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Preface

The present Lecture Notes contains extended material based on the lec-
tures presented at the Workshop on Mathematical Methods for Elastic Cusped
Plates and Bars (Thilisi, September 27-28, 2001).

It consists of two parts. The first one is devoted to cusped plates, while
the second one deals with cusped beams.

For the readers convenience the work is organized so that each part is
self-contained and can be read independently.

In Part 1 we construct variational hierarchical two—dimensional models for
cusped elastic plates. With the help of variational methods, existence and
uniqueness theorems for the corresponding two—dimensional boundary value
problems are proved in appropriate weighted function spaces. By means of
the solutions of these two—dimensional boundary value problems, a sequence
of approximate solutions in the corresponding three-dimensional region is con-
structed. We establish that this sequence converges in the Sobolev space H*!
to the solution of the original three-dimensional boundary value problem. The
systems of differential equations corresponding to the two-dimensional varia-
tional hierarchical models are explicitly given for a general function system
and for Legendre polynomials, in particular.

In Part 2 variational hierarchical one-dimensional models are constructed
for cusped elastic beams. With the help of the variational methods the exis-
tence and uniqueness theorems for the corresponding one—dimensional bound-
ary value problems are proved in appropriate weighted function spaces. By
means of the solutions of these one—dimensional boundary value problems the
sequence of approximate solutions in the corresponding three-dimensional re-
gion is constructed. It is established that this sequence converges (in the sense
of the Sobolev space H') to the solution of the original three-dimensional
boundary value problem.
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PART 1

HIERARCHICAL MODELS FOR CUSPED PLATES

In Part 1 we construct variational hierarchical two-dimensional
models for cusped elastic plates. With the help of variational
methods, existence and uniqueness theorems for the correspond-
ing two—dimensional boundary value problems are proved in ap-
propriate weighted function spaces. By means of the solutions of
these two—dimensional boundary value problems, a sequence of ap-
proximate solutions in the corresponding three-dimensional region
is constructed. We establish that this sequence converges in the
Sobolev space H! to the solution of the original three-dimensional
boundary value problem. The systems of differential equations cor-
responding to the two-dimensional variational hierarchical models
are explicitly given for a general system and for Legendre polyno-
mials, in particular.



List of Notation
N:={1,2,---}, Ny :={0,1,2,---}
R™  m—dimensional Euclidean space (m € N)

(=) (+)
0= {(xl,m,xg) ERY: z:=(r1,m) EwCR? h(zr)<z3< h(x) }

Q=0QU0Q prismatic shell of variable thickness

W C R? projection of a prismatic shell
(=) (+)
.= {(m,x3)6R3: r €0w, h(r)<xzs3< h(x) }

v projection of I' on dw, vy := dw\7¥

>0, r€ew

(+) (=)
= h(x)— h(x) { S0 e dw thickness of a prismatic shell

2h(x)
at the point z € @

St = {(x %’(@) ERP: ¢ w}

2h(x) = b (2)+ b (@)
1

a(x) := )
0? 0?

P, Legendre polynomial of order n
C®(QT) :={p e C®Q):¢lr=0, T C N}
H*(R") = H;(R") = W5(R") = W*(R™) Bessel potential and Sobolev-

Slobodetski spaces on R"(s € R)

H*(2) = W*(Q) space of restrictions to 2 C R" of distributions from H*(R")

~ S

H (Q):={pc H*R") :supp ¢ C Q} (s €R)



H*(0) Sobolev-Slobodetski space on 92 (s € R)
H?*(S*) space of restrictions to S* of distributions from H*(92) (s € R)
H(Q,T):={pe H(Q): ¢=0 on I'} (s€eR)

u = (uy, ug, ug)T displacement vector

eij(u) == §(u]1 +u;;), 1,7=1,2,3, strain tensor

oij(u) = Ajjepr(u) + 2pe;i(uw), 1,5 =1,2,3, stress tensor

A, i Lamé constants

T(0,n)u surface stress vector

[T(0,n)ul; == 0j;(u)n; the j—th component of the vector T'(0,n)u
()" transposition operation

X1 x Xy x -+ x X, direct product of spaces X;, 7 =1,....,m
X=X x--xX

m times
8 = (alaaQa”'?an)
0
9= —, j=1
7 al‘j7 J ) ,
(9uz-
w; j(u) == , i,7=1,2,3
J 8xj
32%’ .o
s i (u) = 0z 00 1, 5,k=1,2,3
J

C™()  (C™(Q)) m times continuously differentiable functions in Q ( Q)

@) = CQ), C@) = Q)

CmE(Q)  (C™*%(Q)) m times continuously differentiable functions
whose m~th order derivatives are Holder continuous in € (2) with the
exponent k € (0, 1]

C%H(Q) (C*1(2)) space of Lipschitz continuous functions in € ()



1 Introduction

In the fifties of the twentieth century, I.Vekua [33] introduced a new mathemat-
ical model for elastic prismatic shells (i.e., of plates of variable thickness) which
was based on expansions of the three-dimensional displacement vector fields
and the strain and stress tensors in linear elasticity into orthogonal Fourier-
Legendre series with respect to the variable of plate thickness. By taking only
the first N 4+ 1 terms of the expansions, he introduced the so—called N—th ap-
proximation. Fach of these approximations for N = 0,1, ... can be considered
as an independent mathematical model of plates. In particular, the approxi-
mation for N = 1 corresponds to the classical Kirchhoff-Love plate model. In
the sixties, I. Vekua [34] developed the analogous mathematical model for thin
shallow shells. All his results concerning plates and shells are collected in his
monograph [71]. Works of I. Babuska, D. Gordeziani, V. Guliaev, I. Khoma,
A. Khvoles, T. Meunargia, C. Schwab, T. Vashakmadze, V. Zhgenti, and oth-
ers (see [5], [16], [17], [43], [44], [50], [60], [68], [72] and the references therein)
are devoted to further analysis of I.Vekua’s models (rigorous estimation of
the modeling error, numerical solutions, etc.) and their generalizations (to
non-shallow shells, to the anisotropic case, etc.). At the same time, I. Vekua
recommended to investigate also cusped plates, i.e., plates whose thickness
vanishes on some part or on the whole boundary of the plate projection (for
corresponding investigations see the survey [12] and also I. Vekua’s comments
in [71, p.86)).

In 1957 E. Makhover [47], [48], by using the results of S. Mikhlin [51],
was the first who considered such a cusped plate with the stiffness D(z1,x2)
satisfying

Dlxgl < D(.’ﬂl,xg) < Dngl, Dy, DQ, K1 = const > 0, (11)

within the framework of classical bending theory. She particularly studied in
which cases the deflection (k; < 2) or its normal derivative (k; < 1) on the
cusped edge of the plate can be given. In 1971, A. Khvoles [44] represented the
forth order Airy stress function operator as the product of two second order
operators in the case when the plate thickness 2h is given by

2h = hoxs?, ho, ke = const > 0, x5 > 0, (1.2)

and investigated the general representation of corresponding solutions. Since
1972 the works of G. Jaiani [13]-[35] are also devoted to these problems. By
using more natural spaces than E. Makhover, G. Jaiani in [32] has analyzed
in which cases the cusped edge can be freed (k1 > 0) or freely supported
(k1 < 2). Moreover, he established well-posedness and the correct formulation
of all admissible principal boundary value problems (BVPs). In [25], [26], [31]
he also investigated the tension—compression problem of cusped plates, based



on I. Vekua’s model of shallow prismatic shells (N = 0). G. Jaiani’s results
can be summarized as follows.

Let v be the inward normal of the plate’s boundary. In the case of the
tension-compression (N = 0) problem on the cusped edge, where

oh
0< 5 +00 (in the case (1.2) this means kg > 1),
v
which will be called a sharp cusped edge, one can not prescribe the displace-
ment vector; while on the cusped edge, where

oh

ov
called a blunt cusped edge, the displacement vector can be prescribed. In the
case of the classical bending problem with a cusped edge, where

oh

ov
and where d is the distance between an interior reference point of the plate
projection and the cusped edge, the edge can not be fixed if kK > %, but it can
be fixed if 0 < Kk < %; it can not be freely supported if K > %, and it can be
freely supported if 0 < kK < %; it can be free or arbitrarily loaded by a shear
force and a bending moment if k > 0. Note that in the case (1.2), the condition
(1.3) implies that d = 2, and kK = Ky = 5.

For the specific cases of cusped cylindrical and conical shell bending, the
above results remain valid as it has been shown by G. Tsiskarishvili and
N. Khomasuridse [63]-[66]. These results also remain valid in the case of classi-
cal bending of orthotropic cusped plates (see [35]). However, for general cusped
shells and also for general anisotropic cusped plates, corresponding analysis is
yet to be done.

The problems involving cusped plates lead to correct mathematical formu-
lations of BVPs for even order elliptic equations and systems whose orders
degenerate at the boundary (see [31], [36]-[39]).

Applying the functional-analytic method developed by G. Fichera in [12],
[13] (see also [10], [11]), in [31] the particular case (A = u) of Vekua’s system
for general cusped plates has been investigated.

The classical bending of plates with the stiffness (1.1) in energetic and
in weighted Sobolev spaces has been studied by G. Jaiani in [32], [34]. In
the energetic space some restrictions on the lateral load has been relaxed by
G. Devdariani in [9]. G. Tsiskarishvili [64] characterized completely the classi-
cal axial symmetric bending of specific circular cusped plates without or with
a hole.

In the case (1.2), the basic BVPs have been explicitly solved in [38] and

[39] with the help of singular solutions depending only on the polar angle.

= 400 (in the case (1.2) this means kg < 1),

O(d"") asd — 0, k = const > 0 (1.3)
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If we consider the cylindrical bending of a plate, in particular of a cusped
one, with rectangular projection a < xy < b, 0 < x5 < ¢, then we actually get
the corresponding results also for cusped beams (see [33], [27], [30], [22]-[26],
[5], [6], [40], [41], [4]).

This part deals with the existence, uniqueness, and regularity properties of
the hierarchical models of cusped plates. In practice, such plates and beams are
often encountered in spatial structures with partly fixed edges, e.g., stadium
ceilings, aircraft wings etc., in machine—tool design, as in cutting—machines,
planning—machines, in astronautics and in many other areas of engineering.

This paper is organized as follows.

In Section 2 we collect well-known auxiliary material from the three-di-
mensional theory of elasticity and the theory of Fourier-Legendre series.

In Section 3 we construct hierarchical models which reduce the original
three—dimensional boundary value problem for cusped and prismatic shell type
elastic bodies to two—dimensional problems. We recall that in the "regular”
case (i.e., when the plate thickness does not vanish anywhere), the Fourier—
Legendre coefficients of the displacement vector u, which solves the original

three-dimensional problem in the space H'(2), automatically belong to the

N N
space H'(w). Moreover, all the moments wjg,---,w;y, for i = 1,2,3 and

N := (N, Ny, N3), determined by the corresponding two-dimensional hier-
archical models belong to the space H'(w), while the approximations of the

N

displacement vector w represented by means of these moments belong to the
space H'(2). In the case of a cusped plate, the Fourier-Legendre coefficients
of the displacement vector v € H'(€2) do not belong to the space H'(w) any

N
more, in general. Also, the space of approximate vectors w represented by the

N N
moments W, - - -, Wy, for i = 1,2, 3, of the class H'(w), do not belong to the
space H'(Q) either. Therefore, it is necessary to choose a space for the moment

functions 51’0, cee %l ~; defined on w such that the corresponding linear combi-
nations of these moments with the Legendre polynomials as coefficients, belong
to the space H'(€2). This is done in Subsection 3.2. In subsection 3.3, the ex-
pressions for the strain and stress tensors corresponding to a vector—function

W are given. In Subsection 3.4, we establish uniqueness and existence results
for two—dimensional variational hierarchical models. We remark here that the
well-known approach of previous authors [3] needs modifications which are
related to the peculiarities of the appropriate function spaces for the unknown
moments. Subsection 3.5 is devoted to the convergence of the approximate

solution © to the exact solutions  of the three dimensional original problem
in the space H'(Q). There we give abstract error estimates with respect to
the approximation order N and to the maximal thickness of the plate.
Finally, in Section 4 we formulate explicitly the systems of differential equa-
tions corresponding to the two—dimensional variational hierarchical models for
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a general orthogonal system in Subsection 4.1, and for the Legendre poly-
nomials in Subsection 4.2. It is shown that in the latter case our system is
equivalent to the system of I. Vekua who obtained it with the help of quite
different arguments (see [33]).

The approach presented in this part we also apply to cusped beams with
rectangular cross—sections. These results will be considered in Part 2 of the
present lecture notes.

2 Preliminary material

2.1 Cusped prismatic shell

Let a three—dimensional body in the form of an elastic prismatic shell (later
on called ”shell”) occupy a bounded region 2 with boundary 0%,

(=) +)
Q= {(z1,10,73) ER*: z = (11,20) €Ew, h(z)<wz3< h(2)}, (2.1)
where @ = w U Qw is the so-called projection of the shell Q = QU 99Q.
(£
In what follows we assume that h (z) € C*(w) N C(©), and

(+) (=) >0forx €w
2h(z) == h (z) — h(x) { S0 for 7 € dw (2.2)

is the thickness of the shell 2 at the point z € @.
Further, let Ow be a Lipschitz curve and

r = {(ZL‘,J]?,) €ER®: z € Ow, (;L)(x) < xg < (;rz)(x)}, (2.3)
SE = {(a:, (z)(a:)) cER®: x ¢ w}; (2.4)

denote by v the projection of I" onto dw and let 7y := dw\7.
Obviously, - B
N=TusStus, (2.5)

where T is a cylindrical lateral surface, while ST and S~ are upper and lower
face surfaces of the shell. Note that, in general, 9 is not a Lipschitz surface.
If ST NS~ #(, then a shell is called a cusped shell; and the set

o 5 (+) (=)
LFo:=5"NS ={(z,23) e R : € 0w, z3= h(x)= h(2)} (2.6)

will be referred to as a cusped edge of a cusped shell.
In Figures 1-3 we depict some examples of cusped shells (see Appendix A).
In Figures 4-9 we present all the possible profiles of cusped shells (see
Appendix B).
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2.2 Variational formulation of the basic three—dimensi-
onal problem for prismatic shell type bodies

The system of equations in the three-dimensional linear theory of isotropic
elasticity in terms of the displacement vector u := (uy, u, u3)? reads as follows:

A(O)u := pAsu+ (A + p) grad div u = f, (2.7)

where A(0) is a strongly elliptic differential operator

2

A(0) = [Arj(0)]ax3 = |uor; A5 + (A + p) (2.8)

Ox,0xjl3x3’
where A and p are the Lamé constants, d;; is Kronecker’s symbol; and the
vector — f corresponds to some given volume force.

By

1 1
eij(u) = §<8Z’LLJ + @uz) = §(Uj7i + ui,j) (29)

and o;;(u) we denote the strain and stress tensors, respectively. They are
related by Hooke’s law

O'Z'j(u) = Aéz]ekk(u) + 2ueij(u) = )\&'juk,k + M(Um‘ + Ujﬂ'), Z,j = 1, 2, 3. (210)

Here and in what follows, for brevity, we employ abridged notations:

i) repeated indices imply summation if they are not underlined. Greek
letters run from 1 to 2, and Latin letters from 1 to 3, unless stated otherwise;

ii) subscripts preceded by a comma will mean partial derivatives with re-
spect to the corresponding coordinates (see the list of notations).

By T'(0,n)u we denote the stress vector calculated on the surface element
with the unit normal vector n = (ny, ng, n3):

[T(0, n)uly, := ogj(u)n; for k=1,2,3. (2.11)
Recall that (6.6) can also be written in the form
[A(D)uly, = ok ;(u) = fr for k=1,2,3. (2.12)

Let us consider the boundary value problem (BVP):

A(Q)u=f in Q, (2.13)
Tu=g" on ST, (2.14)
Tu=g¢g on S, (2.15)
u=0 on I. (2.16)

12



We look for a solution of the BVP (6.12)—(6.15) in the Sobolev space
[H'(Q)]2.} Assuming © to be a Lipschitz domain, we require the given data
to belong to the corresponding natural spaces (cf., e.g., [49, Chapt.4])

fr€ H(Q) and gf € H™%(S*) fork=1,2,3, (2.17)

which, in the case STNS™ # () means that there exists a functional g € Hz (5)
on S := 9O\l and g|g+ = g* on S=.

Equation (6.12) is understood in the distributional sense and the Dirichlet
condition (6.15) in the trace sense ([46], [49]). The conditions (6.13) and (6.14)
are understood in the sense of the space H~2(S%) since for u € H'(€) with
Au € H1(Q), the functional Tu € H~2(T') is defined by Green’s identity,

(Tu,u*)gq = /aij(u)eij(u*)dx +(f,u")q forallu* € H'(Q), (2.18)
Q

where (-, -)ao denotes the Lo-duality between H ~2(09Q) and Hz(8), while
(-,-)q denotes the Ly—duality between H~1(Q2) and H'(Q) (cf. [49, Ch.4], [8]).
We further denote

HY(QT) ={pe H(Q):¢p=00nT}. (2.19)

As is well known, the BVP (6.12)-(6.15) is equivalent to the following varia-
tional formulation.

Problem (I): Find uw € H(;T) such that

B(u,u*) = F(u*) for allu* € H'(Q,T), (2.20)
where
B(u,u*) := /Jij(u)eij(u*)d:c, (2.21)
Q
_<f7u>k>ﬂ—+—<g+au$>5+ + <977U*>S* if STNsS- :@7
F(u*) = (2.22)
—(f,u)o + (g, u*)s if STNS~ £,

here (-,-) is the duality pairing between the spaces H™(M) and H™"(M),
where r =1 for M =Q andr =1/2 for M = ST 57, S.

Both formulations are equivalent to the minimization problem:

Find v € HY(Q,T) such that

E(u*) > E(u) for allu* € HY(Q,T), (2.23)

where

Hf all elements of a vector field u = (u1,us,---,uyn) belong to the same space X, as a
rule we shall write from now on u € X instead of u € [X]V.
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E(u) = %B(u*,u*) ~Fu). (2.24)

The following existence and uniqueness results are well-known (see, e.g.,
[14], [58], [49]).

THEOREM 2.1 Let Q be a Lipschitz domain, T' # (), and the conditions
(6.16) are fulfilled. Then the BVP (6.12)-(6.15) (i.e., the equation (2.20) and
the minimization problem (2.23), (2.24)) has a unique solution u € H'(),T)
and

_ + -
CHf‘|H*1(Q) + Hg HHf%(SJF) + Hg HHf%(S*) )
el <4 $ g —g (2.25)
1Az +llgll -3 g for STNS™ =0,

where C'is a positive constant independent of u, f, g~ .

The proof of the theorem is based on the Lax-Milgram lemma since :
i) F is a bounded linear functional;
ii) the bilinear form B(-,-) is bounded

B(u,u*) < (51Hu]|[H1(Q)]3 HU*H[Hl(Q)]37 (51 = const > 0; (226)

iii) B(-,-) is coercive (due to the Korn’s inequality)

B(u,u) > 62Hu|][2H1(Q)]3 Yu € [H'(Q,T)]?, 6 = const > 0, (2.27)
(see e.g., [49], Theorems 10.1 and 10.2, [59], Theorem 2.5).

Due to the regularity properties of solutions to the BVP (6.12)-(6.15),
on some subsets of ) we get higher smoothness of the solution wherever the
right-hand sides f and g% are smoother.

More precisely, let g* € H™2(S%), f e H(Q), S* € C™11, where r > 0

is an integer. Then
ue€ H2(QY),

where * is an arbitrary subdomain of 2 such that Q*N(T'Uv,) = 0. Moreover,
there exists a constant C' = C(2*) > 0 such that

ullir-s2(0ry < C (111

In addition, if g € CT*(S%), f € CO*(Q), ST € C**, then u € C**(Q¥)
with 0 < k < 1 (cf., e.g., [49], [1], [15], [62]).

REMARK 2.2 The results of Subsection 2.2 also hold true for the BVP with
the conditions (6.12)—(6.14) and

ulr, =0, Tulp, =0, (2.29)

where FD,FT CF, FDHFT:Q), FCFDUFT, FD#Q)
In particular, Theorem 2.1 holds true for the BVP (6.12)—(6.14), (2.29).

@) T g ey gy + Hg*HHH%(S,)) . (2.28)

14



2.3 Fourier—Legendre series
Let
=) (+)
(+) ) '
2h(z) = h(x)— h(z)>0 for z€w.

The function ¢(z, ) can be then represented in the form of a Fourier-Legendre
series (see, e.g., I. Vekua [33]), i.e

ol 2s) = 3k + 5) ala) @ule) Pylazs —b), (2.31)

0 :a<x>=$, b= b(z) :%, M) = h@)+ 1 (), (2.32)
(Z)(x
/ o(z,73) Py(axz —b) dovs for k=0,00. (2.33)
(= )(x
Note that
A 0 for k#I,
/ Py(azs — b) P(azs — b)a(x)das — { 2 L, e
(Z) 2k+1

and
+)
1 for x3= h,

t:=axr3—b= (2.35)

)
-1 for 3= h .

(=) )
Recall that if ¢(z,-), ¢'3(x,-), ¢s3(z,-) € C°([h, h]), then the corre-

,) +
sponding Fourier-Legendre series converges to ¢(z,-) uniformly on [ A, h ]
(see, e.g., [2, Ch. 15, §2]). For further convergence properties see, e.g., [18,
Ch.7] and [42].
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3 Hierarchical method for elastic cusped pris-
matic shells: reduction to two—dimensional
models

3.1 Legendre moments

Let f € C%(Q), and u € HY(Q) N C%*(Q) N C?*(QU ST U S™) be the unique
solution of the BVP (6.12)—(6.15). Then u; can be expanded into the Fourier—
Legendre series in €2:

wi(z,x3) = > (k+ %) a uy(x) Pi(axs —b)
k=0 (3.1)
(=) (+) )
forrew, h(x)<zz3< h(x), and i=1,2,3,
where

(+) (=)

h(x)— h(z)>0 for z€w, 52)
3.2

(+) (=)

h(x)— h(z)>0 for z€dw,

(-}:)(z)

wik () = / w;(z, x3) Py(axs — b)dxs for k=0,00,i=1,2,3. (3.3)

(=)

h (x)
Evidently, (6.15) implies

wir(z)], =0. (3.4)
We recall that v is the projection of I' onto dw. Note that with the help of
(2.35), the Fourier coefficient (7.4) can be rewritten as

= h(x) /uz(x, h(x)t + h(x)) Py(t) dt,

which shows that if u; is bounded in the spatial vicinity of 7y, then

Wi(2)|4, =0 for k=0,00 and i =1,2,3, (3.6)
since 1 11 )
+ —
— hz) = = _
=) =5 |1 - W)

vanishes on .
Clearly, in general, u; € H*(€2) is not bounded and the condition (7.7) does
not hold.
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3.2 Approximating function spaces

Let us fix N := (N7, No, N3) € N3 and consider the linear combinations

N N N
w;(71, T, T3) = Wi(71, T, T3) 1= (Ti + %) aw;., (v1,72) P, (axs —b)
r;=0
fori=1,2,3,

(3.7)

where 11:11” = wy,, € H}.(w) and where underlining an index means that these
repeated indices do not imply summation. The functions w;,, are called the
moments of the function w;.

Denote by &N(Q) = Vi, (Q) x Vi, () x Vi, (Q) the set of vector—functions
with components of the form (7.8) which belong to H' ().

Let _
w; € Vy,(Q,T) C H'(Q), (3.8)
where B B
Va, (1) == {w; € Vn,(2) © w; =0 on I'}. (3.9)
Our aim is now to choose the corresponding function spaces for the mo-
ments w;,, .

Taking into account (7.9), (6.15), (2.35), and using the standard limiting
procedure, we easily get

N.
- 1
/|wi($1,$27$3)|2d9 = /Z (ri + 5) @ |wir, (21, 23) [Pdw < +00, (3.10)
Q w ri=0

which implies

a%wm € Ly(w) forr; =0, N;. (3.11)
Analogously, applying the formula, 2
/ 1 — r+s :
P(t) =5 > (@2s+1)[1— (=1)""|P(t) with t = axs —b, (3.12)
s=0

we obtain

/|wi,3($1,9€2,$3)|2d9
Q

(+)
h N; i
= // { TZO (ri + %)aizo (si + %) [1— (=1)7F=]

w (o) ‘
h

?Here and in what follows we assume that > .., () =0 for m < k.

17



2
x Py, (axs — b)w;y, (71, xg)} dxsdw

1
a’(s; + §)dw < 400, (3.13)
which implies
N; 1
a’? Z (rs + 5)[1 — (=1 wy,, € Ly(w) for s; =0, N;. (3.14)
In turn these inclusions yield
a3 wyy, € Ly(w) forry =1, N, (3.15)

Similarly, applying the formula
P, o(axz — b) = (a 423 — b)) Pl(axsz — b)

= AyorP,(ax3 — b) + Z Ang(2r —2q+1)P_4(axzs — b) (3.16)

q=1
with
(;rl) (—1y }_z)
Agyg = — %~ i 3.17
we arrive at the equation
0
/|a—%wi($1,$27$3)\2d9
Q
)
hooN, .
— // (Z (r; + 5){@0&31.(&3:3 —b) wy,
r;=0
w (=) Ot
h

+G[Aa0ripri<a$3 - b) + Z Aoéql'(QTi - 2% + 1)P7‘i—qz‘(ax3 - b)] Wi,

g;=1

+aP,,(axs — b)wiy, o } ) dasdw

(+)
h N; 1
a/Oé
_ / / (Z alri + SHICE + Aworo) i, + w3, 0] P, (a2 — )
r;i=0
w (7) K2
h

18



ri—1

1 2
+ Z 2A 00, —s;Wir, (i + é)Psi(axg - b)}) drsdw. (3.18)

81:0

Introduce the notation

\If(a’nisi’ri) = 2Aa ri—s; Wir; for i = Si > O’ (319)
1 o
(s + =) W0 = (B2 L A g, + Wi, o
3 2 Qa
ey . 62

Then from (7.19) one obtains

/\wi,a(ﬂfl,xQ,xs)’QdQ
Q

<;> N; ! T X 2
= // { E (ri + 5)61( Z \I;(a,rrsi,m)(si + 5)]351,(@:33 - b))} dazdw
ri=0 5;=0
w (=) L i
h
(+)
h

— // { % ( Z (r; + %)@(%n—&sn))cz(si + %)Psi(aajg — b)}zdxgdw

_ /Z ( Z (ri + %N,(a,msi,m)z(si L %) do. (3.21)

Consequently,
N; 1
QlessN = g!/2 Y " (r; + 5)\IIWZ'—SZ'@ € Ly(w) for s; =0, N;. (3.22)
Denote

Vi, 7= W wy,. (3.23)
The functions v;,, are called weighted moments of the function w;. From
(7.11), (7.14), and (7.20)—(7.22) it follows that w = W = (w1, wy, w3) satisfies

3 N;

Tt
ol = 22 [ D 03+ PIE v (3.24)
=1 7;=0
N; 1 N; 1
TiT85 7"2‘—1
+> (si+ 5)“ > (ri+ 5)[1 — (=) 20 17 )
s;=0 T{=5;

19



k3

2 N;
Y (s DI g+ S (i by 2 b,

a=1 5;=0 ri=s;+1

2
Lo(w)

Let
. T
v = (U10, oy U1Ny, V20, -+, V2N, U30, -~-7U3N3) ) (3-25)

where v;,, are given by (7.24).

+) (=)
DEFINITION 3.1 By H%\g h, h,w) we denote the subspace of vector—fun-
ctions belonging to [HE ()] TN for which the norm ||| )  de-
Hl

(h,hw)
fined by the right-hand side of (7.25) is finite. :

(+) =)
LEMMA 3.2 The space Hy( h, h,w) is complete.

Proof. Denote for any ¢ > 0:
we={rx€w : |lr—y|>¢c forally € y}.

The norm || - || e is equivalent to the norm || - ||z (Vi Nat Nz s

since h(z) > 0 for z € &y, i.e. h(x) > const > 0.

) (=)
Let {v,} € HX(h, h,w) be a fundamental sequence. We will show that

(+) =)
it converges to some vector v € Hy( h, h,w). Due to the above equivalence,

the sequence {v,} is then also fundamental in the space [H(w,)]N1+N2+Ns+3

for arbitrary € > 0. Since Hk(w.) is complete, there exists a vector v(®) €
y N p
[H (w, )]V HN2HN3+3 guch that

vy, — U(E)H[H1(w€)]N1+N2+N3+3 — 0 asn — +o0.

Note that for e; < g5 (i.e., w., D we,) there holds for the restriction onto w,:

v(‘al)|w€2 = p(2)

Therefore, there exists a vector-function vy € [H} (w)]V1TN2TNs%3 quch that

loc\W
for every € > 0
Volw, = v,
It is evident that
oull @y <M foralln €N,
Hy(h, how)
where M is some positive constant. Obviously,
lonll ey SHlonll e <M forevery e >0,
H} H}

N( , h we N s W
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and

— (e) = 1 < M
) _ v _ m ||v _ .
H OHH}\,((Z),(h),ws) H HH}\,(%),(h),ws) n_>+OOH nHHI{,((Z),(h>,w8) =
Hence

) _ = lim ||v _ <M

|| 0||H11\1(<Z)’<h>7w) el—>0H OHH,{,((Z),(;L),%) >~ M,

o L))
which implies that vy € Hy(h, b ,w).

+) =)
It remains to show that v, — vy in the space Hy( h, h,w). Indeed, for
any arbitrary d > 0 there exists a number Ny(9), such that

_ - < — o <0
|[Vn UmHHf\I((Z)’( )ME < ||vn UmHva (Z),(h),w)

for n,m > Ny(6). Passing to the limit as m — oo for fixed n we get

[lon — v
n(

= ||v, — vo||Hl W <6 foralln> Ny(9).

(+) (=)
h,h,wg) Nh,h#’-’s)

Sending ¢ to zero we conclude that

||Un—'UOH (+) (=) ) §6 for all n>N0(5)7
H s h oW

LCh' S h

which completes the proof. O

(+) =)
COROLLARY 3.3 Hy( h, h,w) is a Hilbert space and a subspace of
Hl

loc

(+ =)
(w), that is, for any e >0 and v € H(h, h ,w) there holds

= [Hl(we)]N1+N2+N3+3.
COROLLARY 3.4 Vn(Q) is a closed subspace of H(S).

Proof. It readily follows from the above isometry (see (7.25) and Definition
3.1 ) that

lwllf@) = IIUIIH%Q + = [lwlla @)

) (=)
(h,hw)

for every w € ‘N/N(Q), where v corresponds to w according to the relations
(7.9), (7.24), and (7.26). O
We now introduce the spaces (cf. (3.9))

V(. T) = {weW(Q): wp=0}, (3.26)
LG RN
Hx(hy hyw,y) = {veHx(h, h,w): v, =0} (3.27)
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LEMMA 3.5 Ifw € VN(Q, ') then the corresponding vector of weighted mo-
(+) (=)
ments v € HY(h, h,w,7).

Proof. Due to the trace theorem we have (see also (7.8) and (7.24))

0= rolw) = 3 (r-+ )P azs — )l (W0,

where 70 and 7, are the trace operators on I' and -y, respectively.
The equality HTF(wi)H%Z(F) = 0 along with the Fubini theorem and (6.15)
gives

7y (h"vy,) =0 forr; =0, N; andi=1,2,3,

which implies 7,v;,, = 0 since h|, > 0. O

~ (+ =)
REMARK 3.6 [t is easy to see that V(2 T) and H(h, h,w,v) are closed

+) (=)
subspaces of H'(Q,T') and of Hy( h , h ,w), respectively, and represent Hilbert
spaces with respect to the respective natural scalar products induced by H'(Q)
+) =)

and H( b, h,w).
3.3 Expressions for the strain and stress tensors

In what follows, for simplicity, we assume that
Uy, =0 for N; <r; <N (3.28)

with N := max{Ny, Ny, N3}.
In order to obtain expressions for the strain tensor in terms of the vector—
function B
w e VN(Q) ,

we substitute (7.8) in (6.8) and distinguish the following three cases:
{i=a, j=p}, {i=a, j =3}, and {i = j = 3}. Due to (7.24) and (7.27)
we assume that

Wiy, = 0 for N;<r; <N, and i=1,23. (329)
We begin with the first case i = o, j = 3. Applying (7.8), (3.29), and (7.17),

we get

eap(W) = 5 (Wap + W)

N —
—~

N
1
= Z <r + 5) {aﬁ Wor Pr(azs —b) + a war 3 Pr(axs — b)
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+a woy Plaxs —b) (agrs —bg) + aq we P (axz — b)
+a wgy o Pr(axs —b) + awg, Pl(axs —b) (@423 — bﬁa)}

N
1 1
= 2 § <T + 5){ [a(War 5 + Wora) + @ p War + a o ws] Pr(axs —b)
r=0

+awe, [Ago rP.(ax3 —b) + Z Apg (2r —2q+1) Pr_y(axs — b)}

q=1
+awgs, [Aa0 r P.(axs —b)
+37 Aug(2r — 24+ 1) Py (as — b)] } . (3.30)
g=1
By introducing
v =(r+1)hoh? if s=r,
hom{ A i @31
we find
Ao+ aAyor = azaﬁ and A,is5(2s+1) = Z;as, for s#r. (3.32)

Taking into account (7.32) and the obvious relation

Z Zcrs = Z Zcrsa (333)

r=0 s=0 s=0 r=s

after substitution r — ¢ = s, from (7.30) we have

N
1 1
caslw) = 5 3 (7 + 5 ) 8tars + Wpr.a) Pr(azs = b)
0

- 2

]- al - 1 T r

+§ Z (T + 5)@ <bﬂswa£ + baswﬁz> Pi(CL[I,'g — b)
r=0 s=0

1 1
=3 ; (7“ + §>a(wazﬁ + Wora) Pr(axs — b)

TR N e )
+5 ZO Z <r n §)a<bﬁswa£ + baswﬁz) P(axs —b).  (3.34)

Denote by ¥; the second sum and interchange there r and s. By virtue of
(7.31) and the identity

(s+ %)(2r+ D= (r+ %)(23+ 1), (3.35)
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which with (7.32) implies

IN7r 1\ s
<£+ i)bas - (§+ §>bar7 (336)
we obtain
(NN 1 . \
Y, = 5 ; ; (s + 5) a <bg7«wa§ + barw5§> P,(axz —b)
NN 1 . .
- 5 Z Z (T + 5) a (bﬁswa§ + baswﬁ§> Pz(ax?» - b)'
r=0 s=r
Finally, substituting the last expression into (7.34), we get
N
1
eap(w) = Z (7’ + 5) a(z)eqapr(v)Pr(axs —b) for o, =1,2, (3.37)
r=0
where
1 1 N r r
Capr = §(warﬂ + Wora) + B Sz:; (b,@swag + baswﬂ§> (3.38)

for a,=1,2 and r =0, N.
In the second case, © = a and 7 = 3, denoting

r 1 — (=1)%t
= (2 l)——— .
bss = (25 + 1) —o (3.39)
and applying formulae (7.13), (7.17), (7.32), and (7.33), we have
ea3(w> - é(wa,?) + w3,a)
1 & 1
=3 Z (r + 5) [aZwazPﬁ(axg —b) + aqws P.(axs — b)
r=0
+aws, o Pr(axs — b) + aws, Pl(axs — b)(a qx3 — b,a)}
LN
=3 Z ( —> {awqu Z bss Ps(axs — b) + (a qwsr + awsy o) Py (axs — b)
r=0
+aws, | Agor P, (axs — b) + Z Ang(2r =2+ 1)P,_y(axs — b)} }
q=1
_ ! 3 L P. b b
= 5 Z T+ 5 [aw?)z,a (aJTg - ) + aWeqy Z bgs al'g — )

s=0
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r—1

+azarw3£Pr(a:E3 —b)+a Z Aoris(2s + 1) Py(axs — b)ws,
s=0

N T
1 1 T r
+§ ; (T + 5) a Z (bgsw@f + basw;;z) Py(axs —b)

r 5=0
o 1
=3 ; (7‘ + 5) awsy o P, (azs — b)
NN ] . .
= (r + 5) @ (Bastwar + basti ) Pulazs — b). (3.40)
s=0 r=s

Denote by ), the second sum and interchange there r and s. By virtue of
(7.36) and (7.39) which with (7.35) implies

(z+ %)233 —(s+ %)Zgr, (3.41)
we obtain
L NN 1 . ,
Yo = 3 Tz; ; (s + 5) a (bgrwa§ + bm«w3§> P,(ax3 —b)
NN 1 . .
=5 Z Z (7“ + 5) a (bggwai - ba5w3§> P.(ax3 —b).
r=0 s=r
Substituting the last expression into (7.40), we get
N
eas(w) = Z (7’ + %) a(x)eas ()P (axs —b) for a=1,2, (3.42)
r=0
where
1 1L /r " S
Cosr = iwgm + B ; (bgswa§ + basw3§> fora=1,2 andr=0,N. (3.43)

Finally, in the third case i = 3, j = 3, by applying formulae (7.13), (7.39),
(7.33), and (7.41), we have

N
1
633(11)) = W33 = Z (7‘ + §> CL2?,U3£P;(CL$3 — b)
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) aws, 23§Ps(ax3 —b)

s=0

1 r
(7" + 5) bssws, Ps(axs — b)

N | —

M) =

@

r

ﬁ
Il
o

WE
WE

i
)

s

] =
] =

1 s
(s + 5) abs,wss Pr(azxs — b)

ﬂ
Il
=)

S=T

NE
] =

1 r
(T + 5) bsswss P, (axs — b)

r=0 s=r
al 1
— Z (r + 5) a(x)ess, (z)wss Pr(axs — b), (3.44)
r=0
where
N T —_
€33, — Z bgsU)3§ for r = O, N. (345)

Now, we can rewrite all the formulae (7.38), (7.43), and (7.45) in an unified
form, i.e.,
1 L[ 7
€ijr = §(wir,j + wjp;) + 3 z_: <bjswi§ + biswj§> (3.46)
fori,j=1,2,3 andr =0, N.

The last formula has been derived by I. Vekua [33] who was using, however,
different arguments.
In view of (7.24), (7.31), and (7.39) we conclude

1
cijr(V) = 5 |:(hr+lvi7"),j + (hr—‘rlvﬁ),i}

N
1 s r r
+§ SZ_; h + (bjsvi§ + bisvj§>

1 1
= §hr+l (Virg + vjra) + 5+ DA (hjvir + hvj)

N
1 1 r r
_5(7‘ + A" (hjvir + hvj) + 3 Z Bt <bjsvi§ + bisvj§> ,
s=r+1
which provides us with the relations
1 1 N r r
eijr(v) = —hr—H (Uir,j + UjT,i) + 5 Z h5+1 (bjsvig + bisvjé) (347)

2
s=r+1
forv,7=1,2,3 andr =0, N.
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Thus, by virtue of (7.37), (7.42), and (7.44),
al 1
eij(w) = Z (7" + 5) aeijr(v) Pr(axs —b) for 4,5 =1,2,3, (3.48)
r=0

where e;;, is given by (7.47).
Now, according to Hooke’s law (6.9), we get the following expressions for
the stress tensor:

Oij (U)) = )\&Jekk(w) -+ 2#61‘3' (U))

N N
1 1
= Ay 2 (T + 5) aegrr Pr(azs — b) +2pu g (r + 5) aeij, Pr(axs —b)

r=0
al 1
= Z (r + 5) a[Aojjeprr + 2peij,| Pr(axs —b), (3.49)
r=0
ie.,
al 1
oij(w) = Z (r + —) aoijr(v)Pr(axs —b) fori,j=1,2,3, (3.50)
r=0 2 B
where
0ijr(V) = Ajjeppr(v) + 2peij(v) fori,j =1,2,3, r=0,N. (3.51)

From (7.49), by virtue of (7.47), we have

N 1 N
oi(w) =) (r - 5) a{/\éij h (UO”’“ > szsv/@)

r=0 s=r+1

N
+ﬂ |:hr+1 (Uir,j + Ujr,i) + Z hs+l (bjsvi§ + bisvj§) :| }Pg(axS - b)

s=r+1

N N
- Z (r + %) h’"{)\éij <vm,a + Z gksvk:g)

r=0 s=r+1

N
+M [Uir,j + Vjri + Z h®™" (bjsv@ + bisvj§> ] }PZ(CLIg - b) (352)
s=r+1
for i,5 = 1,2,3. So, as a consequence, the moments of the stress tensor have
the representation

N
O'Z'jr(v) = )\(Sijhr+1?]ar7a + [Lhr—’—l (Uir,j + ani) + Z Bijkshs+lvk§ (353)
s=r+1

fori,j =1,2,3, r =0, N, where

Bijks = Aijbrs + poirbjs + 10k;bis (3.54)

fori,j,k,s=1,2,3, r=0,N.
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3.4 Variational formulation in particular spaces. Exis-
tence results

For any pair of elements
. L [ &)
v,V € HN h ’ h W,y (355)

we construct w, w* € &N(Q, I') according to the formulae (7.24) and (7.8):

N;

1\ .,
wiz, x3) = ZO (ri + 5) Wivg, (2) P, (axs — b) (3.56)
N; 1
wi(z,x3) = Z (7‘,» + 5) h'vy, () Py, (axs — b) (3.57)
r;=0

for : = 1,2,3. Then, consider the following variational problem.
Problem (IR). Find w € VN(,T) such that

B(w,w*) = F(w*) for allw* € ﬁN(Q,F), (3.58)

where the bilinear form B(-,-) and the linear functional F(-) are given by
(2.21) and (2.22), respectively, with f and g* satisfying the same conditions
as in Subsection 2.2.

Due to the coerciveness (2.27) and the Lax—Milgram lemma along with
Corollary 3.4 we obtain the following statement.

LEMMA 3.7 The variational problem (IX) has a unique solution.

Further, we now reduce the three—dimensional variational Problem (1) (see
(7.58)) to the two-dimensional variational problem for the vector-function of
weighted moments. To this end we have to substitute (7.56) and (7.57) into
(7.58), apply formulae (2.21), (2.22), (7.48), (7.50), and (7.51) along with the
orthogonality property of the Legendre polynomials (6.15). We get

Blw, ' / o / i > (r+3) (++3) ourennte)

P (as — B)P.(as — By
_ / ; (r + %) 40152 (V)i (") doo
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Z (7' + %) a[Adijernr (V)€ (V7) + 2peijr (v)eij (v*)] dw

r+ %) / a[Aegrr (V)€ (V) + 2,ueijz(v)em(v*)] dw

=: BX(v,v"), (3.59)

F(w*) = Z f: <r+%) /a[—fergj 1+(V(2))2

i=1 Tz':() w
(=)
(1) g\ (T ) B do = FR (7). (3.60)
where
)
h
fir; (x / fi(x,x3)P,,(ax3 — b)dzxs fori,j =1,2,3, r; =0,N;, (3.61)
)

and we assume

firs(x) =0 for N;<r; <N. (3.62)

Thus, (7.58) is equivalent to the following two—dimensional variational Problem
(I%):
, S
Findve Hy | h, h,w,vy | such that

+) (=)
B (v,v*) = FL(v*) for allv* € Hy (h . h ,w,y) : (3.63)

For this problem, we show the following existence result.

THEOREM 3.8 Ifw is a Lipschitz domain and

(+)
1/}2'7‘1' =h % [ flrz+gz 1+(Vh)2
(3.64)
(=)
+H(=1)"gr 1+ (V1) | € La(w),
then Problem (I¥) has a unique solution v which satisfies the estimate
:,tw

I < 74l (3.65)

where dy is the constant involved in (2.27).
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Proof. Due to the equality (3.59), the coerciveness and boundedness of
B(+,) (see inequalities (2.26) and (2.27)) and isometry (7.25) (see Definition
3.1) it follows that the bilinear form Bg(-,-) is coercive and bounded:

By (v,v) = B(w,w) = &allwllfng = ellI* o . (3.66)
(i)

By (v,v") = B(w,w") < 61||w||m o)l |w*||m (@)

=ollll oo NI oy - (3.67)
H11\1<h h,w) H&(h,h,w)

The condition (3.64) implies that Fx(-) is a bounded linear functional on

+) =)
the space Hyq ( h, h,w, ”y) as can be seen as follows:

3 N
- (o) i

N 1\ /2 1\ /2
AN S () Wil 1 5) 7 Hed

i=1 r;=0

3 N 1\ /2
(T X (rt3) Mllao)l o s

=1 r;=0 HN< h 5 h ,w)

since
1
|(r3) i, <o
I3 9 ir; L) — Hll\]((-}t),(;),w)

forr; =0,N and7=1,2,3.

So, taking into account

VR
&3
+
DO |
N———
N
IN
VR
=
+
N —
N———
vl

we get

1 13 N
R (v)] < [<N+—) > Z 13| (} VI mo
2 arg—— H11\1< h's h ,w)

Now, Remark 3.6 along with the Lax-Milgram lemma completes the proof. O

(3.69)
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REMARK 3.9 If f; € Ly(Q) then for almost every x € w:

= 1
fi(z1, 22, 73) = ?Z:O (Tz‘ + 5) afir,(v) Py (axs — b)
and )
h=2 fi., € La(w) for i=1,2,3 and r; =0, 00, (3.70)
due to the inequalities
al 1
> (m + 5) / a | firPdw < / fi2dQ2 for i =1,2,3,
=0 w Q

In this case, (3.64) is equivalent to the conditions

_1 () 2 +
h=24[1+ (V h | g € La(w) for N>1,(3.71)

()9 (=)o _
\/1+(Vh)gf+\/1+(Vh)gi]ELg(w) for N =0. (3.72)

Clearly, (3.71) implies

B3

g5 € Ly(w). (3.73)
For the reader’s convenience here we present the following technical lemma.
LEMMA 3.10 Let Q2 be a Lipschitz domain described in (6.1). The union
NOQOVM(Q, ') is dense in H'(Q,T).

Proof. We shall prove the lemma in three steps.
Step 1. For f € C([0,1]) and any € > 0 there exists § = §(g) > 0 such that

IF(€) = F(EN <e it & =" <,

due to the uniform continuity of the function f. Denote by B,,(§) the Bernstein
polynomial corresponding to the function f:

B,(f;€) = Z ( Z ) f(%)g’“(l — &)™ for £ €0,1] andn € N. (3.74)

Then (see the proof of Bernstein’s theorem in [57, Ch.4, Section 5]) we have
the following estimate:

M
Balf3€) — O S+ 5

for £ € [0, 1], (3.75)
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where M := n[%aﬁ(\f(fﬂ

In addition, we assume that f is not constant, f € C'([0,1]), and

M' = max]|f(€)| > 0 (3.76)

The case M’ = 0 is trivial as will be shown below at the end of Step 1.
It is evident that we can choose ¢ as

3

0= U (3.77)
The relations (3.75) and (3.77) give
M M/ 2
|B.(f;6)— f(&)| <e+ 2(n52) for £ € 0,1] ande > 0. (3.78)
o M’ : :
Substitution € = leads to the inequality
n

Ba(£:6) — F(©)] < <= (M + M) (3.79)

n I — % 2 N

for £ € [0,1] and every n € N.
Further, if f € C'([dy, ds]), then (3.79) implies

~ 1 /1~ —
BA5:6) = FQ)] < o= (33 + (= )T (3.80)
where
~ "/ n k
B =3 (7 ) #(a+ - ay)
§—dy\kypdy— &\ Fk
X(dg—ch) <d2—d1) ’ (3.81)
M = max|f(©)], M’ = max|f'(€)]. (3.82)
Put
max {% , (do — dl)} =C". (3.83)

Then (3.80) can be rewritten as

~ C'*
BelF€) = OIS T 1l - (3.84)
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Remark that if f(§) = const =: C, i.e., M' =0 (cf. (3.76)), it is evident that
(3.84) holds, since

Ba(€,C)=C  forall n>0 and ¢ € [di,dy].

If feC%([0,1]), 0 < a < 1, we can show, analogously, that

Balf:6) — F(€)] < —= (M’ ¥ 1M) |

notz 2
where
M —max|f( )| M’ = sup |f(£>_f<77)|

[0,1] o<em<i € —nl®

Step 2. Let o be an arbitrary element of H'(Q,T).

Due to Lemma 1.10 in [45], for any € > 0 there exists a function ¢ € H'(Q)
such that the projection of supp ¢ onto the plane Ox x5 is a subset of w, i.e.,
@ vanishes in some three-dimensional neighbourhood of the set I' U %y, and

(3.85)

Wl M

Now, choose constants d; and dy such that
Q0 C QO =w X (dl,dQ).

Denote ~
FO =79 X (dl,dQ).

Further, let ® € H'(Qy,T,) be some extension of @ onto (see, e.g., [49,
Theorem A1]). Due to the density property of C> (€, o) in H'(Qo, o) there
exists a function ¢ € C3(€y) such that

(O}

1P = ll ) < 3 (3.86)

and 1 vanishes in some three-dimensional neighbouhood of To.
Our goal is to construct a polynomial in the variable x3,

(x,x3) qu r)zk € CH(Qy), (3.87)

with
q € CY(@) and Qklws =0, (3.88)

such that

5
1Y = tnllor@y) < 3(mes )72 (3.89)
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where ws is some two-dimensional §—neighbourhood of dw (with sufficiently
small 6 > 0).

It is easy to see that this leads to the proof of the lemma. Indeed, from
(3.85), (3.86), and (3.82) it follows that

lo = ullzi < llo—=Plag + 12— Yullar @)

< o =Pl + 12— Ylla1@0) + 1V — Yall 100

2e 2 ¢
< 3t (mes Qo)"2 (| — |1 (gy) < 3 t3=5

since B
12020y < (mes 0)2[| x| 1@y for x € C() .

Taking into consideration that the Legendre polynomials {Fj}7_, gener-
ate a basis in the set of polynomials of degree m with m < n, we see that

U, € &N(Q, I') due to (3.88), and the lemma would be shown provided the
polynomial (3.87) were constructed.

Step 3. To this end let us consider the polynomial

— :nfl n—l B e
Yn-1(7, 73) kz::o( L )f<$ad1+(d2 dl)n_1>

(3.90)
" (1;3 — dl)k’<d2 — x?))n—k‘—l
dy —di/ \dy —dy ’
where n > 2 and ( )
oY(x, xs3
= — 3.91
f(xa ZL‘3) 8:153 ( )
Evidently, o
feC?(y). (3.92)
By (3.84) we obtain
o~ c*
— — < — 2(00) - 3.93
o o] = 7 Wl 3.99
Introduce 2
nlayas) = vlandy) + [ 6, (o0 (3.94)
d1
From (3.93),(3.94) there follows
oy oYy, cr
— = < — 2000} - 3.95
‘ 8173 81‘3 @) = meHC (Q0) ( )
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In what follows we prove
C*(dy — dy)

14 = ¥nllo < In—1 [l c2 ) - (3.96)
oy O, C*(dy — dy)
’ 0ta  Otalon ~ Vn—1 [¥lles gy fora=1,2. (3.97)

First let us note that, by virtue of (3.94) and (3.90), we have
—1

() =2 (")

k=0
k xr3 — d1 k dg — I3 n—k—1
oz, dy + (dy — d ,
<. <x 1 l)n—1><d2—d1> (dg—ch)
B”—1<¢,3a(xa'>; $3) = 1/Jn73a($,1’3), (398)

due to (3.91). In view of (3.84) and (3.98) we get

C*
||w,3a - wn,SOéHC(QiO) < ﬁ”dJHCS(m) . (399)

Applying the relations
wn,a('xa dl) = Tﬁ,a(lﬁ, dl) 5

(s w5) — (o, dy) = /w,g(x,t)dt,
di

T3

il 23) = Vol 3) = [ Wsalzst) = dnsali, )
di
along with (3.93), (3.94), and (3.99) we conclude

olaszs) = o) = | [Walet) = b, (o0l
dq

C*(dy — dy)

< ﬁ”dfﬂm(m; (3.100)

C*
|¢,a($,$3)—¢n,a($>$3)| < /ﬁ“fﬂnc%ﬂo)dt

dy

C*(dy — d
D sy, (3101

<
= T
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which coincide with (3.96) and (3.97).
Combining the estimates (3.95), (3.96), and (3.97) we obtain

3C*(dy — dy)

||7vb_¢nH01(§TO) < m ”wHC3(STO)'

(3.102)

Taking n sufficiently large,

9(mes 20)2C* | Pl sy )
n21+< (mes €) HwHC?’(QO)> ’

£

we get the inequality (3.89).

It is evident that v, given by (3.94) can be represented in the form (3.87)
with g, satisfying conditions (3.88), because of f(z,z3) = 0 for z € ws since
1 vanishes in some three-dimensional neighbourhood of Ty. The proof is
completed. O

3.5 Convergence results

THEOREM 3.11 Assume that
(£)
f € LyQ) and h™Y2[1 4 (V b )?*V%¢* € Ly(w). (3.103)

+) =)
For N € N3 et Ve HYL(h, h,w,v) be the unique solution to the problem

(I%) (see (3.63)) and let W e &N(Q, I') C HY(,T) be the corresponding vector
constructed by (7.56), which represents a solution to the variational problem
(7.58).

Finally, let v € HY(Q,T) be the unique solution of the three-dimensional

variational problem (2.20).
Then

10 = ull g1y — 0 a8 Ny = min {Ny, Na, N3} — +00. (3.104)

N
Proof. By standard arguments it can be shown that v minimizes the func-
tional

1 +) (=)
In(v) = §Bl“\}(v,v) — F¥(v) where v € Hy ( h,h ,w,7> , (3.105)

. N (D)
ie., In(v) < JIn(v) forallve Hy | by how, v ). (3.106)
Note that (cf. (7.58) and (3.63))

LN , N RS
Bg(v,v) = FR(v) = F(w) = B(w,w) forve Hy| h, h,w,v|; (3.107)



here and in what follows w corresponds to v via the formula (7.56) and is an

arbitrary element of the space X?N(Q, r).
Further, with the help of (3.105)—(3.107) and (2.20) we find

N N

Blu—tw,u—w) = B(u,u)—2B(u,w)+ B(w,w)
= B(u,u) — 2F (W) + BE(V, 0) — 277(V) + 275 (V)
< Blu,u) — 2F(w) + B (v,v) — 2F2(v) + 2F5(D)
= B(u,u)+ B(w,w) — 2B(u,w)
= Blu—w,u—w) for alle&N(Q,F),

that is,
N N ~
B(u—w,u—w) < B(u—w,u—w) forallwe Vn(Q,T). (3.108)

From (3.108) and the coerciveness of the bilinear form B (see (2.27)) it
follows that

Sallu — W[ 2oy < Blu— ,u — ) < e (3.109)
with
en:=inf B(u —w,u—w) >0 forallw e I?N(Q,F). (3.110)

Since Vn(Q,T) C V(L) for N; < N, (i = 1,2,3), we conclude that
eN > €N, and, therefore, there exists the limit

lim €N:€ZO.

Due to (3.109) it remains to show that e = 0. We prove it by contradiction.
Assume that € > 0.
Note that, under our assumption

en >¢e>0 forall N € N, (3.111)

By Lemma 3.10, the union

U Vn(Q,T) s dense in H'(,T). (3.112)
N

Because of (3.112), there exists a vector—function w’ and a vector N, such

that
€

w/ S VN/(Q,F> and Hw' — u||%[1(m < 2—51

with the same d; > 0 as in (2.26). Therefore,

en < Blu—w', u—w') < 6 fju— |2 < g
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which contradicts (3.111). Thus, € = 0 and the result follows. O
Note that if h(x) # 0 for € @, then there holds the following known result
(see [3])

= w|[3 ) < N-9g(N), with Ny = N = Ny = N, (3.113)

where u and © are as in Theorem 3.11 and in addition u € H 5(2) with s > 2;
(+) (=)

here g(N) — 0 as N — +oo. In the case h = —h =h =const >0:

h2(571)

< WQ(N)'

ot = w3 o
The approach developed in [3] is essentially based on the fact that in the
case of non-cusped shells the Fourier-Legendre coefficients of the solution u €
H'(Q) automatically belong to the space H!(w), which implies that the partial
sums of the corresponding Fourier-Legendre series belong to the space H'(2).
In the case of cusped prismatic shells, in general, as has been shown above,
the Fourier-Legendre coefficients and the corresponding partial sums do not
belong to the spaces H'(w) and H'()), respectively. Therefore, the above
approach needs some modifications.

THEOREM 3.12 Let u and W be as in Theorem 3.11 and, in addition, let
the conditions
() ()
hlu , h ' hau, haus , hl2u € Ly(Q) fora=1,2, (3.114)
be fulfilled with

( (=)

1 ) (+) () \2
hy = h—4[§h?a( hon )+ (hah—hah ) | @3115)

Moreover, let

Oui € Lo(Q) fork =05,

(3.116)
BOqu; € Lo(Q) forp=0,s—1, ands > 2,
hoOu; | hoOlu; € Ly(Q) form=T1,s (3.117)
with h and b given by (6.2) and (2.32), respectively.
Then 25
N| |2 o
where N — Ny < Coy with some constant Cy independent of N and
ho := maxh(x) and q(N) —0 as Ny — 0. (3.119)

rTeEW
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Proof. The conditions (3.114) (which are sufficient) imply that the partial
Fourier-Legendre sums Sy, (u;) of the components u;, i.e.,

N
. — LY o —
S, (w;)(z, z3) ?;0(1 (r + 3) uir(z) P (azs — b) (3.120)
for N; =0,00, 1=1,2,3,
where
+)
h
wir(x) = /ui(I,.T:;)PT(CLIg —b)dxs forr =0,00, (3.121)
)
h
belong to the space Vi, (Q,T) € HY(Q,T).
Introduce

en, (z,x3) == wi(z, x3) — SN, (u;)(z, x3)
N 3.122
- Z a (T + ;) wir(x)P.(axs —b). ( )

Our goal is to estimate the norm of ey, in the space H'(2). Applying the
recurrence formula

1 / /
Pr(t): m [P'r—i—l(t)_PT—l(t)} fOI'TZ 1,
we get from (3.121)
1 R
Ui () = a@r+1) |:(63ui)r—l - (33ui)r+1] forr =1,00. (3.123)

With the help of (3.123) we obtain
1 1/2 hgs r+s /2
(o 3) a5 2 e (15)

l=r—s
with ¢ = 2%71(2s + 1)[(s — 1)1]°.
By the Parseval equality along with some additional calculations we arrive
at the relations

2

La(w)
(3.124)

2 o)

HgNi La(Q) - Z /h 1<T+%>(uw)2dw, (3.125)

r=N;+1 W

H835Ni ;(Q) = Z/h 1(7“4—%) [(Osu;), ]2 dw




+—Ni(]\2_ D /hl[(asw)N]de
N;(N; +1) i

4 /h_l[(agui)]vi+1]2dw, (3126)

w

2

o = 2{ 2 /h1<7“+%>[(3aui)r]2dw

r=N;—1

8a€ N;

+Nz‘2[/h1[(h,a83uz')zvi]2dw+/h1[(ﬁ,aa3uz’)Ni]2dw

+ / WY (P a@y;) waa)2dw + / h_l[(ﬁaaguz-)NiHFdw]}(3.127)

w w

with & and h given by (6.2) and (2.32), respectively.
From (3.125) and (3.124), there follows

2 h25

< 20 (N, 3.128
La(@) — NZ$ 9i1(Ni) ( )

with hgy given by (3.119); here and in what follows ¢;;(N;) — 0 as N; — oo.
Further, by virtue of (3.126) and (3.123) we get

2 hgs—Q

< ——3 di2(NVy). 3.129
La(9) = Nigsfg (]2( ,) ( )

foe

In view of conditions (3.116) and (3.117) we analogously derive the estimate

Combining (3.128)—(3.130) we have

9 h25—2
- # ¢is(N;) fora=1,2. (3.130)

8Q€Ni
Ly ()

3 .
ZHEN oo N (3.131)
= e T NG

with g4(IN) — 0 as Ny — 00.
Invoking the inequality (3.108) with

w = (S, (1), S, (us), Sny (us)) € Va($2,T)

and taking into consideration the coerciveness and boundedness properties of
the bilinear form B(-,-) we obtain inequality (3.118). O
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(+) )
REMARK 3.13 In the symmetric case, i.e., when h = — h = h, conditions

(3.114) are simplified and read as

hlu, h_lh,au, hous € Ly(Q) fora=1,2, (3.132)
. . . . 1(h 2
since in the case under consideration h, = 3 (T"> .

REMARK 3.14 In the particular case of power degeneration, i.e., when

+) (=)
h = — h = h = cox§ with constants co > 0 and 0 < kK < 1, the condi-

tions (3.132) have the form

xy"u, kgt ks tug € Ly(Q). (3.133)

4 Derivation of the basic system of two—di-
mensional models

4.1 The case of general systems

By virtue of (2.20) we obtain

N;
N
B(u, ) = F(0) for all 0, = > Vi, (x) Py (a3 — b), (4.1)
m;=0
where P, (-) is a general system on [—1, 1] and

N;
(21, 22) Z x) Py, (ax3 — b). (4.2)

According to (2.21), (4.2), and (4.1), we have

B(IQ\LI, 11\21) = /dw/aw Jeii(v dxg /dw

(+

(+)
h h
== /dw/gia(ﬁ)gi,adlﬁ+/dw/gl3(N)Nl 3dl’3
w (=) =)
h h

)

(+
h
/ o1 (1) Vs d
=)
h
)

(

w (
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= /dw/ai3(ltj)gi73dx3+ / Jia(ll\tl)ll\}mads

w (-) Stus—

Let

/dw/ama vdac3,

(+
h

[2 = / Um(ll\g)ll\frl dS, [3 = /dW/Ulg(ll\g)li\}Izysd.%S
}—l)

Stus— w (

Due to Hooke’s law (6.9) we have

Um = Ajo, Z Ulkl )Py, (axs — b))

N;
+M{Z U’Lk )Pk G.Tg—b "‘Z Uaka Pka a,l'g—b)) }

ka=0
By direct calculations, we obtain
N, N i
Uia,a(u)vz |:>\6w¢ Z UlklPkl(axS - b { Z ik; Pk &1'3 - b)) aa
k=0 =0
Na
(Uock:aPk‘a (CL173 - b }i| Z Vzml m; CLIL‘3 - b)
ka=0
i NN N
=y [/\% {Ulkl,la(fﬂ)Pkl(axs —b) + Uiy i(x) (P, (a3 — D))
m;=0 k=0

‘l‘Ulk:l o(2) (P, (axs — b)),l + glkz (z) (P, (ar3 — b)),la }

i Z {Uzk oa(T) Py, (ax3 — b) + 2U%k (@) (P, (azs — b)),a
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U, (1) (P (a5 = 1) o, )

"> {Uaboin(2) Pr (@5 = 1) + Ut () (P (05 =),
ka=0

FUta) (P (s = ) ; + U, () (P (a5 — 1), }]

X Py, (a5 — b)V . (7). (4.4)

Let us introduce the notation

g
POl / (Py(azs — b)) ,; (P(azs — b)), do (4.5)
)
h
fori7j7k7l7p7 :]‘72737
+ +1 €3)
(77/)3 = n (4.6)
(i)
14+ (Vo h) 1+
it \f
Invoking (4.4) and (4.5), we obtain
N; e
k k1,0
- Z / [)\5ia {chl,lap(ml 0(?0 + chl 173((ml 000)
m;= k;=0
N (6%
+ Ulkz,ap(m ,00) + Ulkzp((r’;l loo }
Ni (N
+u Z {Uiki,aap((:; 0000) + QUzk aP + Uzk P ::ll%g)}
= N
o3 (Pl Do Pl
fia=0
- Dot a P00 4 U, P gi;)} } Vi, dw . (4.7)

Further, taking into account (4.6), we get

(+)
I, = / [Uia(lz)gi(ﬁ)a} (+) I+ (Vx h )2dCL’
3=
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Note that

NN N
Uz‘a(“) |:)\51aull + ,u( 7,0 + Ug z>:|

[/\% Z (U () Pry oy — b )}t Z (U () P (a5 — 0)}

k= k; =0
Nao N N; N

Y ek, () Prfazs = D)} ] 3 Vi (0) Py —0). (49)
kg:O m;=0

In view of (4.9), from (4.8) we find

Z / )\5204 Z {gml,l(ﬂﬁ)Pkl(l)
+U”€z (z)( Py, (axs — b)), m3:<;>(x)}
10 {Dial@) ()
k;=0
+(17m (z)(Py, (az3 — b)) o L (x)}

+p Z {Uozkal Pka(l)

ka=0

U ot (2) (P, (a3 — b)) 4

N
o} Vim @) P (D

3= h
+ Z / Aész{Ulk:l Pkl( 1)
+U”€z (z)(Py, (ar3 — b)) &, )}

—HLZ{UZ;c o) Py, (— )—l—Uzk( )(Py; (az3 — b)) o

z3= h ()

N
+/’L Z {Uaka 74 Pka( 1) + Uaka (‘r)(Pka (a“x3 - b))ﬂ
ka=0

m;;(@}]
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Vi () P (—1)dl (4.10)

By virtue of Hooke’s law (6.9), we have
)
h
I3 = /dw/ [)\51'31751,1 +p <17jz3 + 11\0137,)} 11\}1‘,5;6'35’3?,
w ()
h

(+)
h

N; N
N
= / dw / [mw,} ' {( Utk () Py (as — D)
mi:l)w k=0

=L

+?}lkl< ) (P (azs — b)), }

+HZ{Uzk ) (Pr(azs — b)) 5}

+p Z {U3k3 i(z) Py, (axs — b) + U3k3< ) (Pry(azs — b))’i }]

XV im; (%) (P, (a3 — b)) 5 dxs . (4.11)

From (4.11) in view of (4.5) we get
N
I3 = Z / )\513 Z {Ulkl :io[%)( )+ Uiy () (f,f 053)}

+i Z (U, P + u Z [Vt P + nggP(Sj pe ]vzm dw. (4.12)

Taking into account (2.22), we have

/f de+/ vds+/g—-?}ds

S
(+)
h N; N
m;=0
w (=)
h
N.
~ N ()
+/g;“(x) > Vin Po,(D\[ 1+ (Vo ) dw
m;=0
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i (-)

m;=0
w

)
N; h
- Z/[—/fi(m,xg)Pmi(a:vg—b)dasg
mi:Ow )
h

(+)
4P, (D) g\ 1+ (Vo )

_ (_) 2 N
P (- 1)g; \ 1+ (V0 )] Vi (@) (4.13)
From (4.1) and (4.3) it follows that
Ltl+Iy=DB@n0) =F®) forald e V(). (4.14)

N
Because of the arbitrariness of Vi, by substitution of (4.7), (4.10), (4.12),
and (4.13) in (4.14), we get

[)\5104 Z {73(:: Ofg)Uml la T P(m 00 1y YUtk + P ml Oéo)Ulkl ot 73:: ZSO)UW}
+MZ{ ;:LO(?OUZ]C aa+2PkOO%Uzk a+P§L%3)Uzk}

(ka, (ka,0c (ka,0i (ka,ic)
+u Z { (ms gg)Uakaza+Pm 80)Uakaz+7Dm go)Uakaa+7Dm OO)Uak&}i|
ka=0

N
(+) N N
- [Pmi(l) h o <>\5m {Ulkz,lpkl(l) + Ulkz(sz,Z)+}
k=0

N;
N N
+/’1/ Z {Uzk“apkz<1) + Uiki(Pkiya)Jr}

k=0
No N
+/’L Z {Uakaﬂpka(l) + Uaka(Pka 74) })
k=0
(=) M (N N B
—Po,(=1) h (>\5z’a {Ulkl,lpkl(_D + Utk (Pr1) }
k=0

N;
N N
T E {U’ikiyolpki<_1) + Uiki(Pki,Oé)i}
kizo

46



Na
N N
+u Z {Uaka,ipka(_l) + Uaka(Pka,i)f}ﬂ
ka=0
N,

+Adis {P((alji 0003 Ulkz 1+ P((TIZ 053 Ulkz}

kl =0

(k4,03) (k3,00) (k3,01
—|—,LLZ{ m03U7,k}+,uZ{ njog)U3k3z+P7;03)U3k3}

k3=0
(+)
h
N () o
= - fipmidxfﬂ"'Pmi(l)gg 1+(Veh)
(=)
h
_ (4)19
+ P, (=1) g; 1+ (Va b )7, (4.15)

where ¢ = 1,2,3, m; =0, N;, and

(Pad)* = (Buslazs =0)| - (4.16)

Recall that in equations (4.15) the set of functions {Py(axs — b)}32, is an

. (=) )
arbitrary system on (b, h ).

4.2 The case of the Legendre polynomials — Vekua’s sys-
tem

If {Py(azs — b)}32, is the system of Legendre polynomials, then

) 2
k,00 tk
7)((e,00)) = PSR P.(1)=1, P(-1)= (_1)k7

and from (4.15) we actually get I. Vekua’s system (see [33]).
In what follows we rewrite this system in vector form.
If i = 3, from (4.15) we have for = 1,2 and mg = 0, N3

(k+,00) (k3,00) (ka, 00)
_/\5,804 Z ng 00) UT]CT Too T |: Z ng OO)Uﬁkﬁ oo T Z P(mg 00) Uaka Ba
kg=0 ka=0

N o +) () \1 N
- Z {)\6,304 (hr, 0 + )\55(1( h o (_1)m£+k7— h ,a) }UTkT,T

N
_/\(Sﬂa[z P:;OJO) UT]{Z-,—O(+ ZP:?BO(?O U3k30¢:|

k=0 k3=0

47



« (=) N
3 Lorltm D oty M
kg=0

e (<) YN
Y Pt B o= e Y s
ka=0 N

Nq
ka,0 ks3,00)
—H Z P((mg 0% Uaka ot 2 Z P((Tngﬂ 03) U3k3 B

ka=0 k3=0
. (kr,Ta) (+) + m ) N
2| D APUIT 4 h P = (21 B P )™ JUr,
k=0

o e ) N
+Z{ P+ B alPras)™ = (1™ B a(Pras) } ]

Ng
ksaa) (P ma () (ks,03)
> {PE 4 a(Pra)” = (1™ b (P = PO M,
k=0
SN [ (b)) + h
—H Z {P(mﬂ 00) + h 7O‘(Pk‘1 ﬁ) - (_1) h (Pk B) }Uak
ka=0
(+)
N3 o h (+)\ 2
1 P Uspey = / f3Pm;(axs — b)dzs + g5/ 1+ (vx h )
k=0 =)
h
N =)
=15 \ 1+ (Vo b )2, (4.17)

If © = 3, then for mg = 0, N3,

N3
(k3,00 (k3,0
_szmasogU%sw “Z{meg 00)+hoz

kgO

_( )m3+k;3 h :| U3k3a+>\Z’P(k303)U7—k T ,UZ ,PTI;?’%% Uak:aa

k=0 ka=0

aa m (_) _ k
— Z { Pl L o (Prya)® = (“)™' W 0 (Pra)” = P§;3°033)} Us

« m (7) _ N
—H Z { ((:;;?)0; (Pka,3)+ — (=)™ h o (Pr.3) } Uak,

ka=0

N,
~|-)\[ Z P :;%;) Urk, + Z P :,5"30033 U3k3} +u Z 77(:5’3%33 U3k3

k+=0 k3=0 k3=0
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)

(+) / (-)
FsPpydzs +gi\[ 1+ (Vo b )2+ (=)™ gs \[1+ (Vo 1)*.  (4.18)

In order to write the whole set of equations in some compact form, let us
introduce the unknown vector

Sl ~—s7

(

N N N N N N N T
U:=(Uw, -, Uin;;U205---,U2an; Usoy - -5 Usng |- (4.19)

N
By A we denote the operator corresponding to the system (4.17) and (4.18),

N
and represent A4 as the sum
N N N N

where the operators ,ljl(i) for i = 0, 1, 2, contain only the :—th order derivatives
and are (N7 + Ny + N3 + 3) X (N7 + Ny + N3 + 3) matrices. In the sequel we
shall write the elements of these matrices explicitly.

The principal part of the operators in the left-hand side of the system
(4.17), defining the entries of the matrix .A®, has then the form

Np Na
(kg,00) , N ko ,00) N
—1 Y Pl DeUsis = A+ 1) Y P Uk o
k=0 k=0
N Ne (4.21)
N N
= K Z 6k@m5/€m5A2Uﬁkﬂ - ()\ + ,u) Z 6kamﬂ/€m@Uaka,ﬂa;
k=0 ko =0
for mg =0, Ng and 8 =1, 2,
where
2 ) . . .
Km, := —  and A, is the two-dimensional Laplacian . (4.22)

s (2m5 + 1)@

Hence, for # =1 and m; = 0, Ny:

Ny N1
N N
_I{ml |:M Z 6k1m1A2U1k1 + ()\ + M){ Z 6k1m1 Ulkl,ll
k1=0 k1=0
No N
+ Z Okama U2k2,12H ; (4.23)

kea=0
while for g =2 and my = 0, N,
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N» Ny

N N
—Kom [u Z OkymaDNoU ok, + (A + ,u){ Z OkymaUtky 21
ko=0 k1=0

+ i Shams 5%,22}} . (4.24)

ko=0

Without loss of generality we can take N; < Ns, so that
mq :0,1,"',N1 andm2 :0,1,"',N1,N1—|—1,"',N2. (425)

For ¢ = 0, N,, the expressions (4.23) and (4.24) are simplified and can be
rewritten as the two—component vector—function

N N N
—ko | pDoUre + (A + 1) S Urea1 + Uaiaz

N N N
— Ky {UAQU% + A+ p) {U1e,21 + U2@,22H
N
A3, | U
Uae

where A®)(9,) := [Ag)(@z)bX2 denotes the matrix of operators defined by the
left—-hand side expressions, i.e.,

0? 0?
AR (@) = pha+ A+ )5 AR (0s) = A+ ),
) 3:151 81)18$2 82 (426)
AP0, = AD(8,) = pA —.
19 (0z) == (A + ) 92102, 59 (Or) = o 4 (A + ) 22
For ¢ = Ny + 1, Ny from (4.24), we have
N N N
— Ky [MAQU% + (A + 1) U222 = —ke N2(02)Usaes (4.27)

where )

27
O0xs

The principal part of the operator on the left-hand side of (4.18) has the form

Ao () = A (0,) = s + (A + p1) (4.28)

N _
— K WDoUsm, for ms =0, N3. (4.29)
Now we are able to construct the (Ny 4+ Ny + N3 +3) X (N + Ny + N3+ 3)
N

matrix operator ,A(Q) in the following form,
1) 312 oM OO
2) ) O OE
® 0B 1 oW

5 06 0O

P!
Pl
(2) .
A o ) (4.3())
O ° M x M

20



where M = Ny + Ny + N3 + 3, and

; k . 2
ok — [@Epf];]wﬁl)xmﬁl) = diag[k1, ..., KNy 41 A,ij)(ax)
fork,j=1,2,
1 .
OV = [BU)] vy = diaglrn s ] Aa(Ds).

2 :
»2 — [(I)Ep;)](N3+1>X(N3+1) = diag[ko, . . ., Ky p A2(0;)

with A,(é.)(ax), A2(0,), and Ay(0,) given by (4.26), (4.28), and (4.22), respec-
tively. Here O i = 1,6, are appropriate zero matrices.

Let us establish the explicit form of the operator A'.
If B =1, the left-hand side in (4.17) becomes for m; = 0, Ny

N1
(+) (=) N
- Z {)‘P 712110010) + A < ha— (_1)m1+k1 h ,1) } Utky 1

k1=0
Na
(+) (=) N
- Z {)‘P 711210010) + A < hoa—(=1)mHhey, ,1> } Uk, 2
ka=0
(k1,01)
—A Z Pmll 00) U1k1
k1=0
No
(k2,02) k
—A Z 7>(77121 00) U2k2 Z 7D((msl 00)U3k3
ko=0 k3=0
Ny
(=) N
—H Z { P((:zll 00) T h 1 (_1)m1+k1 h ,1} Utk 1
k1=0
al (=) N
—H Z {27)((:;10020) + h 2 — (=1)mthg ,2} Uik, 2
k1=0
Ny
(=) N
—H {P(::loolo) + h 1= (=1mthey ,1} Utk 1
k1=0
N2
(+) (-) N
K Z {P((:ff?ozo)) + hoo— (=1)™TR g ,2} Uks,1
k2=0
Ny N
k1,01) (k2,01
_”ZP((mllooUlkl MZPmiOO)UW@?
k1=0 k2=0
N.
) P 4.31
+u Z (m1,03) U3k31 ( . )
k3=0

o1



If B = 2, then the left-hand side from (4.17) becomes for mq = 0, No:

Ny
+) (=) N
- Z {/\P(:;OO%) A ( h 2 — (—1)m=thp, ,2) } Uik 1

k1=0
N2
(+) (=) N
- Z {/\P(:f %20 A ( h 2 — (—1)methep, ,2) } Usaky,2
ka—0
- A Z P(ffz%lo)Ulkl —A Z P 5320023 Usk, 2
kl 0 kQ 0
N
N (ks03) N
_>\ Z P(mg 00 U3k‘3 2
k3—0
N2
(+) (=) I N
- M Z {273((:1227?010)) + hoa— (=)t ,1} Uks
ka—0
N2
(+) (=) I N
- M Z {273((75527?020)) + hop— (=1)mthy ,2} Usky.2
ka—0
Al (k (=) N
1 m
- M Z {PmIQOOO + h 1= (=1t ,1} Uik, 2
k1=0
Ny
(=) N
- M Z { 712220020 + h 2 — (=1)methe ,2} Uky 2
k2 0

k (k2,02)
K Z 7D((mlz OO)UU’f1 K Z P ng 00) U2k2 2

k1:0 ko=0
+u Z 73((:;’20003 Usks,2 - (4.32)
k3=0

From (4.18) we have the following terms containing the first order derivatives
for m3 = 0, N3,

N3
() | N
- K Z {|: ((:1330010) + h 1 (_1)m3+k3 h ,1] U3k3,1

k3=0

(=) | N
+ { 77((:;3’30020)) + h 2 — (—1)m3+k3 h ,2} U3k3,2}

Na
k
+ A Z P %OS)Ulkl LAY PR Usey 2
k1=0 ko=0
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k (k2,03)
K Z 7D((mla 00)U1’fl —H Z Pm23 00) Uzkz 2

k1=0 ko=0

(4.33)

The expressions (4.31)—(4.33), for i = 1,2,3 and m; = 0, IV;, can be written as

where, fori =3 =1and k; =0,N;, j =

¢ (11) 1

(),

(12),

(12),

(13)

b mlkg
(13),

\ b miks

while for ¢+ =

b miky =
b miky :
k 02

b miks

b mi ks =

M @, 9 i, 9N
Z b miky g + b mzklﬁ_@ Uik
k1=0

No 12) (12) 0 N
+ Z |: msz a + b 72fl¢k2 8_1‘2:| U2k2

N3 (23) 0 (33) 0 N
- Z { b mzkga_ b 72n¢kga_x2:| Usks »

1,2,3, my :O,Nll

(=)
—(A+2p) [27);;1 0010 + h 1 (_1)ml+kl h ,1} )

() (=)
—H [273((7]:17?020)) + hoo— (=)™ ,2} ,

(+) (=)
h2—@wmhh4’

+ (=)
_()\ + M)P((::floolo) A [h 1 - (_1>m1+k2 h ’1:| 7

. (k3,03) (k3,00)
= —AP mgl 00) + 73(m31 03)°

=2 and k’j :07Nj,j: 1,2,3, mo :O,NQZ
(=)
—(A+ )P = A { Boo— (—1)methy ,2} :

(+) =)
= (A + PG — { ha— (=), ,1} ,

(+) )
ot ).

(+) (=)
%NWMPPE%+h3—PUW%h47

(23
) (ks3,00) (k3,03)
b maks * PJP(mZ 03) AP(JL 00)

23

(4.34)

(4.35)

(4.36)



fori=3and k; =0,N;, j=1,2,3, m3g =0, Na:

(631, (k1,00) (k1,03) Gy
b ma3ki = AP mlg ,03) 'up(mlg,OO)’ b mazky = 07
(32), (32), (k2,00) (k2,03)
b maks = YU b maks T >\,P(m23,03) o P(m23,00)’ (4 37)
(33), (+) (-) .
b ks {27?{533%10) + g — (=1)msths g ,1} :
(33) (=)
b2 maks - — M |:27)((:f3%20) + h 2 (_1)m3+k3 h ,2} .
\
N
Thus, the operator A" has the block form
Ng Ng N
N Ay Ay Ay
M. | Ng Ng N 1

N N 1
Ay Ay A“ oy

N
where M = Ny + Ny + N3 + 3 and the entries of the block matrices Agjl-) are
given by the equalities

N (i7) (i7)
(1) _ 3’1 d 2 9

j (4.39)
form; =0,N;, k;=0,N;, i,57=1,2,3.
Let us now treat the matrix A°. From (4.17) for 8 = 1, we get
L k1,11) =) N
—A Z {P((ml 00 T h 1(Peg) = (=)™ n ,1(Pk1,1)_} Uik,
k1=0
No
(+) (=) N
—A Z {P((r]ffolo)) + h 1(Pr2)™ = (=1)™ h ,1(Pk2,2)_} U ks
k=0
N3
. (+) =) 1 N
—A Z {P((fjfolo)) + h 1 (Prsa)™ = (=)™ b 1(Pry3) } U 3k;
ks=0
a2 (+) (-)
—pny {P((,’f;’fé%? B Pt = (1B (P ) - PE) } .
k1=0
Ny
(+) (-
— W {P((T’;lll(]lo))—F h71(Pk1 1) —(—1)m1 h 1(Pk1 ) }Ulkl
k1=0
N2
(+) (=) N
- :u’ {P((Tk: ]620) + h 72(Pk271)+ - (_1)m1 h 7Q(sz,]_)_} U2k2
ka=0

o4



(k 01

k3=0
N1 N N3
)y N 12 N a3 N
- Z & miky Ulkl + Z c mi ke U2k2 + H Z c m1k3U3k37 (440)
k1=0 ko=0 k3=0

where for m; =0, Ny, k; =0,N;, j =1,2,3:

(=)
Sy i= = {0 20) [P0+ W) = C0m a(]
(+) (=)
|:P((7’7€1112020) + h 72(Pk1,2)+ — (=)™ h ,Q(Plﬁ,Z)_ - P((::?oszs))] } ’

(12) (+) me () B
Comiky 1= {A {P(jflzolo) + ha(Pr2)™ = (=1)™ h 1 (Pr2) }

(=)
{P(7]:1211020) + h 2(Pk2,1)+ - (_1)m1 h ,2(Pk2,1)}:| )

(13) (+) () B
C ks = — {A{Péfsf’o%w h 1 (Peys)™ = (=1)™ b2 (Piys) }

(k3,01)
_Mpmimﬂ.

\

(4.41)
From (4.17), for § = 2, we have

(=)
—A Z {P(r]zg;lozo) + h 2(Pk1,1)+ - (_1)m2 h ,2(Pk1,1)_

—)\

(=) N
:12 2020 + h 2( P, 2) — (=)™ h ,2(Pk2,2)} U2k,
_ )\ }

(=)
(k3,32) ms _
n{n; 00) + h 2(Pk3 3) - (_1) h ,2(Pk3,3)

N2
—u Z
ko=

(+) ( N
ko,ax m — k2,03
Pl ) (Bt — (—1)™ R (Pya) Pgn;()g)} D

> {r
> {r
{
{

0
Ny
(+) (=) N
— Y APER + R a(Pr2)t = (=)™ h ,1(Pk1,2)} Utk
k1=0

N2
(+) (-)
~o3 (Pl + Vot - oW st}
k2=0
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k 02

k3=0
N1 N2 NS
(21) N (22) N (23) N
- Z c mgkl Ulkl + Z c mzkg U2k2 + M Z C mgkg U3k37 (442)
k1=0 ko=0 k3=0

where for mo =0, N, k; =0, N;, j =1,2,3:

((21) o () _
c makq = |: {7)(:11 1020 + h Z(Pkl ) - (_1) 2 h 72(P]€1,1) }
(=)
e P + Wl = C0m am
(22) (+) o () -
Cimaky = — [<A+2u> {P(ff oo h2(Pio2)™ = (=1)™ 1 a(Pi, ) }
(=)
{P(:f 1010) + h 1(Pep)™ = (=1)™ h 1 (Pryp)”
(k2,03)
_7)(77122,03)}] )
(23) o () B
C mghs 1= — { {P(:f o+ W 2(Pry3)" = (=1)™ h 2(Pry 3) }
(k3,02)
\ _H,P(ﬂ”?z,%)} :
(4.43)
From (4.18) we derive
(—)
k3,aa k3,03)
yr Z { Pl ) (Bl = (1) B o(By o)™ — P }U
(ka,3) ) m3(—) 1 N
- lu Z P(m3 00 (Pkaa ) - <_1) h 70/(Pk3a73> Uaka
Z P %{;‘)Uaka + Z P Usi
ka—O k3=0
+ 1 Z P(:f3oo3?,) Usks
k3=0
Ny No Ns
(31) N (32) N (33) N
= Z & mgkl Ulkl + Z c m3k2 U2k2 + Z c m3k3U3k37 (444)
k1=0 ko=0 k3=0
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(32) Sy m -
C gk = — 1 {Péﬁff&}) + B 2(Pra)t = (1) h 2(Prys) }

(k‘g,OQ)
(33) ks.oa) (D) e () _
C mgks = —H |:’P((m33,00§ + h 704(P’€3,06)+ - (_1) *h 704(Pk3,01)
k ’
+(A+ 2#)7)((7;3?033)) ;
\ form3:0,N3,kj:(),Nj,jzl,Q,?).

N
Thus, for the matrix A9 we obtain the block form

Noy Do) N

A A A
N
0 ._ | Ny Npy N .
A9 = | Yo Ho No , (4.46)
Ny Ny N
Agl) AZ(S2) AZ(SS) MxM

N
here M = N; + Ny + N3+ 3 and the AE?) are (N; +1) x (N; + 1) matrices with
entries

N o) (i5) .
Aij = Co, form;=0,N;, k;j=0,Nj, i,j=1,2,3.  (4.47)
msk B

J

Finally, from (4.20), (4.19), (4.30), (4.38), (4.46) and (4.17), (4.18) we have

A0 = I, (4.48)

where

N N N N N N N
F =1\ Fio, s Finy, F20, -5 Flang, F'so, -+, Fang | (4.49)

(+
h

N n S
ﬁ)

(=) _
+(=1)"g \/ 1+ (Vo h)® form; =0,N; andi=1,2,3.  (4.50)
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The system (4.48) represents the vector form for the N-th approximation.
For Ny = Ny = N3 = N we have 1. Vekua’s N-th approximation.
From (4.2), (7.8), and (7.24), where w is replaced by u we conclude that
N 1 _
Uir, = (n- + 5) au,, forr;=0,N; andi=1,2,3,

and

1\ ! N
Vi, = <r,-+ 5) a 'h T Uy (4.51)

Therefore we can rewrite the system (4.48) in the form

N N N
AO)BV =F in w, (4.52)

where B is the diagonal matrix of order Ny + Ny + N3 + 3

B = diag [(2—“ o ah”“)Nl , <—2T2 o ah”“)NQ ,
2 r1=0 2 ro=0
<2T3 +1 ahr3+1>N3 ]
2 r3=0 ’
N T
Vo= (Vioy ", VINy, V2055 VaNy, U305 ° " s U3Ns)

with vy, given by (4.51).
The results obtained in Section 3 now lead to the following main conse-
quence:

THEOREM 4.1 The BVP

N

N N N 1 (+)
AO)BV = F, V € Hy(

(=)
h,h,w,7) (4.53)

has a unique solution, where the system of differential equations is understood
in the weak sense.

We can reformulate the above (BVP) (4.53) as follows:

PROBLEM 4.2 Find a solution (in the weak sense)
N (+) (=)
Ve Hy(h, h,w)

N
of the system (4.52) satisfying the Dirichlet condition V|, = 0 on vy in the trace
sense.

o8
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Appendix 1B

(+)

T T
(r;‘) . ;) .
Fig.4 Fig.5
(+) (';:)
T
1,17‘)
Fig.6 T Fig.7
(,14‘-)
(; ] SIT)
\ (’f)
Fig.8 Fig.9
GO .
T and T denote tangents to the upper and lower profile curves at points
of the cusped edges.

Figure 4 corresponds to a blant cusped edge, Figures 5-8 correspond
to angularly cusped edges, and Figure 9 corresponds to a sharply cusped
edge (a real mathematical cusp).
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PART 2

HIERARCHICAL MODELS FOR CUSPED BEAMS

Variational hierarchical one-dimensional models are constructed
for cusped elastic beams. With the help of the variational meth-
ods the existence and uniqueness theorems for the corresponding
one—dimensional boundary value problems are proved in appropri-
ate weighted function spaces. By means of the solutions of these
one—dimensional boundary value problems the sequence of approx-
imate solutions in the corresponding three-dimensional region is
constructed. It is established that this sequence converges (in the
sense of the Sobolev space H') to the solution of the original three-
dimensional boundary value problem.
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List of Notation
N:={1,2,--}, Ny :={0,1,2,---}
R™  m—dimensional Euclidean space (m € N)
Q= {(:L‘l,xg,mg) eR3: z; €0, L[C R, hj(xl) <z < (Z)J(%) J = 2,3}
Q=QUIN beam of variable cross-section
[0, L] C R! axis of a beam

() )
{ >0, x €0, L] thickness ( for j = 3)

2hj(w1) = hi(z1) = hi(z1) 4 < € {0,L}
and width (for j = 2) of a beam at the point z; € [0, L]

. ) ) ,
Sj = x1,0;3%2 + 0jo ha(21), 0203 + 03 ha(x1) | € R?:
(=) (+) )
T E]O,L[, h5 ]<QZ’1) < Ts- j < h5 ](1'1) J= 273}7

_ 1 for 1=
0ij == { 0 for i+ Kronecker’s delta

~ (+) (=) )
2hj($1) = hj(xl) + hj(lj), J= 273

bj(xl) = fy(xl) j = 2,3

0? 02
o2t T o

P,  Legendre polynomial of order n
Co( ) ={peC®Q):¢lr=0,T C N}

H*(R") = H;(R") = W5(R") = W*(R™)  Bessel potential
and Sobolev-Slobodetski space on R™ (s € R)

H#(Q2) = W*(Q) space of restrictions to {2 C R" of distributions
from H*(R") (s € R)

~ S

H (Q):={p € H*R") :supp ¢ C Q} (s €R)
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H*(02)  Sobolev-Slobodetski space on 02 (s € R)

H*(S7), j

= 2,3, space of restrictions to S;E of distributions
from H*(0Q)

(s € R)
H(QT)={pe H*(Q): ¢=0 on I'} (s eR)
u = (u1,us,u3)  displacement vector

eij(u) == 5(%z +u; ), 4,7 =1,2,3, strain tensor
oij(u) == Aojjepr(u) + 2pe;i(u), 1,7 =1,2,3, stress tensor
A, i Lamé constants

T(0,n)u  stress vector

[T(0,n)u]; = 0ji(u)n; the j—th component of the stress
vector T'(0,n)u (j =1,2,3)

()T transposition operation
X1 x Xgx---x X, direct product of spaces X;, j =1,....,m

X=X x--xX
—_————

m times
a:: (817827”'78%)
0
8, = — y f— 1 .o
J axja J 9 ,
0uz~ 32u,~
w; i (u) = , u; jk(u) == , 1,7, k=1,2,3,

C™(Q), (C™())  m times continuously differentiable functions in 2 (Q)

C(Q) == CQ), C(Q) == C°()

C™R () (C™"(§2)) m times continuously differentiable functions

whose m-th order derivatives are Holder continuous in 2 (€2) with
the exponent € (0, 1]

CO1(Q) (C*1(Q))  space of Lipschitz continuous functions in Q ()
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5 Introduction

In the fifties of the last century, I.Vekua [33] suggested a new mathematical
model for elastic prismatic shells (i.e., of plates of variable thickness) which
was based on the expansion of the three-dimensional displacement vector fields
and the strain and stress tensors of the linear elasticity into orthogonal Fourier-
Legendre series with respect to the variable plate thickness. By taking only
the first N + 1 terms of the expansions, he obtained the so-called N-th approx-
imation. Each of the approximations for N = 0,1, ... can be considered as an
independent mathematical model of plates. In particular, the approximation
for N = 1 actually coincides with the classical Kirchhoff-Love plate model.
In the sixties, I.Vekua [34] offered the analogous mathematical model for thin
shallow shells. All his results concerning plates and shells are collected in
his monograph [34]. Works of [.Babuska, D.Gordeziani, V.Guliaev, I.Khoma,
A .Khvoles, T.Meunargia, C.Schwab, T.Vashakmadze, V.Zhgenti, and others
(see [4], [10], [11], [17], [18], [21], [29], [32], [35] and the references therein)
are devoted to further analysis of [.Vekua’s models (rigorous estimation of
the modeling error, numerical solutions, etc.) and their generalizations (to
non-shallow shells, to the anisotropic case, etc.). At the same time I.Vekua
recommended to investigate also cusped plates, i.e., plates whose thickness
vanishes on some part or on the whole boundary of the plate projection (for
investigations in this direction see the survey [12], [JKNW], Part 1 of this
Lecture Notes, and also I.Vekua’s comments in [34], p.86).

If we consider the cylindrical bending of plate, in particular, a cusped one,
with the rectangular projection a < x; < b, 0 < x5 < £, then we actually get
the corresponding results also for cusped beams with constant widths (see [13],
[14] and also [30], [31], [22], [23], [24], [25], [26], [5], [6]).

In [Jai4], by expanding fields of displacements, strains, and stresses of the
three-dimensional theory of linear elasticity into double Fourier-Legendre series
with respect to the variables of bar thickness and width, hierarchical models of
beams with variable rectangular cross-sections are constructed. It is allowed
that the thickness and width become zero at some points of the beam axis.

This part deals with the existence, uniqueness, and regularity properties of
solutions to the boundary value problems of the hierarchical models of cusped
beams.

In practice such plates and beams are encountered in calculation of spatial
structures with partly fixed edges (e.g., stadium ceiling, aircraft wings etc), in
machine-tool constructions (e.g., cutting-machine, planning-machine etc), in
the astronautics, and other spheres of practical engineering.

This part is organized as follows.

In Section 2 we collect well-known auxilary material from the three-dimensional
elasticity theory and the theory of double Fourier-Legendre series.
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Section 3 deals with the construction of hierarchical models which reduce
the original three-dimensional boundary value problem for cusped beam type
elastic bodies (with rectangular cross-section) to one-dimensional problems.

We recall that in the regular case (i.e., when the area of the beam cross-
section does not vanish anywhere), the double Fourier-Legendre coefficients of
the displacement vector u, which solves the original three-dimensional problem

in the space H'(Q), automatically belong to the space H'(]0, L) (see [Av]).

N(®@ NG N®@ NG )
Moreover, all the double moments — wip, -+, W, ye@ e for @ = 1,2,3,

and NU) .= (Nl(j),NQ(j),Néj)> , J = 2,3, determined by the corresponding

one-dimensional hierarchical models belong to the space H'(]0, L[), while the

N®@ NG
approximation of the displacement vector =~ w  represented by means of

these moments belong to the space H'(2). In the case of cusped beams, the
double Fourier-Legendre coefficients of the displacement vector v € H'(Q) do

not belong to the space H'(]0, L[) any more, in general. Moreover, in general,

N®@ NG)
the space of approximate vectors w  represented by the double moments

N®@ NG N(®@ NG) )
Wi, -+, Wy ye, @ = 1,2,3, of the class H'(]0, L[), do not belong

to the space H'()) either. Therefore it is necessary to choose a function

. N®@ NG N(®@ NG
space for double moment functions — Wipg, -+, W,y (@ . defined on ]0, L]

such that the corresponding linear combinations of these moments with the
Legendre polynomials as coefficients, belong to the space H'(2). This is done
in Subsection 3.2.

In Subsection 3.3 we establish the uniqueness and existence results in the
corresponding function spaces for the obtained one-dimensional variational
hierarchical models. We remark here that the well-known approach of previous
authors [2],[3] needs some modifications which are connected with the above
mentioned peculiarities of the appropriate function spaces where we look for
the unknown moments.

Subsection 3.4 describes the convergence in the space H'(Q) of the ap-

N® N : : :
proximate solution  w  to the exact solution u of the three-dimensional

original problem. There are given the abstract error estimates with respect to
the number pair of approximation order N N®) and the maximum of the
thickness and width 2h; (j = 2,3) of a beam.

6 Preliminary material

2.1. Cusped beams with rectangular cross—sections

Let an elastic beam type three-dimensional body (later on called "beam”)
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occupy a bounded region  with the boundary 9

(=) ()
Q.= {(xl,wg,xg) eR¥: 0< ry < L, hj(xl) <z; < hj(l’l),j = 2,3}, (61)

where ]0, L[ is the so-called azis of the beam Q, Q = QU IQ, and [0, L] =
10, L[U{0} U {L}.

In what follows we assume that

(1) € €200, L) N C(0, L),

+) ) > 0 for z, €]0, L,
2hj(x1) == hj(z1) — hj(z1) { > 0 for xi E]{O E}

J=23,

2hs(x1) is the thickness and 2hy(x1) is the width of the beam Q at the point
T € [0, L]
Further, let

(=) (+) )
Lo(T'y) := {(1'1,113'2,.733) eER3: ;= 0(L), hj(z1) <z; < hj(x1), j= 2,3},

n (£ (£ 3
Sj = x1, 5]‘31‘2 + 5]‘2 hg(l’l), 5]‘2373 + 5]3 hg(l‘l) cR°:
(=) (+) ,
z1 €]0, L, hs—j(#1) < w55 < hs—j(x1), =23,
and the plane measures

m(Ty) = [(2)2(0) . (13)2(0)] [(22(0) - (52(0)] >0,

> 0.

m(r2) = [ha(0) = (o] [ (D) - Ba(n)]

(+) (=)
If only one of the differences h;(z1) — hj(z1) (j = 2,3) vanishes at z; = 0
and (or) at x1 = L, then the corresponding ends I'g and I'; of the beam turn
into a segment; if the both ones become zero, then the ends turn into a point.

Let
Iy when m(I'g) >0, m(I'y) =0,
[':=< I'y when m(Ty) =0, m(I'y) >0,
Iy U, when m(Iy) >0, m(['y) > 0.
Obviously, o B B B B
0N =ToUlL,USSUS, USSuUS;,
where S and S; are the upper and lower face surfaces and, Sy and S; are

the lateral surfaces of the beam. Note that, in general, 0€) is not a Lipschitz
surface.
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If at least one of S} NSy # 0 (j = 2,3) is valid then a beam is called a
cupsed beam and appropriately I'y and 'y, will be referred to as a cusped end
of a cusped beam.

In Figures 1-5 are given some examples of cusped beams (see Appendix C).

In Figures 6-11 are presented all possible profiles and projections of cusped
beams (see Appendix D).

2.2. Variational formulation of the basic three-dimensional prob-
lem for beam type bodies

The system of statics of the three-dimensional linear theory of isotropic
elasticity in terms of the displacement vector reads as follows

A(Q)u = pAzu+ (A + p) grad div u = f, (6.2)

where A(0) is a strongly elliptic differential operator

2

A(@) = [Akj(a)]gxg = ,uéijg + ()\ + M)

0z 0x;13x3’

u = (u1, ug,uz)’ is the displacement vector, A and p are Lamé constants, d;
is Kronecker’s symbol; the vector — f corresponds to a volume force.
By

1 1
eij(u) = 5 (O + Ojui) = 5 (uji + i)

and o;;(u) we denote the strain and stress tensors, respectively. They are
related by Hooke’s law

O'ij(u> = )\5Uekk(u) + 2M€ZJ(U,) = AéijUng + M(Ui’j + uj,i)7 ’l,] = 1, 2, 3.

Here and in what follows, for brevity, we often employ the abridged nota-
tion:

i) repeated indices imply summation if they are not underlined (Greek let-
ters run from 1 to 2, and Latin letters run from 1 to 3, unless stated otherwise);

ii) subscripts preceded by a comma will mean partial derivatives with re-
spect to the corresponding coordinates (see the list of notation).

By T'(0,n)u we denote the stress vector calculated on the surface element
with the unit normal vector n = (ny, ng, n3):

[T(0, n)uy, := og;j(u)n;, k=1,2,3.
Recall that (6.2) can be written in the form

[A(Q)uly, = on;(u) = fr, k=1,2,3.
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Let us consider the boundary value problem (BVP):

A(Q)u=f in Q, (6.3)
(+) i
Tu= 99 on SF, =23, (6.4)
(=)
Tu= g9 on S, j=2,3, (6.5)
u=0 on I. (6.6)

We look for a solution of the BVP (2.3)-(2.6) in the Sobolev space [W?!(2)]3
= [H'(2)]?. Assuming Q to be a Lipschitz domain, we have the natural con-
straints on the data (cf., e.g., [McL], Ch.4)

fe [ﬁ[‘l(Q)]s, P [H—%(sf)]g, j=23, (6.7)

which, in the case when S'j+ ns L F () means that there exists a functional g¥/)
on

S = 89\(F0 U FL)

. IUPRE: | @), . , ,
such that ¢ € [H 2(5)} and g(J)|S;: = g’ on Sf, j = 2,3 (for the tilda
spaces see the list of notation).

Equation (6.3) is understood in the distributional sense. The Dirichlet type
condition (6.6) is understood in the trace sense ([19], [20]). The conditions (6.4)
and (6.5) are understood in the sense of the functional space [H~2($%)]3. Note
that for u € [H*(Q)]® with Au € [H1(Q)]3, the functional Tu € [H~2(I")]? is
correctly defined by the equality (Green’s identity)

(Tu,u" Yo = /O-ij(u)eij(u*)dl' + (f,u")q VYu* € [HY(Q))]?,
Q

where (-,-)oq denotes a duality between [H2(09)]* and [Hz(9Q)]3, while
(-,-)q denotes a duality between [H~(Q)]* and [H'(Q)]* (cf. [20], Ch.4; [7]).
Denote
HY(QT) ={pe H(Q):p=00nT}.

The BVP (6.3)-(6.6) is equivalent to the following variational formulation.
Problem (I): Find u € [H*(£;T)]* such that

B(u,u*) = F(u*) Yu* € [HY(Q,T))?, (6.8)

where

/‘7@] w)e;;(u*)de, (6.9)
Q

74



3
(+); (=),
Fu) = (et 2[00 + (@000 [0 60
=2

J

here (-, -}, is a duality pairing between the spaces H"(M) and H~"(M), where
r=1for M =Qandr=1/2for M =5/, 8S;,8S.

jR50
The both above formulations are equivalent to the minimization problem:

Find v € [H'(Q,T)]? such that

Ew") > E(u) Yu* € [Hl(Q,F)]3, (6.11)
where .
E(u*) = §B(u*,u*) — F(u"). (6.12)

The following existence and uniqueness results are well-known (see, e.g.,

8], [27], [20]).

THEOREM 6.1 Let Q2 be a Lipschitz domain, T' # (), and the conditions
(6.7) are fulfilled. Then the BVP (6.3) — (6.6) (i.e., the equation (6.8) and
the minimization problem (6.11), (6.12)) has a unique solution u € [H'(Q,T)]?
and

3. (),

(=),
()
HT Ol 3500 -

(£,
where C' is a positive constant independent of u, f, 9 9.

The proof of the theorem is based on the Lax-Milgram lemma since :
i) F is a bounded linear functional;
ii) the bilinear form B(-,-) is bounded

B(u,u*) < 61|ulliays vl @ys, 61 = const > 0; (6.13)
iii) B(-,-) is coercive (due to the Korn’s inequality)
B(u,u) > 62Hu|][2H1(Q)]3 Yu € [H'(Q,T)]?, 8§ = const >0, (6.14)

(see e.g., [20], Theorems, 10.1 and 10.2, [28], Theorem 2.5).

Due to the regularity properties of solutions to the BVP (6.3)-(6.6), on
some subsets of {2 we get a higher smoothness for the solution by improving the
smoothness of the right-hand side vector (volume force) f and the prescribed

), .
stress vectors ¢ ().
&),

More precisely, let g € [H”%(Sj-i)]?’, fe[H Q)P S5 et (j=
2,3), where r > 0 is an integer. Then

= [HH—Q(Q*)P,
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where * is an arbitrary subdomain of Q such that Q*N(ToUT ,UJSS UDSy ) =
(). Moreover, there exists a constant C' = C(Q*) > 0 such that

lullis2qeye < C{I1 i@
3

), )
} : () )

J=2

(£,
In addition, if f € C*%(Q), ¢ e C**(5*%), S+ € C**, then u €
C?#(Q*) with 0 < k < 1 (cf., e.g., [20], [1], [9]).

2.3. Double Fourier-Legendre series

Let
olion) & Lo ([[naon). hate)] < [ aten). o] )

(+) =) ,
2hj<$1> = hj(xl) - hj(xl) > 0, I G]O,L[, ] = 2,3

The function ¢(xy,-,-) can be then represented in the form of double Fourier-
Legendre series

o(xq, 20, 23) = Y (kz + %) (/f3 + %) as(x1)as(T1) Proks (1)
Ko k3=0

X F)k2 (CLQIQ — bg)Pk3 (agl’g — bg),

which converges in the Lo-sense and where

s bj = bj(l‘l) =

-) ‘
hj($1)7 J= 2737

a; = ay(m) =

hj(x1)
- (+) (
2hj(.1'1) = hj(a:l) +

(+) (+)
ha(x1) h3(z1)

(pkgki3 (ml) = / / g0<x17 T2, ./E3)Pk2 (CLQQ?Q - bQ)Pkg, (CL3I3 - bg)df]jzd.x:;,

(=) (=)
h2(z1) h3(w1)

:I{ZQ, /{33 = O, Q.
Note that
(-}:)_
! 0 fork#I,
/Pk(ajxj — bj)B((le‘j — bj)aj(xl)dxj = 2 for k =1 (615)
5 2k +1 ’
hj
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(+)

tj = CLj.ZL’j — b]' = 1 fOI‘ :Ej - hi’) j = 2,3 (616)

—1 for Ty = hj;

7 Hierarchical method for cusped beams: re-
duction to one-dimensional models

3.1. Double Legendre moments

Let Q be a Lipschitz domain as described in Subsection 2.1, f € [C%*(Q)]3,
and u € [HY(Q)]2N[C**(Q)]2N[C*QUSSUS, USSTUS; )]? be a unique solution
to the BVP (6.3)-(6.6). Then u; can be expanded into the Fourier-Legendre
series in (2

> 1 1
wi(xy, Tg, T3) = Z <k2 + 5) <l€3 + 5) A203U;ky ks (T1)

ko,k3=0
><P]€2 (GQZL'Q — b2)Pk3 (agl'g — bg), 1= 1, 2, 3,

(=) (+) )
x1 €]0, L[, hj(x) <zj < hj(x), j=2,3,

where
(+) (=)
hj(x1) — hj(z1) >0 for =z €]0, L],

(+)

(-) J=2,3,
hj(x1) — hj(z1) >0 for 2=0,L,

(+) (+
ha(z1) hs(

)
fEl
uzk2k3 Il / / Uy I1,$2>9€3 sz(a2$2 - bz)

Gonen) Bh(an)

><Pk3 (CL3I3 — bg)dIgdZEg, (71)

kz,kg :0,00, 1= 1,2,3.
It is evident, that (6.6) implies
Uikoks (0) = 0 and wig,k, (L) =0, when m(I'g) >0 and m(I'y) >0,

respectively, due to the trace theorem.
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Note that with the help of (6.16) the Fourier coefficient (7.1) can be rewrit-
ten as follows

141
1 to +by t3+b
uik?’“(xl) - a9 a3//ui (131, 2(12 27 3a3 3) Pk?<t2)Pk3(t3)dt2dt3
pop
— hy(a) (1) / / wi1, halan Yty + Biar), ha()ts + B(e0))
-1 -1

XPkQ (tQ)Pk?, (tg)dtgdtg,

which shows that if u; is bounded in the spatial vicinity of x1 = 0 and z; = L,
where m(Iy) = 0 and m(I'y) = 0, respectively, then

Wik (O) =0, and WUipoo kg (L) =0, (7 2)
k27k3207007i:1,2,3, ’
since
L) =2 e - men| L =23
a'j(ah) = Ni(r) = 2 ACS! 3\ y J = 4,9,

vanish at 1 = 0 and x; = L.
Clearly, in general, u; € H'(€2) is not bounded and the condition (7.2) does
not hold.

3.2. Approximating function space

Let us fix
N = (N, NP NP) € NP, =2,3,

and consider the combinations

NZ(Q) Ni(S)

N®@ NG 1 1
’LUZ‘(,Il,CL'Q,ZL';;) = w; ($171'27$3> = Z Z a90s3 (’I"i(Q) + 5) (Tl(S) + 5)

rEQ)ZO r§3>=0

N®@ NG )
XPAQ)((IQ(L’Q — bQ)PT(3)(CL31]3 — bg) wzr(z)T(3) (Z)’Jl)7 1= 1, 2, 3, (73)

N®@ NG)

where W, (2)
ir;

3 (x1) = W,y (2,6 € H..(]0,1[). The functions Wy, (2, are

called double moments of the function W;.
N(®@ NG)
Let w=" w = (wy,ws,ws).

We recall that an underlined index means that the corresponding repeated
indices do not imply summation.
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Denote by

VN(Q)’N(S)(Q) = VN1(2)7N1(3) X VN2(2),N2(3) X VN§2),N§3)

the set of vector-functions with components of type (7.3) which belong to
HY(Q).

Let ha(0) - hs(0) = 0, ha(x1) - ha(21) [areo, > 0,
and

w; € ‘7N.<2),N(3)(Q’FL> C HI(Q),i.e., w e &N(z)’N(3)<Q,PL) C [HI(Q)P, (7.4)
where

VNEQ),N?)(Q,FL) = { , € V N N #(Q): w; =0 on FL},

VN(Q) N(s)(Q FL) {w S VN(Q) N(S)(Q) cw=0 on FL} .

If ho(x1) - h3(21)]2r€p0,0) > 0, then we consider \7N;2> N_(s)(Q, Fouly).

Our aim is to choose the corresponding function spaces for the double
moments W, (2, (3)-

Taking into zxccount (7.4), (7.3), and using the standard limiting procedure,
we easily get

L N® N®
1
frunorar- [ £ (7-2) (-3
(2) —0r (3)
2
Xagaglwir(z)T(3)| dr; < +00, (7.5)

whence

1 1

a3 ai w, o @ € Ly(0,L]), ¥ =0,NY, i=1,2,3; j=2,3

)

Denote
wir@)r@)
Uy, @ 1= —r§2)+1 NONE (7.6)
hy hs
Clearly,

By Y, @0 € La(]0, L),

The functions U, (2),(3 are called weighted double moments of the function
wi‘ -1 1
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Analogously, applying the formula 3
r(@_1

j 1 J) 450
Plolajz; =b) = 3 (230) - 5) [1 = (—1yre )] P (ajz; — bj)

s(i) =0

for j = 2,3, we obtain
/ (1, 2, 3) P

(+) (H)
L h2 ha| N® NO

0 (-) (=) rP=0r®=0
h2 h3
rgg)fl 1
§ 3) 43
XPTZ(Q) (CLQZL’Q — bg) <Si + 5 1— (_]->
sf):O

2
X PS(S) (Clgﬂ?g — bg)w”gz)r(S) ($1)} dJnglL'gdiL‘l

)+
L 5y N® N® N®
K3

=/// > > | 3 (+3)

2) 3) 3
é =0 ; =0 7‘; ):s

X [1 — —1 r(V+s (3)] Wy, ) (3 >
X apa3 ( @ 4 ) > P<2) (agzy — by)

2
X P(s) CL3ZL‘3 —b3 } dl’3d$2dl‘1

) ()

L N® N®

/Z Z a0

N& 2
i 1 3), .3
xq Dl (r§3)+_) [1— (—1ye e 3}“’- @,(71) 0 doy < +00(7.7)
2 wp Ty
r(®)_(®)
whence
N®
i 1 (3) (3)
a§/2a3/2 Z (7}(3) + 5) [1 — (=) o } W), € Ly(]0, L),
r(3)2853) i T

3Here and in what follows we assume that > (-) = 0 for m < k.
s=k
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T‘Z{j) :OuNi(j)a 1=1,2,3; j=2,3.

In turn these inclusions (with 32(3) = NZ.(3) -1, 5,53) = NZ.(‘?’) —2,--+) yield

ay a3 *w, @ @ € Lo(0, L)), v =0, NP i=12.3 j=23

i.e., by virtue of (7.6),

P16 1 . - ) ]
hy hy Puoo @€ L0, L), P =0,NY, i=1,23, j=2.3

Similarly,
/|wi,2($1,9€2,$3)|2d9
Q
2
L N® n® N
- . . 1 @), @
-[2 2 (10 5) o e
SECICI OENE o
1 1
X asaz (7‘53) + 5) (522) + 5) dry < 400, (7.8)
and
ayay?w, o » € Ls(10,L]), v =0,NY; i=1,2,3; j=1,2,
ie.,

ry 2 e 1
hzl 2h3z +2%~(2)r(3) S LQ(]O,LD,

r =0 NP i=1,23 j=273

Analogously, applying the formulas

P (ajz; — bj) = Py (ajz; — bj)(ajaz; — bjg)
o)
= Z AZ@(QTU) — 2q(]) + 1) Pr(j)_q(j) (aj:vj — bj)
q(]):l
+A%T(Z)Pr(j)(ajl‘j — bj), ] = 2a 37

with
(+) (=)

_hia = (DT hja

2h; a2

]:273a 920717"'7

Ag =
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and taking into account that
§) ) _ gl

we arrive at the relation
2
/ i (1, 9, 23) )
Q

(+) (+
L ha h3 N(Q) N(B)

g r“) -0

JIJEE e
0()(

)
h3

)

Y

i=1,2,3, j=23, (7.9)

1 1

5)

(3)
(™ + 5

X{(a271a3 —|— (lg(LgJ)PT(Q) (CLQCL’Q — bg)Prgs) (CL3£L'3 — bg)sz(Q)T@)

(2)

+asas [ASTE(Q)PTQ)(CmﬁQ - bg Z A2<2 _ 2q(2) + 1)

@1

XPTEQ)_qZ@) (CLQZEQ — bQ)]PTES) (a3x3 — bS)wzrﬁg)r?)

(3)

+asas[A3rP P o (a3 — bg) + Z A2 <3> r? —2¢"

o®=1

+1)P(3)_ (3)(&31‘3 — bg)]P(z)(dgl’z — bg)w (2) (3)

+CL2@3P(2)(CL2.T2 — b2)P(3) (CL3133 - bg)w (2) (3 }) dwgdﬂfgdﬂil

)+
L (h)z (h?; N(Q) (3)

:/// Z Za2a3 (2) —)(7*53)4_%)

[ 2()

3,.(3)
+ asias —|— AOT‘i )wir§2)r§3) -+ ijﬂgz)n@)’1

XPT(Q)(CLQCL’Q — bg)PT(S) (CL3[L’3 — bg)

r@)fl
\ 1

+2 Z Ai(2)_s(2)(3§2) + §)Ps(2>(a2$2 —b2)P 5 (azz3 — b3)w, ),
8(2):0 7 7 7 k3 2 1
7"(3)71
\ 1

237 Ay (s + )P (ases — by)
5(3):0 1 1 1

XPT@)(CLQ:BQ — bg)wﬂ@)r(s)})2d$3dl’2d$1 < 400. (710)

In view of

A} = —hjh;!

_ -1 s .
- ai,laj ) J = 2a 3a
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and (3.6), we have

<a271a2 + A —|— az 0z 14 A ) wﬂz@)”z@) + wiTEQ)m(-S),l

[(1 + T( )> Ay, 1(1 + <1 + T( )> a’371ag1i| wir(g)r@) + wir@)r(S) 1

. —7’52)—1 —7‘§3>—1 r§2)+1 r§3)+1
=0 i 1

)

B <2)+1h e
- i 7'52)7‘2(3),1'

Hence, from (3.10) we obtain

/|wi,1($1,I2,$3)|2dQ
Q

L h2 hs N(Q) N(3)

JINEEem(e (o)

=03 =g

rl

@ 3
r 41, r +1
X {h; hs' (2,3 4

X PT@)((IQIQ — bg)P (3)(@31’3 — bg)

r@)fl
| 1

+2 Z Ai(z)_s(g) (3(2) + 5) Ps@(agxg - bg)PTgs)(agl’g - bg)wir(z)r@)
852):0 7 7 T K2 -1 T
T@),l
k 1

+2 ; Aigg)_sgg) <S(3) + 5) PTEQ)(CLQZL'Q - bQ)
s; =0

2
X Ps(s)(agIg — bg)wirgz)'r(:’,)} } dl‘gdfﬁgd[[’l < +00.

Introduce the notation

1 1 OO e 3
) (o)

3 2 2 o
for r( ) s( ) r® = s
1 PP 0,2) @
(553) T 5) \Il( Z O ) = 2A2<2) (Q)U) (2),.(3)

for 7’(2) s >0, r®= 3(3)

2y 1\ (0,0,
SZ(' ) + = \I]( L& Si 9T Ty ) = 2A3(3) (Q)U) (2) (3)
1 2 T’i l

Z
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for r(3) (3) >0, r? = 3(2)

%

1 1 F@_ @) 3 (3) (2) (3)
(852)4‘5)(553)"_5)@(1 i g 17171)::()

for r(2) 51(2) > 0, 7’53) - 82(3) > 0.

Then we get from (3.11)

/|wi,1($1>$2,$3)|2d9

(7.15)

Q
L NO N
1 (3) 1
JTTOE Som(e3) ()
0 (-) (- Or(g) =0
h2 hs3
(2) (3)
% Z Z (2) 52)’ 53) 53)’ 52)’ 53))
sP=0s® =0
@, (.o, 1 2
X S; + 5 S; + 5 P8(2>(a2:r;2 — bg)PS(:s)((ZgiL'g — bg)} dl’gdl'gdiﬂl
LG N® N® @
(][ x z z (++3)
0 P05 HD=g® B
h2 hs3 B B
1 r@_o® ,(_ () @) @
X(Tz(g)_i__)\ll(z i g z’z)]
2
@, N\ (o, 1
Xao03 Si + 5 Si + 5 PS(Q)(GQZ’Q — bg)
XPS(S) (CL32§3 — bg)}2dl‘3dl'2d$1
P YA S N
(2) (3) (2) A7(3)
Ry e,
06 si¥=0sY=0
1 1
X (3@('2) + §> (32(3) + 5) PSZ@)(ang — bg)
XPS(3)(CL3$3 — b3)}2dI3dI’2dI1 < 400,
where
N®  N®
52 & N@ N(3 @)
e B3 ()
r® @ )
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1\ (a0 ),
x(rg?’)—ké)\lf(l Do) (7.16)

Further, by virtue of (2.15),

{ (552)’51(_3)71\/1_(2)’]\,;3)) } 2

L N® N(3>
)0 s®—g

/|’wi,1($1,$2>$3 |2dQ /
Q 0 5

1 1
Xao03 <8§2) + 5) (8§3) + 5) d.ﬁUl. (717)

@) & NO NO
1/2 1/2<I)< NN ) € LQ(]OaLD7

Consequently,

9 =0, N9 i=123; j=23.

Taking into account (3.6), from (7.5), (7.7), (7.8), and (7.12)-(7.17) it fol-
lows that

N()N()

| ||[H1(Q)]3 = Z ||wz||H1

N@ N<3>

S E (e

=1 (2) =0r 3) =0

@) @),

r gty
X ||hy'  Zhg QUi 2) (3)




CON e CO
Xhz 2hz

v 12,0 | L0,

N(2) N(S)
o 1
+2 2. (s +5
2
92090
@)
5@ i 1
i Jr2 +2 E (2) 2
X ||h h V. 552)82(.3)’1 —+ 2 Ti + 5 ATEQ)fs,EQ)
TL(Q)—SEQ)#&
N®
e HE) ¢ 1
1 +2 7 + (3) 3
Xh h Uy,l@)sgs) + 2 g o+ 5) ATZ(3)_SZ(3)

i 2 g ;
xhy Phy o, oll7,0.)

2
= [[ol| . + @© ) ) : (7.18)
Hi@ NG

h2, h3, h2, h3,]0,L]

+) ) (=) =)
DEFINITION 7.1 By H! NG N®) (hg, h3, ha2, hg,]O,L[) we denote the fol-

lowing set of vector-functions

T
V= <,01007 e 7U1N1(2)N£3)av2007 e 7U2N2(2)N2(3)7’0300a e ’U3N§2>N§3)>

f'r’Om Hl (]O LD [Hl (]O LD](N1(2)+1)(N1(3)+1)+(N2(2)+1)(N2(3)+1)+(N§2>+1)(N§3)+1)

loc )
where the components v, ) ) are given by (7.6) and for which the norm in

the right-hand side of (7.118)12'3 finite.

+) ) =) =)
LEMMA 7.2 The space Hy o) ne) (hg, hs, h2, hs, |0, L[) is complete.

Proof. The norm in the space

1 ) ) =) =)
Hye no | h2, hs, he, hs,le, L] ), € >0, (7.19)
is equivalent to the norm
|- e e, 2y (7.20)
since hj(x) > 0,7 = 2,3, for z; €le, L].

+) ) =) =)
Let {vn} C Hye no | h2s hss ha, hs,]0,L[ ) be a fundamental sequence

and show that it converges to some vector-function
1 + ) =) =)
(RS HN(Q)’N(B) h27 h37 h27 hda]O7L[ .
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Due to the above equivalence, the sequence {v,} is also fundamental in the
space H' (], L|) for arbitrary ¢ > 0. Since H!(]e, L[) is complete, there exists
a vector-function v} € H'(Je, L[) such that

v — v || gerp — 0 asn — +oo.

Note that for e; < &9 (i.e., |e1, L[D]ea, L]) there holds

(g2)

U(El)haz,L[ = ,

where the symbol i, 1; denotes the restriction onto ey, L[. Therefore, there

exists a vector-function
vo € Hy,.(]0, L)

such that for Ve > 0

UO|]E,L[ — ’U(E).

It is evident that

[[on]]

+) () () () <M for VneN,
ha, ks, ha, h3 ]0,L]

Hi@ NG <

where M is a positive constant.
Obviously,

||Un|| ) () () (=) >

HN(2) N<3) <h2 7h3 3 ho s h3 7]€»L[

< an|| ) H ) =) =) < M for Ve >0,
N(2) NG ha,hs,ha,h3,)0,L[

and, in view of the equivalence of norms (7.19) and (7.20),

|[vol| L <<+) ) (=) (=) > = ||U(E)H L <(+> +) (=) (=) )

HN(Q) N(3) 27h37h27h3 7]€7L HN<2) N<3) 27h37h2,h3 7]8,L[

= lim |[v,]|

n—-+o0o

+) (+) (=) (=) S M.
ha ,h3,ha, hs )e,L]

H) N (
Hence,

[[voll . +) () (5) ()
HN(2)7N(3) ha,hs3,ha, h3,]0,L]

= }:1_{% [lvoll ) (+) (+) (=) (=) =M,
H <2),N(3> h27h37h27h37]‘57[’[
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which implies that

1 ) () ) )
vo € Hye ne | B2y ha, hay b3 ]0, L] )

It is easy to show that v, — vy in the space (7.18). Indeed , for arbitrary
d > 0 there exists a number Ny(d), such that

[[vn — V|

(+) (+) (=) (=)
ha,hs,ha, hs ,]6,L[

LN <

< ||vn — v

) (4) (=) () <90
ha,h3, ha,h3,]0,L[

HN<2),N<3><
for ¥Yn,m > Ny(0). Passing to the limit as m — +oo for a fixed n we get
|[vn — V|

+) () () (=)
HN(Q),N(3) ha,h3,ha,h3 Je,L]

< v, — 0@ ) ) () () )

HN(Q),N(B) ( h2 ) h3 ) h2 ) h3 7}57[/[

+Hlvm = o]

(+) () (=) (=)
ha,h3,ha, h3 e, L]

Hi) N (

- an - U(E)H ) ) (=) () >

H;T(2>,N(3) <h2 yh3,ha, h3 7]87L[
and

|[vn — U(E)H ) ) (=) (=) )

HN(2),N(3) <h2 7h3 ) h2 7h3 7]87L[

= ||vn — vol| +) () (5 (=) > <.

Hll\](Q),N(g) <h2 :h3 ) h2 5 h3 »]EaL[
Note that the left-hand side expression is bounded, increasing function of e.
Therefore sending € to zero we conclude that

[[on = o]

+) () (=) (=) S 67
h2,h3,h2,h3,]0,L[

Hi@ N (

which completes the proof. O

+ ) =) =)
COROLLARY 7.3 H;I(z)’N(g,) (hg, hs, hy, hs,]0, L[) is a Hilbert space. It is

embeded in HY

loc

(0, L)), i.e., for arbitrary € > 0 and

) ) () =) =)
(VRS HN(2)7N(3) h27h37h2ah37]07[’[

there holds v € H!(Je, L|).
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COROLLARY 7.4 \7N(2>7N(3>(Q) is a closed subspace of [H'(Q)]?.

We introduce the space
. + ® =) )
HN(2>,N<3) h27 h37 h27 h37]07L[7L
+) ) =) =)
= UEH 2) NG hg,hg,hQ,hg,]O,L[ : U(L):O .
LEMMA 7.5 If w € ‘7N(2)7N(3>(97FL) then the corresponding vector of wei-
+) () =) )
ghted moments v € H{, N® <h2, hs, ha, hs3,]0, L], L> )

Proof. Due to the trace theorem we have (see also (7.3), (7.6))

N® NG
1
0 = 10, (1) = zz@ )(rg3>+§)

&)
X[P 2 (agze — b2) P (3 (azzz — b3)]p, [hzl hg' %,42443)] , (7.21)
k3 K =1 1 xl:L

where 7, is the trace operator on I'f.
Whence the equalities
U;'r@)r@)([/) =0

follow, since

hg(L)hg(L) > 0.
This proves the lemma. O

REMARK 7.6 It is easy to see that

~ + ) =) )
VN(2)7N(3) (Q,FL) a‘nd H N(2) N(3 (h27 h37 h27 h37]07L[7 L)

are closed subspaces of

L ) () =) (=)
[H (Q,FL)] and Hy N(®2) N(3)(h27h37h h37]07LD7

respectively, and they represent Hilbert spaces with respect to the natural scalar
products induced from

) ) () () )
[H (Q)] and H N®) N(g)(h27h3,h ,h37]07LD.
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3.3. Existence results

For any pair of elements
. 1 + B = =)
v,V € HN<2>7N<3) h2, h3, ho, h3;]07L]7L

we construct w, w* € &N(z)7N<3>(Q,FL) according to the formulas (7.3) and

(7.6):

N® NO

1\ ,® (3
w; (1, T2, 3) Z Z ( (2)+ > < 1(3) +§) hy' (z1) hg' (21)
P00
XUZT(Q)T(?’)(CUI)PT(Q) (CLQ(ZEl)J]Q — bg(l’l)) PT@,) (CL3<J]1)ZL‘3 - b3(1’1)> s (722)
N(2) N(3)
1\, ,® )
w 901,1‘27$3 Z Z ( (2) ) (7”1(3) + 5) hy' (5751) hg' (5751)
"P0r0
XU;@)T@)(I’l)Préz)(aQ({El)l‘Q - bQ(ZEl))PT@)(ag(I‘l)ZL‘g — bg(l'l)) (723)

Consider the following Variational
Problem (IN@ N ). Find w € VN(z) ~® (€2,T) such that

B(w,w") = F(w*) Yw* € Ve no (4 T5), (7.24)

where the bilinear form B(- ,-) and the linear functional F(-) are given by
(6.9) and (6.10), respectively, with f and g satisfying the following conditions

fo€ HYQ), go € H3(S), k=1,2,3.
Due to the coercivity property (6.14) and the Lax-Milgram lemma along
with Corollary 3.4 it follows

LEMMA 7.7 The Variational Problem (I @ N(g)) has a unique solution.

Let, for simplicity
V. (2) 38) = 0
ar; 7y

if at least one of the following conditions NU) > ’l"gj) > Ni(j), 1= 1,2,3;
j = 2,3, with N®@ := max {N{”, N, N§2)} NG = max {fo”), N®, N3(3)}
be fulfilled.

Further, we reduce the three-dimensional variational Problem (13(2)7N(3))
(see (7.24)) to the one-dimensional variational problem for the vector-function
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of weighted moments. To this end we have to substitute (7.22) and (7.23) into
(7.24), apply (6.9), (2.10), and formulas (see [15])

@mm%@wg::§§§3(3+)( )@mm@g

(2)—0 ()=
€ijr,® (V) (1) P (a2(21) 22 — b2 (21))
)

ag
P ) (as(x1)zs — bs(z)

; (7.25)
N@) NGB 1 1
o) anay) = 303 (rw " 5) (r@ " 5) as 1 )as ()
r(2)=0r®) =0
Tiir@, (V) (1) P (ag (1) 2 — ba(71))
Pr(3)(a3<£[)1)$3 — bg(l'l)), (726)
Uz‘jr(2>r(3) = Aéijekkr@)r@) + 2/J“€ijr(2)r(3)7 i,j = 1, 2, 3, (7.27)

r®) =0, N®, k=23,

along with the orthogonality property of the Legendre polynomials (6.15). By
equalities (2.9), (2.10), (7.25)-(7.27) we get

(+) (+)
L h2 h3
Buw) = [dn [dr, [ o))
0 (=) (=)
h2 h3
(+) (+)

h2 hs @ NGB N©@  NEG)

Zd/d@/ZZZZ( )

(=) ) r(2)=0r3)=0 s(2)=0 s(3) =0
h2 hs3

1 1 1
(G) - 2 4 = 3) o =
x('r +2) (5 —|—2) (5 —|—2)

X A30350, 5, (V) €52 53 (V)
XPT(z)(CLQ[L'Q — bg)P (3)(a3x3 — bg)

r

XPS(2)<CL2]32 — bg)P (3)((13.%‘3 — b3)

S

L nyo NG
1 1
= (2 4 = 3 4 =
[ 35 (e3) (43

0 7‘(2) =0 r(g) =0

X 2030 p(2)1(3) (v)eijr(2)r(3) (U*)dl‘l

- [E S (o) (o)

r)=0r3=0
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Xa90s3 [Aéijekkﬂ?)z(?’) (v)eijr@)r(s) (U*)

+2 p1€5,2), (V)0 (V7)] das
N@) NGB

1
3)
- X X () ()
(2) 07’(3) 0
L
X /&gag [Aekk£(2>£(3)(v)eiir<z)r<3) (U*)
0
+2 pe; 2,0 (v)eijr(2>r(3) (v*)} dxs
= B] (2)[N(3)(U’U )7 (728)
3 N©@ NG 1 L
S50 % (e5) (9 5) ot
=1, 0,3 = 0 o

+ \? @ (=) (-)
1+<hm>-+vﬂw 9D 1+ haa
XP?"@) ((1,3$3 — bg)dl‘g

@ (=)

() © 1\’ )
g’ 1+<hw>-+@4w 91+ haa

e (3)
L L
XPT@) (CLQIL‘Q — bg)dfﬁg} h h v* (2) (3) dl’l

3 N NGB 1 1 L
- 3 (rf) +§) (rfg’ +§> /azag{—f @,
i=1 7“@-2):0 ,,z(3>:0

* \? )
+(hm)-+v— @g 1+<hm)

)5 (+) (-)
+ g i 1+ | hs —|— W (2) 1+ h3,1

o) " @41 -

Pyt e <3)dl‘1 (7.29)
0,L x

= Flol (v*),

N(®2) N®G)

X hy'
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where

(+) ()
h2 hs

fg’r@)r(g) (551) = / / fi(l’l, T2, .Tg)PT(Q)(GQLUQ — bg) Pr(3)<a3l’3 — bg)dl’gdxg,

(=) (=)
h2 h3

i=1,23, +9=0,N" j=23,

are double moments of f; and

(+)
h3

(£) ()
g z(‘f()3> = /92(2) <5L’1, h2(1’1):ﬂ33) P s (azzs — b3)dxs,

K3

(=)
hs3

(+)
h2

(£) (*)
g z(‘f()” = /953) (1’173327 h3(331)) PT(2>(CL25€2 - bz)d%,
)
h2
are single moments with respect to P -y (as—jzs—; — bs—;), j = 2,3, of the

; (£
restrictions of gim on x; = h;(z1), j=2,3. Here we assume

(&) (&) (3
) _ 3)
fé 2, (1) =0, ¢ ® (£1) =0, and ¢ i (z1) =0 (7.30)

for NO >, > N9 =123 j=23
Thus, (7.24) is equivalent to the following one-dimensional variational
+H ) =) =)
Problem (I]NO’é)[,N(?,)) . Find v € H} NG NG (hg, hs, h2, hs, |0, L], L) such

that

0,L « 0,L .
BLI@)[,N(?,) (v,v7) = 7:1}\1@)[1\1(3)( )

H) ) (=) () (7.31)
Vv* € Hye e | hos hsy ha, hs 0, L[ L ).
There holds

THEOREM 7.8 If

1 1
. pT3pT3f
dlirgmrl@) = h h { f (2) (3)

(2>
+ (3) h2 1 (3) h2 1
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(H)s) + 1\
+ giT@ 14+ hsa

() = \?
o9 i (ha) e Lato. 2D, (732)
then Problem (I£E§>[,N(3)) has a unique solution v and there holds the estimate
_ 7N o
N
[|v]] ) ) B ) () = 5—=
M@ @ | 72 e bz, halOLL). ?

where ||.7-"]0(2) N(3)|| is the morm of the functional FL (2) NG and 0y is the con-
stant involved in (6.14).

Proof. Due to the equality (7.28), the coercivity and boundedness of B(-, -)
(see inequalities (6.13) and (6.14)) and isometry (7.18) (see Definition 3.1) it

follows that the bilinear form B%v@)[ n@ (5 7) is coercive and bounded:

0,L
BR o (0.0) = Bw, w) > &l [w] o

= & |v]|” ) ) B ) ) ’
HY (o) () | 72o h3s b ha 0L
0,1
BIE o (v.0%) = Blw,w?) < 81l s e s
= 61|v|| ) ) ) (=) (o) ||| ) +) ) (=) ()
HY o) o) | 72 oo bz haJO.LL H{(2) (@ | P2 b3 b2y haOL]

The equalities (3.29) and (3.32) imply that .7-"1]\?;5)[1\1(3) (+) is a bounded linear

((+) + = =)

functional in the space H. ha, h3, h2, hs,]0, L[> . Indeed,

N(2) NG

3 N@) NGB 1 1 L
Fri e @) = > (rl@) - 5) (TES) * 5) /1/’”(%@
' = 0

and therefore

BN NG 1/2 1\ 12
0,L[ . ,
o o @ <> 3 Z( ) (r§>+§>

=1 2) =0r (3) =0

X[, 00,00
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3 NO& NG 1\ /2 1\ /2
2 3
<X XX () (r£>+5) 16, s

i=1 2>:0 T(3):0
i

XHUH . B B ) (
H (o) n@ | 12 hss bz, hs,]O L[

since, in view of (3.18),

1\ /2 1\ /2 e e
() (o) W

3

L>(]0,L[)
< [[o]]

H11\1<2),N<3> <(Z)27(Jﬁ)s,(h)2,(h)3,]o L[)
r =0NO, =123 j=23

Taking into account the inequalities
1\ 2 1\ 2
(TZ(])+§) S(N(])+§) , 1=1,2,3; 7=2,3,

10,L
| F- (2)N(3)( v)| < | ) ) () (=) ()
N(2) N(3)

we get
h2, h3, h2, h3,]0,L[

1/2 3 N® NG

1\ 2 1
X (N(Q) + 5) (N(3) + 5) Z Z Z ‘|¢;‘r§2)r§3)||L2<]0,LD

i=1 (20,9

Now, Remark 3.6 and the Lax-Milgram lemma completes the proof. O

REMARK 7.9 If f; € Ly(Q), then for almost all x1 €]0, L|:

fi(l’l,x‘g,l‘g) = Z Z ( ) ( (3) + ;) a2a3f1r§2)r§3)($1)

r® 0,0

X PT(Q) (CLQIQ — bg)Prgzs) (CL3[E3 — bg)

and

hy?hs® f, o @ € Lo(]0,L]), v =0,00; i=1,2,3 j=23
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due to (3.30) and the inequalities

N NG ] L
Z Z ( ><r§3)+§) / @23, @, [ dry < / |fildQ, i=1,2,3.
0 Q

@ _0,®_g
In this case (7.32) is equivalent to the conditions

1 (e 2 () / - \?
hey *hg ? (2(3) 1 + h2 1 Y 5?3) 1+ ( hz,l)
2 2
<3)(—) (=)
<2>V1 + h31 g1+ (hg,l) € Ly(0, L])

forr —ON ), i=1,2,3, j=2,3.

LEMMA 7 10 Let Q be a Lipschitz domain described in (2.1). Then the

uUnIoOn U 0, T;) is dense in the space H'(Q,T
N g VN<2) N @ (2,T') 4 (Q,Tp).

The proof of the lemma is given in Appendix A.
3.4. Convergence results

First we prove the following convergence

THEOREM 7.11 Assume that f € [La(Q))® and

1
SR @\’ @)y . .
2) N®) +) (5 =) =)
For N® N® ¢ [NJ? let " & € Hl N (hz, h3, h2, h3,]0, L], L) be a
unique solution to the problem (I%\r@)[ N®) (see (7.31)) and

N(®@ NG ~

w € Vnone(Q2,TL]) C [Hl(Q, FL)]3
be the corresponding vector constructed by (7.22), which represents a solution
to the variational problem (7.24).
And finally, let u € [H (2, T)]? be a unique solution of the three-dimensi-
onal variational problem (6.8).
Then

N<2),N(3) . . . . .
| W —ul|r@p — 0 as N .= mln{Nl(J),NQ(J),Né])} — 400, j=2,3.
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N® NG o
Proof. By standard arguments it can be easily shown that ©  mini-

mizes the functional

1
JN(Q),N(S)(U)- 2B£(§>[N(3)( ) fl]\?(g)[N(s)( ) (7'33)

. +) (=) )
Yv € HN(Q)’N(S) h27 h3> h?a h57]07L[7L ’

ie.,

N®@ NG
‘]N(Q),N(ff)( v ) S JN(Q),N(3) (U) (7.34)

1 ) ) =) =)
\V/U S HN(2>,N<3) h27 h37 h27 h37]07L[7L .
Note that (see (7.31), (7.29), and (7.24))

@) NG ) N
oo (N A ) _ Ao ()—F(w)zB(N iy ,w) (7.35)

N(2) NG) N(2) NG)

+ B =) =
V'U - HN(2)N3) (hQ; h37 h27 h37]0 L[ L)

here and in what follows w corresponds to v via formula (7.22) and is an

arbitrary element of the space X7N<2>7N<3)(Q, 'p).
Further, with the help of (6.8),(7.28), and (7.33)—(7.35), we easily derive

N®@ NG N® NG N®@ NG
Blu— w ju— w = B(u,u) = 2B (u, w
N®@ NG N©@ NG N®@ NG)
+B wo, W = B(u,u) — 2F w
(2) NGB N©2) NGB N2 NG)
]0 L[ N g Y ]O,L[ )
+ BN N v, v = 275 N v
10,L] N(®@ NG) N®@ NG)
+2F 42 n®) v < B(u,u) — 2F w

0,L 0,L 10,L N®@ NG
+BL1(2>[,N<3> (v,v) — 2-7:1]\1@)[,1\1(3)( )+ 27, <2>[N<s> ( v

N©@) NG

= B(u,u) + B(w,w) — 2]-‘( b ) — 2F (w)

N2 NG)
+2f( w > = B(u,u) + B(w,w) — 2F (w)
(u,u) + B(w,w) — 2B (u, w)

(u—w,u—w) Yw € &N(2>7N(3>(Q, Iy,
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that is,

N®@ NG N®@ NG ~
B(u— woo,u— W >§B(u—w,u—w) Vw € Ve e (2,17).
(7.36)
We proceed as follows. From (7.36) and the coercivity property of the
bilinear form B (see (6.14)) it follows that

2

N(®@ N®G) N®@ NG) N(®@ NG)

Oy llu— w <Blu— w ,u— w )< EN() NG) (7.37)
[HY(Q,Iz))3
with
En@Ne = inf B(u —w,u—w) > 0.
WEV \((2) n(3) (31'L)
Since N N
VNe NG (97 FL) - V§(2)71§(3) (Q; FL)
for

NP <NY, =123 j=2,3

we conclude that ex@ @ > €.« .. and therefore there exists the limit
) N NG

lim 5N(2),N(3) =ec2> 0.
N® NS 1o

min’” "'min

Due to (7.37) it remains to show that € = 0. We prove it by contrudiction.
Assume that € > 0.
Note that, under our assumption,

enone >e>0 VYNU e NP, j=23. (7.38)
By Lemma 3.10 the union

J Vnewo is dense in [H'(Q,T)) (7.39)
(N2 N®)

* * .
Because of (7.39), there exists a vector-function w and vectors N,

7 = 2,3, such that
* ~ 2 9
w e * < —
v [HY(Q)F 201

*
N(z)&m(Q,I‘L) and Hw—u

with the same §; as in (6.13).

Therefore,
* * % |12 €
8&(2)71&@ < B(u —w, u— w) < (51 u—w —— < 57
which contradicts to (7.38). Thus, € = 0 and the result follows. O
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N(2) NG
THEOREM 7.12 Letu and

be as in Theorem 3.11 and, in addition,
let the conditions

(£)
hj_lu € [LQ(Q)]37 hl_l h 41U € [LQ(Q)P,

hoh
uy € [Ly(Q)), (haha), [Ls(Q)], (7.40)
hahs
() .
hjaug € [Lo(QF, h'Pue [L(Q), §=2,3
be fulfilled with
. %2) ) <];2>
QCL] 1bJ1h _'_b]l’ ]: 2,3
Moreover, let s > 2 and
Ofu € [La(Q)P, k=T i=2,3,
O e L), k=T1s i=23 j=12,3,
(7.42)

hﬂﬁfﬁju S [LQ(Q)]S, k= E, 1= 2, 3, j = 2, 3,

hi 0F0u € [Lo(Q))?, k=T,s; i =2,3; j=2,3.

Then for NU) — N(] < Cy with Cy independent of NU) (j = 2,3), we have

NE@ NG| hy )28 1a)28
u—" 1 % <2><N<2>)+((3§’—)”q<3>(N<3>), (7.43)
[HY(Q)]? (Nmm) (Nmin) y
0 . . .
hy = maxhy(@). P(ND) =0 as NO = oo, j=23.

Proof. It can be shown (see Appendix B) that the conditions (7.40) imply
that the partial double Fourier-Legendre sums S

NE N© of the vector—function
U
N® N
1
SN£2),N£3)(:E17$2’I.3 Z Za2a3 ( (2) + ) (r(3) + 5) ul»,,@)T(g)(wl)
- r(2)=0 r3 =0
x P r(2) (CL2$2 — bg) r(3) (CL3.’L’3 — bg) Nz(]) = 0, oQ; ] = 2, 3, 7 = 1, 2, 3,
where
+) ()
h2 h
Uy (2)(3) (371) = / /Ui($1,$€27$3)Pr(2>(a2$2 - bz)
(=) (=)
h2 hs
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X P (agrs — bs)daodrs, 1Y) =0,00; j =23, (7.44)

belong to the space ‘71\/.(2) N T) € HY(Q,T'y).
Introduce L

€NZ<2),N}3)($1, To, T3) = u;(T1, T, T3) — SNQQ):Nfg) (21, 72, 73)

- 2 () ()

r@=N®41 r@&=N® 11

XU”@)T@) (SEl)Pr(z) ((12.232 — bg) Pr(s) (CL3£L’3 — bg) .

Our goal is to estimate the norm of &, ) v in H'(£2).

N; (@
Applying the recurrence relation

1
Pr(t> = 27,—“ [Pr/+1<t) - Pr/fl(t)] ) r>1,
from (7.44) we get
1
Uz (20,3 (1) m |:(82ui)'r<2)—1 @ — (O2U;) 2 41 7‘(3>}
1

m [(@gui)ru) r3_1 — (agui)ra) r(3)_~_1] (7.45)

From (7.45) it follows

_1 2
’ ‘ (hohs) ™ 2Upc2) p3)

L2(]0,L[)

0 2s
1 <h2) ) 4s ) 9
< —5— hahs)™ 2 (O5u; , (7.46
T (@) z<2>zr(:2>_sH< 2fis) HOheso L2(J0,L[) ( )
2
) ‘ (hohs) ™ 2t
L2(]0,L[)
0 2s
62 <h3) r®4s 9
<N/ H hohs)™ % (), o (147
DR Z (hahs) 3 (O3 || o (TAT)

L0
with constants ¢, and ¢, independent of u;, v, p; (i =1,2,3, j = 2,3).
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By virtue of (7.46) and (7.47) we have

1 1
1\ 1\ 2 1
() C) R hoha)" 2w, :
H <r +2) (T +2> (hahs) i |] ooy

0 2s
& h r@ s 1
<ﬂ Z+ H l(2)+1 ’ 7(3)_|_1
= (r@) 2 2

2

D=

12)=p(2) —g
hohs) "2 (O i
X 2 (O5uy )
(hohs) ™2 (Oqu )l(2>r<3) L2(0.L])
(?L )25
Co 3 r@3) s 1 1
1) 2 1\2
N / 2 4 = 3) 4 =
o 2| ( *2) (l *2)
13)=r(3) —g
2
1
w(hahs) ™3 (O5u; (
(hohs) ™2 (O3u )r<2>l<s> La(0.L)

(7.48)

L0
with constants ¢; and ¢y, independent of u;, 79, p;, (i =1,2,3, j =2,3).

Analogously, due to (7.48) we derive

2

1 1
1\ 2 1\? _1
H <7a(2) + 5) (r(3) + 5) (hohs) : (Okti) 29

0 2s
C1 <h2) )1 1 1
1)2 1)?2
_ N /7 (2) 4 = 3L =
NGO 2. H <l * 2) (T * 2)

1(2)=p(2) g

IR 2
X (hah3) ™2 (O30kUs) 12, a0,
2 )
0 2s
Co (hg) 3 4 1 1
1\2 1\2
_ N / 2 4 = 3 L =
@) 2 H(T +2) <l +2)
13)—(3) _g
14 2
X(hghg) 2 (838kui)r<2)l<3> La(l0 LD,
2 )
i,k=1,2,3,
1\ 2 1\ 2
2 . = 3) 4 = -3 D0
H(r +2) ( +2) (haho) ¢ (hya0y)
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0 2s
C1 (hQ) () 4s 1 1
SRR S H (l<2)+1)2 <T<3>+1)2

(2))2s
(r ) 1(2):,,.(2)78 2

X (h2h3)_% (hz,lé?;ajuz)

1(2)p(3) ’

0 2s
%) (h3) r3) g 1 1
ANV H (r@) N l) ’ <l<3) . 1) ’

(3))2s
(r ) 13)=r(3) —g 2 2
3 920 ]
X(hahs) 2 (hi’l 3 jUi>r<2)l<3) L2(0,L))’ (7:50)
i=1,2,3, j=2,3,
@, 3) 4 * —l<~. )
H<T +2) (T +2> (a2 \s1954) o | o
0 2s
C1 <h2) () g 1 1
1\2 1\2
s Y [(@+g) (10+3)
— 2s
(r) 1) = (2) s 2 2
_1 [~ o 2
% (hohs) ™3 (hl,laQajui)mm st
(}Ol )28
Co 3 r® s 1 1
1)\?2 1\?2
_ N /J 2 4 = 3 L =
e 3|0 +3) (10+3)
13)=r(3) —g
_1 [~ o 2
x(hahy)F (hyadi0yes) . (7.51)

Jj=2,3.
By the Parseval equality along with evident calculations we arrive at the

relations (without loss of generality we assume that Ni(j ), Jj =2,3, are odd)

L
2 0 o0 )
H5Ni<2>7Ni<3> ) = Z Z /h;lhgl (T(Q) n 5)
z 2 T(2>:Ni(2)+1 T‘(3)=Ni(3)+l 0
1
X (T(g) + 5) (uir(z)Ms))Qd:El, (7_52)
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L
2

oo oo 1
— hythyt (r® 4 =
L2(Q) Z Z / 20 (T "2

r@=NP+1:@=NP+10

x (T(ia) N %) [<82“i>r<z>r<s>]2dxl

r3)=0
NN 41y ’
i i —1;-1
+ . / hy'h; {(62 ) o r(g)} ny . (7.53)
0
oo o0 L
) 2 o h*lhfl (2) 1

N® L
: 1\ | NOND 1) ?
(2) - 7 7 —13 -1 )

2 (r +2) 1 / o {(83U’>r<2w?3>] o

r(2)=0 0 '

NOWO 1) [ :
+ 4 /h2 h3 |:<83U1)T(2)N;3)+1:| dl’l s (754)

0

hskipbemi = 1,2,3, j = 2,3,
2

= 1 1
<5 2 4 = G4z
La(Q) — Z (r * 2) <T * 2

r(z):N§2)+1

L
2
—17—1
X/h2 h3 |:<81U2)r(2)r(3)i| d.fCl
0

815

|

N7;(2)’Ni(3)

103



N©®

1\ N? +1 2
+Z/ lh( 2) 4 {{(awi)ww]

r®=07

x {Ni@) (ho)” + (N +2) (ﬁm)Q] + {(agui) N_(z)wwl 2

X [N¢(3) <h3,1)2 + (Ni(3) + 2) (%3,1)2] + (agw) r(2>N§3>+11 2
x {(Nl@ n 2) (hg,l) + N <h31>2] } d:pl) Li=1,2,3. (7.55)

From (7.42), (7.52), and (7.48) we have

l§

2) G
N, N, L

i 0N

(7.56)

here and in what follows qi(,z) (N-(j)> — 0 as Ni(j) — 00, J = 2,3 1=

1,2,3, k=0,3.
Quite similarly, taking into account the relation

M husss = (hshiu)
2 1t3Wi23 23U P
from (7.42), (7.53)—(7.55), and (7.49)—(7.51) we arrive at inequalities
0 2s
2 <h2
Hang.(Q),N(3> < — == q2k< i )

2s
(3

L dP (V). k=123 (757)

(7
)
e ()
)
)
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Combining (7.56) and (7.57) we have

Invoking inequality (7.36) with

w = (SNgz)’Ngs), SNQQ),NQS)’ SN§2>,N§)3)> € Vo ne (2,Tr)

and taking into consideration the coercivity and boundedness properties of the
bilinear form B(- ,-) we obtain inequality (7.43). O
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Appendix A. Proof of Lemma 3.10.

(=) (+)
It is evident that there exist functions 9; (z1) and 9; (z1), j = 2,3, of the
space C*([0, L]) such that

=) (=) (+) (+) .
gj (ZEl) < hj (l’l) and hj (.%'1) < gj (ZEl) for 0 < T < L, ] = 2,3, (Al)

(9 -5 ()
+) (£)

(
and 9; (L) =h; (L), j=2,3.
Let

moreover,

>0, j=2,3, (A.2)
z1€[0,L]

(+)

(=) +
Q= {(z1,70,73) ER® : 0< 2y <L, 9 (m1) <x; <G (11), j =2,3}

and

(=) (+)
%= {(zy,29,23) €R® : 1, =1L, 9; (L) <z; <9, (L), j=2,3}
Due to the inequalities (A.1) then we have
QcQ, T,=T% (A.3)

Further, let w{ be an arbitrary element from the space H'(2,T'z). On
the one hand, since € is a Lipschitz domain and (A.3) holds, there exists an
extension w; of the function w{ onto the domain Q* such that wi € H'(Q*, T%)
(see, e.g., [20]). On the other hand, since the space C*(Q2*,1%) is dence in
H'(Q*,T%), for arbitrary € > 0 there exists a function w; € H*(Q*,T'}) :=
{w e H*(*) : w|p; = 0} such that

(A.4)

||U}1< — w1||H1(Q*) <

DO | ™

Let S N@ N ® (wy) be the partial double Fourier-Legendre sums of wy, i.e.,
1 '

N 1 1
SN1(2>7N1(3)(w1) = Z Z a9 a3 <T§2) + 5) (7“9) + 5) Prgz)(agxg - bg)
r@=0r®=o
Xprgs) (azrs — bs) w, NONOR (A.5)
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where

)
g3z 93
W, @ @) = wy (71, T9, 73) P 2 (agrs — by)
1" 1
=) =
93 92
XPT§3)(CL3$3 — bg) dl‘gdl’g, (A6)

o<’ <N, i=23,

are double moments of the function w;. As for as wy € H*(Q2*,T'%), by (A.2),
(A.5), and (A.6) we see that

SN1<2>,N1(3)(w1) € VN1(2)ﬂN£3> (Q*, FZ), (A.7)
since it has the form similar to (7.3). Taking into consideration inequality

(A.2) and applying estimate (7.58) for the regular (noncusped) case (when
s=2and i = 1), we derive the relation

(V) | as(Vi”)

[|w1—=S @ v (W) ey < i ;
NP NS () N1(2) N1(3) N oo

Therefore there are sufficiently large integers N1(2) and N1(2) such that

£
||w1 - SN1(2),N1(3)(w1)||H1(Q*) < 5 (A8)
The inclusions (A.3) and (A.7) imply that
SN1<2>7N1(3) (wy)],, € ‘7N1<2>,N1(3)(Q’ r'y). (A.9)

Now from (A.4), (A.8), and (A.9) it follows that
| w?—SN;2>7N1<3> (w))lg [l @) < [lwi=willm @) Hwi=Sye@ yo (w)llme) <

which completes the proof. O
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Appendix B. On conditions (3.40)

Here we will find out which kind of conditions have to satisfy a function u

ensuring the embedding
(4 (ZL‘h T, 5(73) = A203U;0m(2),(3) (Il)P,,.(z) (CLQ.IQ — b2>Pr(3) (CLgZEg — bg)

c HY(Q,Ty), i=1,23, (B.1)

where

+) ()

2 3
Ujp2)p(3) (T1) 5=//Ui(lz‘hxz,ﬁ?,)PT(z)(az@—bz)Prw)(a:aIs—b3)d$2d$3- (B.2)

(=) (=)
ha h3

From (B.1) it follows
Vi1 = (a2a3),1uir<2)r<3> PT<2)(G2$2 - bz)Pr(w(aSiUs - b3)
+a9a3U;,2),3) 1 P2 (@272 — b2) Prs) (azz3 — bs)

+a2a3U;.(2),3) (@2,13?2 - bZ,I)P;(2)<a2x2 - bz)Pr(S)(a3$3 - bs)

Fa2a3U;(2)(3) (@3,11’3 - bs,l)Pr(2>(a2$2 - bz)Pr’(s)(agiU:s - bs), (B-3)
Vi = Gzasuir(2>r(3)a2p,f(z)(CLQl’z - bQ)Pr(3>(a333'3 - b3)7 (B-4)
Vi3 = Gzasuir@)r(s)a?,P,f(s)(CL3$U3 - b3)Pr(2>(a25€2 - b2)- (B-5)

It is evident that

Uip(2)p(3) 1 (T1)

(+)
h3
(+) (+) (+)

_l’_
= /Ui(%, h2($1),$3)Pr(2>(a2h2($1) - bz)PMS) (a3x3 - bs)d$3 X h2,1
)
h3

(;)
; (-)

(=) (=)
—/Uz‘(%, ha(x1), 23) P2 (agha(x1) — b2) Py (agzs — bg)dxs X hoy

"2 +) (+) (+)
+/Ui(901,$2, hs(x1)) P2 (aaxe — by) Pus) (ashs(z1) — bs)dag X hg s
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+)
ho
(=) (=) (=)
- / i1, 9, 1y (1)) Py (s — b) Py (azha(z1) — ba)diey X oy

(=)
ho

(CONCY)
ho hs

+ //U@l (5131, T, Z’3)PT(2) (CLQLEQ — bg)Pr(3)(a3$3 — bg)d.l?gdxy,

(=) (=)
ha h3

(+) ()

2 3
+ //Ui(xb T2, =T3)((12,1!B2 - b2,1)P;(2)(a2x2 - bz)Pr<3>(a3$3 - bs)d$2d$3

(=) (=)
ha h3

)
ha hs3

+ //Ui(xh T2, 553)(613,1553 - 53,1)Pr(2>(a2$2 - bz)P,{w)(as% - bs)d$2d$3

(=) (=)
ha h3

= > I (B.6)

Taking into account the inequalities

[mlaﬁ |P.y(x1)], [mlaﬁ |Ply(z1)] < M = const < +o0, j=2,3, (B.7)

and applying Schwarz inequality we get from (B.2)

|uir(2)r<3) (1’1)|2 S M4 //1 . |Ui(l’1,l‘2,ﬂf3)|dl’2dl’3

(=) (=)
ha hs

+) () ) ()

ho hs ha hg
< M4//12d:v2dx3 //u?(ml,xz,xg)dxgdxg

(=) (=) (=) (=)
ho hs ha hg

+) ()

ha h
(D O\ (B ON [,
= M hg — h2 h3 — hg //UZ (ZL‘l, 9, l‘3)d$2dl‘3

(=) (=)
ha hs

+) ()
ha h3

:4M4h2 hg//ug(fﬁl,l’g,l'g)dl’ngg. (BS)

(=) (=)
ha hg
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With the help of (B.1) and (B.8) we derive

) (+)
L 2 h3
vl |70 = /agaguf(2>T(3> /Pf(z)(aﬂz — by) P%s) (asw3 — bs)dzzdzada
0 (=) (=)
ha hs
L L
S 4M4/a§a§u3(2)r(3)h2h3daj1 = 4M4/(hghg)_lu,?r(g)“;j)dfljl
0 0
) ()
L ha hs
§4M4/(h2h3)_1 4M4h2h3//uf(ml,x%xg)d@d:tg dxy
0 (=) (=)
ha hs
) ()
L hy hs
= 16M8///U?(.Tl,xg,xg)dﬂfgdﬂfgdﬂjl = 16M8Hui\|i2(ﬂ). (B.9)
0 (-) (-
ha hs

Quite similarly, from (B.4), (B.5), (B.7), and (B.8) we have

) )
L 2 hs3
viallZ ) = /ag@gU?ﬂz)r(s) /P;(2>2(a29€2 — by) P2y (a3m3 — bs)dzzdzada
0 =) (=)
ha h3
L
< 4M4/a%a%ufr<2)r<3>h2h3dx1
0
(+) (H)
L hy h3
§4M4/h2_3h51 4M4h2h3//’u22(1'1,l’z,$3)dl‘2dl’3 d[[’l
0 (=) (=)
ha h3
(+) ()
L hy hs
= 16M8///hQ_ZU?(xl,xg,xg)dxgd:pgdxl
=) (=)
ha h3
16017 il g0, (B.10)
[|vial] < 16M°][h5 s a0 - (B.11)
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These inequalities yield

/ [(a2a3>71uiT(2)T(3) PT(Q) ((121‘2 — bg)P,,.(:s) (agl’g — bg)]2 d[Engle’l

Q
L

L
2
S 4M4/[(a2a3)71]2uir<2)r(3>hghgdfﬁl = 4M4/M 2
0

U; (2,3 AT1
(h2h3)3 7,7”( )r( )

+)

L 2 N3
2
§4M4/% 4M4h2h3//u?dx2dm3 dl’l
213
(=) (=)
ha hs

 (hho)a® 7

= 16M8/W//u?dx2dx3dxl
0 5
h3

(B.12)

)

Lo(Q)

r

2
/ [agaguir@)ﬂa)(ag,lxz — bz,l)Pl(m(agl’Q — bg) Pr(3>(a3x3 — bg)] d.’lﬂ'gd(ﬁgdl’l
Q
() ()

L 2 h3

2.2 2 4 2

S /azaguir(2>r(3) /M (CLQJZ‘Q —b2’1> dlEgdl‘Qd(L’l
0 (=) (=)

ha hs
(+)
L ha
= 2M4/CL§CL§U?T(2)T(3) h3 /(a/271x2 — b271)2d$2dl’1
0 (=)
ho
L
i s 2, +H2 e O
0
—4 a271b271h2h~2 + 2 b%,l hg] dl’l
L (2) (J}rL)
[, (P e P
< 16M / /[gam hy + ho hy + hy
0 (=) ()
2 hs

—2a271b271h~2 + bgvl] u?dxgdxzd:cl
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1 2

= 16M° ||y wi , (B.13)

)

where

1, [P e )P -,

hj = gaj’l hj + h]’ h]’ + hj — 2aj71bj,1hj + bj,l? ] = 2, 3. (B14)
By the same type arguments we derive

/ [CLQCLgUiT(z)T(:s) ((13’1I3 — b371)PT(2) (CLQIQ — bQ)P;‘(g) (CL3$3 — bg)] 2 d$3d$2dl’1

Q
L2
<16M8||hy wil| (B.15)
La(S2)
where hj is given by (B.14).
(=) (+)
For xo € | hao(z1), ho(z1)| we have
©)
(+) i
ui(z1, ha(21), 23) = i1, w2, 23) + /Ui,2(9€1,$2>$3)d$2. (B.16)
2
Whence
+) 2
ha
2 ) 2
ui (21, ho(21), 23) < 205 (21, 2, 23) + 2 /1 (21, To, 23)dTy
2
(+) (+)
ho ho
< 2ui (w1, w9, 13) +2/12dt/u?72(x1,a:2,x3)d$2
To To
s
ha
< 2ui(xy, w9, 73) + 4h2/ui2($1,m2,x3)dm2. (B.17)
)
ho

(=)
Integrate both parts of inequality (B.17) with respect to x5 from hy to hs

(+)
ho

(+)
2h2u?(:p1,h2(x1),x3) S Q/U?(Il,l’g,l‘g)dl'g

(=)
ho
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(+)
ho

+8h3 /uiz(a:l, Lo, T3)dxs,

(=)
ho

ie.,

(+)
ho
2 (+) -1 2
u;(zy, ho(x1),23) < hy™ [ ui(zy, 29, x3)d2s

(=)
ho

(+)
ho

+4h2/u?,2(x1,x2,x3)dx2.

(=)
ho

Analogously we get the following inequalities

(-;_z)
(-) ;

u?(xl,zg(xl),xg) < hz_1 /U?(.Tl,.fﬁg,il?g)diﬁg

(=)
ha

+)

ho
+4h o( )d
2 [ Ujo(T1, X2, T3)AT2,
)
ho

)
h3
2 &) —1 2
u” (21, T2, hy(x1)) < hy /U (21,29, x3)dxs

(=)
h3

(+)
h3

+4h3 / u723(.1'1, Ta, I’g)dl’g.

(=)
h3

Further we apply relations (B.6), (B.7), and (B.19)-(B.21) to obtain

/ [CLQ&gIl (.I'l)PT,(Q)(aQSL'Q — bg)Pr(s)(agl’g — b3>]2 d&?gdl’gdl’l
Q
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(+) (+)

< M4/a2a§I (r1)drsdredr; = M4/a2a§I T dxl//lda:gdxg
Q

(=) (=)
ha hs

L
= 4M4/a2agl2(x1)h2h3dx1 = 4M4/(h2h3)_1112($)d$1

0

(+) 2

L

4 | ® , +) 2
< AM* [ (hohg) h 2.1 |wi(x1, ho(zy), x3)|M* dxs| dxy

0 (=)
h3

P

@ @
§4M8/ (hohs)™ h21 /1 d$3/ 9517h2 1), x3)dws

0
\
( (+) (+)
L G hs ha
< 8M8/ (hZhS)_1h3<h2,l> / hg_l/ug(lil,@,xs)d@
0 -) )
\ h3 ha
)
ho

+4h2/u?’2(931,$2,:173)d$2 dxs p dxy
=)
ho

)
L ha h3

8 (+) 2 -2,2
=8M ( h 2,1> h2 U; (ZL‘l, Z9, l‘g)dIgdele’l
0 (=) =)
ha hs3

(+) (+)

) (+) 2
+32M /// h21 ZEl,fL‘Q,l'g)dl’nggde‘l

0 (=)=
ha hg

2 2

(+)
= 8M® | |hy " o u;

+ 32M* H (Z) :
2,1U42

La(Q) Ly (92)

Similarly we have

/ [a2a3[2(x1)Pr(2)(a2:v2 — bQ)PT(S)(ag,l'g — bg)]Q dIgd{Ele‘l
Q
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NIne! ? NS ?
< 8M°® ||hy" h 21U, + 32M* || h a1t ; (B.23)
Lo(Q) Lo (Q)
/ [a2a3 I (.731) Pr(2) ((12.232 — bg)Pr(3) (agﬂfg — bg)]2 dl’gdﬂ?gdﬂ?l
Q
8|, -1%) ’ o || ? .
< 8M°® ||hs" h 31U, +32M* || hsauis , J=23,4,(B.24)
Lo(Q) Lo (Q)
/ [CZQCLg [5(1’1) Pr<2) (GQJZ'Q — bz)PT(B) (&3%3 — bg)]z dxgdl'zdl'l
Q
< 8w 1|2 .
<16M° [Jusaf? (B.25)
Due to (B.6) and (B.7) we derive
/ as0as [6 331 T(Q)(CLQ.I’Q — bQ)P 3)(&333'3 — b3)] dl’gd.ﬁlﬁgdl’l
Q
(+) (+)
< M4/a2a3[ (x1)dxzdredr; = M4/a2a312 //1dx2dx3
Q
h2 hd

= 4M* / azail?(zy)hohsdr, = 4M* / (hohs) ™" I2(21)dzy. (B.26)

0

Applying Hoélder’s inequality and arguing as in the proof of inequalities (B.8)
and (B.13) we get

) 1) 2
ha hs3
2 4
I§(z) <M // \u; (21, T, 23)| |az 122 — boq|dzadas
(=) (=)
ha h3
+) () +
2 h3 2 h3
4 2 2
S M //U,L (.171,1‘2, Ig)dl’gd&?gg //(CLQJIQ — 62’1) dxgdl’:g, (B27)
(=) (=) (=) (=)
ha h3 ha h3
(+) () ) ()
h2 hg h2 h3
// a21T2 — bQ 1 deQd[L‘g // CL2 11'2 2(12 1b2 129 + bQ l)dl'gdl’g
(=) (=) (=) (=)
h2 h3 h2 h3
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(+)
ho

= 2h3 /(Cl2 1.272 2&2 1b2 12 + b2 1)d$2
(=)

ha
3 .rQ:(-;_Z)Q
= 2h3( ? — Qg, 1b2 1.1’2 -+ b 1.1'2) (h)
1 2 ) = )2 N )
= 4h3 hg g hg + hg hg + h2 — 2&2,16271}@ + b271 (B28)
These inequalities imply
) ()
hy h
Ig(l’l) S 4M4h2h3h2//U?(%l,ﬁz,l'g)dl'gd%g, (B29)
(=) (=)
hy hs
where hs is given by (B.14).
In accordance with (B.29) we have from (B.26)
/ [a2a3 IG(xl) Pr(2>(a2:c2 — bg)Pr(s) (ag.fL'g — b3>]2 dngdl’le’l
Q
L h2 h3
< 16M8///h2u X1, $2,$3)dl’3dI2dI‘1
0 (- )( )
— 16M° HhQ wi |70 - (B.30)
Quite analogously we get
/ [CLQCL3]7((L’1>PT(2) (CLQ!EQ — bQ)Pr(3)<(13I3 — b3)]2 dl’3d$2d$1
Q
< AM* / (hohs) ™" I2(xy)day, (B.31)
(+) (+) (+) (+)
ha h ha hg
B(xy) < M4//U12(331,$2,$3)d$2d$3 //(@3,1563 — by 1) dwadrs, (B.32)
(=) (=) (=) (=)
hy hs

ha h3
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+) ()

i , 1, (B B ©OF
//((I371$3 — b371) d.ﬂ?gdl’g = 4h2 h3 [ga&l h5 + h3 h3 + h5

(=) (=)

ho h3
—2a3,1b3,1hs + b3,12]7 (B.33)
+) ()
2 N3
172(1'1) S 4M4h2h3h3//U?(ZL‘hZL'Q,JZg)dl'QdZEg, (B34)
(=) (=)
ha hs3

/ [&2&3[7($1)PT(2) (&2%2 — bQ)PT(:‘s)(Clg.CI?g - b3)]2 di[)gdl'Qdfﬂl

Q

1 2

hs u; ; (B.35)

Lo2(Q)

< 16M8

where hg is given by (B.14).

Note that the quantity ||v2-||§p(m can be estimated from above by the
right-hand side expressions of inequalities (B.9)-(B.13), (B.15), (B.22)-(B.25),
(B.30), and (B.35) and, therefore, the embedding (B.1), i.e., the inclusion
v; € HY(Q,Tr) will be automatically satisfied if the following conditions are
fulfilled

(£) .
hitu € L@ bt haue L@, j=23,  (psg
Uy € [LQ(Q)]S’

hah (+) :
PPty e (@), Wi € L@, =23 B37)
hahs
hiue L), j=23. (B.38)
Here 71]' is given by (B.14).
(+) (=)
Remark that in the case of a symmetric beam, i.e., if h; = h; = —h;, j=
2,3, we have b; = 0 and conditions (B.38) read as follows
hja 3 .
h_ u € [LQ(Q)] . J=2,3, (B39)
J
ie.,
(loghy) ; u € [La(Q)]*, j=2,3. (B.40)
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(+) (=) ,
In addition, if h; = h; = —h; = ij'f], k;, k; = const, kj > 0,0 < k; <1, then

conditions (B.38) are written as
ke iu € [Ly(Q), §=2,3. (B.41)

Moreover, since 0 < k; < 1, conditions (B.36) and (B.37) are equivalent to the

inclusions
Kki—1 .
uy € [La()], 2wy € [La(Q), 5=2,3 (B.42)
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117



Appendix 2D

{+)

T T
(r;‘) . (%' )
Fig.6 Fig.7
(+ (FF)
T
(r;'i
————\ (’7)
Fig.8 ' Fig.9
(';‘-)
(1—‘) ] (TT)
\ (’f)
Fig.10 Fig.11
)

T and T denote tangents to the profile and projection curves at points
of the cusped ends.

Figure 6 corresponds to a blant cusped end, Figures 7-10 correspond
to angularly cusped ends, and Figure 11 corresponds to a sharply cusped
end (a real mathematical cusp).
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