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On the Zeroes and Extrema of Generalised Clausen Functions
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Generalised Clausen functions arise in many areas of research in mathematics and physics.
Despite their importance in such different areas as Hodge theory, number theory and quantum
field theories, many properties still remain to be investigated. In particular, there seems to
be no account on the location of their zeroes and extreme values available in the literature.
However, it is well known that generalised Clausen functions may be expressed in terms of
Bernoulli polynomials in some special cases. In the following, we will take advantage of this
relationship in order to extend known results about Bernoulli polynomials to the generalised
Clausen functions.
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1. Definitions and some properties

The Clausen function Cl2(θ) given by

Cl2(θ) = −
∫ θ

0
ln
∣∣∣2 sin(x

2

)∣∣∣ dx =

∞∑
k=1

sin(kθ)

k2

was introduced in 1832 by Thomas Clausen [1] and is but one of a whole class of
related functions.

Definition 1.1: Standard Clausen Functions
The standard Clausen functions may be defined as:

Cl2n(θ) :=
∑∞

k=1
sin(kθ)
k2n

Cl2n−1(θ) :=
∑∞

k=1
cos(kθ)
k2n−1

Sl2n(θ) :=
∑∞

k=1
cos(kθ)
k2n

Sl2n−1(θ) :=
∑∞

k=1
sin(kθ)
k2n−1

,

for n ∈ N∗ = {1, 2, . . .}.
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This definition can be generalised to non-integer and even complex values of the
order.

Definition 1.2: Generalised Clausen Functions
The generalised Clausen functions may be defined through:Sν(θ) :=

∑∞
k=1

sin(kθ)
kν

Cν(θ) :=
∑∞

k=1
cos(kθ)

kν

,

for ℜ(ν) > 1 and extended to all of the complex plane through analytic continuation.

Some basic properties of the generalised Clausen functions may be derived directly
from the definitions.

Property 1.3: Periodicity
As the sine and cosine functions are periodic with period 2π, the generalised Clausen
functions exhibit the same periodicity:{

Sν(θ) = Sν(θ + 2nπ)

Cν(θ) = Cν(θ + 2nπ)
,

where n ∈ Z.

Property 1.4: Symmetries
As the sine and cosine functions are odd, respectively even functions, we have for
the generalised Clausen functions:{

Sν(θ) = −Sν(−θ)

Cν(θ) = Cν(−θ)
.

Furthermore, we thus have {
Sν(θ) = −Sν(2π − θ)

Cν(θ) = Cν(2π − θ)
.

Property 1.5: Derivatives with respect to the argument
As d

dθ sin(kθ) = k cos(kθ) and d
dθ cos(kθ) = −k sin(kθ), we obtain

{
d
dθSν(θ) = Cν−1(θ)

d
dθCν(θ) = −Sν−1(θ)

.

Some other properties are also easily obtained, i.e. the relationship between the
generalised Clausen functions and Bernoulli polynomials, respectively polyloga-
rithms.

Property 1.6: Relationship to the Bernoulli polynomials on the unit interval
The generalised Clausen functions of integer order are closely related to the Bernoulli
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polynomials on the unit interval. Indeed, using the Fourier series representation of
the Bernoulli polynomials, it is easy to see that forν odd: Sν(θ) =

(−1)
ν
2
+ 1

2 (2π)ν

2ν! Bν

(
θ
2π

)
ν even: Cν(θ) =

(−1)
ν
2
−1(2π)ν

2ν! Bν

(
θ
2π

) ,

where 0 ≤ θ
2π ≤ 1 respectively 0 ≤ θ ≤ 2π.

Property 1.7: Relationship to polylogarithms
The generalised Clausen functions may be expressed using polylogarithms:Sν(θ) = ℑ

(∑∞
k=1

eiθ

kν

)
= ℑ

(
Liν
(
eiθ
))

= 1
2 i
(
Liν(e

−iθ)− Liν(e
iθ)
)

Cν(θ) = ℜ
(∑∞

k=1
eiθ

kν

)
= ℜ

(
Liν
(
eiθ
))

= 1
2

(
Liν(e

−iθ) + Liν(e
iθ)
) .

2. The zeroes of the Bernoulli polynomials

The quest for the location of the zeroes and extrema of the Bernoulli polynomials
in the unit interval has been of considerable interest in the past.
In 1920, Nørlund [8] showed that{

ν odd: Bν

(
θ
2π

)
has three zeroes at 0, 12 , 1 in [0, 1]

ν even: Bν

(
θ
2π

)
has two zeroes rν and 1− rν in [0, 1]

and that the zeroes rν lie in [16 ,
1
4 ], ∀ν ≥ 2 and ν ∈ N. Several years later, Lense [5]

proved that the zeroes rν are strictly increasing towards 1
4 as ν → ∞, ∀ν ≥ 2 and

ν ∈ N. Then, in 1940, Lehmer [4] proves that for ν even

1

4
− 1

2π
2−ν < rν <

1

4
,∀ν ≥ 6

and checks explicitly that this is also true for ν = 2, 4. Furthermore he proves the
asymptotic formula:

rν ∼ 1

4
− 1

2π

(
2−ν − 4−ν + 4 · 6−ν +O

(
8−ν
))

, ∀ν ≥ 6 and ν even.

Finally, the problem is satisfactorily solved by Ostrowski in his 1960 paper [9], where
he gives, for ν even, the bounds

rν ∼ 1

4
− 1

2π

(
2−ν − 4−ν + 4 · 6−ν − 17

6
8−ν − 4 · 10−ν − 4 · 12−ν + 13p · 14−ν

)
,

where 0 < p < 1, ν ≥ 2 and also proves that rν increases monotonically with ν.
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3. An empirical result

In a recent paper [3], Filothodoros et al. notice that the zeroes θ2n−1 of the Clausen
functions Cl2n−1 (θ) occur close to rational multiples of π and give a formula for
the approximate location of these zeroes respectively the extrema of the Clausen
functions Cl2n (θ) for n ∈ N∗ = {1, 2, . . .}.
For ν = 2n− 1 (and thus odd), they conjecture that

rν ≈ 1

4
− 5

4

1

4
ν+3

2 − (−1)
ν+3

2

, for ν ≥ 1,

with rν = θν
2π . Obviously, we have r1 =

1
6 and

lim
ν→∞

(
1

4
− 5

4

1

4
ν+3

2 − (−1)
ν+3

2

)
=

1

4

Rewriting as

rν ≈ 1

4
− 5

32

(
1

1− (−1
4)

ν+3

2

)
2−ν

and noting that 1

1−(− 1

4
)
ν+3
2

≤ 16
15 for ν ≥ 1, so that 5

32

(
1

1−(− 1

4
)
ν+3
2

)
≤ 5

32 · 16
15 = 1

6 ,

the similarity to Lehmer’s expression above becomes apparent.
The expression given by Filothodoros et al. presents a major inconvenience as it

may not be applied to non integer values of the parameter n. We therefore propose
to modify it slightly as follows,

rν ≈ 1

4
− 5

4

1

4
ν+3

2 − sin(π2 ν)
, for ν ≥ 1,

producing the same results for integer ν, but not limited to integer values.

4. Generalised Clausen functions: Asymptotics for the zeroes and extrema

Lemma 4.1: The generalised Clausen functions Cν(θ), Sν(θ) and their derivatives
with respect to order converge absolutely and uniformly ∀θ ∈ R and ν > 1.

Proof : As Sν(θ) =
∑∞

k=1
sin(kθ)

kν ≤
∑∞

k=1
|sin(kθ)|

kν ≤
∑∞

k=1
1
kν

Cν(θ) =
∑∞

k=1
cos(kθ)

kν ≤
∑∞

k=1
|cos(kθ)|

kν ≤
∑∞

k=1
1
kν
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and −∂Sν(θ)
∂ν =

∑∞
k=1

ln(k) sin(kθ)
kν ≤

∑∞
k=1

|ln(k) sin(kθ)|
kν ≤

∑∞
k=1

ln(k)
kν

−∂Cν(θ)
∂ν =

∑∞
k=1

ln(k) cos(kθ)
kν ≤

∑∞
k=1

|ln(k) cos(kθ)|
kν ≤

∑∞
k=1

ln(k)
kν

,

the lemma is proved. �

Lemma 4.2: limν→∞ Sν(θ) = sin(θ) and limν→∞Cν(θ) = cos(θ).

Proof : Trivial, as limν→∞ k−ν = 0, ∀k ̸= 1. �

Proposition 4.3: In the interval [0, π], the generalised Clausen function Sν(θ)
with ν > 0 has no other zeroes than θ = 0 and θ = π.

Proof : Provided by Gergő Nemes [7].
We have

Sν(θ) =

∞∑
k=1

sin(kθ)

kν
= ℑ

( ∞∑
k=1

eikθ

kν

)
= ℑ

(
Liν(e

iθ)
)

=
1

Γ(ν)
ℑ
(∫ +∞

0

tν−1

et−iθ − 1
dt

)
=

sin(θ)

Γ(ν)

∫ +∞

0

tν−1et

e2t − 2et cos(θ) + 1
dt,

using

1

et−iθ − 1
=

et cos(θ)− 1 + i sin(θ)

e2t − 2et cos(θ) + 1
.

Now, as e2t − 2et cos(θ) + 1 ≥ e2t − 2et +1 = (et − 1)2 > 0 and tν−1et > 0, for t > 0,
the integral is strictly positive. As Γ(ν) > 0 for ν > 0 and sin(θ) > 0 for θ ∈]0, π[,
the assumption follows. �

Proposition 4.4: In the interval ]0, π[, the generalised Clausen function Cν(θ)
with ν > 0 is strictly decreasing.

Proof : Using the same approach as in the preceeding proposition, write

Cν(θ) =

∞∑
k=1

cos(kθ)

kν
= ℜ

( ∞∑
k=1

eikθ

kν

)
= ℜ

(
Liν(e

iθ)
)

=
1

Γ(ν)
ℜ
(∫ +∞

0

tν−1

et−iθ − 1
dt

)
=

1

Γ(ν)

∫ +∞

0

tν−1
(
et cos(θ)− 1

)
e2t − 2et cos(θ) + 1

dt := f(θ)

Then,

f(θ2)− f(θ1) =

1

Γ(ν)
(cos(θ2)− cos(θ1))

∫ +∞

0

tν−1et
(
e2t − 1

)
(e2t − 2et cos(θ1) + 1) (e2t − 2et cos(θ2) + 1)

dt

Now, since e2t − 2et cos(θi) + 1 ≥ (et − 1)2 > 0 ,e2t − 1 > 0, et > 0 and tν−1et > 0,
for t > 0, the integral is strictly positive. Thus, as Γ(ν) > 0 for ν > 0 and cos(θ) is
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decreasing in ]0, π[, the assumption follows. �

Corollary 4.5: The generalised Clausen function Cν(θ) with ν > 1 has a single
zero in the interval [0, π] and reaches at the endpoints of the interval its extrema
given by

Cν(0) = ζ(ν) > 0, and Cν(π) = (21−ν − 1)ζ(ν) < 0.

Proof : We have

Cν(0) =

∞∑
k=1

cos(0)

kν
=

∞∑
k=1

1

kν
= ζ(ν) > 0

and

Cν(π) =

∞∑
k=1

cos(kπ)

kν
=

∞∑
k=1

(−1)k

kν
= (21−ν − 1)ζ(ν) < 0.

As, by proposition 4.4, Cν(θ) is strictly decreasing in ]0, π[, the proof is complete. �

Proposition 4.6: The derivative ∂Cν(θ)
∂ν of the generalised Clausen function Cν(θ)

with respect to order is positive in the interval [π3 ,
π
2 ] for ν > 2.837756935 . . .

Proof : Write

∂Cν(θ)

∂ν
= −

∞∑
k=1

ln(k) cos(kθ)

kν

= − ln(2)

2ν
cos(2θ)− ln(3)

3ν
cos(3θ)−

∞∑
k=4

ln(k) cos(kθ)

kν

≥ − ln(2)

2ν
cos(2θ)− ln(3)

3ν
cos(3θ)−

∞∑
k=4

ln(k)

kν
, as |cos(kθ)| ≤ 1

= − ln(2)

2ν
cos(2θ)− ln(3)

3ν
cos(3θ) + ζ ′(ν) +

ln(2)

2ν
+

ln(3)

3ν

= 2
ln(2)

2ν
sin (θ)2 + 2

ln(3)

3ν
sin

(
3θ

2

)2

+ ζ ′(ν).

Now, for θ ∈ [π3 ,
π
2 ] the function f(θ, ν) := ln(2)

2ν sin (θ)2 + ln(3)
3ν sin

(
3θ
2

)2
reaches its

minimum in one of the endpoints of the interval, with

f
(π
3
, ν
)
=

3

4
· 2−ν ln(2) + 3−ν ln(3),

and

f
(π
2
, ν
)
= 2−ν ln(2) +

1

2
· 3−ν ln(3).
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Finally, as ζ ′(ν) is negative and monotonically increasing and both f
(
π
3 , ν
)
and

f
(
π
2 , ν
)
are positive and monotonically decreasing, we have

2f
(π
3
, ν
)
+ ζ ′(ν) = 2

(
3

4
· 2−ν ln(2) + 3−ν ln(3)

)
+ ζ ′(ν) ≥ 0,∀ν ≥ 2.836317129 . . .

and

2f
(π
2
, ν
)
+ ζ ′(ν) = 2

(
2−ν ln(2) +

1

2
· 3−ν ln(3)

)
+ ζ ′(ν) ≥ 0, ∀ν ≥ 2.837756935 . . . ,

so that ∂Cν(θ)
∂ν ≥ 0 for all ν ≥ 2.837756935 . . ., thus proving the assertion. �

Remark 4.7 : Using the method of the preceeding proposition, the limiting value
for ν may, in principle, be improved by considering more terms of the Fourier series.
However, this soon becomes impracticable, as the number of terms to be considered
increases rapidly, i.e. in order to refine the bound to ν ≥ 2, some forty terms would
be necessary.

Theorem 4.8 : The sequence of the zeroes θr(ν) of the generalised Clausen func-
tions Cν(θ) is increasing with ν for ν ≥ 2.837756935 . . . and limν→∞ θr(ν) =

π
2 .

Proof : We will prove the theorem following Lense’s method [5]. By property 1.5
and lemma 4.1,

Cν(θ) =

∞∑
k=1

cos(kθ)

kν

and

∂

∂ν
Cν(θ) = −

∞∑
k=1

ln(k) cos(kθ)

kν

converge absolutely and uniformly ∀θ ∈ R and ν > 1, while

d

dθ
Cν(θ) = −Sν−1(θ) = −

∞∑
k=1

sin(kθ)

kν−1

converges absolutely and uniformly ∀θ ∈ R and ν > 2. By corollary 4.5, every Cν(θ)
has a single zero θr(ν) in [0, π] and at these zeroes, we have

dθr(ν)

dν
= −

∂Cν(θr(ν))
∂ν

∂Cν(θr(ν))
∂θr(ν)

= −
−
∑∞

k=1
ln(k) cos(kθr(ν))

kν

−
∑∞

k=1
sin(kθr(ν))

kν−1

by implicit differentiation and using the fact that
∑∞

k=1
sin(kθr(ν))

kν−1 > 0 in ]0, π[ by

proposition 4.3. By proposition 4.6, the derivative ∂
∂νCν(θ) is positive in the interval
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[π3 ,
π
2 ] for ν ≥ 2.837756935 . . ., so that

dθr(ν)

dν
≥ 0

under the given conditions. Finally, θr(2.837756935 . . .) = 1.436065269 . . . ∈ [π3 ,
π
2 ]

and limν→∞Cν(θ) = cos(θ) by lemma 4.2. Noting that cos
(
π
2

)
= 0, the theorem is

proved. �

Corollary 4.9: The sequence of the maxima θM (ν) of the generalised Clausen
functions Sν(θ) is increasing with ν for ν ≥ 3.837756935 . . . and limν→∞ θM (ν) = π

2 .

Proof : Using property 1.5,

d

dθ
Sν(θ) = Cν−1(θ)

and theorem 4.8, the proof is immediate. �

Corollary 4.10: For all n ∈ N∗ = {1, 2, . . .}, the sequence of the zeroes θr(n) of
the generalised Clausen functions Cn(θ) is increasing with n and limn→∞ θr(n) =

π
2 .

Proof : We check that the assertion is true for n = 1 and n = 2. Indeed, we have

θr(1) =
π

3
= 1.047197551 . . .

and

θr(2) = π

(
1− 1√

3

)
= 1.327793289 . . . > θr(1)

Using theorem 4.8, the assertion follows. �

Corollary 4.11: For all n ∈ {2, 3, . . .}, the sequence of the maxima θM (n) of the
generalised Clausen functions Sn(θ) is increasing with n and limn→∞ θr(n) =

π
2 .

Proof : Follows immediately from corollary 4.10 and property 1.5. �

The analysis may be taken further by Lehmer’s approach [4], thereby obtaining
more precise estimates for the zeroes respectively extrema of the generalised Clausen
functions.

Theorem 4.12 : The zeroes θr(ν) of the generalised Clausen functions Cν(θ) are
bounded by π

2 − 2−ν from below and by π
2 from above for all ν ≥ 4.504983930 . . ..
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Proof : Write

Cν(θ) =

∞∑
k=1

cos (kθ)

kν

=

∞∑
k=1

cos
(
k
(
π
2 − α

))
kν

=

∞∑
ℓ=1

(−1)ℓ cos (2ℓα)

(2ℓ)ν
+

∞∑
ℓ=1

(−1)ℓ−1 sin ((2ℓ− 1)α)

(2ℓ− 1)ν

= sin(α)− 2−ν cos(2α)− 3−ν sin(3α) + 4−ν cos(4α) + 5−ν sin(5α) + . . . ,

with α = π
2 − θ. Thus, if Cν(θr(ν)) = 0, we have

sin(αr(ν)) = 2−ν cos(2αr(ν)) + 3−ν sin(3αr(ν))− 4−ν cos(4αr(ν))− 5−ν sin(5αr(ν)) + . . .

< 2−ν + 3−ν + 4−ν + . . . = ζ(ν)− 1,

as |cos(x)| ≤ 1 and |sin(x)| ≤ 1. Furthermore, using



cos(2x) < 1

sin(3x) = 3 sin(x) cos(x)2 − sin(x)3 < 3 sin(x)

cos(4x) = 1− 8 sin(x)2 cos(x)2 > 1− 8 sin(x)2

sin(5x) > 0

,

for x < π
6 , we have

sin(αr(ν)) =2−ν cos(2αr(ν)) + 3−ν sin(3αr(ν))− 4−ν cos(4αr(ν))− 5−ν sin(5αr(ν)) + . . .

≤2−ν + 3−ν · 3 sin(αr(ν))− 4−ν
(
1− 8 sin(αr(ν))

2
)
+

∞∑
i=6

i−ν

=2−ν + 3−ν · 3 sin(αr(ν))− 4−ν
(
1− 8 sin(αr(ν))

2
)

+ ζ(ν)− 1− 2−ν − 3−ν − 4−ν − 5−ν

=3−ν (3 sin(αr(ν))− 1)− 2 · 4−ν + 8 · 4−ν sin(αr(ν))
2 − 5−ν + ζ(ν)− 1

Now,

sin(αr(ν)) > αr(ν)−
αr(ν)

3

6

⇔ αr(ν) < sin(αr(ν)) +
αr(ν)

3

6

< sin(αr(ν)) +
1

6

(π
3
sin(αr(ν))

)3
= sin(αr(ν))

(
1 +

π3

162
sin(αr(ν))

2

)
,
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so that

⇔ αr(ν)

1 + π3

162 sin(αr(ν))2
< sin(αr(ν)),

as αr(ν) <
π
3 sin(αr(ν)) for αr(ν) <

π
6 . Thus,

αr(ν)

1 + π3

162 sin(αr(ν))2
< 3−ν (3 sin(αr(ν))− 1)−2·4−ν+8·4−ν sin(αr(ν))

2−5−ν+ζ(ν)−1,

respectively,

αr(ν)

1 + π3

162(ζ(ν)− 1)2

< 3−ν (3(ζ(ν)− 1)− 1)− 2 · 4−ν + 8 · 4−ν(ζ(ν)− 1)2 − 5−ν + ζ(ν)− 1

= 8 · 4−νζ(ν)2 +
(
3−ν+1 − 4−ν+2 + 1

)
ζ(ν)− 4 · 3−ν + 6 · 4−ν − 5−ν − 1,

using the upper bound sin(αr(ν)) < ζ(ν)− 1 given previously. Hence

αr(ν) <

(
1 +

π3

162
(ζ(ν)− 1)2

)(
8 · 4−νζ(ν)2 +

(
3−ν+1 − 4−ν+2 + 1

)
ζ(ν)

−4 · 3−ν + 6 · 4−ν − 5−ν − 1
)
.

The right hand side of this equation is monotonously decreasing to zero as ν → ∞,
such that

−2−ν +

(
1 +

π3

162
(ζ(ν)− 1)2

)(
8 · 4−νζ(ν)2 +

(
3−ν+1 − 4−ν+2 + 1

)
ζ(ν)

−4 · 3−ν + 6 · 4−ν − 5−ν − 1
)
= 0

for ν0 = 4.504983930 . . . and is negative for ν > ν0. Therefore

αr(ν)− 2−ν < 0

⇔ αr(ν) < 2−ν

for ν > ν0, so that

π

2
− 2−ν ≤ θr(ν) ≤

π

2

for ν > ν0, which completes the proof. �

Corollary 4.13: The maxima θM (ν) of the generalised Clausen functions Sν(θ)
are bounded by π

2 − 2−ν from below and by π
2 from above for all ν ≥ 5.504983930 . . ..

Proof : Using property 1.5,

d

dθ
Sν(θ) = Cν−1(θ)
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and theorem 4.12, the proof is immediate. �

Corollary 4.14: For all n ∈ {2, 3, . . .}, the zeroes θr(n) of the generalised Clausen
functions Cn(θ) are bounded by π

2 − 2−n from below and by π
2 from above.

Proof : We check that the assertion is true for n = 2, n = 3 and n = 4. Indeed, we
have

π

2
− 2−2 = 1.320796326 . . . ≤ θr(2) = π

(
1− 1√

3

)
= 1.327793289 . . . ≤ π

2
,

π

2
− 2−3 = 1.445796326 . . . ≤ θr(3) = 1.450345466 . . . ≤ π

2

and

π

2
− 2−4 = 1.508296326 . . . ≤ θr(4) = 1.510070527 . . . ≤ π

2

Using theorem 4.12, the assertion follows. �

Corollary 4.15: For all n ∈ {3, 4, . . .}, the maxima θM (n) of the generalised
Clausen functions Sn(θ) are bounded by π

2 − 2−n from below and by π
2 from above.

Proof : Follows immediately from corollary 4.14 and property 1.5. �

Remark 4.16 : More exact asymptotics may be obtained using now an iterative
process, such as the one described by Lehmer [4]. However, this is unnecessary at
this point, as we are going to investigate upper and lower bounds for the zeroes and
extrema in the next section, thereby automatically recovering more precise asymp-
totics.

5. Generalised Clausen functions: Bounds for the zeroes and extrema

In 1960, Ostrowski gave a very satisfactory solution for the problem under consider-
ation in the case of Bernoulli polynomials of even order [9], resulting in the following
theorem.

Theorem 5.1 : (Ostrowski)
The zeroes of the Bernoulli polynomials of even order are bounded by

θr(ν) ≤
π

2
−
(
2−ν − 4−ν + 4 · 6−ν − 17

6
8−ν − 4 · 10−ν − 4 · 12−ν

)
,

from above, and by

θr(ν) ≥
π

2
−
(
2−ν − 4−ν + 4 · 6−ν − 17

6
8−ν − 4 · 10−ν − 4 · 12−ν + 13 · 14−ν

)
,

from below, where ν ∈ {2, 4, 6, . . .} = 2N∗.
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Proof : For the proof, we would like to refer the interested reader to the original
paper [9]. �

Remark 5.2 : Although Ostrowski’s original theorem (and proof) considered only
the Bernoulli polynomials of even integer order, it may be applied to all values of
ν ≥ 10 and therefore to the generalised Clausen functions studied here.

Remark 5.3 : Using similar techniques, Delange [2] gives a complete asymptotic
series for the small positive zeroes of the Bernoulli polynomials in 1991, allowing us,
when extended to non-integer values of the order, to determine the location of the
zeroes/extrema of the generalised Clausen functions to an arbitrary precision.

At this point, one might be tempted to try to extend, respectively prove the validity
of these results for smaller and non-integer values of ν by the same methods, but we
would like to propose a slightly different approach in the following.

Lemma 5.4: The sum S0(ν) :=
∑∞

ℓ=0
(−1)ℓ+1

(2ℓ+2)ν may be expressed using Riemann’s

zeta function as:

S0(ν) :=

∞∑
ℓ=0

(−1)ℓ+1

(2ℓ+ 2)ν
= 2−ν

(
21−ν − 1

)
ζ (ν)

Proof : As

∞∑
ℓ=0

(−1)ℓ+1

(2ℓ+ 2)ν
= 2−ν

∞∑
ℓ=0

(−1)ℓ+1

(ℓ+ 1)ν
= −2−ν

∞∑
k=1

(−1)k−1

kν

= −2−νη(ν) = −2−ν
(
1− 21−ν

)
ζ(ν) = 2−ν

(
21−ν − 1

)
ζ(ν),

where η(ν) is the Dirichlet eta function (alternating zeta function), the assertion
follows. �

Lemma 5.5: The sums Sm(ν) :=
∑∞

ℓ=0
(−1)ℓ2m−1(m+ℓ−1)!

m!ℓ!(2ℓ+m)ν−1 are given by the recur-

rence relation:

Sm(ν) :=
(m− 2)2

m (m− 1)
Sm−2(ν)−

1

m (m− 1)
Sm−2(ν − 2),

with initial conditions

S1(ν) := β(ν − 1),

β(ν) denoting the Dirichlet beta function, and

S2(ν) := −21−ν
(
23−ν − 1

)
ζ(ν − 2).

Proof : By induction. We have

S1(ν) :=

∞∑
ℓ=0

(−1)ℓ 21−1 (1 + ℓ− 1)!

1!ℓ! (2ℓ+ 1)ν−1 =

∞∑
ℓ=0

(−1)ℓ

(2ℓ+ 1)ν−1 = β(ν − 1)
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by the definition of the Dirichlet beta function and

S2(ν) : =

∞∑
ℓ=0

(−1)ℓ 22−1 (2 + ℓ− 1)!

2!ℓ! (2ℓ+ 2)ν−1 =

∞∑
ℓ=0

(−1)ℓ (ℓ+ 1)

(2ℓ+ 2)ν−1 = 21−ν
∞∑
ℓ=0

(−1)ℓ (ℓ+ 1)

(ℓ+ 1)ν−1

= 21−ν
∞∑
k=0

(−1)k−1

kν−2
= 21−νη(ν − 2) = 21−ν

(
23−ν − 1

)
ζ(ν − 2).

Now, writing

Sm−2(ν) :=

∞∑
ℓ=0

(−1)ℓ 2m−3 (m+ ℓ− 3)!

(m− 2)!ℓ! (2ℓ+m− 2)ν−1 ,

we have

(m− 2)2

m (m− 1)
Sm−2(ν)−

1

m (m− 1)
Sm−2(ν − 2)

=
(m− 2)2

m (m− 1)

∞∑
ℓ=0

(−1)ℓ 2m−3 (m+ ℓ− 3)!

(m− 2)!ℓ! (2ℓ+m− 2)ν−1

− 1

m (m− 1)

∞∑
ℓ=0

(−1)ℓ 2m−3 (m+ ℓ− 3)!

(m− 2)!ℓ! (2ℓ+m− 2)ν−3

=
(m− 2)2

m (m− 1)

∞∑
ℓ=0

(−1)ℓ 2m−3 (m+ ℓ− 3)!

(m− 2)!ℓ! (2ℓ+m− 2)ν−1

− 1

m (m− 1)

∞∑
ℓ=0

(−1)ℓ 2m−3 (m+ ℓ− 3)! (2ℓ+m− 2)2

(m− 2)!ℓ! (2ℓ+m− 2)ν−1

=

∞∑
ℓ=0

(−1)ℓ 2m−3 (m+ ℓ− 3)!

(m− 2)!ℓ! (2ℓ+m− 2)ν−1

(
(m− 2)2 − (2ℓ+m− 2)2

m (m− 1)

)

=

∞∑
ℓ=0

(−1)(ℓ 2m−3 (m+ (ℓ− 1)− 2)!

(m− 2)! ((ℓ− 1) + 1)! (2(ℓ− 1) +m)ν−1

(
(m− 2)2 − (2(ℓ− 1) +m)2

m (m− 1)

)
.

By a change of variable ℓ− 1 → k, the expression may be written as

−
∞∑

k=−1

(−1)k 2m−3 (m+ k − 2)!

(m− 2)! (k + 1)! (2k +m)ν−1

(
(m− 2)2 − (2k +m)2

m (m− 1)

)

= −
∞∑

k=−1

(−1)k 2m−1 (m+ k − 1)!2−2m (m− 1)

m!k! (2k +m)ν−1 (m+ k − 1) (k + 1)

(
(m− 2)2 − (2k +m)2

m (m− 1)

)
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= −
∞∑

k=−1

(−1)k 2m−1 (m+ k − 1)!

m!k! (2k +m)ν−1

2−2m (m− 1)
(
(m− 2)2 − (2k +m)2

)
(m+ k − 1) (k + 1)m (m− 1)


= −

∞∑
k=−1

(−1)k 2m−1 (m+ k − 1)!

m!k! (2k +m)ν−1 (−1)

=

∞∑
k=−1

(−1)k 2m−1 (m+ k − 1)!

m!k! (2k +m)ν−1 .

Finally, using the fact that for k = −1 we have (−1)k2m−1(m+k−1)!

m!k!(2k+m)ν−1 = 0, and renaming

the variable k → ℓ;

∞∑
k=−1

(−1)k 2m−1 (m+ k − 1)!

m!k! (2k +m)ν−1 =

∞∑
k=0

(−1)k 2m−1 (m+ k − 1)!

m!k! (2k +m)ν−1

=

∞∑
ℓ=0

(−1)ℓ 2m−1 (m+ ℓ− 1)!

m!ℓ! (2ℓ+m)ν−1

= Sm(ν),

the assumption is proved. �

Remark 5.6 : The interested reader might notice that there exists a “closed form”
for the sums given above. Indeed, we may writeS2m−1(ν) =

1
(2m−1)!

∑m
i=1(−1)i22it2m−1,2m−1−2iβ(ν − 2i+ 1)

S2m(ν) = − 2m−ν

(2m)!

∑m
i=1(−1)it2m,2m−2i

(
2i+1−ν − 1

)
ζ(ν − 2i)

,

for m ∈ N∗ = {1, 2, . . .} and where the tn,k are the (unsigned) central factorial
numbers (see OEIS sequences A008956 [10] and A008955 [11]).

The next lemma is a well known result, used in diverse areas of mathematics and
physics, but we will nevertheless give its proof for the sake of completeness.

Lemma 5.7: We have

a−(b+1) =
1

Γ (b+ 1)

∫ ∞

0
tbe−atdt.

Proof : Letting x = at, we have dx = adt, so that∫ ∞

0
tbe−atdt =

∫ ∞

0

(x
a

)b
e−x 1

a
dx =

(
1

a

)b+1 ∫ ∞

0
xbe−xdx = a−(b+1)Γ (b+ 1) ,

by the definition of the gamma function. Dividing by Γ (b+ 1), the proof is complete.
�

The following is another quite elementary lemma that will be needed.
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Lemma 5.8: For all t ∈ R, we have

(
2 cosh

(
t√

m+1

))m+1(
2 cosh

(
t√
m

))m ≥ 2.

Proof : Consider(
e(

t√
m+1) + e(−

t√
m+1)

)m+1

(
e

(
t√
m

)
+ e

(
− t√

m

))m =
e(t

√
m+1)

(
1 + e(−

2t√
m+1)

)m+1

e(t
√
m)
(
1 + e

(
− 2t√

m

))m

=
e(t

√
m+1)

e(t
√
m)︸ ︷︷ ︸

≥1

(
1 + e(−

2t√
m+1)

1 + e

(
− 2t√

m

)
)m

︸ ︷︷ ︸
≥1

(
1 + e(−

2t√
m+1)

)
︸ ︷︷ ︸

≥1

≥ 1,

Multiplying both sides by 2 = 2m+1

2m :

2m+1
(
e(

t√
m+1) + e(−

t√
m+1)

)m+1

2m
(
e

(
t√
m

)
+ e

(
− t√

m

))m =

(
2 cosh

(
t√

m+1

))m+1(
2 cosh

(
t√
m

))m ≥ 2,

thus proving the assertion. �

Proposition 5.9: For all m ∈ N∗ and ν > 1, the following holds:

m
ν+1

2 Sm(ν) =
1

2Γ (ν − 1)

∫ ∞

0

tν−2(
cosh

(
t√
m

))mdt

Proof : Using Abel-summation,

m
ν+1

2 Sm(ν) = m
ν+1

2 lim
x→1−

∞∑
ℓ=0

(−1)ℓ 2m−1 (m+ ℓ− 1)!

m!ℓ! (2ℓ+m)ν−1 xℓ

= lim
x→1−

∞∑
ℓ=0

(−1)ℓ 2m−1 (m+ ℓ− 1)!

m!ℓ! (2ℓ+m)ν−1 m
ν+1

2 xℓ

= 2m−1 lim
x→1−

∞∑
ℓ=0

(−1)ℓ
(m+ ℓ− 1)!

(m− 1)!ℓ!

m
ν+1

2

m (2ℓ+m)ν−1x
ℓ

= 2m−1 lim
x→1−

∞∑
ℓ=0

(−1)ℓ
(
m+ ℓ− 1

ℓ

)
m

ν+1

2
−1

(2ℓ+m)ν−1x
ℓ
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= 2m−1 lim
x→1−

∞∑
ℓ=0

(−1)ℓ
(
m+ ℓ− 1

ℓ

)
m

ν−1

2 (2ℓ+m)1−ν xℓ

= 2m−1 lim
x→1−

∞∑
ℓ=0

(−1)ℓ
(
m+ ℓ− 1

ℓ

)(
m− 1

2

)1−ν
(2ℓ+m)1−ν xℓ

= 2m−1 lim
x→1−

∞∑
ℓ=0

(−1)ℓ
(
m+ ℓ− 1

ℓ

)(
2ℓ+m√

m

)1−ν

xℓ

= 2m−1 lim
x→1−

∞∑
ℓ=0

(−1)ℓ
(
m+ ℓ− 1

ℓ

)
1

Γ (ν − 1)

∫ ∞

0
tν−2e−

2ℓ+m√
m

tdt · xℓ

= 2m−1 lim
x→1−

∞∑
ℓ=0

(−1)ℓ
(
m+ ℓ− 1

ℓ

)
1

Γ (ν − 1)

∫ ∞

0
tν−2e−

√
mte−

2ℓ√
m
tdt · xℓ,

using lemma 5.7. Now, writing e−
2ℓ√
m
t =

(
e−

2t√
m

)ℓ
, and interchanging integration

and summation:

m
ν+1

2 Sm(ν)

= 2m−1 lim
x→1−

1

Γ (ν − 1)

∫ ∞

0
tν−2e−

√
mt

∞∑
ℓ=0

(−1)ℓ
(
m+ ℓ− 1

ℓ

)(
e−

2t√
m

)ℓ
xℓdt

= 2m−1 lim
x→1−

1

Γ (ν − 1)

∫ ∞

0
tν−2e−

√
mt

∞∑
ℓ=0

(
m+ ℓ− 1

ℓ

)(
−xe−

2t√
m

)ℓ
dt

= 2m−1 lim
x→1−

1

Γ (ν − 1)

∫ ∞

0
tν−2e−

√
mt
(
1 + xe−

2t√
m

)−m
dt,

where we used Newton’s generalised binomial theorem. Thus

m
ν+1

2 Sm(ν) = 2m−1 1

Γ (ν − 1)

∫ ∞

0
tν−2e−

√
mt
(
1 + e−

2t√
m

)−m
dt

= 2m−1 1

Γ (ν − 1)

∫ ∞

0
tν−2

(
e

t√
m

)−m (
1 + e−

2t√
m

)−m
dt

= 2m−1 1

Γ (ν − 1)

∫ ∞

0
tν−2

(
e

t√
m + e−

t√
m

)−m
dt

= 2m−1 1

Γ (ν − 1)

∫ ∞

0
tν−22−m

(
cosh

(
t√
m

))−m

dt

=
1

2Γ (ν − 1)

∫ ∞

0

tν−2(
cosh

(
t√
m

))mdt

as stated. �
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Corollary 5.10: For all m ∈ N∗ = {1, 2, . . .} and ν > 1,

m
ν+1

2 Sm(ν) ≥ (m+ 1)
ν+1

2 Sm+1(ν)

Proof : Using proposition 5.9 and lemma 5.8 the corollary follows immediately. �

Proposition 5.11: The generalised Clausen functions Cν(θ) may alternatively be
written as

Cν(θ) =

∞∑
m=0

Sm(ν) (sin (α))m

with α = π
2 − θ.

Proof : Using the properties of the Chebyshev polynomials of the first kind Tℓ (x),
write

Cν(θ) =

∞∑
k=1

cos (kθ)

kν
=

∞∑
k=1

cos
(
k
(
π
2 − α

))
kν

=

∞∑
ℓ=1

(−1)ℓ cos (2ℓα)

(2ℓ)ν
+

∞∑
ℓ=1

(−1)ℓ−1 sin ((2ℓ− 1)α)

(2ℓ− 1)ν

=

∞∑
ℓ=1

Tℓ (sin (α))

ℓν

with α = π
2 − θ. Now, the coefficient sm of xm in the Chebyshev polynomial of the

first kind of order T2k+m (x) is given by (see [6]):

sm = (−1)k2m−1 (2k +m)
(m+ k − 1)!

k!m!
,

for 2k +m > 0. Summing now over all ℓ, we have

Cν(θ) =

∞∑
ℓ=1

Tℓ ((sin (α))

ℓν

=

∞∑
ℓ=0

(−1)ℓ+1

(2ℓ+ 2)ν
+

∞∑
ℓ=0

(−1)ℓ 21−1 (1 + ℓ− 1)!

1!ℓ! (2ℓ+ 1)ν−1 sin (α)

+

∞∑
ℓ=0

(−1)ℓ 22−1 (2 + ℓ− 1)!

2!ℓ! (2ℓ+ 2)ν−1 (sin (α))2 + . . .

= S0(ν) +S1(ν) sin (α) +S2(ν) (sin (α))
2 + . . .

=

∞∑
m=0

Sm(ν) (sin (α))m ,

as stated. �
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Proposition 5.11 can now be used together with corollary 5.10 to obtain bounds
for the location of the zeroes of the generalised Clausen functions Cν(θ).

Theorem 5.12 : In first approximation, the zeroes θr (ν) of the generalised
Clausen functions Cν(θ) are bounded as

arccos

(
−2−ν

(
21−ν − 1

)
ζ (ν)

ζ
(
ν+1
2

)
β (ν − 1)

)
≥ θr (ν) ≥ arccos

(
−2−ν

(
21−ν − 1

)
ζ (ν)

β (ν − 1)

)
.

A three term approximation leads to the improved bounds

arccos

−
1

2

−β (ν − 1) +

√
(β (ν − 1))2 + 4 2

ν+1
2

(
ζ
(

ν+1
2

)
− 1

)
21−ν (23−ν − 1) ζ (ν − 2) 2−ν (21−ν − 1) ζ (ν)

2
ν+1
2

(
ζ
(

ν+1
2

)
− 1

)
21−ν (23−ν − 1) ζ (ν − 2)



≥ θr (ν) ,

θr (ν) ≥ arccos

 1

2

−β (ν − 1) +
√

(β (ν − 1))2 + 4 21−ν (23−ν − 1) ζ (ν − 2) 2−ν (21−ν − 1) ζ (ν)

21−ν (23−ν − 1) ζ (ν − 2)

 ,

Proof : By proposition 5.11,

Cν(θ) =

∞∑
m=0

Sm(ν) (sin (α))m = S0(ν) +S1(ν) sin (α) +R1 (ν)

= S0(ν) +S1(ν) sin (α) +S2(ν) (sin (α))
2 +R2 (ν) ,

with

R1(ν) =

∞∑
m=2

Sm(ν) (sin (α))m

respectively

R2(ν) =

∞∑
m=3

Sm(ν) (sin (α))m .

Now, R1(ν) and R2(ν) may be bounded as

0 ≤ R1(ν) =

∞∑
m=2

Sm(ν) (sin (α))m ≤ S1(ν)

(
ζ

(
ν + 1

2

)
− 1

)
sin (α)

and

0 ≤ R2(ν) =

∞∑
m=3

Sm(ν) (sin (α))m ≤ S2(ν)

(
2

ν+1

2

(
ζ

(
ν + 1

2

)
− 1

)
− 1

)
sin (α)2
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using corollary 5.10, so that

S0(ν) +S1(ν) sin (α) ≤ Cν(θ)

≤ S0(ν) +S1(ν) sin (α) +S1(ν)

(
ζ

(
ν + 1

2

)
− 1

)
sin (α)

and similarly

S0(ν) +S1(ν) sin (α) +S2(ν) (sin (α))
2 ≤ Cν(θ)

≤ S0(ν) +S1(ν) sin (α) +S2(ν)2
ν+1

2

(
ζ

(
ν + 1

2

)
− 1

)
(sin (α))2 .

Using now the fact that

S0(ν) = 2−ν
(
21−ν − 1

)
ζ (ν) ,

S1(ν) = β(ν − 1)

and

S2(ν) = −21−ν
(
23−ν − 1

)
ζ(ν − 2),

bounds for sin (αr (ν)) (and thus for θr (ν) ) may be obtained by solving these in-
equalities when Cν (θr (ν)) = 0. In first approximation, we have

−2−ν
(
21−ν − 1

)
ζ (ν)

ζ
(
ν+1
2

)
β (ν − 1)

≤ sin (αr (ν)) ≤
−2−ν

(
21−ν − 1

)
ζ (ν)

β (ν − 1)
,

respectively

π

2
− arcsin

(
−2−ν

(
21−ν − 1

)
ζ (ν)

ζ
(
ν+1
2

)
β (ν − 1)

)

≥ θr (ν) ≥
π

2
− arcsin

(
−2−ν

(
21−ν − 1

)
ζ (ν)

β (ν − 1)

)

⇔ arccos

(
−2−ν

(
21−ν − 1

)
ζ (ν)

ζ
(
ν+1
2

)
β (ν − 1)

)
≥ θr (ν) ≥ arccos

(
−2−ν

(
21−ν − 1

)
ζ (ν)

β (ν − 1)

)
.

Using the second approximation, one obtains

−
1

2

−β (ν − 1) +

√
(β (ν − 1))2 + 4 2

ν+1
2

(
ζ
(

ν+1
2

)
− 1

)
21−ν (23−ν − 1) ζ (ν − 2) 2−ν (21−ν − 1) ζ (ν)

2
ν+1
2

(
ζ
(

ν+1
2

)
− 1

)
21−ν (23−ν − 1) ζ (ν − 2)

≤ sin (αr (ν)) ,



110 Lecture Notes of TICMI

sin (αr (ν)) ≤
1

2

−β (ν − 1) +
√

(β (ν − 1))2 + 4 21−ν (23−ν − 1) ζ (ν − 2) 2−ν (21−ν − 1) ζ (ν)

21−ν (23−ν − 1) ζ (ν − 2)
,

respectively

arccos

−
1

2

−β (ν − 1) +

√
(β (ν − 1))2 + 4 2

ν+1
2

(
ζ
(

ν+1
2

)
− 1

)
21−ν (23−ν − 1) ζ (ν − 2) 2−ν (21−ν − 1) ζ (ν)

2
ν+1
2

(
ζ
(

ν+1
2

)
− 1

)
21−ν (23−ν − 1) ζ (ν − 2)


≥ θr (ν) ,

θr (ν) ≥ arccos

 1

2

−β (ν − 1) +
√

(β (ν − 1))2 + 4 21−ν (23−ν − 1) ζ (ν − 2) 2−ν (21−ν − 1) ζ (ν)

21−ν (23−ν − 1) ζ (ν − 2)

 ,

which completes the proof. �

With the help of the preceeding theorem 5.12, proposition 4.6 may be improved
slightly.

Proposition 5.13: The derivative ∂Cν(θ)
∂ν of the generalised Clausen function

Cν(θ) with respect to order is positive at the zeroes θr (ν) of Cν(θ) for ν >
2.396613412 . . ..

Proof : Write

∂Cν(θ)

∂ν
= −

∞∑
k=1

ln(k) cos(kθ)

kν
= −

∞∑
k=2

ln(k) cos(kθ)

kν

= − ln(n)

∞∑
k=2

cos(kθ)

kν
−

∞∑
k=2

ln( kn) cos(kθ)

kν

= − ln(n)

∞∑
k=1

cos(kθ)

kν
+ ln(n) cos(θ)−

∞∑
k=2

ln( kn) cos(kθ)

kν

= − ln(n)Cν(θ) + ln(n) cos(θ)−
∞∑
k=2

ln( kn) cos(kθ)

kν
.

Setting n = 3, we have

∂Cν(θ)

∂ν
= − ln(3)Cν(θ) + ln(3) cos(θ)−

∞∑
k=2

ln(k3 ) cos(kθ)

kν

= − ln(3)Cν(θ) + ln(3) cos(θ)−
ln(23) cos(2θ)

2ν
−

∞∑
k=3

ln(k3 ) cos(kθ)

kν

= − ln(3)Cν(θ) + ln(3) cos(θ) +
ln(32) cos(2θ)

2ν
−

∞∑
k=4

ln(k3 ) cos(kθ)

kν
.
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Furthermore

∞∑
k=4

ln(k3 ) cos(kθ)

kν
≤

∞∑
k=4

ln(k3 )

kν
≤
∫ ∞

k=3

ln(k3 )

kν
=

31−ν

(ν − 1)2
,

so that

∂Cν(θ)

∂ν
≥ − ln(3)Cν(θ) + ln(3) cos(θ) +

ln(32) cos(2θ)

2ν
− 31−ν

(ν − 1)2
.

Thus, at the zeroes θr (ν) of Cν(θ),

∂Cν(θ)

∂ν

∣∣∣∣
θr(ν)

≥ ln(3) cos(θ) +
ln(32) cos(2θ)

2ν
− 31−ν

(ν − 1)2
.

Now, ln(3) cos(θ) +
ln( 3

2
) cos(2θ)

2ν − 31−ν

(ν−1)2 is monotonically decreasing from ln(3) +
ln( 3

2
)

2ν − 31−ν

(ν−1)2 in [0, π2 ], as

∂

∂θ

(
ln(3) cos(θ) +

ln(32) cos(2θ)

2ν
− 31−ν

(ν − 1)2

)

= − ln(3) sin(θ)− 21−ν ln(
3

2
) sin(2θ)

= −2−ν sin(θ)

(
4 ln(

3

2
) cos(θ) + 2ν ln(3)

)
≤ 0

for all θ ∈ [0, π2 ] and ν ≥
ln(

4 ln( 3
2
)

ln(3)
)

ln(2) and therefore has a single zero

θ′r (ν) = arccos

− ln(3)2ν +

√
(ln(3))2 22ν + 8

(
ln
(
3
2

))2
+ 8

ln( 3

2)31−ν2ν

(ν−1)2

4 ln
(
3
2

)


in this interval, such that ∂Cν(θ)
∂ν

∣∣∣
θr(ν)

≥ 0, ∀θ ∈ [0, θ′r (ν)]. Using now the upper

bound from the three term approximation in theorem 5.12 and noting that this
upper bound is less than θ′r (ν) for all ν > 2.396613412 . . . (Figure 1), the proposition
is proved.

�

Remark 5.14 : Again, using the method of the preceeding proposition, the limit-
ing value for ν may be improved by considering more terms of the expansion (i.e.
increasing n), but, once more, the number of terms to be considered increases rapidly.
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Figure 1. Positivity of
∂Cν(θ)

∂ν
for ν > 2.396613412 . . .

6. Conclusions

In the present work, several known results about the Bernoulli polynomials have
been applied and extended to the generalised Clausen functions of arbitrary real
orders ν ≥ 1. In the course, improved bounds and asymptotics for the zeroes and
extrema have been obtained (Figure 2) and a few new tracks for the study of this
class of functions are shown. Finally, we would like to emphasise the importance of
further research devoted both to the derivatives of polylogarithms with respect to
order, as well as to other functions of a related form.

Figure 2. Comparison of the different bounds and exact locations
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