
Volume 14, 2010 9

EXPLICIT SOLUTIONS OF THE BVPs OF THE THEORY OF
CONSOLIDATION WITH DOUBLE POROSITY FOR THE

HALF-SPACE

Mikheil Basheleishvili, Lamara Bitsadze

Ilia State University

Abstract. The purpose of this paper is to be explicitly solved the basic first
and the second boundary value problems (BVPs) of the theory of consolidation
with double porosity for the half-space. The obtained solutions are represented
in quadratures.
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Introduction

A theory of consolidation with double porosity has been proposed by Aifan-
tis. This theory unifies a model proposed by Biot for the consolidation of
deformable single porosity media with a model proposed by Barenblatt for
seepage in undeformable media with two degrees of porosity. In a material
with two degrees of porosity, there are two pore systems, the primary and
the secondary. For example in a fissured rock (i.e., a mass of porous blocks
separated from each other by an interconnected and continuously distributed
system of fissures) most of the porosity is provided by the pores of the blocks
or primary porosity, while most of permeability is provided by the fissures or
the secondary porosity. When fluid flows and deformation processes occur si-
multaneously , three coupled partial differential equations can be derived [1],[2]
to describe the relationships governing pressure in the primary and secondary
pores (and therefore the mass exchange between them) and the displacement
of the solid. Inertia effects are neglected as they are in Biot’s theory.

The physical and mathematical foundations of the theory of double poros-
ity were considered in the papers [1]-[3]. In part I of a series of paper on the
subject, R. K. Wilson and E. C. Aifantis [1] gave detailed physical interpre-
tations of the phenomenological coefficients appearing in the double porosity
theory. They also solved several representative boundary value problems. In
the part II of this series, uniqueness and variational principles were established
by D. E. Beskos and E. C. Aifantis [2] for the equations of double porosity,
while in part III Khaled, Beskos and Aifantis [3] provided a related finite ele-
ment formulation to consider the numerical solution of Aifantis’ equations of
double porosity (see [1],[2],[3] and references cited therein). The basic results
and the historical information on the theory of porous media were summarized
by de Boer [4].
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The main goal of this investigation is to construct explicitly the solutions of
the basic first and the second boundary value problems (BVPs) of the theory
of consolidation with double porosity for the half-space.

1. Basic Equations, Boundary Value Problems

The basic Aifantis’ equations of statics of the theory of consolidation with
double porosity are given by the partial differential equations in the form [1],
[2]

µ∆u+ (λ+ µ)grad div u− grad (β1p1 + β2p2) = 0, (1.1)

(m1∆− k)p1 + kp2 = 0,

kp1 + (m2∆− k)p2 = 0,
(1.2)

where u = (u1, u2, u3) is the displacement vector, p1 is the fluid pressure within
the primary pores and p2 is the fluid pressure within the secondary pores. λ is
Lame’ constant, µ is the shear modulus and the constants β1 and β2 measure

the change of porosities due to an applied volumetric strain. mj =
kj
µ∗ , j = 1, 2.

The constants k1 and k2 are the permeabilities of the primary and secondary
systems of pores, the constant µ∗ denotes the viscosity of the pore fluid and
the constant k measures the transfer of fluid from the secondary pores to the
primary pores. The quantities λ, µ, k, βj, kj (j = 1, 2) and µ∗ are all
positive constants. △ is Laplace operator.

Let D denote the upper half-space x3 > 0 and the boundary of D is
S (x1ox2 plane). Let us choose the unit normal n(0, 0, 1).

Introduce the definition of a regular vector-function.
Definition 1. A vector-function U(x) = (u1, u2, u3, p1, p2) defined in the

domain D is called regular if it has integrable continuous second derivatives in
D, U itself and its first order derivatives are continuously extendable at every
point of the boundary of D, i.e., U ∈ C2(D)

∩
C1(D), and the vector U(x),

with the components ui(x), i = 1, ..., 5, satisfies the following conditions at
infinity:

U(x) = O(|x|−1),
∂Ui

∂xj

= O(|x|−2), |x|2 = x2
1 + x2

2 + x2
3, (1.3)

i = 1, ..., 5 j = 1, 2, 3.

For the equation (1.1)-(1.2) we pose the following boundary value problems:
Find a regular vector U , satisfying in D equations (1.1)-(1.2), and on the

boundary S one of the following conditions is given:
Problem I. The displacement vector and the fluid pressures are given in

the form

u+(z) = f(z)+, p+1 (z) = f+
4 , p+2 (z) = f+

5 (z), z ∈ S,
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where f+ ∈ C1,α(S), f+
i ∈ C1,α(S), 0 < α ≤ 1, i = 4, 5, are given

functions.
Problem II. The stress vector and the normal derivatives of the pressure

functions
∂pj
∂n

are given in the form

(Pu)+ = f(z)+,

(
∂p1(z)

∂n

)+

= f+
4 ,

(
∂p2(z)

∂n

)+

= f+
5 (z), z ∈ S,

where f+ ∈ C1,α(S), f+
i ∈ C1,α(S), 0 < α ≤ 1, i = 4, 5, are given

functions, Pu is a stress vector, which acts on an elements of the S with the
normal n = (0, 0, 1)

P (∂x, n)u = T (∂x, n)u− n(β1p1 + β2p2), (1.4)

where [5]

T (∂x, n) =∥ Tkj(∂x, n) ∥3×3,

Tij(∂x, n) = µδij
∂

∂n
+ λni

∂

∂xj

+ µnj
∂

∂xi

, i, j,= 1, 2, 3.
(1.5)

Further we assume that pj is known, when x ∈ D. Substitute the β1p1+β2p2
in (1.1) and search the particular solution of the following equation

µ∆u+ (λ+ µ)grad div u = grad (β1p1 + β2p2).

We put

u0 = − 1

4π

∫ ∫
D

∫
Γ(x− y)grad (β1p1 + β2p2)dv, (1.6)

where [5]

Γ(x− y) =
1

4µ(λ+ 2µ)

∥∥∥∥(λ+ 3µ)δkj
r

+
(λ+ µ)(xk − yk)(xj − yj)

r3

∥∥∥∥
3×3

,

r2 = (x1 − y1)
2 + (x2 − y2)

2 + (x3 − y3)
2.

Substituting u0 into (1.1) we obtain

µ∆u0 + (λ+ µ) grad div u0 = grad(β1p1 + β2p2). (1.7)

Thus we have proved that u0(x) is a particular solution of the equation
(1.1). grad(β1p1+β2p2) is a continuous vector in D along with its first deriva-
tives and the vector grad(β1p1+β2p2) has to satisfy the following condition at
infinity

grad(β1p1 + β2p2) = O(|x|−1−α), α > 0.
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Thus the general solution of the equation (1.1) is u = V + u0, where

A(∂x)V = µ∆V + (λ+ µ) grad div V = 0. (1.8)

This equation is the equation of an isotropic elastic body, i.e.., we reduce the
solution of basic BVPs of the theory of consolidation with double porosity to
the solution of the basic BVPs for the equation of an isotropic elastic body.

2. Solution of the First Boundary Value Problem

A solution of the first BVP will be sought in the domain D in terms of the
double layer potential(

p1
p2

)
=

1

2π

∫ ∫
S

∂

∂x3

M(x− y)φ(y)dy1dy2 , (2.1)

where

M(y − x) =

 m2
e−λ0r

r
− k

λ2
0

e−λ0r − 1

r
− k

λ2
0

e−λ0r − 1

r

− k

λ2
0

e−λ0r − 1

r
m1

e−λ0r

r
− k

λ2
0

e−λ0r − 1

r

 ,

λ2
0 =

k

m1

+
k

m2

,

(2.2)

φ is the unknown real vector function. To determine it, we obtain the integral
equation(

m2 0
0 m1

)
φ(z) =

1

2π

∫ ∫
S

∂

∂x3

M(y − z)φ(y)dy1dy2 =

(
f+
4 (z)
f+
5 (z)

)
. (2.3)

Takihg into account the fact that
∂

∂x3

M(y − z) = 0, z3 = 0, from the

latter equation we have(
m2 0
0 m1

)
φ(z) =

(
f+
4 (z)
f+
5 (z)

)
, (2.4)

and (2.1) takes the form(
p1
p2

)
=

1

2π

∫ ∫
S

∂

∂x3

M(x− y)

(
m−1

2 f+
4 (z)

m−1
1 f+

5 (z)

)
dy1dy2 . (2.5)

The solution of the equation (1.8)

µ∆V + (λ+ µ)grad div V = 0
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when V ± = F+ = f+ − u+
0 is given in the form [5]

V (x) =
∫
S

[N(∂y, n)Γ(y − x)]TF+(y)dy1dy2, x ∈ D, y ∈ S, (2.6)

where [5]

[N(∂y, n)Γ(x− y)]Tkj =
∂

∂n

δkj
r

+
3∑

k=1

Mkj(∂y, n)

[
(λ+ µ)(xk − yk)(xj − yj)

(λ+ 3µ)r3

]
,

Mkj = nj
∂

∂xk

− nk
∂

∂xj

,
∂

∂n
=

∂

∂x3

.

We regard the formula (2.6) as an analogue of Poisson’s formula in the
theory of consolidation with double porosity for the solution of the first BVP
for the half-space.

3. Solution of the Second Boundary Value Problem

A solution of the second BVP is sought in the domain D in terms of the simple
layer potential (

p1
p2

)
=

1

2π

∫ ∫
S

M(x− y)φ(y)dy1dy2 , (3.1)

where M(x−y) is given by (2.2), φ is an unknown real function. To determine
it, we obtain the integral equation

−
(

m2 0
0 m1

)
φ(z) =

1

2π

∫ ∫
S

∂

∂x3

M(y − z)φ(y)dy1dy2 =

(
f+
4 (z)
f+
5 (z)

)
.

(3.2)

Taking into account the fact that
∂

∂x3

M(y − z) = 0, z3 = 0, from the

equation (3.2) we have

−
(

m2 0
0 m1

)
φ(z) =

(
f+
4 (z)
f+
5 (z)

)
, (3.3)

and (2.1) takes the form(
p1
p2

)
= − 1

2π

∫ ∫
S

M(x− y)

(
m−1

2 f+
4 (z)

m−1
1 f+

5 (z)

)
dy1dy2 . (3.4)

The solution of the equation (1.8)

µ∆V + (λ+ µ)grad div V = 0
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(when [T (∂x, n)V ]+ = F ) is sought in the form

V (x) =
1

2π

∫ ∫
S

[Γ(y − x)− 1

2(λ+ 2µ)
H(x− y)]g(y)dy1dy2, x ∈ D,

(3.5)
where

Γ(x− y) =
1

2µ(λ+ 2µ)

∥∥∥∥(λ+ 3µ)δkj
r

+
(λ+ µ)(xk − yk)(xj − yj)

r3

∥∥∥∥
3×3

,

r2 = (x1 − y1)
2 + (x2 − y2)

2 + x2
3,

H(y − x) =


∂2

∂x2
1

∂2

∂x1∂x2

∂2

∂x1∂x3

∂2

∂x1∂x2

∂2

∂x2
2

∂2

∂x2∂x3

− ∂2

∂x1∂x3

− ∂2

∂x2∂x3

− ∂

∂x2
3

Φ(x, y),

Φ(x, y) = x3 ln(r + x3)− x3.

(3.6)

From (3.5) for the stress vector we obtain

T (∂x, n)V (x) =
1

2π

∫ ∫
S

G(y − x)g(y)dy1dy2, x ∈ D, y ∈ S, (3.7)

where

G(y − x) = 3(λ+ µ)

×


(x1 − y1)

2x3

r5
(x1 − y1)(x2 − y2)x3

r5
(x1 − y1)x

2
3

r5
(x1 − y1)(x2 − y2)x3

r5
(x2 − y2)

2x3

r5
(x2 − y2)x

2
3

r5
(x1 − y1)x

2
3

r5
(x2 − y2)x

2
3

r5
(x3 − y3)x3

r5

 .
(3.8)

For determining g we have integral equation

(λ+ µ)g(z) +
1

2π

∫ ∫
S

G(z − y)g(y)dy1dy2 = F (z), z ∈ S, (3.9)

Note that G(z − y) = 0, z ∈ S. Then (λ+ µ)g(z) = F (z), and owing to (3.5)
we have

V (x) =
1

2π(λ+ µ)

∫ ∫
S

[Γ(y − x)− 1

2(λ+ 2µ)
H(x− y)]F (y)dy1dy2,

x ∈ D, y ∈ S,

(3.10)
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The stress vector can be calculated from (3.7).
The formula (3.10) is an analogou of the Poisson’s formula for the solution

of the second BVP for the half-space.
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