinn 0, Eri22 #0, Ezs3 = Eiizs 0, E3zsz # 0; (6.2)
p223 = p113 # 0;
S22 =11 #0, ¢3#0.

Other elastic, piezoelectric, and dielectric permittivity constants are identically zero
with regard to reciprocal symmetries.
Therefore, from (6.1), by virtue of (6.2), we obtain

X3=0, B=1,2

1 1 1 1
§(E1331hv30,1),1 + 5(32332%30,2),2 + §(E1313h030,1),1 + §(E2323hv30,2),2
~ ~ 0 ..
+(p113hXo,1),1 + (P223hXo,2),2 + X3 = phiizg
and

- - 1 1
—(s11hX0,1) 1 — (s22hX02) 2 + 5(?131}“}30,1),1 + 5(?232hv30,2),2

0
(p223hv30,2) 2 + D = feo-

1
— h
+2(p113 v30,1),1 + 5
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Whence, taking into account

E1331 = E3131 = E332 = Fh303,

P223 = P113, S11 = S22,

we get
(E2323h30,0).0 + (P1138X0,0) 0 + )0(3 = phiso. (6.3)
and
(Pr13hvs0,0),0 — (s11hX0.0) o + D= Jeo, (6.4)
respectively.

Now assuming
Esso3h = Egzy', Ey=const >0, k1 = const>0;

prish = poxs?, po = const >0, kg = const > 0; (6.5)
sith = qz5®, ¢y =const >0, k3= const >0,

in the case of time-harmonic vibration from (6.3), (6.4) we arrive at equations (5.16),
(5.17); and (similarly to Section 5) at systems (5.20), (5.21); (5.22), (5.23); (5.26),
(5.27); (5.31), (5.30); (5.31), for k1 > K (5.34) i.e. (5.35); and (5.31), for Kk > Ky
(5.37) i.e. (5.38); of the antiplane state in the three-dimensional formulation, where

ug, X, 3, and f. should be replaced by v3, Xo, )[()'3, and feo— 10) (the factor h should
be put in before the zero moment of a weighted unknown vsg), respectively. Namely,
we obtain the following systems (6.6), (6.7); (6.8), (6.9); (6.10), (6.11); (6.12), (6.13);
(6.14), (6.15); (6.14), for k1 > K (6.16) i.e. (6.17); and (6.14), for k > k1 (6.18) i.e.
(6.19):

. 0
Eo(25'v30,0).0 + 20(252X0.0) o + po*hugg = — X3, (6.6)
K2 K3y _ 0 .

pO(:UQ UBO,a),a - §0(5L'2 XO,a),a = feO — D; (67)

2 K 2 0 0
(s0Eo + p5)(25v30,0) 0 + Sopho”v30 = =0 X3 + po(feo — D), (6.8)

2 K 2 9 0
(Po + s0E0)(5X0,a),a + Popho 3o = —po X3 — Eo(feo — D); (6.9)

N—1,1-K 2
T2030,00 + KV30,2 + So(s0E0 + pj) x5 “po“husg

0 0
= (s0FBo + p?) 'o3 | — X3 + po(feo — D)} , (6.10)
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29X0,00 + KX0,2 + Po(s0Fo + p§) Loy " po*husg

20 —1, 1-k 2 0
— (oo + p8) a3 ™| ~ X — Eo(feo - D)]:

(22V30.0) .00 + (5 — 1302 + s0(s0Fo + pg) 5 " po*husg

0 0
= (0Eo +p3) o3| — 0 X3 + po(feo — D)]7

(22X0.0).0 + (K — 1)Xo2 = —po(so o + p&) Lo5 " po®husg

2\—1 _1—k 0 0
+(s0Eo +p5) 3 7| — poX3 — Eo(feo — D)};

~ 0
$0(25X0,0),a = Po(25V30,0) .0 — (feo — D),

0 0
(P + 0 Eox5" )v30.0) .0 + Sopho*vso = —0 X3 + po(feo — D)
ie. (for k1 > k)

2 —k+1 2 —
(P52 + 0 Foxs' ™" )v30.00 + (kD + K150 B0y ") v30.2

2 1—k _ 11—k 0 0
+opo Ty “huzg = x5 " |po(feo — D) — 0X3

ie.

((Pia2 + 0 B0z " vs0.a) 0 + (£ — 1) (0 + B0z " )vs02

21—k _ 11—k 0 Y
+sopo~ry “huso = x5 “[po(feo — D) — s0X3]

and (for kK > K1)

2 —k1+1 2 —
(Phxy "™ 4+ Eox2)v30,00 + (kpGTs ™ + K150 E0) U302

0 0
+copo’xy M huzg = 23 "™ |po(feo — D) — 0X3

i.e.
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(PR ™™+ 0 Eox2)v30.0) .0 + (K1 — 1) (P25~ + 0 Eo)vso.2

0 0
+eopo’ry Mhugo = wy [po(feo — D) — X3/ (6.19)

In the static case (o = 0) from (6.6), (6.7); (6.8), (6.9); (6.10), (6.11); (6.12),
(6.13); (6.14), (6.15), (6.16), (6.17) and (6.18), (6.19) we have

- 0
Eo(xglvfﬂo,a):a +p0(w;2x0,a),a = — X3, (6.20)
K2 K3y _ 0.
p0($2 U3O,a),a - §0($2 XO,a),a = feO —D; (6-21)
o 0 0
(s0Eo + 1) (25v30,0) .0 = —50X3 + po(feo — D), (6.22)
2 Ky 0 0
(p5 + s0E0)(25X0,0),0 = —P0X3 — Eo(feo — D); (6.23)
N1 1—k 0 0
Z2U30,00 + K302 = (S0Lo + pp) " 23 [ — X3+ po(feo — D)} ; (6.24)
S S N—1 1-r 0 0
22%0,00 + #X02 = (0Fo +8) a3 [ = poXs — Eo(fo— D) (6.25)

0 0
(29V30.0) .0 + (5 — D)oz = (0Fo + pg) 1oy " [ — G0X3 4+ po(feo — D)], (6.26)

- - 0 0
(22%0.0).0 + (5 = 1)Xo2 = (0Fo + p§) 23" | = poXs — Eo(feo ~ D)|;  (6:27)

~ 0
0(75X0,0),0 = Po(T5V30,0) .0 — (feo — D), (6.28)
2 K K1 0 0
(P75 + 0 E075" )v30,0).a = —0X3 + po(feo — D) (6.29)
ie. (for k1 > k)
(Piz2 + 0Eox5" " v30,aa + (kD] + K150 B0z " )uso,2
1-k 0 0
=T [pﬂ(fel) — D) —<0Xs3|s (6.30)

i.e.
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((Pgz2 + 0Boxy " vs0.0).a + (k — 1) (0§ + 0Bz " )vs0 2

_ 0 0
= 23" |po(feo — D) — 0 X3 (6.31)
and (for kK > K1)
(Do ™™ + o Eo2)v30,00 + (kP02 ™ + K150 E0)v30,2
1—k1 0 0
=2 [PO(feO — D) —<0X3/s (6.32)
i.e.
(P55 + 0 Eo22)v30,0) 0 + (k1 — 1) (Pias ™™ + so.Eo)vso,2
R S 0 0
=z "'|po(feo — D) — 0 X3/, (6.33)
respectively.
Let o , B
Ea303 = ongl, h = homgl, Ey, hg = const > 0;
1 1
DP113 = ﬁoSUgQa po = const > 0; ¢ = §~ox§3, So = const > 0;
/@%, /-sjl- = const > 0, j=1,3.

K1 = const = K| + Kk > 0; kg = const = ky + K7 > 0; k3 = const = k3 + kT > 0.
then
Esza3h = Egzy', where Ey = Eghg = const > 0;

prish = poxs?, where py = poho = const > 0; (6.34)
sith = qzs®, where ¢y = Gho = const > 0.

Taking into accounts (6.5), (6.34), from (6.1) it is evident that the following
theorem is true.

Theorem 6.1. If s.c. elastic, piezoelectric, dielectric constants (coefficients) are
independent of space points i.e. Hil =0, 4 = 1,3, then we have to do with cusped
prismatic shells for k; = k3 > 0, i = 1,3. In this case peculiarities, arising by setting
BCs and those arising by prismatic shells of constant thickness i.e. k3 = 0 when the
elastic, piezoelectric, and dielectric coefficients are changing according to (6.5) i.e.

Ki = /@} >0,4=1,3, coincide. The stress-strain states coincide as well.

We now are in a position to reformulate results of Section 5 for the matter under
consideration in Section 6.

Consequently, we may draw the following conclusions.

Case 1. kj =Kk =const >0, i=1,3,ie k=r! +H%, where k! := f@}, i=

1,3.

64



Theorem 6.2. In the static case (o = 0) for system (6.24), (6.25) according to
Theorem 5.1 it follows that the values of vyy and Xo should be prescribed on the
entire boundary (Problem D) for k < 1, while on the part of the boundary, where
xo = 0, should be freed of BCs (Problem E) for k > 1. Both problems are uniquely
solvable in the classical sense.

Theorem 6.3. An H-weak solution (v3y Xg) of Problem E for system (6.12), (6.13)
exists under the following conditions:

xy ph = hom%_"”lp € C(w),

1 -1
0 < |3l = 1) = co| (Bo+ 5 'pR) | max_(hoy™p)]

2 (#1,22) €D

Kk > 14 2c¢g.

Remark 6.1. Similarly to Remark 5.1 we construct in the explicit form solutions of
BVPs for system (6.22), (6.23) in the case of the cylindrical strain.

Case 2.) kg = k3 = k = const > 0, i.e., H% = /@:1)).
Theorem 6.4. For k1 = 0 and any k > 0, the values of vy (see (6.29)) should
be prescribed on the entire boundary (Problem D), while (see (6.28)), according to
Theorem 5.1, the values of Xo should be prescribed on the entire boundary (Problem

D) for 0 < k < 1 and the part where xo = 0 should be freed of BCs (Problem E) for
x> 1.

If either k1 > k+ 1 or kK > K1 + 1, k1 > 1, we carry out reasonings for systems
(6.31), (6.28) and (6.33), (6.28) similar to Section 5 for systems (5.35), (5.31) and
(5.38), (5.31).

Remark 6.2. Just as in section 5 the problems D and E we solve in the explicit forms
in the case of cylindrical strain (see Remark 5.1 and Remark 5.2). The governing
equations obtained from (6.22), (6.23), (6.28), (6.29) have the following forms, cor-

respondingly
0 0
(s0Eo + pg) (¥5v30.2) 2 = =50 X3 + po(fe0 — D),

_ 0 0
(P2 + <0 Fo)(25X02) 2 = —poX3 — Eo(feo — D);
0

s0(25X02) 2 = po(25v302) 2 — (feo — D),

0 0
(3 + o Eoxrs )v302) 2 = =0 X3 + po(feo — D).
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7 N =0 Approximation for Porous
Isotropic Elastic Prismatic Shells

In the case under consideration, assuming the constitutive coefficients A and p (the
Lamé constants), &, b, and £ to be constants from (4.11)-(4.14) we get the following
governing system

~ 0
K [(hvao,ﬁ),a + (hvﬂo,a),oz + )‘(hv'yo,'y)ﬂ + b(h%),ﬁ +Xp= phﬁgo, B=1,2 (71)

0
p(hv30.a).a + X3 = phis; (7.2)

~ ~ 0 .
a(ho,a),a — bhvyoy — Ehibo + H = phipo — Fo. (7.3)

BCs for the weighted displacements and the weighted volume fraction are non-
classical in the case of cusped prismatic shells (see Figures 3.2, 3.3). Namely, we are
not always able to prescribe them at cusped edges.

Let w be a domain bounded by a sufficiently smooth arc (dw \?) lying in the
half-plane x5 > 0 and a segment 70 of the z;—axis (23 = 0).

If the thickness looks like

2h(x1,x2) = hoxs,  ho, k= const > 0, (7.4)

then we can prescribe the displacements and volume fraction at the cusped edge 7,
if k < 1, while we cannot do it if kK > 1.
Let us show it for the particular case of deformation when

Va0 =0, a=1,2; vy Z0.

Then in the static case, taking into account (7.4), from (7.2), (7.3) we get
22030,00 + KV30,2 = 2(pho) 'y " X3, (7.5)

290 00 + Ktho2 — Ea” taathy = —2(ahg) tay " (H + ]:0), (7.6)

respectively.
Problem D (Dirichlet Problem: Find solutions

v30, %o € C*(w) N C(@)
of (7.5), (7.6) by their values prescribed on 8w)
and
Problem E (Keldysh Problem: Find bounded solutions
v30, Yo € C*(w) N C(w U (dw \7P))
of (7.5), (7.6) by their values prescribed only on the arc dw \@)

are uniquely solvable for equations (7.5), (7.6) by ko < 1 and ko > 1, correspond-
ingly. It follows from Theorem 5.1. Indeed, from (5.18) and (5.19), it follows
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az(x1,r2) = k < 1 for Problem D and as(z1,z2) = k > 1 for Problem E, re-
spectively, since k1 = ko = 1.

To the general system (7.1)-(7.3) in the static and dynamical (time-harmonic
motion) cases we apply results obtained for the more general system (see Section 8).

8 Systems of Elliptic Equations of the Second
Order with an Order Degeneracy

Let G C R™, n > 2, be a bounded domain, x := (1, ...,zy,), [ := 0G, and
Lu = (AYuy),; +E'u,; +Cu = F, (8.1)

ie.,

Lyu = (au;).j +epur: + cuu = Fr, k=1,m,

where
w= (U, .;tt) ", Fi=(F,....Ep)",
AT = a|l, E' = |leyy] € CHG); (8.2)

C :=llex] € C(G), i, j=1,n, k, I =1,m,

where we use the Einstein convention, and indices after a comma, as usually., mean
differentiation with respect to the corresponding variables.
Let
(@ . .() 0
EAYVE >0, ze G\TY, (8.3)

for all €@ := (&), ...,557?), i = T,m, such that

n m . 2
> ({,9) >0,
=1 k=1
where -
I :={zel: A%x) =0, i,j=1,n}. (8.4)

So, the system (8.1) is strongly elliptic on G'\I'? with the equations’ order degeneracy
on I'°.

Let P )

r=ul,
k=1

where f(k), k = 1,p, are smooth hypersurfaces with possibly common boundary
points, and let the Gauss-Ostrogradsky formula be applicable to the domain G.

At points of smoothness of I'? let us consider matrix

®:= E'y;, (8.5)
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where v := (v1,...,1,) is the inward normal at the above boundary points. Let
further

Log:={zecl?: &x)=0}, T1:={zel?: &) >0},
(8.6)
Iy:={zecT’: &) <0}, Iy:T\T°

Under matrix inequalities we mean inequalities for the corresponding quadratic

forms on vectors with nonzero length.

Let 29 € I'” be a common point of the hypersurfaces f(il), ...,f(iq) for certain

i1y ig € {1, D}, ¢ = 2,p, ik # iq, k # 1. If there exists such a neighbourhood wj,
i:= (i1, ...,1q), of the point x¢, that

(o (57) € r2um)

then the above point will be added to I'y UT's, otherwise it will be added to I'g UT';.
Let further I =ToUT; UTy and

U’FgUFg = 0 (87)
Definition 8.1. Let ', be the class of bounded vectors u such that

ue C*G)NC(GUTyUT3),
Ay, A%, By e CHG),

(AYu,; )|po =0, Lu be bounded on G. (8.8)

Definition 8.2. A vector u € C[, satisfying system (8.1) and BC (8.7) will be called
a regular solution of the BVP (8.1), (8.7).

Definition 8.3. A vector u € Lo(T") will be called an Ly(G)-weak solution of the
BVP (8.1), (8.7) if F € Ly(G) and

/dex :/ L*v - udz (8.9)
G G

is valid for any v € Cp+, satisfying the condition
U|F1UF3 = 07 (810)

(the space of such vectors v will be denoted by V| if for v and u € Cp with (8.7)
equality (8.9) is valid), L* is the adjoint operator to L:

L*v = (v,; AY),; —(vE"),; +0C,

i.e.,

L?U = (’Ulm'ak]l> g (vke}d> i TUELCKL, [ = 1, m,

and Cp+ is defined for the operator L* like Cy, for the operator L.
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It is easily seen that if there exists a regular solution of problem (8.1), (8.7), it
will be also a week solution. Indeed, if v € C?(G) and u € Cp+ then we have the
following Green formula

/ v Ludx — / L*v - udx = /[(U}iAiju —vAYyu ) v; — vduldl, AY = AT (8.11)
G G
r

Presenting I' as T'3 UTY, then the first sum under the integral will be equal to zero
on I's because of (8.7) and on I'° because of (8.4). The second sum will be equal to
zero on ') by virtue of (8.8), and on T's, by virtue of (8.10). We now present I as
I'sul'y ul's UTy, then on I's UT'y UT's the third summand becomes zero because of
(8.7), (8.10) and on I'g because of (8.6). Thus, the right hand side is zero and, since
Lu = F, from (8.11) it follows (8.9).

Theorem 8.1. Let AY = A7 let the matrices E*, i = 1,n, be symmetric, and
E';—20>0, z €@, (8.12)

then homogeneous BVP corresponding to the BVP (8.1), (8.7) has only the trivial
solution in Cp, if

uAiju,j +%uEiu e CHG), THWuTL,UT3=o.
Proof. Integrating the equality (see [24])
wLu + u,; A%, —i—%u(Ei,z- —2CYu = (uAJu; + %uE’u)l (8.13)
on G and using the Gauss-Ostrogradsky formula, by virtue of (8.6)-(8.8) and
Lu=0,

we obtain
/[uviAijuvj + g(E’Z —2C)uldG + % /u@udfl =0.
G 't

Hence, in view of (8.3), (8.12), and ® > 0 on I';, we arrive at

w;Au; =0, z€G.

But, according to (8.3), it is admissible only if

u; =0, i=1n, zed.
Therefore, u = const and if 'y UT's # &, then by virtue of (8.7),
u=0. (8.14)
If 'y UI's = @ but I'1 # @, then (8.14) is valid since

ulp, =0
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because of
u®ulp, =0 and @|p, > 0.

If
T'Mulyul's =g,

but inequality (8.12) is strong, then it is easily seen that
u(E,! —2Cu =0, z€G.

Therefore, (8.14) is valid. O

Theorem 8.2. Let AY = AT, let the matrices E*, i = 1,n, be symmetric, and

EE =200 >0y &, w€G, co=const >0, &= (&,.06m),  (8.15)
k=1

then there exists a weak solution of BVP (8.1), (8.7).

Proof. According to the Abstract Existence Principle (G. Fichera, see Theorem 8.3
below and [15], and also [16]) it follows that for the existence of a weak solution the
fulfilment of the following inequality is sufficient

[oll2 < K[|L ]2, (8.16)

where

2

m
K = const, |v]]2 = /szdG

Indeed, let V be an abstract linear manifold of the real field; let B, « = 1,2, be
real Banach spaces; let M., a = 1,2, be linear homomorphisms of V into B,; let
F and u be vectors of conjugate spaces B} and B3, respectively. Let us consider for
any v € V the following functional equation

< F,Mp(v) >=< u, Ma(v) > (8.17)

where F' is a given, and u is an unknown vector. We denote: by Vs, a kernel of the
homomorphism Mo

Vo :={veV: My(v) =0};

by M1(Vs) an image of V2 on B; by homomorphism M;; and by M (Vs) its closure.
Let us consider a factor space

Q = B/ M1(V2).

Let M; be a homomorphism, which maps v € V on a class of equivalence [M; (v)]
of the factor space ). A given vector F' should fulfil the following necessary condition

< F,Ml(UQ) >= O, Vg € Vo (8.18)

The following existence principle holds:
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Theorem 8.3 (Abstract Existence Principle (G. Fichera)). A solution u of
functional equation (8.17) exists for any fivred F satisfying the condition (8.18) if
and only if there exists a constant K such that for any v € V the inequality

[M1(v)llg < K[[Ma(v)lls, (8.19)

holds.
Let A be a closed subspace of the space B3, consisting of the vectors ug, solutions
of the “homogeneous” problem

< ug, Ma(v) >=0, ve.

We denote by F the Banach factor space F := B; | A. For any F € B}, satisfying
the compatibility conditions (8.18) (that is to say for any element of the adjoint
space Q*), there exists uniquely defined U € F such that, if u is any element in the
equivalence class U, then u is a solution of equation (8.17) with

U7 < K| F[|5;- (8.20)

Inequality (8.20) is said to be a dual inequality of (8.19).

In our case under consideration instead of the functional equation (8.17) we have
equation (8.9), V =V, M is an identical operator,

My =L* By =By =B} =B = L(G), Q= L\ Vs,

where

Vo :={veV:L(v) =0}
M)l = Mi)]lle = Il := inf Jlv+wvalfz,

F=Lsy/A, A:={up € La(w) : (ug, L*v) = 0};

[U]|F :== inf_[[u+ uollz,
ug€A
and Fichera’s Abstract Existence Principle takes the form:

Theorem 8.4. A solution u € La(G) of the functional equation (8.9) exists for any
F € Ly(Q), satisfying condition

/ Fuvadr =0, vy € Vs, (8.21)
G

if and only if there exists a constant K such that for any v € V the inequality

[[v]llg = inf [[v+wall2 < K|L*(v)][2, (8.22)
v2 €V

18 valid; moreover
[Ull7=inf [[u+uol2 < K|F|2.
voEA
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Let now (8.16) be valid, then from
L* (UQ) =0
it follows that v = 0, i.e., Vo = {0}. Therefore,

y _
nf o+ vl = [l

and (8.22) holds, by virtue of (8.16). Hence, there exists a solution of the functional
equation (8.9), i.e., a weak solution of problem (8.1), (8.7). It is clear, that in this
case condition (8.21) is fulfilled for any F' € La(G).

In order to establish equality (8.16) we write identity (8.13) for the operator L*:

L*v-v+v; A% + %(EZZ —20)v = (v A"y — %Elv) i

)

After integrating the last equality on GG and using the Gauss-Ostrogradsky formula,
by virtue of (8.4), (8.5), (8.10) we have

g A 1
/ L*v - vdx + /[v,iA”vJ + %(E’Z —2C)v]dG — 3 /v@vdfg = 0.
Q
1)

Therefore, in view of (8.3), (8.6), (8.15), we have

1 : .
—/GL*U ~vdr > 5 /U(EZZ —2C)vdG > Z/ g v2dG = Z||v||%, ¢ = const.
G G k=1

On the other hand, applying the Holder enequality, we get
/G(—L*v)vdfﬂ < |l =Lz [loll2 = [IL70]l2 - [[v]|2-

Hence,
clloll3 < 1Lz - o]z,
i.e, (8.16) is valid. O

Remark 8.1. The system with nonsmooth coefficients (they are infinite on a subset
of T'%) we reduce to the present case by means of smoothing factors.

Remark 8.2. Let us introduce new unknown functions w;, ¢ = 1, m, by relations
w = Yw;, i=1m, € C%(@), ¥ >0 onG. (8.23)

Note, that the matrix ® is invariant to change of unknown functions (8.23), in the
sense of change of sign since for the system obtained

Ly:= (Aijwﬂ-)d + Eiw,i +Cw=F, w=(w - wn), (8.24)

where

AT =AY BN =§E 49 ,AY, C=9C,
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by virtue of (8.4), it looks like

If the function v is such that for the system (8.24) the condition (8.15) is valid, then
under assumptions of Theorem 8.2 there exists a weak solution of the problem

Lw=F, w|p,ur, =0, (8.25)

ie.,

N

(v, F) = (L*'v,w),

where L* is the operator conjugate to the operator L. But

(L*v,w) = (L*v, ") = (" L*v,u) = (L v, u),

since if AY = A%, then 3
Y~ 1L*v = L*v.
Thus,

(v, F) = (L*v,u),

i.e, a weak solution of problem (8.1), (8.7) exists and according to (8.23), we get it,
from the weak solution of problem (8.25).

9 The H-weak Solution for a Single Equation

For the convenience of the reader we repeat the relevant material from [15] (compare
with [16] Chapter I, §4) with proofs in a slightly changed form, thus making our
exposition of the present work self-contained.

Let G C R™ be a domain, I := JI', and

Lu = (AYuy),; +E'u,; +Cu = F, (9.1)

where real functions

A EleCH@); CeC(@), i, j=1,n. (9.2)

As usual we use the Einstein’s summation convention and indices after a comma
mean differentiation with respect to the corresponding variables.
Let
§AYE >0, xe G\TY, (9.3)

for any & € R', i = 1,n, such that

n
Y & >0,
=1

where

’:={zel: A9x) =0, i,j=1,n}. (9.4)
So, equation (9.1) is elliptic on G \ T with order degeneracy on I'’.
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Let

k=1

where f(k), k = 1,p, are smooth hypersurfaces with possibly common boundary
points, and to the domain G the Gauss-Ostrogradsky formula is applicable.
In points of smoothness of T'? let us consider the function, which we shall call
Fichera’s function,
o = F'y;, (9.5)

where v := (v1,...,1,) is the inward normal at the above boundary points. Let
further

To:={zecl?: &(x)=0}, T;:={zecl?: &) >0},
(9.6)
Iy:={xecl?: &) <0}, I'y:T\T1°%

Let o € T? be a common point of the hypersurfaces f(il), ...,T(iq) for certain

i,..0ig € {1,...,0}, 2 < q < p, i # ig, k # 1. If there exists a neighbourhood w;,
i:= (41, ...,1q), of the point xg, such that

(0 (579)) < ooy

then the above point will be added to I'y UT'3, otherwise it will be added to I'o UT';.
Let further I =T UT; Uy,

ulrzUF3 =0, (9-7)
Definition 9.1. Let C}, be the class of bounded functionss u such that
u € C*(G)NC(GUTyUTy),

Ay, A%, B e CYQ),

(AYu,; )|po =0, Lu be bounded in G. (9.8)

Definition 9.2. A function u € Cp, satisfying system (9.1) and BC (9.7) will be
called a regular solution of the BVP (9.1), (9.7).

For a function u € Cf, and a function v € C'(G) the integral identity
/ vLudr = —/ [AYv,; uy +uE™,; +(E,; —C)uv)dx
G G
—/ vA u;nidl — / uv®dl, (9.9)
I's r

where n is an inward normal, holds.
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Let W be the class of functions belonging to C*(G) and vanishing on T's (when
not empty). If u € Cf and vanishes a.e. on 'y UT's, then for any v € W the identity

/vLudx:—/[Aijv,ju,i +uB',; +(E,; —C')uv]dm—/ uvddl'. (9.10)
G G I't

is satisfied (see (9.9)).
Let us introduce a scalar product in W in the following way

(u,v)y = / (A0, +uv)d:c+/ uv|®|dl.
G Uy

The space ‘H will be the Hilbert space, obtained by functional completion from W
with the introduced scalar product.
Let us consider for u,v € W the bilinear form

B(u,v) = —/ (A, uy; +uE,; +(B,; —C)uv]ds —/ uv®dl. (9.11)
G I
It is easily seen that

1
Bu,v)| < K /G (Igradvl® +v?)dz + / of2dr)
1

where K is a constant, depending on the coefficients of L. For any fixed v € W,
B(u,v) can be considered as a linear bounded functional of u, defined on H.

Definition 9.3. A function v € H will be called an H-weak solution of the BVP
(9.1), (9.7) if F € Lo(G) and

/ vFdr = B(u,v) (9.12)
G

is valid for any v € W.
Let V (see Section 8 and take m = 1, then we get corresponding to equation
(9.1) results) coincide with the class of functions Cp« satisfying a.e. the BC

U‘Flul‘g = 07 (913)

(the space of such vectors v will be denoted by V, if for v and v € Cp, with (9.7)
equality (9.12) is valid), L* is the adjoint operator to L:

L*U = (Uai Al])’j _(UEi)ai +’UOa
then any H-weak solution is an La-weak solution.

According to the representation theorem of linear functionals in Hilbert spaces,
we have for u € H, v € W:

B(u,v) = (u, T(v))n,

where T'(v) is a linear transformation defined in VW and with range in H.
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For u € W, and v € W, from (9.11) we have
ij Lo Lo Lo
B(u,v) = — [ [AYv,; u,i+§uE Vy; —ivE Uy —|—(§E ’i —C)uv]dx
G

1 1
—/ uv@dI’—i—/ uv®dl’, (9.14)
2 Jr, 2 Jr,

since

. 1 , 1 ;
/uElv,idm‘: / uElv,idJJ+/ uFE'v,; dz
G 2 Ja 2 Ja

1 . 1 . 1 . 1 .
= / [uEzv,i += (uEZv),Z- ——u,; B'v — qulv} dz
2 Jo 2 2 2

1 , 1 1 . 1 .
= / uFE'v,; dx — / uCIJvdF—/ Uy E’vdm—/ ukE",; vdx.
2 Ja 2 Jryur, 2 Ja 2 Jc

Let us suppose that

1 .
§E’,i —C > c¢p=const >0 in GUT. (9.15)

This condition is satisfied if we assume C negative and |C| large enough. If (9.15)
is satisfied we easily get from (9.14) for v € W:

| B(v,v)] :/G[Aijv,jv,i—i—(;Ei,i —C)vﬂd:c—ki/ v?®dT
r

1
1
+/ W2BdT > MllvZ, (Ao > 0).
2 Jr,
Therefore,

1 1 1
loll3 < B, v)| < [, T)] < = vl T(@) I,
Ao Ao Ao

i.e.,

( /szdfﬂf < ol < 5. 17 (9.16)

Hence, from Fichera’s Abstract Existence Principle (see Theorem 8.3) we deduce:

Theorem 9.1. If condition (9.15) is satisfied, for any F' € La(G) an H-weak solu-
tion of problem (9.1), (9.7) exists.

The uniqueness of the H-weak solution is connected with the continuity of the
bilinear form B(u,v) with respect to the pair (u,v). When this is the case then,
since B(u,v) can be extended by continuity in H x H, from (9.16) uniqueness of the
‘H-weak solution follows easily.

Remark 9.1. B(u,v) is continuous with respect to the pair (u,v) in the case when
L is self-adjoint, i.e., when E* = 0. This is easilly seen from (9.14). In this case, if
C' is negative in G UT', an H-weak solution exists for any given f € Ly(G) and is
unique.
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10 Mathematical Moments

Let f(x1,79,73) be a given function in Q having integrable partial derivatives, let
fr be its r-th order moment defined as follows

(+)
h (z1,2)

Fr(@nas) = / F(ar, 9, 23) P (azs — b)das,
(=)

h (z1,22)
where (see Section 3)
1 %($1,$2)
= b = ——
CL(.’ITl,.’IZ‘Q) h($1,$2)7 ($17x2) h(l‘]_,fﬁz)’
(+) (=)
2h(x1,22) = h (1, 22) — h (21, 22) > 0,
~ (+) (=)
Qh(l'l,l'g) = h (xl, 1'2) + h (xl, 1'2) > 0,
and o ) )
1 d(r=-1)
B(7) = 2rel drm r=01-,

are the r-th order Legendre polynomials with the orhogonality property

+1 5
[ PaniPatryir = 52 s
-1
From here, substituting
(+) (=)
2 h (1, m2) + h (w1, 22)
T=ax3—b= xrg — )
(+) ) (+) (=)
h (z1, 22) — h (21, T2) h (z1, ©2) — h (1, 72)
we have
+)
. h (z1,22)
(m + 5)& / Py (axs — b)P,(axs — b)dxs = S
(Z>(x1,x2)

Using the well-known formulas of integration by parts (with respect to z3) and
differentiation with respect to a parameter of integrals depending on parameters
(z4), taking into account P,(1) =1, P.(—=1) = (—1)", we deduce

(+) (+)
h (x1,22) h (z1,22)

() =)
P.(ax3—b)f,3drs = —a / Pl(axs —b)fdxs+ f —(=1)" f, (10.1)

(=) (=)
h (z1,22) h (z1,z2)
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+)

h (z1,x
#1,22) (+)(+) ()-)
/ Pr(axS_b)faadl'?):fr,a_ f h,a+(_1)r f h a
(E)($17$2)
(2)(11,332)
- / Pl(axs — b)(a,0 T3 — by ) fdzs, a=1,2, (10.2)
(ﬁ)(ILIQ)

where superscript prime means differentiation with respect to the argument axs —

b, subscripts preceded by a comma mean partial derivatives with respect to the
(£) (£

corresponding variables, f := f[z1,22, h (21, z2)]. Applying the following relations

from the theory of the Legendre polynomials (see e.g. [25], p. 299 or p. 338-339 of

the second edition)

T _ (_1\r+s
Pl(r) =) (25+ ) i (21) Py(r)t,
s=0
— —1)r+s
TPT) =7rP.(T)+ P._{(1) = rP.(7) + 2(23 + 1)H(21)P5(T)m (10.3)
s=0
o Ay

(1/ ~ ~
and, in view of == = (Ina)’ = — b=ha,, ba=(ha),, it is easily seen
a

that

h' a

Gy a

Pl(az3 — b)(a,q 3 — b, ) = ——~(aw3 — b)Pl(ax3 — b) + (—Zb — b, )P/ (azx3 — b)

a a

= —h,o hY(azs — b)P.(azg — b) — h,q k™' P/ (az3 — b)
r—1
= —aar P(aws — b) = (s Ps(azs — b)Y, (10.4)
s=0

fion the top of the symbol 3 both 7 — 1 and r are true since the last term equals zero.
fion the top of the symbol 5 both r — 2 and r — 1 are true since the last term equals
Z€ro.
Vsince
—

hva +(71)T+Sh7a + ilya 7(71)T+S}~l7a
2h 2h

1
(2s+1) Ps(axs —b)
0

s=

. H =) @) )
B Zl (25 +1) ( Boo—h ot hoa (=17 — B/ (=1)r+s
a 2h

s=0 2

(+) (=) (+) (=)
@ a e’ -1 s — Yo -1 rts
L hatha—h (2) hoa (=1) )Ps(amg_b)

T

1 (+) L .(=)
h Yo' _(_1)7-"—6 h Yo'
2 1
(25 +1) 2h

Ps(axs — b)

w
I
o
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where

(+) (=)

r « T a -1 s h e’
aai::r%, s = (25 + 1)1 (Qh) hoo oy
Now, bearing in mind (10.4) and (10.3), from (10.1) and (10.2) we have
(?(171,962)
PT(CLCC?, - b)faa dzs
(ﬁ)(rhm)
LA (H)(+) (=)=)
= frat > Oasfs— f B ot (1) f ha a=12 (10.5)
s=0
(J};)(m,m)
" (+) L)
Po(aws —b)fsdrs =) asefs+ f —(=1) f, (10.6)
_ 5=0
(h>($1,962)
respectively. Here
ro 1— (=1)s*
azs := —(28 + ].)T
Let
= 3 L P, b 10.7
f(ar, @2, 35) = Zoa(r + 5 ) frl@r, @2) Pr(azs — ), (10.7)
then
) () - 1 s
f = f(z1,22, h (x1,22)) = ZO(L(s + i)fs(il)
L (£1)5(25 + 1) ,
- Z 2h fS) 1= 1737 (108)
s=0
whence
(+) =) e
— (=) f == asfs, i=13 (10.9)
s=0
(£)(+) (=)(=) ® r
fhwa—=(=1"f ha=) ahfe, i=13, a=12  (10.10)
s=0
where . . h
a’;s = aas: S 7é 7’, az@ = (27. + 1) ;la'
Substituting (10.10) and (10.9) into (10.5) and (10.6), respectively, we get
(Jlg)(m,xz) . .
Pr(al'?) - b)fva d.%'g = f'r,a + Zaasfs - ZaZsfS
) 5=0 s=0
h (z1,2z2)
= fr,a + Z Zasfs, (10.11)
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where

r T
bjs := —Qjs, S>1; bjs =0, s <r;
i, (;) (;L)
' —
bar = Aoy — = —(r + 1)%, by, = 0,
and
(#(171,962) - o
PT(CLCC?, - b)fa3 drs = Za&sfs - Zai%sfs
(- s=0 s=0
h (z1,%2)
oo
.
= = ) asfe, (10.12)
s=r+1
respectively.

(+) =)
If f and f are known (prescribed), then from (10.5) and (10.6), correspond-
ingly, we obtain

(+)
h (z1,%2) -
Pr(axfﬂ - b)faa drs = fr,oz + Zaasfs
s=0

(=)
h (z1,z2)

() (+) (+) 7"(—)(7) (=) (=)
+f o\ 1+ (h )2+ (h2)?+(=1)" fna\[14+(h 1)+ (h 2)?(10.13)

and
<;’;>(x1yx2)
P (axs —b)f,3dwg = Za3sfs
(i_z)(wl,mz)
(+) ) (+) ) r(_)(*) (=) (=)
fns +(h )2+ (h2?+ (0" f 3\ 1+(h1)?+ (h 2)? (10.14)
since
()
(+) Fha CI +1

\/1+((i),1)2+((i’,2)2 \/ Gzt (B2
11 Conclusions

1. Differential hierarchical models for piezoelectric nonhomogeneous viscoelastic
Kelvin-Voigt prismatic shells with voids are constructed. The ways of investigation
of boundary value problems and initial boundary value problems, including the
case of cusped prismatic shells [4], are indicated and some preliminary results are
presented.
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2. It is shown that in the case of hierarchical models of cusped prismatic shells,
depending on the character of vanishing of the thickness at the lateral boundary
of the prismatic shell, for well-posedness of the boundary value and initial bound-
ary value problems the setting of boundary conditions is nonclassical, in general.
Namely, in the case of nonclassical setting of boundary conditions they should be
either weighted ones or the cusped edge should be freed from boundary conditions.
In other words, at cusped edges: in the case of piezoelectric viscoelastic materials the
displacements, volume fraction, and electric potential cannot always be prescribed.

3. If either elastic, piezoelectric, and dielectric constitutive coefficients are indepen-
dent of the space points while the thickness of the prismatic shell vanishes in some
way at some part of the boundary of the prismatic shell or the thickness of the
prismatic shell is constant while the elastic, piezoelectric, and dielectric constitutive
coefficients vanish in the same way at the same part of the boundary of the prismatic
shell, then peculiarities of setting the boundary conditions for the displacement in
the first case and those arising for the volume fraction function and the electric
potential in the second case coincide. The stress-strain states coincide as well.

4. Antiplane deformation of piezoelectric nonhomogeneous transversely isotropic

materials in the three-dimensional formulation and in N = 0 approximation is anal-
ysed. Some boundary value problems are solved in explicit forms in concrete cases.
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