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On the Zeroes and Extrema of Generalised Clausen Functions
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Generalised Clausen functions arise in many areas of research in mathematics and physics.
Despite their importance in such different areas as Hodge theory, number theory and quantum
field theories, many properties still remain to be investigated. In particular, there seems to
be no account on the location of their zeroes and extreme values available in the literature.
However, it is well known that generalised Clausen functions may be expressed in terms of
Bernoulli polynomials in some special cases. In the following, we will take advantage of this
relationship in order to extend known results about Bernoulli polynomials to the generalised
Clausen functions.
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1. Definitions and some properties

The Clausen function Cly(6) given by

o0

Cla(0) = — /09 In ‘2sin (g) ) dr = Z Sin}sfe)

k=1
was introduced in 1832 by Thomas Clausen [1] and is but one of a whole class of
related functions.

Definition 1.1: Standard Clausen Functions
The standard Clausen functions may be defined as:

Clan () 1= 352, 0lk0)
Clon-1(0) := Y50, o)
Slon(8) := 52, 40
Slon—1(0) == "1y 5,12‘,5’3?)

forne N*={1,2,...}.
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This definition can be generalised to non-integer and even complex values of the
order.

Definition 1.2: Generalised Clausen Functions
The generalised Clausen functions may be defined through:

S, () := Y50, Snlko)
Cy(e) = Zzozl CO?C(ZC@) 9

for ®(v) > 1 and extended to all of the complex plane through analytic continuation.

Some basic properties of the generalised Clausen functions may be derived directly
from the definitions.

Property 1.3: Periodicity
As the sine and cosine functions are periodic with period 27, the generalised Clausen
functions exhibit the same periodicity:

{S,,(H) = 5,(0 + 2nm)
C,(0) = C,(0 + 2nm)

where n € 7.

Property 1.4: Symmetries
As the sine and cosine functions are odd, respectively even functions, we have for
the generalised Clausen functions:

Furthermore, we thus have

S,(8) = —S, (27 — 0)
{CV(H) = Cl/(27r - '9)

Property 1.5: Derivatives with respect to the argument
As d% sin(kf) = k cos(kf) and d% cos(kf) = —ksin(k6), we obtain

{ddes,,(e) =C,_1(0)
LC,(0) =—S,_1(0)
Some other properties are also easily obtained, i.e. the relationship between the

generalised Clausen functions and Bernoulli polynomials, respectively polyloga-
rithms.

Property 1.6: Relationship to the Bernoulli polynomials on the unit interval
The generalised Clausen functions of integer order are closely related to the Bernoulli
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polynomials on the unit interval. Indeed, using the Fourier series representation of
the Bernoulli polynomials, it is easy to see that for

vodd: S, () = S5 G0 R (0
0

v even: Cy,(6) = %Bv (Tr)

where 0 < % < 1 respectively 0 < 6 < 27.
Property 1.7: Relationship to polylogarithms

The generalised Clausen functions may be expressed using polylogarithms:

$u(0) =S (L2 ) = S (Liy (¢7)) = 3i (Lin(e ™) — Liy(e))
R (05 ) =R (Ui () = § (Liv(e™™) + Liy ()

2. The zeroes of the Bernoulli polynomials

The quest for the location of the zeroes and extrema of the Bernoulli polynomials
in the unit interval has been of considerable interest in the past.
In 1920, Ngrlund [8] showed that

v odd: B, (%) has three zeroes at 0, %, 1in [0,1]
v even: B, %) has two zeroes r, and 1 — r,, in [0, 1]
and that the zeroes r, lie in [}, L

7}, Vv > 2 and v € N. Several years later, Lense [5]
proved that the zeroes r, are strictly increasing towards % as v — oo, Vv > 2 and
v € N. Then, in 1940, Lehmer [4] proves that for v even

1 12"’< <1v >6
1 o7 TvS =

and checks explicitly that this is also true for v = 2,4. Furthermore he proves the
asymptotic formula:

1 1

Ty~ — — —

17 9 (2_” -4V +4-67V+0 (8_”)) ,Vv > 6 and v even.

Finally, the problem is satisfactorily solved by Ostrowski in his 1960 paper [9], where
he gives, for v even, the bounds

oo Loy g Mgy 0 g9 £ asp 14 )
4 27 6

where 0 < p < 1, v > 2 and also proves that r, increases monotonically with v.
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3. An empirical result

In a recent paper [3], Filothodoros et al. notice that the zeroes 65,1 of the Clausen
functions Clgy,—1 (0) occur close to rational multiples of m and give a formula for
the approximate location of these zeroes respectively the extrema of the Clausen
functions Clay, (0) for n € N* ={1,2,...}.

For v = 2n — 1 (and thus odd), they conjecture that

for v > 1,

)
Z V13 v+3 9

with r, = g—;. Obviously, we have r; = % and

Rewriting as

-
<
X
=
|
w
B o
~/
—
|
—~
|| =
=
N—
<
wlt
w
~__—
~
N

and noting that ﬁ < %g for v > 1, so that 3% (M,) <216 %7
1 —(=3
the similarity to Lehmer’s expression above becomes apparent.
The expression given by Filothodoros et al. presents a major inconvenience as it
may not be applied to non integer values of the parameter n. We therefore propose

to modify it slightly as follows,

producing the same results for integer v, but not limited to integer values.

4. Generalised Clausen functions: Asymptotics for the zeroes and extrema

Lemma 4.1: The generalised Clausen functions C,(0), S, (6) and their derivatives
with respect to order converge absolutely and uniformly V0 € R and v > 1.

Proof: As

oo sin(k6 oo |sin(k6 )
SV(G) = Zk:l (' ) < Zk: l ( A < Zk*l k%

oo cos(k6) cos k@
Cu(0) =3 520 Lynpe Lol < 5o LB
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and
0) o Z n(k) 51n(k49) < Z |1n k) sln(k0)| < Z )
In(k) cos(k6) In(k) cos(k6) n(k ’
Zkl (k" <Zk 1%<Zkl (v)
the lemma is proved. O
Lemma 4.2: lim, , S,(0) = sin(f) and lim,_,o C,,(0) = cos(h).
Proof: Trivial, as lim,_,.c k7% = 0,Vk # 1. O

Proposition 4.3: In the interval [0, 7], the generalised Clausen function S, ()
with v > 0 has no other zeroes than 8 =0 and 6 = .

Proof: Provided by Gergé Nemes [7].

We have
sin(k0) e 0
S,(0) = i ( | =S (Lll,(e ))
k=1 =1
B 1 o /-‘roo tu—l ar) — sin(@) /+oo tu—let "
T\ 1Y) T TW) Jy 2 —2efcos() + 1
using

1 el cos(f) — 1+ isin(0)

et — 1 2t — 2etcos(f) + 1

Now, as e?® —2¢efcos(f) +1 > e —2et +1 = (e! —1)2 > 0 and t"1e! > 0, for t > 0,
the integral is strictly positive. As I'(v) > 0 for v > 0 and sin(f) > 0 for 6 €0, 7|,
the assumption follows. O

Proposition 4.4: In the interval |0, [, the generalised Clausen function C,(0)
with v > 0 s strictly decreasing.

Proof: Using the same approach as in the preceeding proposition, write
o o0 ;
cos(kf) ek? . B
C(0) =Y 0= =R <§ | =R (L)

1 oo -1 1 +o0 pr—1 (et cos(6) — 1) -
Tt (/ et—”—ldt) T T / & accos@) 110 = I

Then,

f(02) — f(61) =
tu—let (e2t o 1)

+o00
'(v) (cos(62) - COS(GI))/O (e2t — 2et cos(f1) + 1) (€2t — 2et cos(h2) + 1)dt

Now, since e?! — 2el cos(6;) +1 > (¢! —1)2 >0 ,e?* —1 >0, ¢! > 0 and t*"te! > 0,
for t > 0, the integral is strictly positive. Thus, as I'(v) > 0 for v > 0 and cos(0) is
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decreasing in ]0, 7[, the assumption follows. O

Corollary 4.5:  The generalised Clausen function C,(0) with v > 1 has a single
zero in the interval [0, 7] and reaches at the endpoints of the interval its extrema
given by

C,(0) = ¢(v) >0, and C,(7) = (277 = 1)¢(v) < 0.

Proof: We have

:ZCC’;EO) :Z% = ((v) >0
k=1

k=1

and

> COS(RT —1)k
e =3 I S EUT gy <0

e8]
kV
k=1 k=

—

As, by proposition 4.4, C,,(0) is strictly decreasing in |0, 7[, the proof is complete. OJ

Proposition 4.6:  The derivative 8%1/(9) of the generalised Clausen function C,(0)

with respect to order is positive in the interval [5, 5] for v > 2.837756935. ..
Proof: Write

Z ) cos (k)

k=

In(2) In ( ) o > In(k) cos(k6)
= —27’/ COS(29) 39 Z

k=4

In(2) In(3) e
> ST cos(260) — kz , as |cos(kf)| <1
_ @) cos(26) — In(3) cos(30) + ¢'(v) + In(2) + In(3)

2v 3v 2v 3V
@2 5 In(3) . 30\
=2 o Sl (0)" +2 3 sin |5 +{'(v).
Now, for 6 € [, 5] the function f(0,v) := ln(2) sin () + 1113(3) sin (379)2 reaches its

minimum in one of the endpoints of the 1nterval with

3
f (gu) = 227 In(2) + 37" In(3),

and

f (g V> — 27V In(2) + % .37 In(3).
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Finally, as ¢’(v) is negative and monotonically increasing and both f (%, V) and
f (g, 1/) are positive and monotonically decreasing, we have

2f (% ,,) L) =2 (i 27V In(2) + 3_V1n(3)> +¢'(v) >0,V > 2.836317129 ...
and

2f (g V) Y Cw) =2 <2V In(2) + % : 3”1n(3)) +¢'(v) > 0,Yv > 2.837756935 ... .,

so that %V(o) >0 for all v > 2.837756935. . ., thus proving the assertion. O
Remark 4.7: Using the method of the preceeding proposition, the limiting value
for v may, in principle, be improved by considering more terms of the Fourier series.
However, this soon becomes impracticable, as the number of terms to be considered
increases rapidly, i.e. in order to refine the bound to v > 2, some forty terms would
be necessary.

Theorem 4.8: The sequence of the zeroes 0,(v) of the generalised Clausen func-
tions Cy,(0) is increasing with v for v > 2.837756935 ... and lim, o 0,(v) = 5.

Proof: We will prove the theorem following Lense’s method [5]. By property 1.5
and lemma 4.1,

and

converge absolutely and uniformly V6 € R and v > 1, while

d B >, sin(k6)

kufl
k=1

converges absolutely and uniformly V0 € R and v > 2. By corollary 4.5, every C,, ()
has a single zero 6,(v) in [0, 7] and at these zeroes, we have

0C, (0, (v oo In(k)cos(k6, (v
do, (v) _ _% > In(k) cos(k0: (v))
dv 9C, (0:(v)) _yooo sinkf. ()
00,-(v) k=1 kv—1

by implicit differentiation and using the fact that > 72, w > 0 in ]0, 7| by

proposition 4.3. By proposition 4.6, the derivative B%CV (0) is positive in the interval
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[T, ] for v > 2.837756935.. .., so that

do,(v) >0
dv —
under the given conditions. Finally, 6,(2.837756935...) = 1.436065269... € %, 5]
and lim, o, C,,(0) = cos(#) by lemma 4.2. Noting that cos (§) = 0, the theorem is
proved. O

Corollary 4.9: The sequence of the mazxima Oy (v) of the generalised Clausen

functions S, (0) is increasing with v for v > 3.837756935 ... and lim, o 037 (V) = 5.

Proof: Using property 1.5,

d
—S5,(0)=Cy_1(0
5,0 = Cy 1 (0)
and theorem 4.8, the proof is immediate. O

Corollary 4.10: For alln € N* = {1,2,...}, the sequence of the zeroes 0.(n) of
the generalised Clausen functions Cy(0) is increasing with n and lim, . 0,(n) = 5.

Proof: We check that the assertion is true for n = 1 and n = 2. Indeed, we have

™

0,(1) = 5 = LOATLOT551 ...

and
0,(2) <1 L ) 1.327793289... > 0,(1)
r2)=nml1l—— | =1 . -
V3
Using theorem 4.8, the assertion follows. O

Corollary 4.11:  For alln € {2,3,...}, the sequence of the mazima Opr(n) of the
generalised Clausen functions Sy () is increasing with n and lim, . 0.(n) = 7.

Proof: Follows immediately from corollary 4.10 and property 1.5. O

The analysis may be taken further by Lehmer’s approach [4], thereby obtaining
more precise estimates for the zeroes respectively extrema of the generalised Clausen
functions.

Theorem 4.12:  The zeroes 0,.(v) of the generalised Clausen functions Cy,(0) are
bounded by 5 — 27" from below and by 5 from above for all v > 4.504983930. . ..
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Proof: Write

(=1)fcos (20a) = (—=1)“Lsin((2¢ — 1) a)
207 2. 201y

(=1

¢
= sin(a) — 277 cos(2a) — 37 sin(3a) + 47" cos(4ar) + 5V sin(ba) + . . .,

with a = § — 6. Thus, if C,(0,(v)) = 0, we have

sin(a. (V) = 277 cos(2a,-(v)) + 37 sin(3a. (v)) — 477 cos(day-(v)) — 5V sin(ba.(v)) + ...

<27V 43V +4TV+ . =((v) - 1,

as |cos(x)| <1 and [sin(z)| < 1. Furthermore, using

sin(3z) = 3sin(z) cos(x)? — sin(x)? < 3sin(z)

for z < %, we have

sin(a,.(v)) =27" cos(2a,.(v)) + 37V sin(3a, (v)) — 47" cos(4da.(v)) — 57V sin(ba, (v)) + . ..

<27 437 3sin(or(v)) — 47 (1 - 8sin(a,(v)?) + > i7"
i=6

=27"+ 37" 3sin(a,(v) — 47 (1 - 8sin(ozr(u))2)
+C(V)—1—-27Y =37V -4V 5V
=377 (3sin(a, (1)) = 1) —2-477 + 8- 47 Vsin(a, (1)* =577 + ((v) — 1

Now,
ar(v)3
sin(a (v)) > ap(v) — (6 )
. ar(’/)g
& ap(v) < sin(ap(v)) + 5
T 73
< sin(a, (1)) + % (f sin(ozr(l/)))g = sin(ay, (1)) (1 153 Sin(ar(y))2>
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so that

ar(v)

15 2 sin(a ) e )

as a;(v) < §sin(a,(v)) for a,(v) < §. Thus,

ar(v)

. 37V (3sin(ay(v)) — 1)—2-47Y+8-4 Y sin(a, (1)) =5+ (v)—1,
1+ 25 sin(a, ()2 < (3sin(ar(v)) —1) + (ar(v)) +((v)

respectively,
ar(v)
1+ Z5(¢C(v) = 1)2
<37VBECW)—1)=1) =247 +8-47"(C(wv) - 1) =5V +((v) -1
=8-47V¢(v)*+ (37T =47+ 1) ((v) 437V +6-47V =5V — 1,

using the upper bound sin(a,(v)) < ((v) — 1 given previously. Hence
3

o (v) < (1 + %(g(y) - 1)2> (8-47¢C(w)* + (37T =472+ 1) ((v)

—4-37V 4647V =57 —1).

The right hand side of this equation is monotonously decreasing to zero as v — oo,
such that

3

-2 4 (1 + %(g(u) - 1)2> (8- 47"¢(w)* + (37 =472+ 1) ((v)
—4-3_”+6-4_”—5_”—1) =0

for vy = 4.504983930. .. and is negative for v > 1. Therefore

ar(v)—277 <0

S ap(v) <27
for v > 1y, so that

527 <0<

ol 3

for v > 1y, which completes the proof. O

Corollary 4.13:  The mazima 0p(v) of the generalised Clausen functions S, (6)
are bounded by 5 —27" from below and by 5 from above for all v > 5.504983930. . ..

Proof: Using property 1.5,
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and theorem 4.12, the proof is immediate. O

Corollary 4.14: For alln € {2,3,...}, the zeroes 6,.(n) of the generalised Clausen
functions Cy,(0) are bounded by 5 — 27" from below and by 5 from above.

Proof: We check that the assertion is true for n = 2, n = 3 and n = 4. Indeed, we

have
T 272 = 1.320796326... < 0 (2)=n(1- L 1.327793289... < ~
5 =1. . <0,.(2) = ;) S g
7 _3 m
5 277 =1.445796326 ... < 0,(3) = 1.450345466 . .. < 5
and
T _4 T
5 27" =1.508296326 . .. < 6,(4) = 1.510070527 ... < 5
Using theorem 4.12, the assertion follows. O

Corollary 4.15: For all n € {3,4,...}, the mazima Op(n) of the generalised
Clausen functions S,(8) are bounded by 5 — 27" from below and by § from above.

Proof: Follows immediately from corollary 4.14 and property 1.5. O

Remark 4.16: More exact asymptotics may be obtained using now an iterative
process, such as the one described by Lehmer [4]. However, this is unnecessary at
this point, as we are going to investigate upper and lower bounds for the zeroes and
extrema in the next section, thereby automatically recovering more precise asymp-
totics.

5. Generalised Clausen functions: Bounds for the zeroes and extrema

In 1960, Ostrowski gave a very satisfactory solution for the problem under consider-
ation in the case of Bernoulli polynomials of even order [9], resulting in the following
theorem.

Theorem 5.1: (Ostrowski)
The zeroes of the Bernoulli polynomials of even order are bounded by

1
0,(v) < = — (2” — 4TV 4467 — gS”’ — 41077 —4- 12”) :

ol 3

from above, and by

17

0,(v) > = — (2—” —ATV A6 - 8T 4107 4127 4 13 14—”> :

|9

from below, where v € {2,4,6,...} = 2N*.
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Proof: For the proof, we would like to refer the interested reader to the original
paper [9]. O

Remark 5.2: Although Ostrowski’s original theorem (and proof) considered only
the Bernoulli polynomials of even integer order, it may be applied to all values of
v > 10 and therefore to the generalised Clausen functions studied here.

Remark 5.3: Using similar techniques, Delange [2] gives a complete asymptotic
series for the small positive zeroes of the Bernoulli polynomials in 1991, allowing us,
when extended to non-integer values of the order, to determine the location of the
zeroes/extrema of the generalised Clausen functions to an arbitrary precision.

At this point, one might be tempted to try to extend, respectively prove the validity
of these results for smaller and non-integer values of v by the same methods, but we
would like to propose a slightly different approach in the following.

Z 1
Lemma 5.4: The sum So(v) := Y 2, ;elJrQ;u may be expressed using Riemann’s

zeta function as:

So(v) _i (—l)Hl —v (21—u 1)((’/)
N (20 +2)"
Proof: As
DT DTS (D
Zgivay = ° %(%Ll)” 2 ; Iz

= —27n(v) = =27 (1-2""") C(v) =277 (2" = 1) ((v),

where 7(v) is the Dirichlet eta function (alternating zeta function), the assertion
follows. O

Lemma 5.5: The sums &, (v) := > 2, mlzz;zir(m)tell) are given by the recur-

rence relation:

(m — 2)* 1

Sn(v) = Sm_a(v) — Cm—2(v—2),

m(m—1) m(m —1)

with initial conditions
G1(v) == pB(v 1),
B(v) denoting the Dirichlet beta function, and
So(v) =27 (257" = 1) ((v — 2).
Proof: By induction. We have

(=12 (1 42— 1)
=Br—1
% 100 (204 1) Z 2£+ Grpaypt Py
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by the definition of the Dirichlet beta function and

o 2—-1 _ ) 00 e
Ga():= 3 EUPCHEDE SR (CEHD g (CDHD

v—1 v—1 v—1
— 2101 (20 4+ 2) = (20+2) - (L+1)
1—v . (_1)k ! 1—v 1-v (93—
=2y o =2 (v —2) =2 (2377 — 1) ¢(v —2).
k=0

Now, writing

i )23 (m, 4 £ — 3)!
(m — 2!5' (204+m—2)""

£=0
we have
(m — 2)? 1
m6m_2(V) — mgm_g(v— 2)
_ (m=2? & (=) 2 (m4 (- 3)!
_m(m—l)z( — 210 (20 +m —2)" !
)23 (m, + £ — 3)!

; —2 101 (20 +m —2)"°
_ (m—2)2 o (=1)72m 73 (m 4 £ - 3)!
B m(m—l);:;(m—2)w!(2e+m—2)”—1

1 (=) 23 (m 4 € — 3)1 (20 + m — 2)?

~m( —1),; (m — 2)100 (20 +m — 2)" !

> Y23 (m 4 0—3) [ (m—2)*—(204+m—2)
KZ% —2!£'2£+m—2)"1< m (m — 1) )

i 1)< 23 (m 4 (£ — 1) — 2)! (m—2)%=(2(¢ = 1) + m)?
((C=1)+ D2 —1)+m)’ m(m—1) '

E:O

By a change of variable £ — 1 — k, the expression may be written as

—Z 2m3(m+k—2) 1((m—2)2—(2k+m)2>

P + 12k +m)” m(m —1)

o0

S (=D)F 27V (m 4+ k—1)122m (m —1) [ (m—2)? — (2k + m)?
o mlk 2k +m) T (m 4k — 1) (k+1) m(m—1)
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_ i (—1)F 271 ke — 1)1 (272 m = 1) ((m —2)? = (2K +m)?)
~  mlkl (2k +m)" (m+k—1)(k+1)m(m—1)

= Dt mt k1)
B Z mik! (2k +m)” -

Z Fom=1(m + k — 1)!
m'k‘ 2k +m)"~t

(=1)*2m 1 (m4k—1)!
m!lk!(2k+m)” ~*

Finally, using the fact that for k = —1 we have
the variable k£ — /;

= 0, and renaming

[e.9]

Z (=) 2m=1 (m + k — 1)
mik! (2k +m)” ™

Fom=1(m 4k —1)!
m'k;' (2k +m)"

Mg

k=—1 k=0
B i yeom=1(m + 0 —1)!
= m'ﬁ' (20 +m)"
=Gn(v),
the assumption is proved. O

Remark 5.6: The interested reader might notice that there exists a “closed form”
for the sums given above. Indeed, we may write

Gom-1(V) = @y it (1) 2% tom—1,2m-1-2:6(v — 20 + 1)

Som(V) = ~ By S (1)t i (27517 — 1) ¢ — 24)

for m € N* = {1,2,...} and where the ¢, are the (unsigned) central factorial
numbers (see OEIS sequences A008956 [10] and A008955 [11]).

The next lemma is a well known result, used in diverse areas of mathematics and
physics, but we will nevertheless give its proof for the sake of completeness.

Lemma 5.7: We have

1 o0
—(b+1) _ be—at gy
“ T(b+1) /0 €

Proof: Letting x = at, we have dx = adt, so that

00 0o b 1 1 b+1 oo
/ theoldt = / (E) e —dr = <> / aPe dr = oI (b + 1),
0 0 a a a 0

by the definition of the gamma function. Dividing by I" (b 4 1), the proof is complete.
(Il

The following is another quite elementary lemma that will be needed.
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Lemma 5.8: Forallt € R, we have

<2cosh( nthLl))mH s

(oo ()"

&

Proof: Consider

t t m—+1 2¢ m+1
<€(m)+e(’m)) " e(tVm+T) (1+e(’m)> -

2171+1
om

Multiplying both sides by 2 =

2mH <€(*/%) + e(f ”t“rl))mﬂ <2 cosh( t ))mﬂ

o () L) (e ()

thus proving the assertion. O

Proposition 5.9: For all m € N* and v > 1, the following holds:

m'ie <u>=1/°° A
T (e ()

Proof: Using Abel-summation,

it i1 = (—1)f2mt ¢—1)!
m"s Gn(v)=m > lim Z( ) (m +V_1 ) z*
e=1= = mMl (20 +m)

—1)¢gm-1 D!
— lim Z( 1)"2 (m+€_1 D! e
il (20 + m)”

r—1-
=0

v41

oo _ ' S
=271 lim 3" (~1)" (T('Hg Dt m t
£=0

z—1- m — I)W' m (26 + m)y_l
[e'e} v+l _q

+4-1 ms
— 9 fim S (<1 (m );cé
xil_z( ) ¢ (2£+m)u—1
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=27 lim > (-1)"

r—1-
/=0

(
(")
= S ()
(")
(")

[e.9]

=271 lim > (-1

r—1-

o 244+m
)/ V2" v tdt -2t
0

=271 lim 3" (~1)f m

r—1-

% mo it — 2t ’
To—1 t'Eem Ve vmtdt - 2,
0

20 2t \ £
using lemma 5.7. Now, writing e vt = (e_x/ﬁ) , and interchanging integration

and summation:
m= &, (v)

_ 1 S m+€—1 _2z\¢
__ om—1 7: v—2 \/mt§ : 1\ — 14
=2 xl—>1nll—F(V1)/0 e H( 2 ( 1 )(e ) v dt

1 ° (m+l—1 _2\¢
— 9gm—1 1; - v—2_—/mt _ o
? xlg?r(y—n/o v ZH( ‘ >( ze” ) di

1 > _ 2t \—
— 971 Jim / 2=Vt (1—|—$e m) "t
rx—1- F (l/ — 1) 0

where we used Newton’s generalised binomial theorem. Thus

vl 1 1 o t —2L\Tm
m 2 S, (v) =2"" / eV <1—|—e ﬁ) dt
0

_gmi L [T (e?)_m (1 + e’%)_m dt
F(V— 1) 0

1 o0 t t -m
—gm-1__~ =2 ( = > dt
T —1) /0 e e

gl [ (o)

1 > "2
RETOESY /0 (conh (t)>mdt

as stated. O
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Corollary 5.10: For allm € N* ={1,2,...} and v > 1,

mT S pu(v) > (m+1)7 Spp(v)

Proof: Using proposition 5.9 and lemma 5.8 the corollary follows immediately. O

Proposition 5.11:  The generalised Clausen functions C,,(0) may alternatively be
written as

withoz:g—e.

Proof: Using the properties of the Chebyshev polynomials of the first kind 7} (),
write

(0 = Z cos (Vk:G) _ Z cos (k gg’i —a))
k=1 k=1

(- 1)£cos 2a) Lsin ((2¢ — 1) )
Leyo b

=1 =1 (20— 1)"

Ty (sin («))
A4

e

~
I

1

with o = § — 0. Now, the coefficient s,, of 2" in the Chebyshev polynomial of the
first kind of order Thyyy, (z) is given by (see [6]):

(m+k—1)!

5, = (—1)F2m7L (2k + m) i

for 2k +m > 0. Summing now over all ¢, we have

) = 32 Tellin(@)

sin («)

R G R N o Vi (Al V)
=2 > 10 (20 + 1)1

_l_

> yo2-t(240-1
& @D i (@))+ ...
o Qw' (20 4 2)”

= So(v) + &1(v)sin (@) + So(v) (sin () + ...
= Z (sin (o)™,

as stated. O
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Proposition 5.11 can now be used together with corollary 5.10 to obtain bounds
for the location of the zeroes of the generalised Clausen functions C,,(6).

Theorem 5.12: In first approzimation, the zeroes 0, (v) of the generalised
Clausen functions C,(0) are bounded as

arccos 2 ( - 1) C(V) v arccos 2 (21_V — 1) C (V)
( GESEIoEY ) == ( 501 )

A three term approximation leads to the improved bounds

L 8=+ B a2 T () 1) 2 @ - nce -2 @ - )W)
arccos | —— 2”;1 (C( ) 1) 21-v (23-v — 1) ¢ (v —2)

>0, (v),

I e L I e i e T e R I 10
r (v) > arccos 5 T @ D=2 ,

Proof: By proposition 5.11,
Z S (v) (sin (a))™ = So(v) + &1 (v) sin (o) + Ry (v)

= Go(v) + &1(v)sin (a) + Sz (v) (sin (a))* + Ry (v),

with

[e.9]
Z S (v) (sin ()™
m=2
respectively
oo
Z S (v) (sin (a))™.

m=3

Now, R;(v) and R2(v) may be bounded as

0< Ri(v) = i Sm(v) (sin ()™ < &1 (v) (g (”;r 1) - 1) sin (a)
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using corollary 5.10, so that

So(v) + 61(v)sin (a) < C,(0)

< Go(v) + &1 (v) sin (a) + &1 (v) <g (” . 1) _ 1) sin (a)

and similarly

So(v) + &1 () sin (@) + Ga(v) (sin (a))* < C, (0

)
< Go(v) + &1 (1) sin (a) + Ga(1)2"5" (g (”; 1) _ 1) (sin ()2
Using now the fact that
So(v)=2"" (2" -1)((v),
S1(v) =pv —1)
and
So(v) = 27" (27 = 1) ((v — 2),

bounds for sin (o, (v)) (and thus for 6, (v) ) may be obtained by solving these in-
equalities when C,, (6, (v)) = 0. In first approximation, we have

_Q_V(2l_y_1)<(y) sin (o (v
s ) S e)s

—277 (287 = 1) ¢ (v)
flr—1) ’

respectively

T_ arcsin <_2_y 2 - 1) C(V)>
2 (&) Bv-1)

arccos —2 (21_V — 1) ‘) v arccos 27 (21_1/ — 1) ‘(v
e () s e (7500

Using the second approximation, one obtains

L B -1+ \/<ﬂ(u—1))2+42”3l (¢
2 vt vl

(o

v41

(52) 1) 2 @ - )¢ -2)277 (21 = )¢ W)
) - 1) 21-v (23—v _ 1) ¢ (v — 2)

< sin (ar (1))

109
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1B =1+ /(B - 1) +4217 (257 —1)¢(v-2)2-¥ (21 — 1) (v)
2 21— (28—v — 1) ( (v —2) ’

respectively

LB+ 6 ,,_1)2 4250 (¢ () —1) 2 @ — D (-2 2+ (21— — (W)
2 S(e(H) e o ncw -2

>0, (v),

6, (1) > L =B =1+ /(B — 1) +420 (2 — )¢ (v—2)2 (2 — )¢ )
» (V) > arccos 5 21-v (23—v — 1) ¢ (v — 2)

which completes the proof. O

With the help of the preceeding theorem 5.12; proposition 4.6 may be improved
slightly.
Proposition 5.13: The derivative 8051/(0) of the generalised Clausen function
Cy(0) with respect to order is positive at the zeroes 0, (v) of C,(0) for v >
2.396613412. . ..

Proof: Write

io: In(k) cos(k0) i In(k) cos(k0)

k=1 k=2
>, cos( > ln(g) cos(kf)
() A
k=2 k=2
> cos( > In(£) cos
Z (n)cos(f) — Z w
k=1 =2
> In(k) cos
= —1In(n)C,(0) + In(n) cos(6) — Z l(n)ky(ke)
k=2
Setting n = 3, we have
8%59) = —In(3)Cy(0) + In(3) cos(0) — i hl(l?f);i’s(ka)
k=2
— —In(3)C, (8) + In(3) cos(9) — ln(?);fs(%)) _ i 111(';)]:38(’%9)
k=3
= —In(3)Cy (8) + In(3) cos(9) + 1(3)2005(29) N lrl(’?‘f);SS(ké’)



Vol. 22, 2021 111

Furthermore

k=4 kv ) kY —3 k¥ (v = 1)
so that
aC, (6) In(32) cos(26) 3=
S - .
o2 In(3)C, () + In(3) cos(#) + v 1)

Thus, at the zeroes 6, (v) of C,(0),

oC,(6) In(2) cos(20) 3t-v
>1 0 — .
W o) N o)+ 2 (v—1)
Now, In(3)cos(0) + ln(%)gfs(%) - (31__1")2 is monotonically decreasing from In(3) +
In(2 1-v T
2(,?) - (3_71)2 in [0, ], as

9 In(3) cos(20) 31"
ae(ln(3)608<9)+ o ‘<v—1>2>

= —1In(3)sin(h) — 217 ln(g) sin(26)
9 sin(9) <4 ln(g) cos(6) + 2 ln(3)> <0

In 4in(3)
for all € [0, 5] and v > (hi‘(‘;)) ) and therefore has a single zero

~In(3)2” + \/(ln(3))2 2 18 (n (3)) + 8L

/ —
0. (v) = arccos e

aC, (6)

in this interval, such that =5 = > 0, V0 € [0,0. (v)]. Using now the upper

0, (v)
bound from the three term approximation in theorem 5.12 and noting that this

upper bound is less than .. (v) for all v > 2.396613412.. .. (Figure 1), the proposition
is proved.
t

Remark 5.1/: Again, using the method of the preceeding proposition, the limit-
ing value for v may be improved by considering more terms of the expansion (i.e.
increasing n), but, once more, the number of terms to be considered increases rapidly.
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1640

1.4

6v)

"2 "F""""—T1T 71
0 1 2 3 4 5

Figure 1. Positivity of 2% for v > 2.306613412. ..

6. Conclusions

In the present work, several known results about the Bernoulli polynomials have
been applied and extended to the generalised Clausen functions of arbitrary real
orders v > 1. In the course, improved bounds and asymptotics for the zeroes and
extrema have been obtained (Figure 2) and a few new tracks for the study of this
class of functions are shown. Finally, we would like to emphasise the importance of
further research devoted both to the derivatives of polylogarithms with respect to
order, as well as to other functions of a related form.

10
1.4
this work, linear, upper bound
Ostrowski, upper bound
1.2 4
1.0
0.8 - ¢
1 @
i L4
0.6 1 Filothodoros et al.
1 @
] Ostrowski, lower bound
1 this work, linear, lower bound
0.4 1 M
4 @
0.2 A
1 v
0.0 ¢ T T T T

Figure 2. Comparison of the different bounds and exact locations
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